1 /* Vectorizer
2    Copyright (C) 2003-2014 Free Software Foundation, Inc.
3    Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23 
24 #include "tree-data-ref.h"
25 #include "target.h"
26 #include "hash-table.h"
27 
28 /* Used for naming of new temporaries.  */
29 enum vect_var_kind {
30   vect_simple_var,
31   vect_pointer_var,
32   vect_scalar_var
33 };
34 
35 /* Defines type of operation.  */
36 enum operation_type {
37   unary_op = 1,
38   binary_op,
39   ternary_op
40 };
41 
42 /* Define type of available alignment support.  */
43 enum dr_alignment_support {
44   dr_unaligned_unsupported,
45   dr_unaligned_supported,
46   dr_explicit_realign,
47   dr_explicit_realign_optimized,
48   dr_aligned
49 };
50 
51 /* Define type of def-use cross-iteration cycle.  */
52 enum vect_def_type {
53   vect_uninitialized_def = 0,
54   vect_constant_def = 1,
55   vect_external_def,
56   vect_internal_def,
57   vect_induction_def,
58   vect_reduction_def,
59   vect_double_reduction_def,
60   vect_nested_cycle,
61   vect_unknown_def_type
62 };
63 
64 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def)           \
65                                    || ((D) == vect_double_reduction_def) \
66                                    || ((D) == vect_nested_cycle))
67 
68 /* Structure to encapsulate information about a group of like
69    instructions to be presented to the target cost model.  */
70 typedef struct _stmt_info_for_cost {
71   int count;
72   enum vect_cost_for_stmt kind;
73   gimple stmt;
74   int misalign;
75 } stmt_info_for_cost;
76 
77 
78 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
79 
80 static inline void
add_stmt_info_to_vec(stmt_vector_for_cost * stmt_cost_vec,int count,enum vect_cost_for_stmt kind,gimple stmt,int misalign)81 add_stmt_info_to_vec (stmt_vector_for_cost *stmt_cost_vec, int count,
82 		      enum vect_cost_for_stmt kind, gimple stmt, int misalign)
83 {
84   stmt_info_for_cost si;
85   si.count = count;
86   si.kind = kind;
87   si.stmt = stmt;
88   si.misalign = misalign;
89   stmt_cost_vec->safe_push (si);
90 }
91 
92 /************************************************************************
93   SLP
94  ************************************************************************/
95 typedef struct _slp_tree *slp_tree;
96 
97 /* A computation tree of an SLP instance.  Each node corresponds to a group of
98    stmts to be packed in a SIMD stmt.  */
99 struct _slp_tree {
100   /* Nodes that contain def-stmts of this node statements operands.  */
101   vec<slp_tree> children;
102   /* A group of scalar stmts to be vectorized together.  */
103   vec<gimple> stmts;
104   /* Load permutation relative to the stores, NULL if there is no
105      permutation.  */
106   vec<unsigned> load_permutation;
107   /* Vectorized stmt/s.  */
108   vec<gimple> vec_stmts;
109   /* Number of vector stmts that are created to replace the group of scalar
110      stmts. It is calculated during the transformation phase as the number of
111      scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
112      divided by vector size.  */
113   unsigned int vec_stmts_size;
114 };
115 
116 
117 /* SLP instance is a sequence of stmts in a loop that can be packed into
118    SIMD stmts.  */
119 typedef struct _slp_instance {
120   /* The root of SLP tree.  */
121   slp_tree root;
122 
123   /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s.  */
124   unsigned int group_size;
125 
126   /* The unrolling factor required to vectorized this SLP instance.  */
127   unsigned int unrolling_factor;
128 
129   /* Vectorization costs associated with SLP instance.  */
130   stmt_vector_for_cost body_cost_vec;
131 
132   /* The group of nodes that contain loads of this SLP instance.  */
133   vec<slp_tree> loads;
134 
135   /* The first scalar load of the instance. The created vector loads will be
136      inserted before this statement.  */
137   gimple first_load;
138 } *slp_instance;
139 
140 
141 /* Access Functions.  */
142 #define SLP_INSTANCE_TREE(S)                     (S)->root
143 #define SLP_INSTANCE_GROUP_SIZE(S)               (S)->group_size
144 #define SLP_INSTANCE_UNROLLING_FACTOR(S)         (S)->unrolling_factor
145 #define SLP_INSTANCE_BODY_COST_VEC(S)            (S)->body_cost_vec
146 #define SLP_INSTANCE_LOADS(S)                    (S)->loads
147 #define SLP_INSTANCE_FIRST_LOAD_STMT(S)          (S)->first_load
148 
149 #define SLP_TREE_CHILDREN(S)                     (S)->children
150 #define SLP_TREE_SCALAR_STMTS(S)                 (S)->stmts
151 #define SLP_TREE_VEC_STMTS(S)                    (S)->vec_stmts
152 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S)          (S)->vec_stmts_size
153 #define SLP_TREE_LOAD_PERMUTATION(S)             (S)->load_permutation
154 
155 /* This structure is used in creation of an SLP tree.  Each instance
156    corresponds to the same operand in a group of scalar stmts in an SLP
157    node.  */
158 typedef struct _slp_oprnd_info
159 {
160   /* Def-stmts for the operands.  */
161   vec<gimple> def_stmts;
162   /* Information about the first statement, its vector def-type, type, the
163      operand itself in case it's constant, and an indication if it's a pattern
164      stmt.  */
165   enum vect_def_type first_dt;
166   tree first_op_type;
167   bool first_pattern;
168 } *slp_oprnd_info;
169 
170 
171 
172 /* This struct is used to store the information of a data reference,
173    including the data ref itself, the access offset (calculated by summing its
174    offset and init) and the segment length for aliasing checks.
175    This is used to merge alias checks.  */
176 
177 struct dr_with_seg_len
178 {
dr_with_seg_lendr_with_seg_len179   dr_with_seg_len (data_reference_p d, tree len)
180     : dr (d),
181       offset (size_binop (PLUS_EXPR, DR_OFFSET (d), DR_INIT (d))),
182       seg_len (len) {}
183 
184   data_reference_p dr;
185   tree offset;
186   tree seg_len;
187 };
188 
189 /* This struct contains two dr_with_seg_len objects with aliasing data
190    refs.  Two comparisons are generated from them.  */
191 
192 struct dr_with_seg_len_pair_t
193 {
dr_with_seg_len_pair_tdr_with_seg_len_pair_t194   dr_with_seg_len_pair_t (const dr_with_seg_len& d1,
195 			       const dr_with_seg_len& d2)
196     : first (d1), second (d2) {}
197 
198   dr_with_seg_len first;
199   dr_with_seg_len second;
200 };
201 
202 
203 typedef struct _vect_peel_info
204 {
205   int npeel;
206   struct data_reference *dr;
207   unsigned int count;
208 } *vect_peel_info;
209 
210 typedef struct _vect_peel_extended_info
211 {
212   struct _vect_peel_info peel_info;
213   unsigned int inside_cost;
214   unsigned int outside_cost;
215   stmt_vector_for_cost body_cost_vec;
216 } *vect_peel_extended_info;
217 
218 
219 /* Peeling hashtable helpers.  */
220 
221 struct peel_info_hasher : typed_free_remove <_vect_peel_info>
222 {
223   typedef _vect_peel_info value_type;
224   typedef _vect_peel_info compare_type;
225   static inline hashval_t hash (const value_type *);
226   static inline bool equal (const value_type *, const compare_type *);
227 };
228 
229 inline hashval_t
hash(const value_type * peel_info)230 peel_info_hasher::hash (const value_type *peel_info)
231 {
232   return (hashval_t) peel_info->npeel;
233 }
234 
235 inline bool
equal(const value_type * a,const compare_type * b)236 peel_info_hasher::equal (const value_type *a, const compare_type *b)
237 {
238   return (a->npeel == b->npeel);
239 }
240 
241 
242 /*-----------------------------------------------------------------*/
243 /* Info on vectorized loops.                                       */
244 /*-----------------------------------------------------------------*/
245 typedef struct _loop_vec_info {
246 
247   /* The loop to which this info struct refers to.  */
248   struct loop *loop;
249 
250   /* The loop basic blocks.  */
251   basic_block *bbs;
252 
253   /* Number of latch executions.  */
254   tree num_itersm1;
255   /* Number of iterations.  */
256   tree num_iters;
257   /* Number of iterations of the original loop.  */
258   tree num_iters_unchanged;
259 
260   /* Minimum number of iterations below which vectorization is expected to
261      not be profitable (as estimated by the cost model).
262      -1 indicates that vectorization will not be profitable.
263      FORNOW: This field is an int. Will be a tree in the future, to represent
264 	     values unknown at compile time.  */
265   int min_profitable_iters;
266 
267   /* Threshold of number of iterations below which vectorzation will not be
268      performed. It is calculated from MIN_PROFITABLE_ITERS and
269      PARAM_MIN_VECT_LOOP_BOUND.  */
270   unsigned int th;
271 
272   /* Is the loop vectorizable? */
273   bool vectorizable;
274 
275   /* Unrolling factor  */
276   int vectorization_factor;
277 
278   /* Unknown DRs according to which loop was peeled.  */
279   struct data_reference *unaligned_dr;
280 
281   /* peeling_for_alignment indicates whether peeling for alignment will take
282      place, and what the peeling factor should be:
283      peeling_for_alignment = X means:
284         If X=0: Peeling for alignment will not be applied.
285         If X>0: Peel first X iterations.
286         If X=-1: Generate a runtime test to calculate the number of iterations
287                  to be peeled, using the dataref recorded in the field
288                  unaligned_dr.  */
289   int peeling_for_alignment;
290 
291   /* The mask used to check the alignment of pointers or arrays.  */
292   int ptr_mask;
293 
294   /* The loop nest in which the data dependences are computed.  */
295   vec<loop_p> loop_nest;
296 
297   /* All data references in the loop.  */
298   vec<data_reference_p> datarefs;
299 
300   /* All data dependences in the loop.  */
301   vec<ddr_p> ddrs;
302 
303   /* Data Dependence Relations defining address ranges that are candidates
304      for a run-time aliasing check.  */
305   vec<ddr_p> may_alias_ddrs;
306 
307   /* Data Dependence Relations defining address ranges together with segment
308      lengths from which the run-time aliasing check is built.  */
309   vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
310 
311   /* Statements in the loop that have data references that are candidates for a
312      runtime (loop versioning) misalignment check.  */
313   vec<gimple> may_misalign_stmts;
314 
315   /* All interleaving chains of stores in the loop, represented by the first
316      stmt in the chain.  */
317   vec<gimple> grouped_stores;
318 
319   /* All SLP instances in the loop. This is a subset of the set of GROUP_STORES
320      of the loop.  */
321   vec<slp_instance> slp_instances;
322 
323   /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
324      applied to the loop, i.e., no unrolling is needed, this is 1.  */
325   unsigned slp_unrolling_factor;
326 
327   /* Reduction cycles detected in the loop. Used in loop-aware SLP.  */
328   vec<gimple> reductions;
329 
330   /* All reduction chains in the loop, represented by the first
331      stmt in the chain.  */
332   vec<gimple> reduction_chains;
333 
334   /* Hash table used to choose the best peeling option.  */
335   hash_table <peel_info_hasher> peeling_htab;
336 
337   /* Cost data used by the target cost model.  */
338   void *target_cost_data;
339 
340   /* When we have grouped data accesses with gaps, we may introduce invalid
341      memory accesses.  We peel the last iteration of the loop to prevent
342      this.  */
343   bool peeling_for_gaps;
344 
345   /* When the number of iterations is not a multiple of the vector size
346      we need to peel off iterations at the end to form an epilogue loop.  */
347   bool peeling_for_niter;
348 
349   /* Reductions are canonicalized so that the last operand is the reduction
350      operand.  If this places a constant into RHS1, this decanonicalizes
351      GIMPLE for other phases, so we must track when this has occurred and
352      fix it up.  */
353   bool operands_swapped;
354 
355   /* True if there are no loop carried data dependencies in the loop.
356      If loop->safelen <= 1, then this is always true, either the loop
357      didn't have any loop carried data dependencies, or the loop is being
358      vectorized guarded with some runtime alias checks, or couldn't
359      be vectorized at all, but then this field shouldn't be used.
360      For loop->safelen >= 2, the user has asserted that there are no
361      backward dependencies, but there still could be loop carried forward
362      dependencies in such loops.  This flag will be false if normal
363      vectorizer data dependency analysis would fail or require versioning
364      for alias, but because of loop->safelen >= 2 it has been vectorized
365      even without versioning for alias.  E.g. in:
366      #pragma omp simd
367      for (int i = 0; i < m; i++)
368        a[i] = a[i + k] * c;
369      (or #pragma simd or #pragma ivdep) we can vectorize this and it will
370      DTRT even for k > 0 && k < m, but without safelen we would not
371      vectorize this, so this field would be false.  */
372   bool no_data_dependencies;
373 
374   /* If if-conversion versioned this loop before conversion, this is the
375      loop version without if-conversion.  */
376   struct loop *scalar_loop;
377 
378 } *loop_vec_info;
379 
380 /* Access Functions.  */
381 #define LOOP_VINFO_LOOP(L)                 (L)->loop
382 #define LOOP_VINFO_BBS(L)                  (L)->bbs
383 #define LOOP_VINFO_NITERSM1(L)             (L)->num_itersm1
384 #define LOOP_VINFO_NITERS(L)               (L)->num_iters
385 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
386    prologue peeling retain total unchanged scalar loop iterations for
387    cost model.  */
388 #define LOOP_VINFO_NITERS_UNCHANGED(L)     (L)->num_iters_unchanged
389 #define LOOP_VINFO_COST_MODEL_MIN_ITERS(L) (L)->min_profitable_iters
390 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
391 #define LOOP_VINFO_VECTORIZABLE_P(L)       (L)->vectorizable
392 #define LOOP_VINFO_VECT_FACTOR(L)          (L)->vectorization_factor
393 #define LOOP_VINFO_PTR_MASK(L)             (L)->ptr_mask
394 #define LOOP_VINFO_LOOP_NEST(L)            (L)->loop_nest
395 #define LOOP_VINFO_DATAREFS(L)             (L)->datarefs
396 #define LOOP_VINFO_DDRS(L)                 (L)->ddrs
397 #define LOOP_VINFO_INT_NITERS(L)           (TREE_INT_CST_LOW ((L)->num_iters))
398 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
399 #define LOOP_VINFO_UNALIGNED_DR(L)         (L)->unaligned_dr
400 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L)   (L)->may_misalign_stmts
401 #define LOOP_VINFO_MAY_ALIAS_DDRS(L)       (L)->may_alias_ddrs
402 #define LOOP_VINFO_COMP_ALIAS_DDRS(L)      (L)->comp_alias_ddrs
403 #define LOOP_VINFO_GROUPED_STORES(L)       (L)->grouped_stores
404 #define LOOP_VINFO_SLP_INSTANCES(L)        (L)->slp_instances
405 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
406 #define LOOP_VINFO_REDUCTIONS(L)           (L)->reductions
407 #define LOOP_VINFO_REDUCTION_CHAINS(L)     (L)->reduction_chains
408 #define LOOP_VINFO_PEELING_HTAB(L)         (L)->peeling_htab
409 #define LOOP_VINFO_TARGET_COST_DATA(L)     (L)->target_cost_data
410 #define LOOP_VINFO_PEELING_FOR_GAPS(L)     (L)->peeling_for_gaps
411 #define LOOP_VINFO_OPERANDS_SWAPPED(L)     (L)->operands_swapped
412 #define LOOP_VINFO_PEELING_FOR_NITER(L)    (L)->peeling_for_niter
413 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
414 #define LOOP_VINFO_SCALAR_LOOP(L)	   (L)->scalar_loop
415 
416 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
417   ((L)->may_misalign_stmts.length () > 0)
418 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L)     \
419   ((L)->may_alias_ddrs.length () > 0)
420 
421 #define LOOP_VINFO_NITERS_KNOWN_P(L)          \
422   (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
423 
424 static inline loop_vec_info
loop_vec_info_for_loop(struct loop * loop)425 loop_vec_info_for_loop (struct loop *loop)
426 {
427   return (loop_vec_info) loop->aux;
428 }
429 
430 static inline bool
nested_in_vect_loop_p(struct loop * loop,gimple stmt)431 nested_in_vect_loop_p (struct loop *loop, gimple stmt)
432 {
433   return (loop->inner
434           && (loop->inner == (gimple_bb (stmt))->loop_father));
435 }
436 
437 typedef struct _bb_vec_info {
438 
439   basic_block bb;
440   /* All interleaving chains of stores in the basic block, represented by the
441      first stmt in the chain.  */
442   vec<gimple> grouped_stores;
443 
444   /* All SLP instances in the basic block. This is a subset of the set of
445      GROUP_STORES of the basic block.  */
446   vec<slp_instance> slp_instances;
447 
448   /* All data references in the basic block.  */
449   vec<data_reference_p> datarefs;
450 
451   /* All data dependences in the basic block.  */
452   vec<ddr_p> ddrs;
453 
454   /* Cost data used by the target cost model.  */
455   void *target_cost_data;
456 
457 } *bb_vec_info;
458 
459 #define BB_VINFO_BB(B)               (B)->bb
460 #define BB_VINFO_GROUPED_STORES(B)   (B)->grouped_stores
461 #define BB_VINFO_SLP_INSTANCES(B)    (B)->slp_instances
462 #define BB_VINFO_DATAREFS(B)         (B)->datarefs
463 #define BB_VINFO_DDRS(B)             (B)->ddrs
464 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
465 
466 static inline bb_vec_info
vec_info_for_bb(basic_block bb)467 vec_info_for_bb (basic_block bb)
468 {
469   return (bb_vec_info) bb->aux;
470 }
471 
472 /*-----------------------------------------------------------------*/
473 /* Info on vectorized defs.                                        */
474 /*-----------------------------------------------------------------*/
475 enum stmt_vec_info_type {
476   undef_vec_info_type = 0,
477   load_vec_info_type,
478   store_vec_info_type,
479   shift_vec_info_type,
480   op_vec_info_type,
481   call_vec_info_type,
482   call_simd_clone_vec_info_type,
483   assignment_vec_info_type,
484   condition_vec_info_type,
485   reduc_vec_info_type,
486   induc_vec_info_type,
487   type_promotion_vec_info_type,
488   type_demotion_vec_info_type,
489   type_conversion_vec_info_type,
490   loop_exit_ctrl_vec_info_type
491 };
492 
493 /* Indicates whether/how a variable is used in the scope of loop/basic
494    block.  */
495 enum vect_relevant {
496   vect_unused_in_scope = 0,
497   /* The def is in the inner loop, and the use is in the outer loop, and the
498      use is a reduction stmt.  */
499   vect_used_in_outer_by_reduction,
500   /* The def is in the inner loop, and the use is in the outer loop (and is
501      not part of reduction).  */
502   vect_used_in_outer,
503 
504   /* defs that feed computations that end up (only) in a reduction. These
505      defs may be used by non-reduction stmts, but eventually, any
506      computations/values that are affected by these defs are used to compute
507      a reduction (i.e. don't get stored to memory, for example). We use this
508      to identify computations that we can change the order in which they are
509      computed.  */
510   vect_used_by_reduction,
511 
512   vect_used_in_scope
513 };
514 
515 /* The type of vectorization that can be applied to the stmt: regular loop-based
516    vectorization; pure SLP - the stmt is a part of SLP instances and does not
517    have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
518    a part of SLP instance and also must be loop-based vectorized, since it has
519    uses outside SLP sequences.
520 
521    In the loop context the meanings of pure and hybrid SLP are slightly
522    different. By saying that pure SLP is applied to the loop, we mean that we
523    exploit only intra-iteration parallelism in the loop; i.e., the loop can be
524    vectorized without doing any conceptual unrolling, cause we don't pack
525    together stmts from different iterations, only within a single iteration.
526    Loop hybrid SLP means that we exploit both intra-iteration and
527    inter-iteration parallelism (e.g., number of elements in the vector is 4
528    and the slp-group-size is 2, in which case we don't have enough parallelism
529    within an iteration, so we obtain the rest of the parallelism from subsequent
530    iterations by unrolling the loop by 2).  */
531 enum slp_vect_type {
532   loop_vect = 0,
533   pure_slp,
534   hybrid
535 };
536 
537 
538 typedef struct data_reference *dr_p;
539 
540 typedef struct _stmt_vec_info {
541 
542   enum stmt_vec_info_type type;
543 
544   /* Indicates whether this stmts is part of a computation whose result is
545      used outside the loop.  */
546   bool live;
547 
548   /* Stmt is part of some pattern (computation idiom)  */
549   bool in_pattern_p;
550 
551   /* The stmt to which this info struct refers to.  */
552   gimple stmt;
553 
554   /* The loop_vec_info with respect to which STMT is vectorized.  */
555   loop_vec_info loop_vinfo;
556 
557   /* The vector type to be used for the LHS of this statement.  */
558   tree vectype;
559 
560   /* The vectorized version of the stmt.  */
561   gimple vectorized_stmt;
562 
563 
564   /** The following is relevant only for stmts that contain a non-scalar
565      data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
566      at most one such data-ref.  **/
567 
568   /* Information about the data-ref (access function, etc),
569      relative to the inner-most containing loop.  */
570   struct data_reference *data_ref_info;
571 
572   /* Information about the data-ref relative to this loop
573      nest (the loop that is being considered for vectorization).  */
574   tree dr_base_address;
575   tree dr_init;
576   tree dr_offset;
577   tree dr_step;
578   tree dr_aligned_to;
579 
580   /* For loop PHI nodes, the evolution part of it.  This makes sure
581      this information is still available in vect_update_ivs_after_vectorizer
582      where we may not be able to re-analyze the PHI nodes evolution as
583      peeling for the prologue loop can make it unanalyzable.  The evolution
584      part is still correct though.  */
585   tree loop_phi_evolution_part;
586 
587   /* Used for various bookkeeping purposes, generally holding a pointer to
588      some other stmt S that is in some way "related" to this stmt.
589      Current use of this field is:
590         If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
591         true): S is the "pattern stmt" that represents (and replaces) the
592         sequence of stmts that constitutes the pattern.  Similarly, the
593         related_stmt of the "pattern stmt" points back to this stmt (which is
594         the last stmt in the original sequence of stmts that constitutes the
595         pattern).  */
596   gimple related_stmt;
597 
598   /* Used to keep a sequence of def stmts of a pattern stmt if such exists.  */
599   gimple_seq pattern_def_seq;
600 
601   /* List of datarefs that are known to have the same alignment as the dataref
602      of this stmt.  */
603   vec<dr_p> same_align_refs;
604 
605   /* Selected SIMD clone's function decl.  */
606   tree simd_clone_fndecl;
607 
608   /* Classify the def of this stmt.  */
609   enum vect_def_type def_type;
610 
611   /*  Whether the stmt is SLPed, loop-based vectorized, or both.  */
612   enum slp_vect_type slp_type;
613 
614   /* Interleaving and reduction chains info.  */
615   /* First element in the group.  */
616   gimple first_element;
617   /* Pointer to the next element in the group.  */
618   gimple next_element;
619   /* For data-refs, in case that two or more stmts share data-ref, this is the
620      pointer to the previously detected stmt with the same dr.  */
621   gimple same_dr_stmt;
622   /* The size of the group.  */
623   unsigned int size;
624   /* For stores, number of stores from this group seen. We vectorize the last
625      one.  */
626   unsigned int store_count;
627   /* For loads only, the gap from the previous load. For consecutive loads, GAP
628      is 1.  */
629   unsigned int gap;
630 
631   /* The minimum negative dependence distance this stmt participates in
632      or zero if none.  */
633   unsigned int min_neg_dist;
634 
635   /* Not all stmts in the loop need to be vectorized. e.g, the increment
636      of the loop induction variable and computation of array indexes. relevant
637      indicates whether the stmt needs to be vectorized.  */
638   enum vect_relevant relevant;
639 
640   /* The bb_vec_info with respect to which STMT is vectorized.  */
641   bb_vec_info bb_vinfo;
642 
643   /* Is this statement vectorizable or should it be skipped in (partial)
644      vectorization.  */
645   bool vectorizable;
646 
647   /* For loads only, true if this is a gather load.  */
648   bool gather_p;
649   bool stride_load_p;
650 
651   /* For both loads and stores.  */
652   bool simd_lane_access_p;
653 } *stmt_vec_info;
654 
655 /* Access Functions.  */
656 #define STMT_VINFO_TYPE(S)                 (S)->type
657 #define STMT_VINFO_STMT(S)                 (S)->stmt
658 #define STMT_VINFO_LOOP_VINFO(S)           (S)->loop_vinfo
659 #define STMT_VINFO_BB_VINFO(S)             (S)->bb_vinfo
660 #define STMT_VINFO_RELEVANT(S)             (S)->relevant
661 #define STMT_VINFO_LIVE_P(S)               (S)->live
662 #define STMT_VINFO_VECTYPE(S)              (S)->vectype
663 #define STMT_VINFO_VEC_STMT(S)             (S)->vectorized_stmt
664 #define STMT_VINFO_VECTORIZABLE(S)         (S)->vectorizable
665 #define STMT_VINFO_DATA_REF(S)             (S)->data_ref_info
666 #define STMT_VINFO_GATHER_P(S)		   (S)->gather_p
667 #define STMT_VINFO_STRIDE_LOAD_P(S)	   (S)->stride_load_p
668 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S)   (S)->simd_lane_access_p
669 
670 #define STMT_VINFO_DR_BASE_ADDRESS(S)      (S)->dr_base_address
671 #define STMT_VINFO_DR_INIT(S)              (S)->dr_init
672 #define STMT_VINFO_DR_OFFSET(S)            (S)->dr_offset
673 #define STMT_VINFO_DR_STEP(S)              (S)->dr_step
674 #define STMT_VINFO_DR_ALIGNED_TO(S)        (S)->dr_aligned_to
675 
676 #define STMT_VINFO_IN_PATTERN_P(S)         (S)->in_pattern_p
677 #define STMT_VINFO_RELATED_STMT(S)         (S)->related_stmt
678 #define STMT_VINFO_PATTERN_DEF_SEQ(S)      (S)->pattern_def_seq
679 #define STMT_VINFO_SAME_ALIGN_REFS(S)      (S)->same_align_refs
680 #define STMT_VINFO_SIMD_CLONE_FNDECL(S)	   (S)->simd_clone_fndecl
681 #define STMT_VINFO_DEF_TYPE(S)             (S)->def_type
682 #define STMT_VINFO_GROUP_FIRST_ELEMENT(S)  (S)->first_element
683 #define STMT_VINFO_GROUP_NEXT_ELEMENT(S)   (S)->next_element
684 #define STMT_VINFO_GROUP_SIZE(S)           (S)->size
685 #define STMT_VINFO_GROUP_STORE_COUNT(S)    (S)->store_count
686 #define STMT_VINFO_GROUP_GAP(S)            (S)->gap
687 #define STMT_VINFO_GROUP_SAME_DR_STMT(S)   (S)->same_dr_stmt
688 #define STMT_VINFO_GROUPED_ACCESS(S)      ((S)->first_element != NULL && (S)->data_ref_info)
689 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
690 #define STMT_VINFO_MIN_NEG_DIST(S)	(S)->min_neg_dist
691 
692 #define GROUP_FIRST_ELEMENT(S)          (S)->first_element
693 #define GROUP_NEXT_ELEMENT(S)           (S)->next_element
694 #define GROUP_SIZE(S)                   (S)->size
695 #define GROUP_STORE_COUNT(S)            (S)->store_count
696 #define GROUP_GAP(S)                    (S)->gap
697 #define GROUP_SAME_DR_STMT(S)           (S)->same_dr_stmt
698 
699 #define STMT_VINFO_RELEVANT_P(S)          ((S)->relevant != vect_unused_in_scope)
700 
701 #define HYBRID_SLP_STMT(S)                ((S)->slp_type == hybrid)
702 #define PURE_SLP_STMT(S)                  ((S)->slp_type == pure_slp)
703 #define STMT_SLP_TYPE(S)                   (S)->slp_type
704 
705 struct dataref_aux {
706   tree base_decl;
707   bool base_misaligned;
708   int misalignment;
709 };
710 
711 #define VECT_MAX_COST 1000
712 
713 /* The maximum number of intermediate steps required in multi-step type
714    conversion.  */
715 #define MAX_INTERM_CVT_STEPS         3
716 
717 /* The maximum vectorization factor supported by any target (V64QI).  */
718 #define MAX_VECTORIZATION_FACTOR 64
719 
720 /* Avoid GTY(()) on stmt_vec_info.  */
721 typedef void *vec_void_p;
722 
723 extern vec<vec_void_p> stmt_vec_info_vec;
724 
725 void init_stmt_vec_info_vec (void);
726 void free_stmt_vec_info_vec (void);
727 
728 /* Return a stmt_vec_info corresponding to STMT.  */
729 
730 static inline stmt_vec_info
vinfo_for_stmt(gimple stmt)731 vinfo_for_stmt (gimple stmt)
732 {
733   unsigned int uid = gimple_uid (stmt);
734   if (uid == 0)
735     return NULL;
736 
737   return (stmt_vec_info) stmt_vec_info_vec[uid - 1];
738 }
739 
740 /* Set vectorizer information INFO for STMT.  */
741 
742 static inline void
set_vinfo_for_stmt(gimple stmt,stmt_vec_info info)743 set_vinfo_for_stmt (gimple stmt, stmt_vec_info info)
744 {
745   unsigned int uid = gimple_uid (stmt);
746   if (uid == 0)
747     {
748       gcc_checking_assert (info);
749       uid = stmt_vec_info_vec.length () + 1;
750       gimple_set_uid (stmt, uid);
751       stmt_vec_info_vec.safe_push ((vec_void_p) info);
752     }
753   else
754     stmt_vec_info_vec[uid - 1] = (vec_void_p) info;
755 }
756 
757 /* Return the earlier statement between STMT1 and STMT2.  */
758 
759 static inline gimple
get_earlier_stmt(gimple stmt1,gimple stmt2)760 get_earlier_stmt (gimple stmt1, gimple stmt2)
761 {
762   unsigned int uid1, uid2;
763 
764   if (stmt1 == NULL)
765     return stmt2;
766 
767   if (stmt2 == NULL)
768     return stmt1;
769 
770   uid1 = gimple_uid (stmt1);
771   uid2 = gimple_uid (stmt2);
772 
773   if (uid1 == 0 || uid2 == 0)
774     return NULL;
775 
776   gcc_checking_assert (uid1 <= stmt_vec_info_vec.length ()
777 		       && uid2 <= stmt_vec_info_vec.length ());
778 
779   if (uid1 < uid2)
780     return stmt1;
781   else
782     return stmt2;
783 }
784 
785 /* Return the later statement between STMT1 and STMT2.  */
786 
787 static inline gimple
get_later_stmt(gimple stmt1,gimple stmt2)788 get_later_stmt (gimple stmt1, gimple stmt2)
789 {
790   unsigned int uid1, uid2;
791 
792   if (stmt1 == NULL)
793     return stmt2;
794 
795   if (stmt2 == NULL)
796     return stmt1;
797 
798   uid1 = gimple_uid (stmt1);
799   uid2 = gimple_uid (stmt2);
800 
801   if (uid1 == 0 || uid2 == 0)
802     return NULL;
803 
804   gcc_assert (uid1 <= stmt_vec_info_vec.length ());
805   gcc_assert (uid2 <= stmt_vec_info_vec.length ());
806 
807   if (uid1 > uid2)
808     return stmt1;
809   else
810     return stmt2;
811 }
812 
813 /* Return TRUE if a statement represented by STMT_INFO is a part of a
814    pattern.  */
815 
816 static inline bool
is_pattern_stmt_p(stmt_vec_info stmt_info)817 is_pattern_stmt_p (stmt_vec_info stmt_info)
818 {
819   gimple related_stmt;
820   stmt_vec_info related_stmt_info;
821 
822   related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
823   if (related_stmt
824       && (related_stmt_info = vinfo_for_stmt (related_stmt))
825       && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
826     return true;
827 
828   return false;
829 }
830 
831 /* Return true if BB is a loop header.  */
832 
833 static inline bool
is_loop_header_bb_p(basic_block bb)834 is_loop_header_bb_p (basic_block bb)
835 {
836   if (bb == (bb->loop_father)->header)
837     return true;
838   gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
839   return false;
840 }
841 
842 /* Return pow2 (X).  */
843 
844 static inline int
vect_pow2(int x)845 vect_pow2 (int x)
846 {
847   int i, res = 1;
848 
849   for (i = 0; i < x; i++)
850     res *= 2;
851 
852   return res;
853 }
854 
855 /* Alias targetm.vectorize.builtin_vectorization_cost.  */
856 
857 static inline int
builtin_vectorization_cost(enum vect_cost_for_stmt type_of_cost,tree vectype,int misalign)858 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
859 			    tree vectype, int misalign)
860 {
861   return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
862 						       vectype, misalign);
863 }
864 
865 /* Get cost by calling cost target builtin.  */
866 
867 static inline
vect_get_stmt_cost(enum vect_cost_for_stmt type_of_cost)868 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
869 {
870   return builtin_vectorization_cost (type_of_cost, NULL, 0);
871 }
872 
873 /* Alias targetm.vectorize.init_cost.  */
874 
875 static inline void *
init_cost(struct loop * loop_info)876 init_cost (struct loop *loop_info)
877 {
878   return targetm.vectorize.init_cost (loop_info);
879 }
880 
881 /* Alias targetm.vectorize.add_stmt_cost.  */
882 
883 static inline unsigned
add_stmt_cost(void * data,int count,enum vect_cost_for_stmt kind,stmt_vec_info stmt_info,int misalign,enum vect_cost_model_location where)884 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
885 	       stmt_vec_info stmt_info, int misalign,
886 	       enum vect_cost_model_location where)
887 {
888   return targetm.vectorize.add_stmt_cost (data, count, kind,
889 					  stmt_info, misalign, where);
890 }
891 
892 /* Alias targetm.vectorize.finish_cost.  */
893 
894 static inline void
finish_cost(void * data,unsigned * prologue_cost,unsigned * body_cost,unsigned * epilogue_cost)895 finish_cost (void *data, unsigned *prologue_cost,
896 	     unsigned *body_cost, unsigned *epilogue_cost)
897 {
898   targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
899 }
900 
901 /* Alias targetm.vectorize.destroy_cost_data.  */
902 
903 static inline void
destroy_cost_data(void * data)904 destroy_cost_data (void *data)
905 {
906   targetm.vectorize.destroy_cost_data (data);
907 }
908 
909 
910 /*-----------------------------------------------------------------*/
911 /* Info on data references alignment.                              */
912 /*-----------------------------------------------------------------*/
913 inline void
set_dr_misalignment(struct data_reference * dr,int val)914 set_dr_misalignment (struct data_reference *dr, int val)
915 {
916   dataref_aux *data_aux = (dataref_aux *) dr->aux;
917 
918   if (!data_aux)
919     {
920       data_aux = XCNEW (dataref_aux);
921       dr->aux = data_aux;
922     }
923 
924   data_aux->misalignment = val;
925 }
926 
927 inline int
dr_misalignment(struct data_reference * dr)928 dr_misalignment (struct data_reference *dr)
929 {
930   gcc_assert (dr->aux);
931   return ((dataref_aux *) dr->aux)->misalignment;
932 }
933 
934 /* Reflects actual alignment of first access in the vectorized loop,
935    taking into account peeling/versioning if applied.  */
936 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
937 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
938 
939 /* Return TRUE if the data access is aligned, and FALSE otherwise.  */
940 
941 static inline bool
aligned_access_p(struct data_reference * data_ref_info)942 aligned_access_p (struct data_reference *data_ref_info)
943 {
944   return (DR_MISALIGNMENT (data_ref_info) == 0);
945 }
946 
947 /* Return TRUE if the alignment of the data access is known, and FALSE
948    otherwise.  */
949 
950 static inline bool
known_alignment_for_access_p(struct data_reference * data_ref_info)951 known_alignment_for_access_p (struct data_reference *data_ref_info)
952 {
953   return (DR_MISALIGNMENT (data_ref_info) != -1);
954 }
955 
956 
957 /* Return true if the vect cost model is unlimited.  */
958 static inline bool
unlimited_cost_model(loop_p loop)959 unlimited_cost_model (loop_p loop)
960 {
961   if (loop != NULL && loop->force_vect
962       && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
963     return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
964   return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
965 }
966 
967 /* Source location */
968 extern source_location vect_location;
969 
970 /*-----------------------------------------------------------------*/
971 /* Function prototypes.                                            */
972 /*-----------------------------------------------------------------*/
973 
974 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
975    in tree-vect-loop-manip.c.  */
976 extern void slpeel_make_loop_iterate_ntimes (struct loop *, tree);
977 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
978 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
979 						     struct loop *, edge);
980 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool);
981 extern void vect_do_peeling_for_loop_bound (loop_vec_info, tree, tree,
982 					    unsigned int, bool);
983 extern void vect_do_peeling_for_alignment (loop_vec_info, tree,
984 					   unsigned int, bool);
985 extern source_location find_loop_location (struct loop *);
986 extern bool vect_can_advance_ivs_p (loop_vec_info);
987 
988 /* In tree-vect-stmts.c.  */
989 extern unsigned int current_vector_size;
990 extern tree get_vectype_for_scalar_type (tree);
991 extern tree get_same_sized_vectype (tree, tree);
992 extern bool vect_is_simple_use (tree, gimple, loop_vec_info,
993 			        bb_vec_info, gimple *,
994                                 tree *,  enum vect_def_type *);
995 extern bool vect_is_simple_use_1 (tree, gimple, loop_vec_info,
996 				  bb_vec_info, gimple *,
997 				  tree *,  enum vect_def_type *, tree *);
998 extern bool supportable_widening_operation (enum tree_code, gimple, tree, tree,
999                                             enum tree_code *, enum tree_code *,
1000 					    int *, vec<tree> *);
1001 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1002 					     enum tree_code *,
1003 					     int *, vec<tree> *);
1004 extern stmt_vec_info new_stmt_vec_info (gimple stmt, loop_vec_info,
1005                                         bb_vec_info);
1006 extern void free_stmt_vec_info (gimple stmt);
1007 extern tree vectorizable_function (gimple, tree, tree);
1008 extern void vect_model_simple_cost (stmt_vec_info, int, enum vect_def_type *,
1009                                     stmt_vector_for_cost *,
1010 				    stmt_vector_for_cost *);
1011 extern void vect_model_store_cost (stmt_vec_info, int, bool,
1012 				   enum vect_def_type, slp_tree,
1013 				   stmt_vector_for_cost *,
1014 				   stmt_vector_for_cost *);
1015 extern void vect_model_load_cost (stmt_vec_info, int, bool, slp_tree,
1016 				  stmt_vector_for_cost *,
1017 				  stmt_vector_for_cost *);
1018 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1019 				  enum vect_cost_for_stmt, stmt_vec_info,
1020 				  int, enum vect_cost_model_location);
1021 extern void vect_finish_stmt_generation (gimple, gimple,
1022                                          gimple_stmt_iterator *);
1023 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1024 extern tree vect_get_vec_def_for_operand (tree, gimple, tree *);
1025 extern tree vect_init_vector (gimple, tree, tree,
1026                               gimple_stmt_iterator *);
1027 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1028 extern bool vect_transform_stmt (gimple, gimple_stmt_iterator *,
1029                                  bool *, slp_tree, slp_instance);
1030 extern void vect_remove_stores (gimple);
1031 extern bool vect_analyze_stmt (gimple, bool *, slp_tree);
1032 extern bool vectorizable_condition (gimple, gimple_stmt_iterator *, gimple *,
1033                                     tree, int, slp_tree);
1034 extern void vect_get_load_cost (struct data_reference *, int, bool,
1035 				unsigned int *, unsigned int *,
1036 				stmt_vector_for_cost *,
1037 				stmt_vector_for_cost *, bool);
1038 extern void vect_get_store_cost (struct data_reference *, int,
1039 				 unsigned int *, stmt_vector_for_cost *);
1040 extern bool vect_supportable_shift (enum tree_code, tree);
1041 extern void vect_get_vec_defs (tree, tree, gimple, vec<tree> *,
1042 			       vec<tree> *, slp_tree, int);
1043 extern tree vect_gen_perm_mask (tree, unsigned char *);
1044 
1045 /* In tree-vect-data-refs.c.  */
1046 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1047 extern enum dr_alignment_support vect_supportable_dr_alignment
1048                                            (struct data_reference *, bool);
1049 extern tree vect_get_smallest_scalar_type (gimple, HOST_WIDE_INT *,
1050                                            HOST_WIDE_INT *);
1051 extern bool vect_analyze_data_ref_dependences (loop_vec_info, int *);
1052 extern bool vect_slp_analyze_data_ref_dependences (bb_vec_info);
1053 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1054 extern bool vect_analyze_data_refs_alignment (loop_vec_info, bb_vec_info);
1055 extern bool vect_verify_datarefs_alignment (loop_vec_info, bb_vec_info);
1056 extern bool vect_analyze_data_ref_accesses (loop_vec_info, bb_vec_info);
1057 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1058 extern tree vect_check_gather (gimple, loop_vec_info, tree *, tree *,
1059 			       int *);
1060 extern bool vect_analyze_data_refs (loop_vec_info, bb_vec_info, int *,
1061 				    unsigned *);
1062 extern tree vect_create_data_ref_ptr (gimple, tree, struct loop *, tree,
1063 				      tree *, gimple_stmt_iterator *,
1064 				      gimple *, bool, bool *,
1065 				      tree = NULL_TREE);
1066 extern tree bump_vector_ptr (tree, gimple, gimple_stmt_iterator *, gimple, tree);
1067 extern tree vect_create_destination_var (tree, tree);
1068 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1069 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT);
1070 extern bool vect_grouped_load_supported (tree, unsigned HOST_WIDE_INT);
1071 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT);
1072 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple,
1073                                     gimple_stmt_iterator *, vec<tree> *);
1074 extern tree vect_setup_realignment (gimple, gimple_stmt_iterator *, tree *,
1075                                     enum dr_alignment_support, tree,
1076                                     struct loop **);
1077 extern void vect_transform_grouped_load (gimple, vec<tree> , int,
1078                                          gimple_stmt_iterator *);
1079 extern void vect_record_grouped_load_vectors (gimple, vec<tree> );
1080 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1081 extern tree vect_create_addr_base_for_vector_ref (gimple, gimple_seq *,
1082 						  tree, struct loop *,
1083 						  tree = NULL_TREE);
1084 
1085 /* In tree-vect-loop.c.  */
1086 /* FORNOW: Used in tree-parloops.c.  */
1087 extern void destroy_loop_vec_info (loop_vec_info, bool);
1088 extern gimple vect_force_simple_reduction (loop_vec_info, gimple, bool, bool *);
1089 /* Drive for loop analysis stage.  */
1090 extern loop_vec_info vect_analyze_loop (struct loop *);
1091 /* Drive for loop transformation stage.  */
1092 extern void vect_transform_loop (loop_vec_info);
1093 extern loop_vec_info vect_analyze_loop_form (struct loop *);
1094 extern bool vectorizable_live_operation (gimple, gimple_stmt_iterator *,
1095                                          gimple *);
1096 extern bool vectorizable_reduction (gimple, gimple_stmt_iterator *, gimple *,
1097                                     slp_tree);
1098 extern bool vectorizable_induction (gimple, gimple_stmt_iterator *, gimple *);
1099 extern tree get_initial_def_for_reduction (gimple, tree, tree *);
1100 extern int vect_min_worthwhile_factor (enum tree_code);
1101 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *, int,
1102 					stmt_vector_for_cost *,
1103 					stmt_vector_for_cost *);
1104 extern int vect_get_single_scalar_iteration_cost (loop_vec_info);
1105 
1106 /* In tree-vect-slp.c.  */
1107 extern void vect_free_slp_instance (slp_instance);
1108 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1109                                           gimple_stmt_iterator *, int,
1110                                           slp_instance, bool);
1111 extern bool vect_schedule_slp (loop_vec_info, bb_vec_info);
1112 extern void vect_update_slp_costs_according_to_vf (loop_vec_info);
1113 extern bool vect_analyze_slp (loop_vec_info, bb_vec_info, unsigned);
1114 extern bool vect_make_slp_decision (loop_vec_info);
1115 extern void vect_detect_hybrid_slp (loop_vec_info);
1116 extern void vect_get_slp_defs (vec<tree> , slp_tree,
1117 			       vec<vec<tree> > *, int);
1118 
1119 extern source_location find_bb_location (basic_block);
1120 extern bb_vec_info vect_slp_analyze_bb (basic_block);
1121 extern void vect_slp_transform_bb (basic_block);
1122 
1123 /* In tree-vect-patterns.c.  */
1124 /* Pattern recognition functions.
1125    Additional pattern recognition functions can (and will) be added
1126    in the future.  */
1127 typedef gimple (* vect_recog_func_ptr) (vec<gimple> *, tree *, tree *);
1128 #define NUM_PATTERNS 11
1129 void vect_pattern_recog (loop_vec_info, bb_vec_info);
1130 
1131 /* In tree-vectorizer.c.  */
1132 unsigned vectorize_loops (void);
1133 void vect_destroy_datarefs (loop_vec_info, bb_vec_info);
1134 
1135 #endif  /* GCC_TREE_VECTORIZER_H  */
1136