1 /* ppc.h -- Header file for PowerPC opcode table
2    Copyright 1994, 1995, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3    2007, 2008, 2009, 2010, 2012 Free Software Foundation, Inc.
4    Written by Ian Lance Taylor, Cygnus Support
5 
6    This file is part of GDB, GAS, and the GNU binutils.
7 
8    GDB, GAS, and the GNU binutils are free software; you can redistribute
9    them and/or modify them under the terms of the GNU General Public
10    License as published by the Free Software Foundation; either version 3,
11    or (at your option) any later version.
12 
13    GDB, GAS, and the GNU binutils are distributed in the hope that they
14    will be useful, but WITHOUT ANY WARRANTY; without even the implied
15    warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16    the GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this file; see the file COPYING3.  If not, write to the Free
20    Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #ifndef PPC_H
24 #define PPC_H
25 
26 #include "bfd_stdint.h"
27 
28 typedef uint64_t ppc_cpu_t;
29 
30 /* The opcode table is an array of struct powerpc_opcode.  */
31 
32 struct powerpc_opcode
33 {
34   /* The opcode name.  */
35   const char *name;
36 
37   /* The opcode itself.  Those bits which will be filled in with
38      operands are zeroes.  */
39   unsigned long opcode;
40 
41   /* The opcode mask.  This is used by the disassembler.  This is a
42      mask containing ones indicating those bits which must match the
43      opcode field, and zeroes indicating those bits which need not
44      match (and are presumably filled in by operands).  */
45   unsigned long mask;
46 
47   /* One bit flags for the opcode.  These are used to indicate which
48      specific processors support the instructions.  The defined values
49      are listed below.  */
50   ppc_cpu_t flags;
51 
52   /* One bit flags for the opcode.  These are used to indicate which
53      specific processors no longer support the instructions.  The defined
54      values are listed below.  */
55   ppc_cpu_t deprecated;
56 
57   /* An array of operand codes.  Each code is an index into the
58      operand table.  They appear in the order which the operands must
59      appear in assembly code, and are terminated by a zero.  */
60   unsigned char operands[8];
61 };
62 
63 /* The table itself is sorted by major opcode number, and is otherwise
64    in the order in which the disassembler should consider
65    instructions.  */
66 extern const struct powerpc_opcode powerpc_opcodes[];
67 extern const int powerpc_num_opcodes;
68 extern const struct powerpc_opcode vle_opcodes[];
69 extern const int vle_num_opcodes;
70 
71 /* Values defined for the flags field of a struct powerpc_opcode.  */
72 
73 /* Opcode is defined for the PowerPC architecture.  */
74 #define PPC_OPCODE_PPC			 1
75 
76 /* Opcode is defined for the POWER (RS/6000) architecture.  */
77 #define PPC_OPCODE_POWER		 2
78 
79 /* Opcode is defined for the POWER2 (Rios 2) architecture.  */
80 #define PPC_OPCODE_POWER2		 4
81 
82 /* Opcode is supported by the Motorola PowerPC 601 processor.  The 601
83    is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
84    but it also supports many additional POWER instructions.  */
85 #define PPC_OPCODE_601			 8
86 
87 /* Opcode is supported in both the Power and PowerPC architectures
88    (ie, compiler's -mcpu=common or assembler's -mcom).  More than just
89    the intersection of PPC_OPCODE_PPC with the union of PPC_OPCODE_POWER
90    and PPC_OPCODE_POWER2 because many instructions changed mnemonics
91    between POWER and POWERPC.  */
92 #define PPC_OPCODE_COMMON	      0x10
93 
94 /* Opcode is supported for any Power or PowerPC platform (this is
95    for the assembler's -many option, and it eliminates duplicates).  */
96 #define PPC_OPCODE_ANY		      0x20
97 
98 /* Opcode is only defined on 64 bit architectures.  */
99 #define PPC_OPCODE_64		      0x40
100 
101 /* Opcode is supported as part of the 64-bit bridge.  */
102 #define PPC_OPCODE_64_BRIDGE	      0x80
103 
104 /* Opcode is supported by Altivec Vector Unit */
105 #define PPC_OPCODE_ALTIVEC	     0x100
106 
107 /* Opcode is supported by PowerPC 403 processor.  */
108 #define PPC_OPCODE_403		     0x200
109 
110 /* Opcode is supported by PowerPC BookE processor.  */
111 #define PPC_OPCODE_BOOKE	     0x400
112 
113 /* Opcode is supported by PowerPC 440 processor.  */
114 #define PPC_OPCODE_440		     0x800
115 
116 /* Opcode is only supported by Power4 architecture.  */
117 #define PPC_OPCODE_POWER4	    0x1000
118 
119 /* Opcode is only supported by Power7 architecture.  */
120 #define PPC_OPCODE_POWER7	    0x2000
121 
122 /* Opcode is only supported by e500x2 Core.  */
123 #define PPC_OPCODE_SPE		    0x4000
124 
125 /* Opcode is supported by e500x2 Integer select APU.  */
126 #define PPC_OPCODE_ISEL		    0x8000
127 
128 /* Opcode is an e500 SPE floating point instruction.  */
129 #define PPC_OPCODE_EFS		   0x10000
130 
131 /* Opcode is supported by branch locking APU.  */
132 #define PPC_OPCODE_BRLOCK	   0x20000
133 
134 /* Opcode is supported by performance monitor APU.  */
135 #define PPC_OPCODE_PMR		   0x40000
136 
137 /* Opcode is supported by cache locking APU.  */
138 #define PPC_OPCODE_CACHELCK	   0x80000
139 
140 /* Opcode is supported by machine check APU.  */
141 #define PPC_OPCODE_RFMCI	  0x100000
142 
143 /* Opcode is only supported by Power5 architecture.  */
144 #define PPC_OPCODE_POWER5	  0x200000
145 
146 /* Opcode is supported by PowerPC e300 family.  */
147 #define PPC_OPCODE_E300           0x400000
148 
149 /* Opcode is only supported by Power6 architecture.  */
150 #define PPC_OPCODE_POWER6	  0x800000
151 
152 /* Opcode is only supported by PowerPC Cell family.  */
153 #define PPC_OPCODE_CELL		 0x1000000
154 
155 /* Opcode is supported by CPUs with paired singles support.  */
156 #define PPC_OPCODE_PPCPS	 0x2000000
157 
158 /* Opcode is supported by Power E500MC */
159 #define PPC_OPCODE_E500MC        0x4000000
160 
161 /* Opcode is supported by PowerPC 405 processor.  */
162 #define PPC_OPCODE_405		 0x8000000
163 
164 /* Opcode is supported by Vector-Scalar (VSX) Unit */
165 #define PPC_OPCODE_VSX		0x10000000
166 
167 /* Opcode is supported by A2.  */
168 #define PPC_OPCODE_A2	 	0x20000000
169 
170 /* Opcode is supported by PowerPC 476 processor.  */
171 #define PPC_OPCODE_476		0x40000000
172 
173 /* Opcode is supported by AppliedMicro Titan core */
174 #define PPC_OPCODE_TITAN        0x80000000
175 
176 /* Opcode which is supported by the e500 family */
177 #define PPC_OPCODE_E500	       0x100000000ull
178 
179 /* Opcode is supported by Extended Altivec Vector Unit */
180 #define PPC_OPCODE_ALTIVEC2    0x200000000ull
181 
182 /* Opcode is supported by Power E6500 */
183 #define PPC_OPCODE_E6500       0x400000000ull
184 
185 /* Opcode is supported by Thread management APU */
186 #define PPC_OPCODE_TMR         0x800000000ull
187 
188 /* Opcode which is supported by the VLE extension.  */
189 #define PPC_OPCODE_VLE	      0x1000000000ull
190 
191 /* Opcode is only supported by Power8 architecture.  */
192 #define PPC_OPCODE_POWER8     0x2000000000ull
193 
194 /* Opcode which is supported by the Hardware Transactional Memory extension.  */
195 /* Currently, this is the same as the POWER8 mask.  If another cpu comes out
196    that isn't a superset of POWER8, we can define this to its own mask.  */
197 #define PPC_OPCODE_HTM        PPC_OPCODE_POWER8
198 
199 /* A macro to extract the major opcode from an instruction.  */
200 #define PPC_OP(i) (((i) >> 26) & 0x3f)
201 
202 /* A macro to determine if the instruction is a 2-byte VLE insn.  */
203 #define PPC_OP_SE_VLE(m) ((m) <= 0xffff)
204 
205 /* A macro to extract the major opcode from a VLE instruction.  */
206 #define VLE_OP(i,m) (((i) >> ((m) <= 0xffff ? 10 : 26)) & 0x3f)
207 
208 /* A macro to convert a VLE opcode to a VLE opcode segment.  */
209 #define VLE_OP_TO_SEG(i) ((i) >> 1)
210 
211 /* The operands table is an array of struct powerpc_operand.  */
212 
213 struct powerpc_operand
214 {
215   /* A bitmask of bits in the operand.  */
216   unsigned int bitm;
217 
218   /* The shift operation to be applied to the operand.  No shift
219      is made if this is zero.  For positive values, the operand
220      is shifted left by SHIFT.  For negative values, the operand
221      is shifted right by -SHIFT.  Use PPC_OPSHIFT_INV to indicate
222      that BITM and SHIFT cannot be used to determine where the
223      operand goes in the insn.  */
224   int shift;
225 
226   /* Insertion function.  This is used by the assembler.  To insert an
227      operand value into an instruction, check this field.
228 
229      If it is NULL, execute
230 	 if (o->shift >= 0)
231 	   i |= (op & o->bitm) << o->shift;
232 	 else
233 	   i |= (op & o->bitm) >> -o->shift;
234      (i is the instruction which we are filling in, o is a pointer to
235      this structure, and op is the operand value).
236 
237      If this field is not NULL, then simply call it with the
238      instruction and the operand value.  It will return the new value
239      of the instruction.  If the ERRMSG argument is not NULL, then if
240      the operand value is illegal, *ERRMSG will be set to a warning
241      string (the operand will be inserted in any case).  If the
242      operand value is legal, *ERRMSG will be unchanged (most operands
243      can accept any value).  */
244   unsigned long (*insert)
245     (unsigned long instruction, long op, ppc_cpu_t dialect, const char **errmsg);
246 
247   /* Extraction function.  This is used by the disassembler.  To
248      extract this operand type from an instruction, check this field.
249 
250      If it is NULL, compute
251 	 if (o->shift >= 0)
252 	   op = (i >> o->shift) & o->bitm;
253 	 else
254 	   op = (i << -o->shift) & o->bitm;
255 	 if ((o->flags & PPC_OPERAND_SIGNED) != 0)
256 	   sign_extend (op);
257      (i is the instruction, o is a pointer to this structure, and op
258      is the result).
259 
260      If this field is not NULL, then simply call it with the
261      instruction value.  It will return the value of the operand.  If
262      the INVALID argument is not NULL, *INVALID will be set to
263      non-zero if this operand type can not actually be extracted from
264      this operand (i.e., the instruction does not match).  If the
265      operand is valid, *INVALID will not be changed.  */
266   long (*extract) (unsigned long instruction, ppc_cpu_t dialect, int *invalid);
267 
268   /* One bit syntax flags.  */
269   unsigned long flags;
270 };
271 
272 /* Elements in the table are retrieved by indexing with values from
273    the operands field of the powerpc_opcodes table.  */
274 
275 extern const struct powerpc_operand powerpc_operands[];
276 extern const unsigned int num_powerpc_operands;
277 
278 /* Use with the shift field of a struct powerpc_operand to indicate
279      that BITM and SHIFT cannot be used to determine where the operand
280      goes in the insn.  */
281 #define PPC_OPSHIFT_INV (-1 << 31)
282 
283 /* Values defined for the flags field of a struct powerpc_operand.  */
284 
285 /* This operand takes signed values.  */
286 #define PPC_OPERAND_SIGNED (0x1)
287 
288 /* This operand takes signed values, but also accepts a full positive
289    range of values when running in 32 bit mode.  That is, if bits is
290    16, it takes any value from -0x8000 to 0xffff.  In 64 bit mode,
291    this flag is ignored.  */
292 #define PPC_OPERAND_SIGNOPT (0x2)
293 
294 /* This operand does not actually exist in the assembler input.  This
295    is used to support extended mnemonics such as mr, for which two
296    operands fields are identical.  The assembler should call the
297    insert function with any op value.  The disassembler should call
298    the extract function, ignore the return value, and check the value
299    placed in the valid argument.  */
300 #define PPC_OPERAND_FAKE (0x4)
301 
302 /* The next operand should be wrapped in parentheses rather than
303    separated from this one by a comma.  This is used for the load and
304    store instructions which want their operands to look like
305        reg,displacement(reg)
306    */
307 #define PPC_OPERAND_PARENS (0x8)
308 
309 /* This operand may use the symbolic names for the CR fields, which
310    are
311        lt  0	gt  1	eq  2	so  3	un  3
312        cr0 0	cr1 1	cr2 2	cr3 3
313        cr4 4	cr5 5	cr6 6	cr7 7
314    These may be combined arithmetically, as in cr2*4+gt.  These are
315    only supported on the PowerPC, not the POWER.  */
316 #define PPC_OPERAND_CR_BIT (0x10)
317 
318 /* This operand names a register.  The disassembler uses this to print
319    register names with a leading 'r'.  */
320 #define PPC_OPERAND_GPR (0x20)
321 
322 /* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0.  */
323 #define PPC_OPERAND_GPR_0 (0x40)
324 
325 /* This operand names a floating point register.  The disassembler
326    prints these with a leading 'f'.  */
327 #define PPC_OPERAND_FPR (0x80)
328 
329 /* This operand is a relative branch displacement.  The disassembler
330    prints these symbolically if possible.  */
331 #define PPC_OPERAND_RELATIVE (0x100)
332 
333 /* This operand is an absolute branch address.  The disassembler
334    prints these symbolically if possible.  */
335 #define PPC_OPERAND_ABSOLUTE (0x200)
336 
337 /* This operand is optional, and is zero if omitted.  This is used for
338    example, in the optional BF field in the comparison instructions.  The
339    assembler must count the number of operands remaining on the line,
340    and the number of operands remaining for the opcode, and decide
341    whether this operand is present or not.  The disassembler should
342    print this operand out only if it is not zero.  */
343 #define PPC_OPERAND_OPTIONAL (0x400)
344 
345 /* This flag is only used with PPC_OPERAND_OPTIONAL.  If this operand
346    is omitted, then for the next operand use this operand value plus
347    1, ignoring the next operand field for the opcode.  This wretched
348    hack is needed because the Power rotate instructions can take
349    either 4 or 5 operands.  The disassembler should print this operand
350    out regardless of the PPC_OPERAND_OPTIONAL field.  */
351 #define PPC_OPERAND_NEXT (0x800)
352 
353 /* This operand should be regarded as a negative number for the
354    purposes of overflow checking (i.e., the normal most negative
355    number is disallowed and one more than the normal most positive
356    number is allowed).  This flag will only be set for a signed
357    operand.  */
358 #define PPC_OPERAND_NEGATIVE (0x1000)
359 
360 /* This operand names a vector unit register.  The disassembler
361    prints these with a leading 'v'.  */
362 #define PPC_OPERAND_VR (0x2000)
363 
364 /* This operand is for the DS field in a DS form instruction.  */
365 #define PPC_OPERAND_DS (0x4000)
366 
367 /* This operand is for the DQ field in a DQ form instruction.  */
368 #define PPC_OPERAND_DQ (0x8000)
369 
370 /* Valid range of operand is 0..n rather than 0..n-1.  */
371 #define PPC_OPERAND_PLUS1 (0x10000)
372 
373 /* Xilinx APU and FSL related operands */
374 #define PPC_OPERAND_FSL (0x20000)
375 #define PPC_OPERAND_FCR (0x40000)
376 #define PPC_OPERAND_UDI (0x80000)
377 
378 /* This operand names a vector-scalar unit register.  The disassembler
379    prints these with a leading 'vs'.  */
380 #define PPC_OPERAND_VSR (0x100000)
381 
382 /* This is a CR FIELD that does not use symbolic names.  */
383 #define PPC_OPERAND_CR_REG (0x200000)
384 
385 /* The POWER and PowerPC assemblers use a few macros.  We keep them
386    with the operands table for simplicity.  The macro table is an
387    array of struct powerpc_macro.  */
388 
389 struct powerpc_macro
390 {
391   /* The macro name.  */
392   const char *name;
393 
394   /* The number of operands the macro takes.  */
395   unsigned int operands;
396 
397   /* One bit flags for the opcode.  These are used to indicate which
398      specific processors support the instructions.  The values are the
399      same as those for the struct powerpc_opcode flags field.  */
400   ppc_cpu_t flags;
401 
402   /* A format string to turn the macro into a normal instruction.
403      Each %N in the string is replaced with operand number N (zero
404      based).  */
405   const char *format;
406 };
407 
408 extern const struct powerpc_macro powerpc_macros[];
409 extern const int powerpc_num_macros;
410 
411 extern ppc_cpu_t ppc_parse_cpu (ppc_cpu_t, ppc_cpu_t *, const char *);
412 
413 #endif /* PPC_H */
414