1 /* Definitions of target machine for GNU compiler.  MIPS version.
2    Copyright (C) 1989-2020 Free Software Foundation, Inc.
3    Contributed by A. Lichnewsky (lich@inria.inria.fr).
4    Changed by Michael Meissner	(meissner@osf.org).
5    64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6    Brendan Eich (brendan@microunity.com).
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14 
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23 
24 
25 #include "config/vxworks-dummy.h"
26 
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29    does not need to be defined.  */
30 extern int target_flags_explicit;
31 #endif
32 
33 /* MIPS external variables defined in mips.c.  */
34 
35 /* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
36    ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
37    to work on a 64-bit machine.  */
38 
39 #define ABI_32  0
40 #define ABI_N32 1
41 #define ABI_64  2
42 #define ABI_EABI 3
43 #define ABI_O64  4
44 
45 /* Masks that affect tuning.
46 
47    PTF_AVOID_BRANCHLIKELY_SPEED
48 	Set if it is usually not profitable to use branch-likely instructions
49 	for this target when optimizing code for speed, typically because
50 	the branches are always predicted taken and so incur a large overhead
51 	when not taken.
52 
53    PTF_AVOID_BRANCHLIKELY_SIZE
54 	As above but when optimizing for size.
55 
56    PTF_AVOID_BRANCHLIKELY_ALWAYS
57 	As above but regardless of whether we optimize for speed or size.
58 
59    PTF_AVOID_IMADD
60 	Set if it is usually not profitable to use the integer MADD or MSUB
61 	instructions because of the overhead of getting the result out of
62 	the HI/LO registers.  */
63 
64 #define PTF_AVOID_BRANCHLIKELY_SPEED	0x1
65 #define PTF_AVOID_BRANCHLIKELY_SIZE	0x2
66 #define PTF_AVOID_BRANCHLIKELY_ALWAYS	(PTF_AVOID_BRANCHLIKELY_SPEED | \
67 					 PTF_AVOID_BRANCHLIKELY_SIZE)
68 #define PTF_AVOID_IMADD			0x4
69 
70 /* Information about one recognized processor.  Defined here for the
71    benefit of TARGET_CPU_CPP_BUILTINS.  */
72 struct mips_cpu_info {
73   /* The 'canonical' name of the processor as far as GCC is concerned.
74      It's typically a manufacturer's prefix followed by a numerical
75      designation.  It should be lowercase.  */
76   const char *name;
77 
78   /* The internal processor number that most closely matches this
79      entry.  Several processors can have the same value, if there's no
80      difference between them from GCC's point of view.  */
81   enum processor cpu;
82 
83   /* The ISA level that the processor implements.  */
84   int isa;
85 
86   /* A mask of PTF_* values.  */
87   unsigned int tune_flags;
88 };
89 
90 #include "config/mips/mips-opts.h"
91 
92 /* Macros to silence warnings about numbers being signed in traditional
93    C and unsigned in ISO C when compiled on 32-bit hosts.  */
94 
95 #define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
96 #define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
97 #define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
98 
99 
100 /* Run-time compilation parameters selecting different hardware subsets.  */
101 
102 /* True if we are generating position-independent VxWorks RTP code.  */
103 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
104 
105 /* Compact branches must not be used if the user either selects the
106    'never' policy or the 'optimal' policy on a core that lacks
107    compact branch instructions.  */
108 #define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER	\
109 			 || (mips_cb == MIPS_CB_OPTIMAL \
110 			     && !ISA_HAS_COMPACT_BRANCHES))
111 
112 /* Compact branches may be used if the user either selects the
113    'always' policy or the 'optimal' policy on a core that supports
114    compact branch instructions.  */
115 #define TARGET_CB_MAYBE (TARGET_CB_ALWAYS		\
116 			 || (mips_cb == MIPS_CB_OPTIMAL \
117 			     && ISA_HAS_COMPACT_BRANCHES))
118 
119 /* Compact branches must always be generated if the user selects
120    the 'always' policy or the 'optimal' policy om a core that
121    lacks delay slot branch instructions.  */
122 #define TARGET_CB_ALWAYS (mips_cb == MIPS_CB_ALWAYS	\
123 			 || (mips_cb == MIPS_CB_OPTIMAL \
124 			     && !ISA_HAS_DELAY_SLOTS))
125 
126 /* Special handling for JRC that exists in microMIPSR3 as well as R6
127    ISAs with full compact branch support.  */
128 #define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES		\
129 		      || TARGET_MICROMIPS)		\
130 		     && mips_cb != MIPS_CB_NEVER)
131 
132 /* True if the output file is marked as ".abicalls; .option pic0"
133    (-call_nonpic).  */
134 #define TARGET_ABICALLS_PIC0 \
135   (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
136 
137 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC).  */
138 #define TARGET_ABICALLS_PIC2 \
139   (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
140 
141 /* True if the call patterns should be split into a jalr followed by
142    an instruction to restore $gp.  It is only safe to split the load
143    from the call when every use of $gp is explicit.
144 
145    See mips_must_initialize_gp_p for details about how we manage the
146    global pointer.  */
147 
148 #define TARGET_SPLIT_CALLS \
149   (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
150 
151 /* True if we're generating a form of -mabicalls in which we can use
152    operators like %hi and %lo to refer to locally-binding symbols.
153    We can only do this for -mno-shared, and only then if we can use
154    relocation operations instead of assembly macros.  It isn't really
155    worth using absolute sequences for 64-bit symbols because GOT
156    accesses are so much shorter.  */
157 
158 #define TARGET_ABSOLUTE_ABICALLS	\
159   (TARGET_ABICALLS			\
160    && !TARGET_SHARED			\
161    && TARGET_EXPLICIT_RELOCS		\
162    && !ABI_HAS_64BIT_SYMBOLS)
163 
164 /* True if we can optimize sibling calls.  For simplicity, we only
165    handle cases in which call_insn_operand will reject invalid
166    sibcall addresses.  There are two cases in which this isn't true:
167 
168       - TARGET_MIPS16.  call_insn_operand accepts constant addresses
169 	but there is no direct jump instruction.  It isn't worth
170 	using sibling calls in this case anyway; they would usually
171 	be longer than normal calls.
172 
173       - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
174 	accepts global constants, but all sibcalls must be indirect.  */
175 #define TARGET_SIBCALLS \
176   (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
177 
178 /* True if we need to use a global offset table to access some symbols.  */
179 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
180 
181 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register.  */
182 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
183 
184 /* True if TARGET_USE_GOT and if $gp is a call-saved register.  */
185 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
186 
187 /* True if we should use .cprestore to store to the cprestore slot.
188 
189    We continue to use .cprestore for explicit-reloc code so that JALs
190    inside inline asms will work correctly.  */
191 #define TARGET_CPRESTORE_DIRECTIVE \
192   (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
193 
194 /* True if we can use the J and JAL instructions.  */
195 #define TARGET_ABSOLUTE_JUMPS \
196   (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
197 
198 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
199    This is true for both the PIC and non-PIC VxWorks RTP modes.  */
200 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
201 
202 /* True if .gpword or .gpdword should be used for switch tables.  */
203 #define TARGET_GPWORD				\
204   (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
205 
206 /* True if the output must have a writable .eh_frame.
207    See ASM_PREFERRED_EH_DATA_FORMAT for details.  */
208 #ifdef HAVE_LD_PERSONALITY_RELAXATION
209 #define TARGET_WRITABLE_EH_FRAME 0
210 #else
211 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
212 #endif
213 
214 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2.  */
215 #ifdef HAVE_AS_DSPR1_MULT
216 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
217 #else
218 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
219 #endif
220 
221 /* ISA has LSA available.  */
222 #define ISA_HAS_LSA		(mips_isa_rev >= 6 || ISA_HAS_MSA)
223 
224 /* ISA has DLSA available.  */
225 #define ISA_HAS_DLSA		(TARGET_64BIT \
226 				 && (mips_isa_rev >= 6 \
227 				     || ISA_HAS_MSA))
228 
229 /* The ISA compression flags that are currently in effect.  */
230 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
231 
232 /* Generate mips16 code */
233 #define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
234 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
235 #define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= 32)
236 /* Generate mips16e register save/restore sequences.  */
237 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
238 
239 /* True if we're generating a form of MIPS16 code in which general
240    text loads are allowed.  */
241 #define TARGET_MIPS16_TEXT_LOADS \
242   (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
243 
244 /* True if we're generating a form of MIPS16 code in which PC-relative
245    loads are allowed.  */
246 #define TARGET_MIPS16_PCREL_LOADS \
247   (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
248 
249 /* Generic ISA defines.  */
250 #define ISA_MIPS1		    (mips_isa == 1)
251 #define ISA_MIPS2		    (mips_isa == 2)
252 #define ISA_MIPS3                   (mips_isa == 3)
253 #define ISA_MIPS4		    (mips_isa == 4)
254 #define ISA_MIPS32		    (mips_isa == 32)
255 #define ISA_MIPS32R2		    (mips_isa == 33)
256 #define ISA_MIPS32R3		    (mips_isa == 34)
257 #define ISA_MIPS32R5		    (mips_isa == 36)
258 #define ISA_MIPS32R6		    (mips_isa == 37)
259 #define ISA_MIPS64                  (mips_isa == 64)
260 #define ISA_MIPS64R2		    (mips_isa == 65)
261 #define ISA_MIPS64R3		    (mips_isa == 66)
262 #define ISA_MIPS64R5		    (mips_isa == 68)
263 #define ISA_MIPS64R6		    (mips_isa == 69)
264 
265 /* Architecture target defines.  */
266 #define TARGET_LOONGSON_2E          (mips_arch == PROCESSOR_LOONGSON_2E)
267 #define TARGET_LOONGSON_2F          (mips_arch == PROCESSOR_LOONGSON_2F)
268 #define TARGET_LOONGSON_2EF         (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
269 #define TARGET_GS464		    (mips_arch == PROCESSOR_GS464)
270 #define TARGET_GS464E		    (mips_arch == PROCESSOR_GS464E)
271 #define TARGET_GS264E		    (mips_arch == PROCESSOR_GS264E)
272 #define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
273 #define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
274 #define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
275 #define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
276 #define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
277 #define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
278 #define TARGET_MIPS5900             (mips_arch == PROCESSOR_R5900)
279 #define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
280 #define TARGET_MIPS8000             (mips_arch == PROCESSOR_R8000)
281 #define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
282 #define TARGET_OCTEON		    (mips_arch == PROCESSOR_OCTEON	\
283 				     || mips_arch == PROCESSOR_OCTEON2	\
284 				     || mips_arch == PROCESSOR_OCTEON3)
285 #define TARGET_OCTEON2		    (mips_arch == PROCESSOR_OCTEON2	\
286 				     || mips_arch == PROCESSOR_OCTEON3)
287 #define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
288 				     || mips_arch == PROCESSOR_SB1A)
289 #define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
290 #define TARGET_XLP                  (mips_arch == PROCESSOR_XLP)
291 
292 /* Scheduling target defines.  */
293 #define TUNE_20KC		    (mips_tune == PROCESSOR_20KC)
294 #define TUNE_24K		    (mips_tune == PROCESSOR_24KC	\
295 				     || mips_tune == PROCESSOR_24KF2_1	\
296 				     || mips_tune == PROCESSOR_24KF1_1)
297 #define TUNE_74K                    (mips_tune == PROCESSOR_74KC	\
298 				     || mips_tune == PROCESSOR_74KF2_1	\
299 				     || mips_tune == PROCESSOR_74KF1_1  \
300 				     || mips_tune == PROCESSOR_74KF3_2)
301 #define TUNE_LOONGSON_2EF           (mips_tune == PROCESSOR_LOONGSON_2E	\
302 				     || mips_tune == PROCESSOR_LOONGSON_2F)
303 #define TUNE_GS464		    (mips_tune == PROCESSOR_GS464)
304 #define TUNE_GS464E		    (mips_tune == PROCESSOR_GS464E)
305 #define TUNE_GS264E		    (mips_tune == PROCESSOR_GS264E)
306 #define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
307 #define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
308 #define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
309 #define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
310 #define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
311 #define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
312 #define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
313 #define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
314 #define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
315 #define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
316 #define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
317 #define TUNE_OCTEON		    (mips_tune == PROCESSOR_OCTEON	\
318 				     || mips_tune == PROCESSOR_OCTEON2	\
319 				     || mips_tune == PROCESSOR_OCTEON3)
320 #define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
321 				     || mips_tune == PROCESSOR_SB1A)
322 #define TUNE_P5600                  (mips_tune == PROCESSOR_P5600)
323 #define TUNE_I6400                  (mips_tune == PROCESSOR_I6400)
324 #define TUNE_P6600                  (mips_tune == PROCESSOR_P6600)
325 
326 /* True if the pre-reload scheduler should try to create chains of
327    multiply-add or multiply-subtract instructions.  For example,
328    suppose we have:
329 
330 	t1 = a * b
331 	t2 = t1 + c * d
332 	t3 = e * f
333 	t4 = t3 - g * h
334 
335    t1 will have a higher priority than t2 and t3 will have a higher
336    priority than t4.  However, before reload, there is no dependence
337    between t1 and t3, and they can often have similar priorities.
338    The scheduler will then tend to prefer:
339 
340 	t1 = a * b
341 	t3 = e * f
342 	t2 = t1 + c * d
343 	t4 = t3 - g * h
344 
345    which stops us from making full use of macc/madd-style instructions.
346    This sort of situation occurs frequently in Fourier transforms and
347    in unrolled loops.
348 
349    To counter this, the TUNE_MACC_CHAINS code will reorder the ready
350    queue so that chained multiply-add and multiply-subtract instructions
351    appear ahead of any other instruction that is likely to clobber lo.
352    In the example above, if t2 and t3 become ready at the same time,
353    the code ensures that t2 is scheduled first.
354 
355    Multiply-accumulate instructions are a bigger win for some targets
356    than others, so this macro is defined on an opt-in basis.  */
357 #define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
358 				     || TUNE_MIPS4120		\
359 				     || TUNE_MIPS4130		\
360 				     || TUNE_24K		\
361 				     || TUNE_P5600)
362 
363 #define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
364 #define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
365 
366 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
367    directly accessible, while the command-line options select
368    TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
369    in use.  */
370 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
371 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
372 
373 /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
374    -mfpxx, derive TARGET_FLOAT32 to represent -mfp32.  */
375 #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
376 
377 /* TARGET_O32_FP64A_ABI represents all the conditions that form the
378    o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg).  */
379 #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
380 			      && !TARGET_ODD_SPREG)
381 
382 /* False if SC acts as a memory barrier with respect to itself,
383    otherwise a SYNC will be emitted after SC for atomic operations
384    that require ordering between the SC and following loads and
385    stores.  It does not tell anything about ordering of loads and
386    stores prior to and following the SC, only about the SC itself and
387    those loads and stores follow it.  */
388 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
389 
390 /* Define preprocessor macros for the -march and -mtune options.
391    PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
392    processor.  If INFO's canonical name is "foo", define PREFIX to
393    be "foo", and define an additional macro PREFIX_FOO.  */
394 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
395   do								\
396     {								\
397       char *macro, *p;						\
398 								\
399       macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
400       for (p = macro; *p != 0; p++)				\
401         if (*p == '+')                                          \
402           *p = 'P';                                             \
403         else                                                    \
404           *p = TOUPPER (*p);                                    \
405 								\
406       builtin_define (macro);					\
407       builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
408       free (macro);						\
409     }								\
410   while (0)
411 
412 /* Target CPU builtins.  */
413 #define TARGET_CPU_CPP_BUILTINS()					\
414   do									\
415     {									\
416       builtin_assert ("machine=mips");                        		\
417       builtin_assert ("cpu=mips");					\
418       builtin_define ("__mips__");     					\
419       builtin_define ("_mips");						\
420 									\
421       /* We do this here because __mips is defined below and so we	\
422 	 can't use builtin_define_std.  We don't ever want to define	\
423 	 "mips" for VxWorks because some of the VxWorks headers		\
424 	 construct include filenames from a root directory macro,	\
425 	 an architecture macro and a filename, where the architecture	\
426 	 macro expands to 'mips'.  If we define 'mips' to 1, the	\
427 	 architecture macro expands to 1 as well.  */			\
428       if (!flag_iso && !TARGET_VXWORKS)					\
429 	builtin_define ("mips");					\
430 									\
431       if (TARGET_64BIT)							\
432 	builtin_define ("__mips64");					\
433 									\
434       /* Treat _R3000 and _R4000 like register-size			\
435 	 defines, which is how they've historically			\
436 	 been used.  */							\
437       if (TARGET_64BIT)							\
438 	{								\
439 	  builtin_define_std ("R4000");					\
440 	  builtin_define ("_R4000");					\
441 	}								\
442       else								\
443 	{								\
444 	  builtin_define_std ("R3000");					\
445 	  builtin_define ("_R3000");					\
446 	}								\
447 									\
448       if (TARGET_FLOAT64)						\
449 	builtin_define ("__mips_fpr=64");				\
450       else if (TARGET_FLOATXX)						\
451 	builtin_define ("__mips_fpr=0");				\
452       else								\
453 	builtin_define ("__mips_fpr=32");				\
454 									\
455       if (mips_base_compression_flags & MASK_MIPS16)			\
456 	builtin_define ("__mips16");					\
457 									\
458       if (TARGET_MIPS3D)						\
459 	builtin_define ("__mips3d");					\
460 									\
461       if (TARGET_SMARTMIPS)						\
462 	builtin_define ("__mips_smartmips");				\
463 									\
464       if (mips_base_compression_flags & MASK_MICROMIPS)			\
465 	builtin_define ("__mips_micromips");				\
466 									\
467       if (TARGET_MCU)							\
468 	builtin_define ("__mips_mcu");					\
469 									\
470       if (TARGET_EVA)							\
471 	builtin_define ("__mips_eva");					\
472 									\
473       if (TARGET_DSP)							\
474 	{								\
475 	  builtin_define ("__mips_dsp");				\
476 	  if (TARGET_DSPR2)						\
477 	    {								\
478 	      builtin_define ("__mips_dspr2");				\
479 	      builtin_define ("__mips_dsp_rev=2");			\
480 	    }								\
481 	  else								\
482 	    builtin_define ("__mips_dsp_rev=1");			\
483 	}								\
484 									\
485       if (ISA_HAS_MSA)							\
486 	{								\
487 	  builtin_define ("__mips_msa");				\
488 	  builtin_define ("__mips_msa_width=128");			\
489 	}								\
490 									\
491       MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);		\
492       MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);		\
493 									\
494       if (ISA_MIPS1)							\
495 	{								\
496 	  builtin_define ("__mips=1");					\
497 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");			\
498 	}								\
499       else if (ISA_MIPS2)						\
500 	{								\
501 	  builtin_define ("__mips=2");					\
502 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");			\
503 	}								\
504       else if (ISA_MIPS3)						\
505 	{								\
506 	  builtin_define ("__mips=3");					\
507 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");			\
508 	}								\
509       else if (ISA_MIPS4)						\
510 	{								\
511 	  builtin_define ("__mips=4");					\
512 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");			\
513 	}								\
514       else if (mips_isa >= 32 && mips_isa < 64)				\
515 	{								\
516 	  builtin_define ("__mips=32");					\
517 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");		\
518 	}								\
519       else if (mips_isa >= 64)						\
520 	{								\
521 	  builtin_define ("__mips=64");					\
522 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");		\
523 	}								\
524       if (mips_isa_rev > 0)						\
525 	builtin_define_with_int_value ("__mips_isa_rev",		\
526 				       mips_isa_rev);			\
527 									\
528       switch (mips_abi)							\
529 	{								\
530 	case ABI_32:							\
531 	  builtin_define ("_ABIO32=1");					\
532 	  builtin_define ("_MIPS_SIM=_ABIO32");				\
533 	  break;							\
534 									\
535 	case ABI_N32:							\
536 	  builtin_define ("_ABIN32=2");					\
537 	  builtin_define ("_MIPS_SIM=_ABIN32");				\
538 	  break;							\
539 									\
540 	case ABI_64:							\
541 	  builtin_define ("_ABI64=3");					\
542 	  builtin_define ("_MIPS_SIM=_ABI64");				\
543 	  break;							\
544 									\
545 	case ABI_O64:							\
546 	  builtin_define ("_ABIO64=4");					\
547 	  builtin_define ("_MIPS_SIM=_ABIO64");				\
548 	  break;							\
549 	}								\
550 									\
551       builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE);	\
552       builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE);	\
553       builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE);	\
554       builtin_define_with_int_value ("_MIPS_FPSET",			\
555 				     32 / MAX_FPRS_PER_FMT);		\
556       builtin_define_with_int_value ("_MIPS_SPFPSET",			\
557 				     TARGET_ODD_SPREG ? 32 : 16);	\
558 									\
559       /* These defines reflect the ABI in use, not whether the  	\
560 	 FPU is directly accessible.  */				\
561       if (TARGET_NO_FLOAT)						\
562 	builtin_define ("__mips_no_float");				\
563       else if (TARGET_HARD_FLOAT_ABI)					\
564 	builtin_define ("__mips_hard_float");				\
565       else								\
566 	builtin_define ("__mips_soft_float");				\
567 									\
568       if (TARGET_SINGLE_FLOAT)						\
569 	builtin_define ("__mips_single_float");				\
570 									\
571       if (TARGET_PAIRED_SINGLE_FLOAT)					\
572 	builtin_define ("__mips_paired_single_float");			\
573 									\
574       if (mips_abs == MIPS_IEEE_754_2008)				\
575 	builtin_define ("__mips_abs2008");				\
576 									\
577       if (mips_nan == MIPS_IEEE_754_2008)				\
578 	builtin_define ("__mips_nan2008");				\
579 									\
580       if (TARGET_BIG_ENDIAN)						\
581 	{								\
582 	  builtin_define_std ("MIPSEB");				\
583 	  builtin_define ("_MIPSEB");					\
584 	}								\
585       else								\
586 	{								\
587 	  builtin_define_std ("MIPSEL");				\
588 	  builtin_define ("_MIPSEL");					\
589 	}								\
590                                                                         \
591       /* Whether calls should go through $25.  The separate __PIC__	\
592 	 macro indicates whether abicalls code might use a GOT.  */	\
593       if (TARGET_ABICALLS)						\
594 	builtin_define ("__mips_abicalls");				\
595 									\
596       /* Whether Loongson vector modes are enabled.  */			\
597       if (TARGET_LOONGSON_MMI)						\
598 	{								\
599 	  builtin_define ("__mips_loongson_vector_rev");		\
600 	  builtin_define ("__mips_loongson_mmi");			\
601 	}								\
602 									\
603       /* Whether Loongson EXT modes are enabled.  */			\
604       if (TARGET_LOONGSON_EXT)						\
605 	{								\
606 	  builtin_define ("__mips_loongson_ext");			\
607 	  if (TARGET_LOONGSON_EXT2)					\
608 	    {								\
609 	      builtin_define ("__mips_loongson_ext2");			\
610 	      builtin_define ("__mips_loongson_ext_rev=2");		\
611 	    }								\
612 	  else								\
613 	      builtin_define ("__mips_loongson_ext_rev=1");		\
614 	}								\
615 									\
616       /* Historical Octeon macro.  */					\
617       if (TARGET_OCTEON)						\
618 	builtin_define ("__OCTEON__");					\
619 									\
620       if (TARGET_SYNCI)							\
621 	builtin_define ("__mips_synci");				\
622 									\
623       /* Macros dependent on the C dialect.  */				\
624       if (preprocessing_asm_p ())					\
625 	{								\
626 	  builtin_define_std ("LANGUAGE_ASSEMBLY");			\
627 	  builtin_define ("_LANGUAGE_ASSEMBLY");			\
628 	}								\
629       else if (c_dialect_cxx ())					\
630 	{								\
631 	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");			\
632 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");			\
633 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");			\
634 	}								\
635       else								\
636 	{								\
637 	  builtin_define_std ("LANGUAGE_C");				\
638 	  builtin_define ("_LANGUAGE_C");				\
639 	}								\
640       if (c_dialect_objc ())						\
641 	{								\
642 	  builtin_define ("_LANGUAGE_OBJECTIVE_C");			\
643 	  builtin_define ("__LANGUAGE_OBJECTIVE_C");			\
644 	  /* Bizarre, but retained for backwards compatibility.  */	\
645 	  builtin_define_std ("LANGUAGE_C");				\
646 	  builtin_define ("_LANGUAGE_C");				\
647 	}								\
648 									\
649       if (mips_abi == ABI_EABI)						\
650 	builtin_define ("__mips_eabi");					\
651 									\
652       if (TARGET_CACHE_BUILTIN)						\
653 	builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE");		\
654       if (!ISA_HAS_LXC1_SXC1)						\
655 	builtin_define ("__mips_no_lxc1_sxc1");				\
656       if (!ISA_HAS_UNFUSED_MADD4 && !ISA_HAS_FUSED_MADD4)		\
657 	builtin_define ("__mips_no_madd4");				\
658     }									\
659   while (0)
660 
661 /* Target CPU versions for D.  */
662 #define TARGET_D_CPU_VERSIONS mips_d_target_versions
663 
664 /* Default target_flags if no switches are specified  */
665 
666 #ifndef TARGET_DEFAULT
667 #define TARGET_DEFAULT 0
668 #endif
669 
670 #ifndef TARGET_CPU_DEFAULT
671 #define TARGET_CPU_DEFAULT 0
672 #endif
673 
674 #ifndef TARGET_ENDIAN_DEFAULT
675 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
676 #endif
677 
678 #ifdef IN_LIBGCC2
679 #undef TARGET_64BIT
680 /* Make this compile time constant for libgcc2 */
681 #ifdef __mips64
682 #define TARGET_64BIT		1
683 #else
684 #define TARGET_64BIT		0
685 #endif
686 #endif /* IN_LIBGCC2 */
687 
688 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
689    when compiled with hardware floating point.  This is because MIPS16
690    code cannot save and restore the floating-point registers, which is
691    important if in a mixed MIPS16/non-MIPS16 environment.  */
692 
693 #ifdef IN_LIBGCC2
694 #if __mips_hard_float
695 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
696 #endif
697 #endif /* IN_LIBGCC2 */
698 
699 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
700 
701 #ifndef MULTILIB_ENDIAN_DEFAULT
702 #if TARGET_ENDIAN_DEFAULT == 0
703 #define MULTILIB_ENDIAN_DEFAULT "EL"
704 #else
705 #define MULTILIB_ENDIAN_DEFAULT "EB"
706 #endif
707 #endif
708 
709 #ifndef MULTILIB_ISA_DEFAULT
710 #if MIPS_ISA_DEFAULT == 1
711 #define MULTILIB_ISA_DEFAULT "mips1"
712 #elif MIPS_ISA_DEFAULT == 2
713 #define MULTILIB_ISA_DEFAULT "mips2"
714 #elif MIPS_ISA_DEFAULT == 3
715 #define MULTILIB_ISA_DEFAULT "mips3"
716 #elif MIPS_ISA_DEFAULT == 4
717 #define MULTILIB_ISA_DEFAULT "mips4"
718 #elif MIPS_ISA_DEFAULT == 32
719 #define MULTILIB_ISA_DEFAULT "mips32"
720 #elif MIPS_ISA_DEFAULT == 33
721 #define MULTILIB_ISA_DEFAULT "mips32r2"
722 #elif MIPS_ISA_DEFAULT == 37
723 #define MULTILIB_ISA_DEFAULT "mips32r6"
724 #elif MIPS_ISA_DEFAULT == 64
725 #define MULTILIB_ISA_DEFAULT "mips64"
726 #elif MIPS_ISA_DEFAULT == 65
727 #define MULTILIB_ISA_DEFAULT "mips64r2"
728 #elif MIPS_ISA_DEFAULT == 69
729 #define MULTILIB_ISA_DEFAULT "mips64r6"
730 #else
731 #define MULTILIB_ISA_DEFAULT "mips1"
732 #endif
733 #endif
734 
735 #ifndef MIPS_ABI_DEFAULT
736 #define MIPS_ABI_DEFAULT ABI_32
737 #endif
738 
739 /* Use the most portable ABI flag for the ASM specs.  */
740 
741 #if MIPS_ABI_DEFAULT == ABI_32
742 #define MULTILIB_ABI_DEFAULT "mabi=32"
743 #elif MIPS_ABI_DEFAULT == ABI_O64
744 #define MULTILIB_ABI_DEFAULT "mabi=o64"
745 #elif MIPS_ABI_DEFAULT == ABI_N32
746 #define MULTILIB_ABI_DEFAULT "mabi=n32"
747 #elif MIPS_ABI_DEFAULT == ABI_64
748 #define MULTILIB_ABI_DEFAULT "mabi=64"
749 #elif MIPS_ABI_DEFAULT == ABI_EABI
750 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
751 #endif
752 
753 #ifndef MULTILIB_DEFAULTS
754 #define MULTILIB_DEFAULTS \
755     { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
756 #endif
757 
758 /* We must pass -EL to the linker by default for little endian embedded
759    targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
760    linker will default to using big-endian output files.  The OUTPUT_FORMAT
761    line must be in the linker script, otherwise -EB/-EL will not work.  */
762 
763 #ifndef ENDIAN_SPEC
764 #if TARGET_ENDIAN_DEFAULT == 0
765 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
766 #else
767 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
768 #endif
769 #endif
770 
771 /* A spec condition that matches all non-mips16 -mips arguments.  */
772 
773 #define MIPS_ISA_LEVEL_OPTION_SPEC \
774   "mips1|mips2|mips3|mips4|mips32*|mips64*"
775 
776 /* A spec condition that matches all non-mips16 architecture arguments.  */
777 
778 #define MIPS_ARCH_OPTION_SPEC \
779   MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
780 
781 /* A spec that infers a -mips argument from an -march argument.  */
782 
783 #define MIPS_ISA_LEVEL_SPEC \
784   "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
785      %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
786      %{march=mips2|march=r6000:-mips2} \
787      %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
788      %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
789        |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
790      %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
791      %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
792        |march=34k*|march=74k*|march=m14k*|march=1004k* \
793        |march=interaptiv: -mips32r2} \
794      %{march=mips32r3: -mips32r3} \
795      %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \
796      %{march=mips32r6: -mips32r6} \
797      %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
798        |march=xlr: -mips64} \
799      %{march=mips64r2|march=loongson3a|march=gs464|march=gs464e|march=gs264e \
800        |march=octeon|march=xlp: -mips64r2} \
801      %{march=mips64r3: -mips64r3} \
802      %{march=mips64r5: -mips64r5} \
803      %{march=mips64r6|march=i6400|march=i6500|march=p6600: -mips64r6}}"
804 
805 /* A spec that injects the default multilib ISA if no architecture is
806    specified.  */
807 
808 #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
809   "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
810      %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
811 
812 /* A spec that infers a -mhard-float or -msoft-float setting from an
813    -march argument.  Note that soft-float and hard-float code are not
814    link-compatible.  */
815 
816 #define MIPS_ARCH_FLOAT_SPEC \
817   "%{mhard-float|msoft-float|mno-float|march=mips*:; \
818      march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
819      |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
820      |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \
821      march=*: -mhard-float}"
822 
823 /* A spec condition that matches 32-bit options.  It only works if
824    MIPS_ISA_LEVEL_SPEC has been applied.  */
825 
826 #define MIPS_32BIT_OPTION_SPEC \
827   "mips1|mips2|mips32*|mgp32"
828 
829 /* A spec condition that matches architectures should be targeted with
830    o32 FPXX for compatibility reasons.  */
831 #define MIPS_FPXX_OPTION_SPEC \
832   "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
833    mips64|mips64r2|mips64r3|mips64r5"
834 
835 /* Infer a -msynci setting from a -mips argument, on the assumption that
836    -msynci is desired where possible.  */
837 #define MIPS_ISA_SYNCI_SPEC \
838   "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
839 			  |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
840 
841 /* Infer a -mnan=2008 setting from a -mips argument.  */
842 #define MIPS_ISA_NAN2008_SPEC \
843   "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \
844 					 %{!msoft-float:-mnan=2008}}"
845 
846 #if (MIPS_ABI_DEFAULT == ABI_O64 \
847      || MIPS_ABI_DEFAULT == ABI_N32 \
848      || MIPS_ABI_DEFAULT == ABI_64)
849 #define OPT_ARCH64 "mabi=32|mgp32:;"
850 #define OPT_ARCH32 "mabi=32|mgp32"
851 #else
852 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
853 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
854 #endif
855 
856 /* Support for a compile-time default CPU, et cetera.  The rules are:
857    --with-arch is ignored if -march is specified or a -mips is specified
858      (other than -mips16); likewise --with-arch-32 and --with-arch-64.
859    --with-tune is ignored if -mtune is specified; likewise
860      --with-tune-32 and --with-tune-64.
861    --with-abi is ignored if -mabi is specified.
862    --with-float is ignored if -mhard-float or -msoft-float are
863      specified.
864    --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
865      specified.
866    --with-nan is ignored if -mnan is specified.
867    --with-fp-32 is ignored if -msoft-float, -msingle-float, -mmsa or -mfp are
868      specified.
869    --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
870      or -mno-odd-spreg are specified.
871    --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
872      specified. */
873 #define OPTION_DEFAULT_SPECS \
874   {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
875   {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
876   {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
877   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
878   {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
879   {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
880   {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
881   {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
882   {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
883   {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
884   {"fp_32", "%{" OPT_ARCH32 \
885 	    ":%{!msoft-float:%{!msingle-float:%{!mfp*:%{!mmsa:-mfp%(VALUE)}}}}}" }, \
886   {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
887 		   "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
888   {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
889   {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
890   {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
891   {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" },			\
892   {"lxc1-sxc1", "%{!mlxc1-sxc1:%{!mno-lxc1-sxc1:-m%(VALUE)}}" }, \
893   {"madd4", "%{!mmadd4:%{!mno-madd4:-m%(VALUE)}}" } \
894 
895 /* A spec that infers the:
896    -mnan=2008 setting from a -mips argument,
897    -mdsp setting from a -march argument.
898    -mloongson-mmi setting from a -march argument.  */
899 #define BASE_DRIVER_SELF_SPECS	\
900   MIPS_ISA_NAN2008_SPEC,	\
901   MIPS_ASE_DSP_SPEC, 		\
902   MIPS_ASE_LOONGSON_MMI_SPEC,	\
903   MIPS_ASE_LOONGSON_EXT_SPEC,	\
904   MIPS_ASE_MSA_SPEC
905 
906 
907 #define MIPS_ASE_DSP_SPEC \
908   "%{!mno-dsp: \
909      %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \
910        |march=interaptiv: -mdsp} \
911      %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
912 
913 #define MIPS_ASE_LOONGSON_MMI_SPEC						\
914   "%{!mno-loongson-mmi:								\
915      %{march=loongson2e|march=loongson2f|march=loongson3a: -mloongson-mmi}}"
916 
917 #define MIPS_ASE_LOONGSON_EXT_SPEC						\
918   "%{!mno-loongson-ext:								\
919      %{march=loongson3a|march=gs464: -mloongson-ext}				\
920      %{march=gs464e|march=gs264e: %{!mno-loongson-ext2:			\
921        -mloongson-ext2 -mloongson-ext}}}"
922 
923 #define MIPS_ASE_MSA_SPEC						\
924   "%{!mno-msa:								\
925      %{march=gs264e: -mmsa}}"
926 
927 #define DRIVER_SELF_SPECS \
928   MIPS_ISA_LEVEL_SPEC,	  \
929   BASE_DRIVER_SELF_SPECS
930 
931 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
932                                && ISA_HAS_COND_TRAP)
933 
934 #define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
935 
936 /* True if the ABI can only work with 64-bit integer registers.  We
937    generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
938    otherwise floating-point registers must also be 64-bit.  */
939 #define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
940 
941 /* Likewise for 32-bit regs.  */
942 #define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
943 
944 /* True if the file format uses 64-bit symbols.  At present, this is
945    only true for n64, which uses 64-bit ELF.  */
946 #define FILE_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64)
947 
948 /* True if symbols are 64 bits wide.  This is usually determined by
949    the ABI's file format, but it can be overridden by -msym32.  Note that
950    overriding the size with -msym32 changes the ABI of relocatable objects,
951    although it doesn't change the ABI of a fully-linked object.  */
952 #define ABI_HAS_64BIT_SYMBOLS	(FILE_HAS_64BIT_SYMBOLS \
953 				 && Pmode == DImode	\
954 				 && !TARGET_SYM32)
955 
956 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3).  */
957 #define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
958 				 || ISA_MIPS4				\
959 				 || ISA_MIPS64				\
960 				 || ISA_MIPS64R2			\
961 				 || ISA_MIPS64R3			\
962 				 || ISA_MIPS64R5			\
963 				 || ISA_MIPS64R6)
964 
965 #define ISA_HAS_JR		(mips_isa_rev <= 5)
966 
967 #define ISA_HAS_DELAY_SLOTS	1
968 
969 #define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6)
970 
971 /* ISA has branch likely instructions (e.g. mips2).  */
972 /* Disable branchlikely for tx39 until compare rewrite.  They haven't
973    been generated up to this point.  */
974 #define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1 && mips_isa_rev <= 5)
975 
976 /* ISA has 32 single-precision registers.  */
977 #define ISA_HAS_ODD_SPREG	((mips_isa_rev >= 1			\
978 				  && !TARGET_GS464)			\
979 				 || TARGET_FLOAT64			\
980 				 || TARGET_MIPS5900)
981 
982 /* ISA has a three-operand multiplication instruction (usually spelt "mul").  */
983 #define ISA_HAS_MUL3		((TARGET_MIPS3900                       \
984 				  || TARGET_MIPS5400			\
985 				  || TARGET_MIPS5500			\
986 				  || TARGET_MIPS5900			\
987 				  || TARGET_MIPS7000			\
988 				  || TARGET_MIPS9000			\
989 				  || TARGET_MAD				\
990 				  || (mips_isa_rev >= 1			\
991 				      && mips_isa_rev <= 5))		\
992 				 && !TARGET_MIPS16)
993 
994 /* ISA has a three-operand multiplication instruction.  */
995 #define ISA_HAS_DMUL3		(TARGET_64BIT				\
996 				 && TARGET_OCTEON			\
997 				 && !TARGET_MIPS16)
998 
999 /* ISA has HI and LO registers.  */
1000 #define ISA_HAS_HILO		(mips_isa_rev <= 5)
1001 
1002 /* ISA supports instructions DMULT and DMULTU. */
1003 #define ISA_HAS_DMULT		(TARGET_64BIT				\
1004 				 && !TARGET_MIPS5900			\
1005 				 && mips_isa_rev <= 5)
1006 
1007 /* ISA supports instructions MULT and MULTU.  */
1008 #define ISA_HAS_MULT		(mips_isa_rev <= 5)
1009 
1010 /* ISA supports instructions MUL, MULU, MUH, MUHU.  */
1011 #define ISA_HAS_R6MUL		(mips_isa_rev >= 6)
1012 
1013 /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU.  */
1014 #define ISA_HAS_R6DMUL		(TARGET_64BIT && mips_isa_rev >= 6)
1015 
1016 /* For Loongson, it is preferable to use the Loongson-specific division and
1017    modulo instructions instead of the regular (D)DIV(U) instruction,
1018    because the former are faster and can also have the effect of reducing
1019    code size.  */
1020 #define ISA_AVOID_DIV_HILO	((TARGET_LOONGSON_2EF			\
1021 				  || TARGET_GS464)			\
1022 				 && !TARGET_MIPS16)
1023 
1024 /* ISA supports instructions DDIV and DDIVU. */
1025 #define ISA_HAS_DDIV		(TARGET_64BIT				\
1026 				 && !TARGET_MIPS5900			\
1027 				 && !ISA_AVOID_DIV_HILO			\
1028 				 && mips_isa_rev <= 5)
1029 
1030 /* ISA supports instructions DIV and DIVU.
1031    This is always true, but the macro is needed for ISA_HAS_<D>DIV
1032    in mips.md.  */
1033 #define ISA_HAS_DIV		(!ISA_AVOID_DIV_HILO			\
1034 				 && mips_isa_rev <= 5)
1035 
1036 /* ISA supports instructions DIV, DIVU, MOD and MODU.  */
1037 #define ISA_HAS_R6DIV		(mips_isa_rev >= 6)
1038 
1039 /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU.  */
1040 #define ISA_HAS_R6DDIV		(TARGET_64BIT && mips_isa_rev >= 6)
1041 
1042 /* ISA has the floating-point conditional move instructions introduced
1043    in mips4.  */
1044 #define ISA_HAS_FP_CONDMOVE	((ISA_MIPS4				\
1045 				  || (mips_isa_rev >= 1			\
1046 				      && mips_isa_rev <= 5))		\
1047 				 && !TARGET_MIPS5500			\
1048 				 && !TARGET_MIPS16)
1049 
1050 /* ISA has the integer conditional move instructions introduced in mips4 and
1051    ST Loongson 2E/2F.  */
1052 #define ISA_HAS_CONDMOVE        (ISA_HAS_FP_CONDMOVE			\
1053 				 || TARGET_MIPS5900			\
1054 				 || TARGET_LOONGSON_2EF)
1055 
1056 /* ISA has LDC1 and SDC1.  */
1057 #define ISA_HAS_LDC1_SDC1	(!ISA_MIPS1				\
1058 				 && !TARGET_MIPS5900			\
1059 				 && !TARGET_MIPS16)
1060 
1061 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
1062    branch on CC, and move (both FP and non-FP) on CC.  */
1063 #define ISA_HAS_8CC		(ISA_MIPS4				\
1064 				 || (mips_isa_rev >= 1			\
1065 				     && mips_isa_rev <= 5))
1066 
1067 /* ISA has the FP condition code instructions that store the flag in an
1068    FP register.  */
1069 #define ISA_HAS_CCF		(mips_isa_rev >= 6)
1070 
1071 #define ISA_HAS_SEL		(mips_isa_rev >= 6)
1072 
1073 /* This is a catch all for other mips4 instructions: indexed load, the
1074    FP madd and msub instructions, and the FP recip and recip sqrt
1075    instructions.  Note that this macro should only be used by other
1076    ISA_HAS_* macros.  */
1077 #define ISA_HAS_FP4		((ISA_MIPS4				\
1078 				  || ISA_MIPS64				\
1079 				  || (mips_isa_rev >= 2			\
1080 				      && mips_isa_rev <= 5))		\
1081 				 && !TARGET_MIPS16)
1082 
1083 /* ISA has floating-point indexed load and store instructions
1084    (LWXC1, LDXC1, SWXC1 and SDXC1).  */
1085 #define ISA_HAS_LXC1_SXC1	(ISA_HAS_FP4				\
1086 				 && mips_lxc1_sxc1)
1087 
1088 /* ISA has paired-single instructions.  */
1089 #define ISA_HAS_PAIRED_SINGLE	((ISA_MIPS64				\
1090 				  || (mips_isa_rev >= 2			\
1091 				      && mips_isa_rev <= 5))		\
1092 				 && !TARGET_OCTEON)
1093 
1094 /* ISA has conditional trap instructions.  */
1095 #define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
1096 				 && !TARGET_MIPS16)
1097 
1098 /* ISA has conditional trap with immediate instructions.  */
1099 #define ISA_HAS_COND_TRAPI	(!ISA_MIPS1				\
1100 				 && mips_isa_rev <= 5			\
1101 				 && !TARGET_MIPS16)
1102 
1103 /* ISA has integer multiply-accumulate instructions, madd and msub.  */
1104 #define ISA_HAS_MADD_MSUB	(mips_isa_rev >= 1			\
1105 				 && mips_isa_rev <= 5)
1106 
1107 /* Integer multiply-accumulate instructions should be generated.  */
1108 #define GENERATE_MADD_MSUB	(TARGET_IMADD && !TARGET_MIPS16)
1109 
1110 /* ISA has 4 operand fused madd instructions of the form
1111    'd = [+-] (a * b [+-] c)'.  */
1112 #define ISA_HAS_FUSED_MADD4	(mips_madd4				\
1113 				 && (TARGET_MIPS8000			\
1114 				     || TARGET_GS464			\
1115 				     || TARGET_GS464E			\
1116 				     || TARGET_GS264E))
1117 
1118 /* ISA has 4 operand unfused madd instructions of the form
1119    'd = [+-] (a * b [+-] c)'.  */
1120 #define ISA_HAS_UNFUSED_MADD4	(mips_madd4				\
1121 				 && ISA_HAS_FP4				\
1122 				 && !TARGET_MIPS8000			\
1123 				 && !TARGET_GS464			\
1124 				 && !TARGET_GS464E			\
1125 				 && !TARGET_GS264E)
1126 
1127 /* ISA has 3 operand r6 fused madd instructions of the form
1128    'c = c [+-] (a * b)'.  */
1129 #define ISA_HAS_FUSED_MADDF	(mips_isa_rev >= 6)
1130 
1131 /* ISA has 3 operand loongson fused madd instructions of the form
1132    'c = [+-] (a * b [+-] c)'.  */
1133 #define ISA_HAS_FUSED_MADD3	TARGET_LOONGSON_2EF
1134 
1135 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions.  The
1136    MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1137    doubles are stored in pairs of FPRs, so for safety's sake, we apply
1138    this restriction to the MIPS IV ISA too.  */
1139 #define ISA_HAS_FP_RECIP_RSQRT(MODE)					\
1140 				(((ISA_HAS_FP4				\
1141 				   && ((MODE) == SFmode			\
1142 				       || ((TARGET_FLOAT64		\
1143 					    || mips_isa_rev >= 2)	\
1144 					   && (MODE) == DFmode)))	\
1145 				  || (((MODE) == SFmode			\
1146 				       || (MODE) == DFmode)		\
1147 				      && (mips_isa_rev >= 6))		\
1148 				  || (TARGET_SB1			\
1149 				      && (MODE) == V2SFmode))		\
1150 				 && !TARGET_MIPS16)
1151 
1152 #define ISA_HAS_LWL_LWR		(mips_isa_rev <= 5 && !TARGET_MIPS16)
1153 
1154 #define ISA_HAS_IEEE_754_LEGACY	(mips_isa_rev <= 5)
1155 
1156 #define ISA_HAS_IEEE_754_2008	(mips_isa_rev >= 2)
1157 
1158 /* ISA has count leading zeroes/ones instruction (not implemented).  */
1159 #define ISA_HAS_CLZ_CLO		(mips_isa_rev >= 1 && !TARGET_MIPS16)
1160 
1161 /* ISA has count trailing zeroes/ones instruction.  */
1162 #define ISA_HAS_CTZ_CTO		(TARGET_LOONGSON_EXT2)
1163 
1164 /* ISA has three operand multiply instructions that put
1165    the high part in an accumulator: mulhi or mulhiu.  */
1166 #define ISA_HAS_MULHI		((TARGET_MIPS5400			 \
1167 				  || TARGET_MIPS5500			 \
1168 				  || TARGET_SR71K)			 \
1169 				 && !TARGET_MIPS16)
1170 
1171 /* ISA has three operand multiply instructions that negate the
1172    result and put the result in an accumulator.  */
1173 #define ISA_HAS_MULS		((TARGET_MIPS5400			\
1174 				  || TARGET_MIPS5500			\
1175 				  || TARGET_SR71K)			\
1176 				 && !TARGET_MIPS16)
1177 
1178 /* ISA has three operand multiply instructions that subtract the
1179    result from a 4th operand and put the result in an accumulator.  */
1180 #define ISA_HAS_MSAC		((TARGET_MIPS5400			\
1181 				  || TARGET_MIPS5500			\
1182 				  || TARGET_SR71K)			\
1183 				 && !TARGET_MIPS16)
1184 
1185 /* ISA has three operand multiply instructions that add the result
1186    to a 4th operand and put the result in an accumulator.  */
1187 #define ISA_HAS_MACC		((TARGET_MIPS4120			\
1188 				  || TARGET_MIPS4130			\
1189 				  || TARGET_MIPS5400			\
1190 				  || TARGET_MIPS5500			\
1191 				  || TARGET_SR71K)			\
1192 				 && !TARGET_MIPS16)
1193 
1194 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
1195 #define ISA_HAS_MACCHI		((TARGET_MIPS4120			\
1196 				  || TARGET_MIPS4130)			\
1197 				 && !TARGET_MIPS16)
1198 
1199 /* ISA has the "ror" (rotate right) instructions.  */
1200 #define ISA_HAS_ROR		((mips_isa_rev >= 2			\
1201 				  || TARGET_MIPS5400			\
1202 				  || TARGET_MIPS5500			\
1203 				  || TARGET_SR71K			\
1204 				  || TARGET_SMARTMIPS)			\
1205 				 && !TARGET_MIPS16)
1206 
1207 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
1208    64-bit targets also provide DSBH and DSHD.  */
1209 #define ISA_HAS_WSBH		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1210 
1211 /* ISA has data prefetch instructions.  This controls use of 'pref'.  */
1212 #define ISA_HAS_PREFETCH	((ISA_MIPS4				\
1213 				  || TARGET_LOONGSON_2EF		\
1214 				  || TARGET_MIPS5900			\
1215 				  || mips_isa_rev >= 1)			\
1216 				 && !TARGET_MIPS16)
1217 
1218 /* ISA has data prefetch, LL and SC with limited 9-bit displacement.  */
1219 #define ISA_HAS_9BIT_DISPLACEMENT	(mips_isa_rev >= 6)
1220 
1221 /* ISA has data indexed prefetch instructions.  This controls use of
1222    'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1223    (prefx is a cop1x instruction, so can only be used if FP is
1224    enabled.)  */
1225 #define ISA_HAS_PREFETCHX	(ISA_HAS_FP4				\
1226 				 || TARGET_LOONGSON_EXT			\
1227 				 || TARGET_LOONGSON_EXT2)
1228 
1229 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1230    instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
1231    also requires TARGET_DOUBLE_FLOAT.  */
1232 #define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
1233 
1234 /* ISA includes the MIPS32r2 seb and seh instructions.  */
1235 #define ISA_HAS_SEB_SEH		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1236 
1237 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
1238 #define ISA_HAS_EXT_INS		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1239 
1240 /* ISA has instructions for accessing top part of 64-bit fp regs.  */
1241 #define ISA_HAS_MXHC1		(!TARGET_FLOAT32	\
1242 				 && mips_isa_rev >= 2)
1243 
1244 /* ISA has lwxs instruction (load w/scaled index address.  */
1245 #define ISA_HAS_LWXS		((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1246 				 && !TARGET_MIPS16)
1247 
1248 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1249 #define ISA_HAS_LBX		(TARGET_OCTEON2)
1250 #define ISA_HAS_LBUX		(ISA_HAS_DSP || TARGET_OCTEON2)
1251 #define ISA_HAS_LHX		(ISA_HAS_DSP || TARGET_OCTEON2)
1252 #define ISA_HAS_LHUX		(TARGET_OCTEON2)
1253 #define ISA_HAS_LWX		(ISA_HAS_DSP || TARGET_OCTEON2)
1254 #define ISA_HAS_LWUX		(TARGET_OCTEON2 && TARGET_64BIT)
1255 #define ISA_HAS_LDX		((ISA_HAS_DSP || TARGET_OCTEON2) \
1256 				 && TARGET_64BIT)
1257 
1258 /* The DSP ASE is available.  */
1259 #define ISA_HAS_DSP		(TARGET_DSP && !TARGET_MIPS16)
1260 
1261 /* Revision 2 of the DSP ASE is available.  */
1262 #define ISA_HAS_DSPR2		(TARGET_DSPR2 && !TARGET_MIPS16)
1263 
1264 /* The MSA ASE is available.  */
1265 #define ISA_HAS_MSA		(TARGET_MSA && !TARGET_MIPS16)
1266 
1267 /* True if the result of a load is not available to the next instruction.
1268    A nop will then be needed between instructions like "lw $4,..."
1269    and "addiu $4,$4,1".  */
1270 #define ISA_HAS_LOAD_DELAY	(ISA_MIPS1				\
1271 				 && !TARGET_MIPS3900			\
1272 				 && !TARGET_MIPS5900			\
1273 				 && !TARGET_MIPS16			\
1274 				 && !TARGET_MICROMIPS)
1275 
1276 /* Likewise mtc1 and mfc1.  */
1277 #define ISA_HAS_XFER_DELAY	(mips_isa <= 3			\
1278 				 && !TARGET_MIPS5900		\
1279 				 && !TARGET_LOONGSON_2EF)
1280 
1281 /* Likewise floating-point comparisons.  */
1282 #define ISA_HAS_FCMP_DELAY	(mips_isa <= 3			\
1283 				 && !TARGET_MIPS5900		\
1284 				 && !TARGET_LOONGSON_2EF)
1285 
1286 /* True if mflo and mfhi can be immediately followed by instructions
1287    which write to the HI and LO registers.
1288 
1289    According to MIPS specifications, MIPS ISAs I, II, and III need
1290    (at least) two instructions between the reads of HI/LO and
1291    instructions which write them, and later ISAs do not.  Contradicting
1292    the MIPS specifications, some MIPS IV processor user manuals (e.g.
1293    the UM for the NEC Vr5000) document needing the instructions between
1294    HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
1295    MIPS64 and later ISAs to have the interlocks, plus any specific
1296    earlier-ISA CPUs for which CPU documentation declares that the
1297    instructions are really interlocked.  */
1298 #define ISA_HAS_HILO_INTERLOCKS	(mips_isa_rev >= 1			\
1299 				 || TARGET_MIPS5500			\
1300 				 || TARGET_MIPS5900			\
1301 				 || TARGET_LOONGSON_2EF)
1302 
1303 /* ISA includes synci, jr.hb and jalr.hb.  */
1304 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
1305 
1306 /* ISA includes sync.  */
1307 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1308 #define GENERATE_SYNC			\
1309   (target_flags_explicit & MASK_LLSC	\
1310    ? TARGET_LLSC && !TARGET_MIPS16	\
1311    : ISA_HAS_SYNC)
1312 
1313 /* ISA includes ll and sc.  Note that this implies ISA_HAS_SYNC
1314    because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1315    instructions.  */
1316 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1317 #define GENERATE_LL_SC			\
1318   (target_flags_explicit & MASK_LLSC	\
1319    ? TARGET_LLSC && !TARGET_MIPS16	\
1320    : ISA_HAS_LL_SC)
1321 
1322 #define ISA_HAS_SWAP (TARGET_XLP)
1323 #define ISA_HAS_LDADD (TARGET_XLP)
1324 
1325 /* ISA includes the baddu instruction.  */
1326 #define ISA_HAS_BADDU		(TARGET_OCTEON && !TARGET_MIPS16)
1327 
1328 /* ISA includes the bbit* instructions.  */
1329 #define ISA_HAS_BBIT		(TARGET_OCTEON && !TARGET_MIPS16)
1330 
1331 /* ISA includes the cins instruction.  */
1332 #define ISA_HAS_CINS		(TARGET_OCTEON && !TARGET_MIPS16)
1333 
1334 /* ISA includes the exts instruction.  */
1335 #define ISA_HAS_EXTS		(TARGET_OCTEON && !TARGET_MIPS16)
1336 
1337 /* ISA includes the seq and sne instructions.  */
1338 #define ISA_HAS_SEQ_SNE		(TARGET_OCTEON && !TARGET_MIPS16)
1339 
1340 /* ISA includes the pop instruction.  */
1341 #define ISA_HAS_POP		(TARGET_OCTEON && !TARGET_MIPS16)
1342 
1343 /* The CACHE instruction is available in non-MIPS16 code.  */
1344 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1345 
1346 /* The CACHE instruction is available.  */
1347 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1348 
1349 /* Tell collect what flags to pass to nm.  */
1350 #ifndef NM_FLAGS
1351 #define NM_FLAGS "-Bn"
1352 #endif
1353 
1354 
1355 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1356    the assembler.  It may be overridden by subtargets.
1357 
1358    Beginning with gas 2.13, -mdebug must be passed to correctly handle
1359    COFF debugging info.  */
1360 
1361 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1362 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1363 %{g} %{g0} %{g1} %{g2} %{g3} \
1364 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1365 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1366 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3}"
1367 #endif
1368 
1369 /* FP_ASM_SPEC represents the floating-point options that must be passed
1370    to the assembler when FPXX support exists.  Prior to that point the
1371    assembler could accept the options but were not required for
1372    correctness.  We only add the options when absolutely necessary
1373    because passing -msoft-float to the assembler will cause it to reject
1374    all hard-float instructions which may require some user code to be
1375    updated.  */
1376 
1377 #ifdef HAVE_AS_DOT_MODULE
1378 #define FP_ASM_SPEC "\
1379 %{mhard-float} %{msoft-float} \
1380 %{msingle-float} %{mdouble-float}"
1381 #else
1382 #define FP_ASM_SPEC
1383 #endif
1384 
1385 /* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
1386    overridden by subtargets.  */
1387 
1388 #ifndef SUBTARGET_ASM_SPEC
1389 #define SUBTARGET_ASM_SPEC ""
1390 #endif
1391 
1392 #undef ASM_SPEC
1393 #define ASM_SPEC "\
1394 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1395 %{mips32*} %{mips64*} \
1396 %{mips16} %{mno-mips16:-no-mips16} \
1397 %{mmicromips} %{mno-micromips} \
1398 %{mips3d} %{mno-mips3d:-no-mips3d} \
1399 %{mdmx} %{mno-mdmx:-no-mdmx} \
1400 %{mdsp} %{mno-dsp} \
1401 %{mdspr2} %{mno-dspr2} \
1402 %{mmcu} %{mno-mcu} \
1403 %{meva} %{mno-eva} \
1404 %{mvirt} %{mno-virt} \
1405 %{mxpa} %{mno-xpa} \
1406 %{mcrc} %{mno-crc} \
1407 %{mginv} %{mno-ginv} \
1408 %{mmsa} %{mno-msa} \
1409 %{mloongson-mmi} %{mno-loongson-mmi} \
1410 %{mloongson-ext} %{mno-loongson-ext} \
1411 %{mloongson-ext2} %{mno-loongson-ext2} \
1412 %{msmartmips} %{mno-smartmips} \
1413 %{mmt} %{mno-mt} \
1414 %{mfix-r5900} %{mno-fix-r5900} \
1415 %{mfix-rm7000} %{mno-fix-rm7000} \
1416 %{mfix-vr4120} %{mfix-vr4130} \
1417 %{mfix-24k} \
1418 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1419 %(subtarget_asm_debugging_spec) \
1420 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1421 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1422 %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1423 %{modd-spreg} %{mno-odd-spreg} \
1424 %{mshared} %{mno-shared} \
1425 %{msym32} %{mno-sym32} \
1426 %{mtune=*}" \
1427 FP_ASM_SPEC "\
1428 %(subtarget_asm_spec)"
1429 
1430 /* Extra switches sometimes passed to the linker.  */
1431 
1432 #ifndef LINK_SPEC
1433 #define LINK_SPEC "\
1434 %(endian_spec) \
1435 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1436 %{shared}"
1437 #endif  /* LINK_SPEC defined */
1438 
1439 
1440 /* Specs for the compiler proper */
1441 
1442 /* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
1443    overridden by subtargets.  */
1444 #ifndef SUBTARGET_CC1_SPEC
1445 #define SUBTARGET_CC1_SPEC ""
1446 #endif
1447 
1448 /* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
1449 
1450 #undef CC1_SPEC
1451 #define CC1_SPEC "\
1452 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1453 %(subtarget_cc1_spec)"
1454 
1455 /* Preprocessor specs.  */
1456 
1457 /* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
1458    overridden by subtargets.  */
1459 #ifndef SUBTARGET_CPP_SPEC
1460 #define SUBTARGET_CPP_SPEC ""
1461 #endif
1462 
1463 #define CPP_SPEC "%(subtarget_cpp_spec)"
1464 
1465 /* This macro defines names of additional specifications to put in the specs
1466    that can be used in various specifications like CC1_SPEC.  Its definition
1467    is an initializer with a subgrouping for each command option.
1468 
1469    Each subgrouping contains a string constant, that defines the
1470    specification name, and a string constant that used by the GCC driver
1471    program.
1472 
1473    Do not define this macro if it does not need to do anything.  */
1474 
1475 #define EXTRA_SPECS							\
1476   { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
1477   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
1478   { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
1479   { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
1480   { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
1481   { "endian_spec", ENDIAN_SPEC },					\
1482   SUBTARGET_EXTRA_SPECS
1483 
1484 #ifndef SUBTARGET_EXTRA_SPECS
1485 #define SUBTARGET_EXTRA_SPECS
1486 #endif
1487 
1488 #define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
1489 #define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
1490 
1491 #ifndef PREFERRED_DEBUGGING_TYPE
1492 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1493 #endif
1494 
1495 /* The size of DWARF addresses should be the same as the size of symbols
1496    in the target file format.  They shouldn't depend on things like -msym32,
1497    because many DWARF consumers do not allow the mixture of address sizes
1498    that one would then get from linking -msym32 code with -msym64 code.
1499 
1500    Note that the default POINTER_SIZE test is not appropriate for MIPS.
1501    EABI64 has 64-bit pointers but uses 32-bit ELF.  */
1502 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1503 
1504 /* By default, turn on GDB extensions.  */
1505 #define DEFAULT_GDB_EXTENSIONS 1
1506 
1507 /* Registers may have a prefix which can be ignored when matching
1508    user asm and register definitions.  */
1509 #ifndef REGISTER_PREFIX
1510 #define REGISTER_PREFIX    "$"
1511 #endif
1512 
1513 /* Local compiler-generated symbols must have a prefix that the assembler
1514    understands.   By default, this is $, although some targets (e.g.,
1515    NetBSD-ELF) need to override this.  */
1516 
1517 #ifndef LOCAL_LABEL_PREFIX
1518 #define LOCAL_LABEL_PREFIX	"$"
1519 #endif
1520 
1521 /* By default on the mips, external symbols do not have an underscore
1522    prepended, but some targets (e.g., NetBSD) require this.  */
1523 
1524 #ifndef USER_LABEL_PREFIX
1525 #define USER_LABEL_PREFIX	""
1526 #endif
1527 
1528 /* On Sun 4, this limit is 2048.  We use 1500 to be safe,
1529    since the length can run past this up to a continuation point.  */
1530 #undef DBX_CONTIN_LENGTH
1531 #define DBX_CONTIN_LENGTH 1500
1532 
1533 /* How to renumber registers for dbx and gdb.  */
1534 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1535 
1536 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
1537 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1538 
1539 /* The DWARF 2 CFA column which tracks the return address.  */
1540 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1541 
1542 /* Before the prologue, RA lives in r31.  */
1543 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
1544 
1545 /* Describe how we implement __builtin_eh_return.  */
1546 #define EH_RETURN_DATA_REGNO(N) \
1547   ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1548 
1549 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1550 
1551 #define EH_USES(N) mips_eh_uses (N)
1552 
1553 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1554    The default for this in 64-bit mode is 8, which causes problems with
1555    SFmode register saves.  */
1556 #define DWARF_CIE_DATA_ALIGNMENT -4
1557 
1558 /* Correct the offset of automatic variables and arguments.  Note that
1559    the MIPS debug format wants all automatic variables and arguments
1560    to be in terms of the virtual frame pointer (stack pointer before
1561    any adjustment in the function), while the MIPS 3.0 linker wants
1562    the frame pointer to be the stack pointer after the initial
1563    adjustment.  */
1564 
1565 #define DEBUGGER_AUTO_OFFSET(X)				\
1566   mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1567 #define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
1568   mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1569 
1570 /* Target machine storage layout */
1571 
1572 #define BITS_BIG_ENDIAN 0
1573 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1574 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1575 
1576 #define MAX_BITS_PER_WORD 64
1577 
1578 /* Width of a word, in units (bytes).  */
1579 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1580 #ifndef IN_LIBGCC2
1581 #define MIN_UNITS_PER_WORD 4
1582 #endif
1583 
1584 /* Width of a MSA vector register in bytes.  */
1585 #define UNITS_PER_MSA_REG 16
1586 /* Width of a MSA vector register in bits.  */
1587 #define BITS_PER_MSA_REG (UNITS_PER_MSA_REG * BITS_PER_UNIT)
1588 
1589 /* For MIPS, width of a floating point register.  */
1590 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1591 
1592 /* The number of consecutive floating-point registers needed to store the
1593    largest format supported by the FPU.  */
1594 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1595 
1596 /* The number of consecutive floating-point registers needed to store the
1597    smallest format supported by the FPU.  */
1598 #define MIN_FPRS_PER_FMT \
1599   (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
1600 
1601 /* The largest size of value that can be held in floating-point
1602    registers and moved with a single instruction.  */
1603 #define UNITS_PER_HWFPVALUE \
1604   (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1605 
1606 /* The largest size of value that can be held in floating-point
1607    registers.  */
1608 #define UNITS_PER_FPVALUE			\
1609   (TARGET_SOFT_FLOAT_ABI ? 0			\
1610    : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1611    : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1612 
1613 /* The number of bytes in a double.  */
1614 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1615 
1616 /* Set the sizes of the core types.  */
1617 #define SHORT_TYPE_SIZE 16
1618 #define INT_TYPE_SIZE 32
1619 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1620 #define LONG_LONG_TYPE_SIZE 64
1621 
1622 #define FLOAT_TYPE_SIZE 32
1623 #define DOUBLE_TYPE_SIZE 64
1624 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1625 
1626 /* Define the sizes of fixed-point types.  */
1627 #define SHORT_FRACT_TYPE_SIZE 8
1628 #define FRACT_TYPE_SIZE 16
1629 #define LONG_FRACT_TYPE_SIZE 32
1630 #define LONG_LONG_FRACT_TYPE_SIZE 64
1631 
1632 #define SHORT_ACCUM_TYPE_SIZE 16
1633 #define ACCUM_TYPE_SIZE 32
1634 #define LONG_ACCUM_TYPE_SIZE 64
1635 /* FIXME.  LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1636    doesn't support 128-bit integers for MIPS32 currently.  */
1637 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1638 
1639 /* long double is not a fixed mode, but the idea is that, if we
1640    support long double, we also want a 128-bit integer type.  */
1641 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1642 
1643 /* Width in bits of a pointer.  */
1644 #ifndef POINTER_SIZE
1645 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1646 #endif
1647 
1648 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1649 #define PARM_BOUNDARY BITS_PER_WORD
1650 
1651 /* Allocation boundary (in *bits*) for the code of a function.  */
1652 #define FUNCTION_BOUNDARY 32
1653 
1654 /* Alignment of field after `int : 0' in a structure.  */
1655 #define EMPTY_FIELD_BOUNDARY 32
1656 
1657 /* Every structure's size must be a multiple of this.  */
1658 /* 8 is observed right on a DECstation and on riscos 4.02.  */
1659 #define STRUCTURE_SIZE_BOUNDARY 8
1660 
1661 /* There is no point aligning anything to a rounder boundary than
1662    LONG_DOUBLE_TYPE_SIZE, unless under MSA the bigggest alignment is
1663    BITS_PER_MSA_REG.  */
1664 #define BIGGEST_ALIGNMENT \
1665   (ISA_HAS_MSA ? BITS_PER_MSA_REG : LONG_DOUBLE_TYPE_SIZE)
1666 
1667 /* All accesses must be aligned.  */
1668 #define STRICT_ALIGNMENT 1
1669 
1670 /* Define this if you wish to imitate the way many other C compilers
1671    handle alignment of bitfields and the structures that contain
1672    them.
1673 
1674    The behavior is that the type written for a bit-field (`int',
1675    `short', or other integer type) imposes an alignment for the
1676    entire structure, as if the structure really did contain an
1677    ordinary field of that type.  In addition, the bit-field is placed
1678    within the structure so that it would fit within such a field,
1679    not crossing a boundary for it.
1680 
1681    Thus, on most machines, a bit-field whose type is written as `int'
1682    would not cross a four-byte boundary, and would force four-byte
1683    alignment for the whole structure.  (The alignment used may not
1684    be four bytes; it is controlled by the other alignment
1685    parameters.)
1686 
1687    If the macro is defined, its definition should be a C expression;
1688    a nonzero value for the expression enables this behavior.  */
1689 
1690 #define PCC_BITFIELD_TYPE_MATTERS 1
1691 
1692 /* If defined, a C expression to compute the alignment for a static
1693    variable.  TYPE is the data type, and ALIGN is the alignment that
1694    the object would ordinarily have.  The value of this macro is used
1695    instead of that alignment to align the object.
1696 
1697    If this macro is not defined, then ALIGN is used.
1698 
1699    One use of this macro is to increase alignment of medium-size
1700    data to make it all fit in fewer cache lines.  Another is to
1701    cause character arrays to be word-aligned so that `strcpy' calls
1702    that copy constants to character arrays can be done inline.  */
1703 
1704 #undef DATA_ALIGNMENT
1705 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
1706   ((((ALIGN) < BITS_PER_WORD)						\
1707     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1708 	|| TREE_CODE (TYPE) == UNION_TYPE				\
1709 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1710 
1711 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1712    character arrays to be word-aligned so that `strcpy' calls that copy
1713    constants to character arrays can be done inline, and 'strcmp' can be
1714    optimised to use word loads. */
1715 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1716   DATA_ALIGNMENT (TYPE, ALIGN)
1717 
1718 #define PAD_VARARGS_DOWN \
1719   (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1720 
1721 /* Define if operations between registers always perform the operation
1722    on the full register even if a narrower mode is specified.  */
1723 #define WORD_REGISTER_OPERATIONS 1
1724 
1725 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1726    moves.  All other references are zero extended.  */
1727 #define LOAD_EXTEND_OP(MODE) \
1728   (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1729    ? SIGN_EXTEND : ZERO_EXTEND)
1730 
1731 /* Define this macro if it is advisable to hold scalars in registers
1732    in a wider mode than that declared by the program.  In such cases,
1733    the value is constrained to be within the bounds of the declared
1734    type, but kept valid in the wider mode.  The signedness of the
1735    extension may differ from that of the type.  */
1736 
1737 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1738   if (GET_MODE_CLASS (MODE) == MODE_INT		\
1739       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1740     {                                           \
1741       if ((MODE) == SImode)                     \
1742         (UNSIGNEDP) = 0;                        \
1743       (MODE) = Pmode;                           \
1744     }
1745 
1746 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1747    Extensions of pointers to word_mode must be signed.  */
1748 #define POINTERS_EXTEND_UNSIGNED false
1749 
1750 /* Define if loading short immediate values into registers sign extends.  */
1751 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1752 
1753 /* The [d]clz instructions have the natural values at 0.  */
1754 
1755 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1756   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1757 
1758 /* Standard register usage.  */
1759 
1760 /* Number of hardware registers.  We have:
1761 
1762    - 32 integer registers
1763    - 32 floating point registers
1764    - 8 condition code registers
1765    - 2 accumulator registers (hi and lo)
1766    - 32 registers each for coprocessors 0, 2 and 3
1767    - 4 fake registers:
1768 	- ARG_POINTER_REGNUM
1769 	- FRAME_POINTER_REGNUM
1770 	- GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1771 	- CPRESTORE_SLOT_REGNUM
1772    - 2 dummy entries that were used at various times in the past.
1773    - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1774    - 6 DSP control registers  */
1775 
1776 #define FIRST_PSEUDO_REGISTER 188
1777 
1778 /* By default, fix the kernel registers ($26 and $27), the global
1779    pointer ($28) and the stack pointer ($29).  This can change
1780    depending on the command-line options.
1781 
1782    Regarding coprocessor registers: without evidence to the contrary,
1783    it's best to assume that each coprocessor register has a unique
1784    use.  This can be overridden, in, e.g., mips_option_override or
1785    TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1786    inappropriate for a particular target.  */
1787 
1788 #define FIXED_REGISTERS							\
1789 {									\
1790   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1791   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1792   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1793   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1794   0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1795   /* COP0 registers */							\
1796   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1797   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1798   /* COP2 registers */							\
1799   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1800   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1801   /* COP3 registers */							\
1802   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1803   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1804   /* 6 DSP accumulator registers & 6 control registers */		\
1805   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1806 }
1807 
1808 
1809 /* Set up this array for o32 by default.
1810 
1811    Note that we don't mark $31 as a call-clobbered register.  The idea is
1812    that it's really the call instructions themselves which clobber $31.
1813    We don't care what the called function does with it afterwards.
1814 
1815    This approach makes it easier to implement sibcalls.  Unlike normal
1816    calls, sibcalls don't clobber $31, so the register reaches the
1817    called function in tact.  EPILOGUE_USES says that $31 is useful
1818    to the called function.  */
1819 
1820 #define CALL_REALLY_USED_REGISTERS                                      \
1821 { /* General registers.  */                                             \
1822   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1823   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1824   /* Floating-point registers.  */                                      \
1825   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1826   1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1827   /* Others.  */                                                        \
1828   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,			\
1829   /* COP0 registers */							\
1830   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1831   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1832   /* COP2 registers */							\
1833   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1834   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1835   /* COP3 registers */							\
1836   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1837   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1838   /* 6 DSP accumulator registers & 6 control registers */		\
1839   1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1840 }
1841 
1842 /* Internal macros to classify a register number as to whether it's a
1843    general purpose register, a floating point register, a
1844    multiply/divide register, or a status register.  */
1845 
1846 #define GP_REG_FIRST 0
1847 #define GP_REG_LAST  31
1848 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1849 #define GP_DBX_FIRST 0
1850 #define K0_REG_NUM   (GP_REG_FIRST + 26)
1851 #define K1_REG_NUM   (GP_REG_FIRST + 27)
1852 #define KERNEL_REG_P(REGNO)	(IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1853 
1854 #define FP_REG_FIRST 32
1855 #define FP_REG_LAST  63
1856 #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1857 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1858 
1859 #define MD_REG_FIRST 64
1860 #define MD_REG_LAST  65
1861 #define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1862 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1863 
1864 #define MSA_REG_FIRST FP_REG_FIRST
1865 #define MSA_REG_LAST  FP_REG_LAST
1866 #define MSA_REG_NUM   FP_REG_NUM
1867 
1868 /* The DWARF 2 CFA column which tracks the return address from a
1869    signal handler context.  This means that to maintain backwards
1870    compatibility, no hard register can be assigned this column if it
1871    would need to be handled by the DWARF unwinder.  */
1872 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1873 
1874 #define ST_REG_FIRST 67
1875 #define ST_REG_LAST  74
1876 #define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1877 
1878 
1879 /* FIXME: renumber.  */
1880 #define COP0_REG_FIRST 80
1881 #define COP0_REG_LAST 111
1882 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1883 
1884 #define COP0_STATUS_REG_NUM	(COP0_REG_FIRST + 12)
1885 #define COP0_CAUSE_REG_NUM	(COP0_REG_FIRST + 13)
1886 #define COP0_EPC_REG_NUM	(COP0_REG_FIRST + 14)
1887 
1888 #define COP2_REG_FIRST 112
1889 #define COP2_REG_LAST 143
1890 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1891 
1892 #define COP3_REG_FIRST 144
1893 #define COP3_REG_LAST 175
1894 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1895 
1896 /* These definitions assume that COP0, 2 and 3 are numbered consecutively.  */
1897 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1898 #define ALL_COP_REG_LAST COP3_REG_LAST
1899 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1900 
1901 #define DSP_ACC_REG_FIRST 176
1902 #define DSP_ACC_REG_LAST 181
1903 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1904 
1905 #define AT_REGNUM	(GP_REG_FIRST + 1)
1906 #define HI_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1907 #define LO_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1908 
1909 /* A few bitfield locations for the coprocessor registers.  */
1910 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1911    the cause register for the EIC interrupt mode.  */
1912 #define CAUSE_IPL	10
1913 /* COP1 Enable is at bit 29 of the status register.  */
1914 #define SR_COP1         29
1915 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register.  */
1916 #define SR_IPL		10
1917 /* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status
1918    register.  */
1919 #define SR_IM0		8
1920 /* Exception Level is at bit 1 of the status register.  */
1921 #define SR_EXL		1
1922 /* Interrupt Enable is at bit 0 of the status register.  */
1923 #define SR_IE		0
1924 
1925 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1926    If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1927    should be used instead.  */
1928 #define FPSW_REGNUM	ST_REG_FIRST
1929 
1930 #define GP_REG_P(REGNO)	\
1931   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1932 #define M16_REG_P(REGNO) \
1933   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1934 #define M16STORE_REG_P(REGNO) \
1935   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1936 #define FP_REG_P(REGNO)  \
1937   ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1938 #define MD_REG_P(REGNO) \
1939   ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1940 #define ST_REG_P(REGNO) \
1941   ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1942 #define COP0_REG_P(REGNO) \
1943   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1944 #define COP2_REG_P(REGNO) \
1945   ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1946 #define COP3_REG_P(REGNO) \
1947   ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1948 #define ALL_COP_REG_P(REGNO) \
1949   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1950 /* Test if REGNO is one of the 6 new DSP accumulators.  */
1951 #define DSP_ACC_REG_P(REGNO) \
1952   ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1953 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1954 #define ACC_REG_P(REGNO) \
1955   (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1956 #define MSA_REG_P(REGNO) \
1957   ((unsigned int) ((int) (REGNO) - MSA_REG_FIRST) < MSA_REG_NUM)
1958 
1959 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1960 #define MSA_REG_RTX_P(X) (REG_P (X) && MSA_REG_P (REGNO (X)))
1961 
1962 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1963    to initialize the mips16 gp pseudo register.  */
1964 #define CONST_GP_P(X)				\
1965   (GET_CODE (X) == CONST			\
1966    && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1967    && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1968 
1969 /* Return coprocessor number from register number.  */
1970 
1971 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1972   (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1973    : COP3_REG_P (REGNO) ? '3' : '?')
1974 
1975 
1976 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG)				\
1977   mips_hard_regno_rename_ok (OLD_REG, NEW_REG)
1978 
1979 /* Select a register mode required for caller save of hard regno REGNO.  */
1980 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1981   mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
1982 
1983 /* Register to use for pushing function arguments.  */
1984 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1985 
1986 /* These two registers don't really exist: they get eliminated to either
1987    the stack or hard frame pointer.  */
1988 #define ARG_POINTER_REGNUM 77
1989 #define FRAME_POINTER_REGNUM 78
1990 
1991 /* $30 is not available on the mips16, so we use $17 as the frame
1992    pointer.  */
1993 #define HARD_FRAME_POINTER_REGNUM \
1994   (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1995 
1996 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1997 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1998 
1999 /* Register in which static-chain is passed to a function.  */
2000 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
2001 
2002 /* Registers used as temporaries in prologue/epilogue code:
2003 
2004    - If a MIPS16 PIC function needs access to _gp, it first loads
2005      the value into MIPS16_PIC_TEMP and then copies it to $gp.
2006 
2007    - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
2008      register.  The register must not conflict with MIPS16_PIC_TEMP.
2009 
2010    - If we aren't generating MIPS16 code, the prologue can also use
2011      MIPS_PROLOGUE_TEMP2 as a general temporary register.
2012 
2013    - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
2014      register.
2015 
2016    If we're generating MIPS16 code, these registers must come from the
2017    core set of 8.  The prologue registers mustn't conflict with any
2018    incoming arguments, the static chain pointer, or the frame pointer.
2019    The epilogue temporary mustn't conflict with the return registers,
2020    the PIC call register ($25), the frame pointer, the EH stack adjustment,
2021    or the EH data registers.
2022 
2023    If we're generating interrupt handlers, we use K0 as a temporary register
2024    in prologue/epilogue code.  */
2025 
2026 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
2027 #define MIPS_PROLOGUE_TEMP_REGNUM \
2028   (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
2029 #define MIPS_PROLOGUE_TEMP2_REGNUM \
2030   (TARGET_MIPS16 \
2031    ? (gcc_unreachable (), INVALID_REGNUM) \
2032    : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
2033 #define MIPS_EPILOGUE_TEMP_REGNUM		\
2034   (cfun->machine->interrupt_handler_p		\
2035    ? K0_REG_NUM					\
2036    : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
2037 
2038 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
2039 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
2040 #define MIPS_PROLOGUE_TEMP2(MODE) \
2041   gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
2042 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
2043 
2044 /* Define this macro if it is as good or better to call a constant
2045    function address than to call an address kept in a register.  */
2046 #define NO_FUNCTION_CSE 1
2047 
2048 /* The ABI-defined global pointer.  Sometimes we use a different
2049    register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
2050 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
2051 
2052 /* We normally use $28 as the global pointer.  However, when generating
2053    n32/64 PIC, it is better for leaf functions to use a call-clobbered
2054    register instead.  They can then avoid saving and restoring $28
2055    and perhaps avoid using a frame at all.
2056 
2057    When a leaf function uses something other than $28, mips_expand_prologue
2058    will modify pic_offset_table_rtx in place.  Take the register number
2059    from there after reload.  */
2060 #define PIC_OFFSET_TABLE_REGNUM \
2061   (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
2062 
2063 /* Define the classes of registers for register constraints in the
2064    machine description.  Also define ranges of constants.
2065 
2066    One of the classes must always be named ALL_REGS and include all hard regs.
2067    If there is more than one class, another class must be named NO_REGS
2068    and contain no registers.
2069 
2070    The name GENERAL_REGS must be the name of a class (or an alias for
2071    another name such as ALL_REGS).  This is the class of registers
2072    that is allowed by "g" or "r" in a register constraint.
2073    Also, registers outside this class are allocated only when
2074    instructions express preferences for them.
2075 
2076    The classes must be numbered in nondecreasing order; that is,
2077    a larger-numbered class must never be contained completely
2078    in a smaller-numbered class.
2079 
2080    For any two classes, it is very desirable that there be another
2081    class that represents their union.  */
2082 
2083 enum reg_class
2084 {
2085   NO_REGS,			/* no registers in set */
2086   M16_STORE_REGS,		/* microMIPS store registers  */
2087   M16_REGS,			/* mips16 directly accessible registers */
2088   M16_SP_REGS,			/* mips16 + $sp */
2089   T_REG,			/* mips16 T register ($24) */
2090   M16_T_REGS,			/* mips16 registers plus T register */
2091   PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
2092   V1_REG,			/* Register $v1 ($3) used for TLS access.  */
2093   SPILL_REGS,			/* All but $sp and call preserved regs are in here */
2094   LEA_REGS,			/* Every GPR except $25 */
2095   GR_REGS,			/* integer registers */
2096   FP_REGS,			/* floating point registers */
2097   MD0_REG,			/* first multiply/divide register */
2098   MD1_REG,			/* second multiply/divide register */
2099   MD_REGS,			/* multiply/divide registers (hi/lo) */
2100   COP0_REGS,			/* generic coprocessor classes */
2101   COP2_REGS,
2102   COP3_REGS,
2103   ST_REGS,			/* status registers (fp status) */
2104   DSP_ACC_REGS,			/* DSP accumulator registers */
2105   ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
2106   FRAME_REGS,			/* $arg and $frame */
2107   GR_AND_MD0_REGS,		/* union classes */
2108   GR_AND_MD1_REGS,
2109   GR_AND_MD_REGS,
2110   GR_AND_ACC_REGS,
2111   ALL_REGS,			/* all registers */
2112   LIM_REG_CLASSES		/* max value + 1 */
2113 };
2114 
2115 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2116 
2117 #define GENERAL_REGS GR_REGS
2118 
2119 /* An initializer containing the names of the register classes as C
2120    string constants.  These names are used in writing some of the
2121    debugging dumps.  */
2122 
2123 #define REG_CLASS_NAMES							\
2124 {									\
2125   "NO_REGS",								\
2126   "M16_STORE_REGS",							\
2127   "M16_REGS",								\
2128   "M16_SP_REGS",								\
2129   "T_REG",								\
2130   "M16_T_REGS",								\
2131   "PIC_FN_ADDR_REG",							\
2132   "V1_REG",								\
2133   "SPILL_REGS",								\
2134   "LEA_REGS",								\
2135   "GR_REGS",								\
2136   "FP_REGS",								\
2137   "MD0_REG",								\
2138   "MD1_REG",								\
2139   "MD_REGS",								\
2140   /* coprocessor registers */						\
2141   "COP0_REGS",								\
2142   "COP2_REGS",								\
2143   "COP3_REGS",								\
2144   "ST_REGS",								\
2145   "DSP_ACC_REGS",							\
2146   "ACC_REGS",								\
2147   "FRAME_REGS",								\
2148   "GR_AND_MD0_REGS",							\
2149   "GR_AND_MD1_REGS",							\
2150   "GR_AND_MD_REGS",							\
2151   "GR_AND_ACC_REGS",							\
2152   "ALL_REGS"								\
2153 }
2154 
2155 /* An initializer containing the contents of the register classes,
2156    as integers which are bit masks.  The Nth integer specifies the
2157    contents of class N.  The way the integer MASK is interpreted is
2158    that register R is in the class if `MASK & (1 << R)' is 1.
2159 
2160    When the machine has more than 32 registers, an integer does not
2161    suffice.  Then the integers are replaced by sub-initializers,
2162    braced groupings containing several integers.  Each
2163    sub-initializer must be suitable as an initializer for the type
2164    `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
2165 
2166 #define REG_CLASS_CONTENTS						                                \
2167 {									                                \
2168   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
2169   { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_STORE_REGS */	\
2170   { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_REGS */		\
2171   { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_SP_REGS */		\
2172   { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* T_REG */		\
2173   { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_T_REGS */	\
2174   { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* PIC_FN_ADDR_REG */	\
2175   { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* V1_REG */		\
2176   { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SPILL_REGS */      	\
2177   { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* LEA_REGS */		\
2178   { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* GR_REGS */		\
2179   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* FP_REGS */		\
2180   { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* MD0_REG */		\
2181   { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* MD1_REG */		\
2182   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* MD_REGS */		\
2183   { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* COP0_REGS */		\
2184   { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* COP2_REGS */		\
2185   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* COP3_REGS */		\
2186   { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* ST_REGS */		\
2187   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* DSP_ACC_REGS */	\
2188   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* ACC_REGS */		\
2189   { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 },	/* FRAME_REGS */	\
2190   { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD0_REGS */	\
2191   { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD1_REGS */	\
2192   { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD_REGS */	\
2193   { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* GR_AND_ACC_REGS */	\
2194   { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* ALL_REGS */		\
2195 }
2196 
2197 
2198 /* A C expression whose value is a register class containing hard
2199    register REGNO.  In general there is more that one such class;
2200    choose a class which is "minimal", meaning that no smaller class
2201    also contains the register.  */
2202 
2203 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2204 
2205 /* A macro whose definition is the name of the class to which a
2206    valid base register must belong.  A base register is one used in
2207    an address which is the register value plus a displacement.  */
2208 
2209 #define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
2210 
2211 /* A macro whose definition is the name of the class to which a
2212    valid index register must belong.  An index register is one used
2213    in an address where its value is either multiplied by a scale
2214    factor or added to another register (as well as added to a
2215    displacement).  */
2216 
2217 #define INDEX_REG_CLASS NO_REGS
2218 
2219 /* We generally want to put call-clobbered registers ahead of
2220    call-saved ones.  (IRA expects this.)  */
2221 
2222 #define REG_ALLOC_ORDER							\
2223 { /* Accumulator registers.  When GPRs and accumulators have equal	\
2224      cost, we generally prefer to use accumulators.  For example,	\
2225      a division of multiplication result is better allocated to LO,	\
2226      so that we put the MFLO at the point of use instead of at the	\
2227      point of definition.  It's also needed if we're to take advantage	\
2228      of the extra accumulators available with -mdspr2.  In some cases,	\
2229      it can also help to reduce register pressure.  */			\
2230   64, 65,176,177,178,179,180,181,					\
2231   /* Call-clobbered GPRs.  */						\
2232   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,		\
2233   24, 25, 31,								\
2234   /* The global pointer.  This is call-clobbered for o32 and o64	\
2235      abicalls, call-saved for n32 and n64 abicalls, and a program	\
2236      invariant otherwise.  Putting it between the call-clobbered	\
2237      and call-saved registers should cope with all eventualities.  */	\
2238   28,									\
2239   /* Call-saved GPRs.  */						\
2240   16, 17, 18, 19, 20, 21, 22, 23, 30,					\
2241   /* GPRs that can never be exposed to the register allocator.  */	\
2242   0,  26, 27, 29,							\
2243   /* Call-clobbered FPRs.  */						\
2244   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
2245   48, 49, 50, 51,							\
2246   /* FPRs that are usually call-saved.  The odd ones are actually	\
2247      call-clobbered for n32, but listing them ahead of the even		\
2248      registers might encourage the register allocator to fragment	\
2249      the available FPR pairs.  We need paired FPRs to store long	\
2250      doubles, so it isn't clear that using a different order		\
2251      for n32 would be a win.  */					\
2252   52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,			\
2253   /* None of the remaining classes have defined call-saved		\
2254      registers.  */							\
2255   66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,		\
2256   80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
2257   96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
2258   112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
2259   128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
2260   144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
2261   160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
2262   182,183,184,185,186,187						\
2263 }
2264 
2265 /* True if VALUE is an unsigned 6-bit number.  */
2266 
2267 #define UIMM6_OPERAND(VALUE) \
2268   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2269 
2270 /* True if VALUE is a signed 10-bit number.  */
2271 
2272 #define IMM10_OPERAND(VALUE) \
2273   ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2274 
2275 /* True if VALUE is a signed 16-bit number.  */
2276 
2277 #define SMALL_OPERAND(VALUE) \
2278   ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2279 
2280 /* True if VALUE is an unsigned 16-bit number.  */
2281 
2282 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2283   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2284 
2285 /* True if VALUE can be loaded into a register using LUI.  */
2286 
2287 #define LUI_OPERAND(VALUE)					\
2288   (((VALUE) | 0x7fff0000) == 0x7fff0000				\
2289    || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2290 
2291 /* Return a value X with the low 16 bits clear, and such that
2292    VALUE - X is a signed 16-bit value.  */
2293 
2294 #define CONST_HIGH_PART(VALUE) \
2295   (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2296 
2297 #define CONST_LOW_PART(VALUE) \
2298   ((VALUE) - CONST_HIGH_PART (VALUE))
2299 
2300 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2301 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2302 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2303 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2304 #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
2305 
2306 /* The HI and LO registers can only be reloaded via the general
2307    registers.  Condition code registers can only be loaded to the
2308    general registers, and from the floating point registers.  */
2309 
2310 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
2311   mips_secondary_reload_class (CLASS, MODE, X, true)
2312 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
2313   mips_secondary_reload_class (CLASS, MODE, X, false)
2314 
2315 /* Return the maximum number of consecutive registers
2316    needed to represent mode MODE in a register of class CLASS.  */
2317 
2318 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2319 
2320 /* Stack layout; function entry, exit and calling.  */
2321 
2322 #define STACK_GROWS_DOWNWARD 1
2323 
2324 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
2325 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
2326 
2327 /* Size of the area allocated in the frame to save the GP.  */
2328 
2329 #define MIPS_GP_SAVE_AREA_SIZE \
2330   (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2331 
2332 #define RETURN_ADDR_RTX mips_return_addr
2333 
2334 /* Mask off the MIPS16 ISA bit in unwind addresses.
2335 
2336    The reason for this is a little subtle.  When unwinding a call,
2337    we are given the call's return address, which on most targets
2338    is the address of the following instruction.  However, what we
2339    actually want to find is the EH region for the call itself.
2340    The target-independent unwind code therefore searches for "RA - 1".
2341 
2342    In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2343    RA - 1 is therefore the real (even-valued) start of the return
2344    instruction.  EH region labels are usually odd-valued MIPS16 symbols
2345    too, so a search for an even address within a MIPS16 region would
2346    usually work.
2347 
2348    However, there is an exception.  If the end of an EH region is also
2349    the end of a function, the end label is allowed to be even.  This is
2350    necessary because a following non-MIPS16 function may also need EH
2351    information for its first instruction.
2352 
2353    Thus a MIPS16 region may be terminated by an ISA-encoded or a
2354    non-ISA-encoded address.  This probably isn't ideal, but it is
2355    the traditional (legacy) behavior.  It is therefore only safe
2356    to search MIPS EH regions for an _odd-valued_ address.
2357 
2358    Masking off the ISA bit means that the target-independent code
2359    will search for "(RA & -2) - 1", which is guaranteed to be odd.  */
2360 #define MASK_RETURN_ADDR GEN_INT (-2)
2361 
2362 
2363 /* Similarly, don't use the least-significant bit to tell pointers to
2364    code from vtable index.  */
2365 
2366 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2367 
2368 /* The eliminations to $17 are only used for mips16 code.  See the
2369    definition of HARD_FRAME_POINTER_REGNUM.  */
2370 
2371 #define ELIMINABLE_REGS							\
2372 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
2373  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
2374  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
2375  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
2376  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
2377  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2378 
2379 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2380   (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2381 
2382 /* Allocate stack space for arguments at the beginning of each function.  */
2383 #define ACCUMULATE_OUTGOING_ARGS 1
2384 
2385 /* The argument pointer always points to the first argument.  */
2386 #define FIRST_PARM_OFFSET(FNDECL) 0
2387 
2388 /* o32 and o64 reserve stack space for all argument registers.  */
2389 #define REG_PARM_STACK_SPACE(FNDECL) 			\
2390   (TARGET_OLDABI					\
2391    ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
2392    : 0)
2393 
2394 /* Define this if it is the responsibility of the caller to
2395    allocate the area reserved for arguments passed in registers.
2396    If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2397    of this macro is to determine whether the space is included in
2398    `crtl->outgoing_args_size'.  */
2399 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2400 
2401 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2402 
2403 /* Symbolic macros for the registers used to return integer and floating
2404    point values.  */
2405 
2406 #define GP_RETURN (GP_REG_FIRST + 2)
2407 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2408 
2409 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2410 
2411 /* Symbolic macros for the first/last argument registers.  */
2412 
2413 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2414 #define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2415 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2416 #define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2417 
2418 /* True if MODE is vector and supported in a MSA vector register.  */
2419 #define MSA_SUPPORTED_MODE_P(MODE)			\
2420   (ISA_HAS_MSA						\
2421    && GET_MODE_SIZE (MODE) == UNITS_PER_MSA_REG		\
2422    && (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT		\
2423        || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT))
2424 
2425 /* Temporary register that is used when restoring $gp after a call.  $4 and $5
2426    are used for returning complex double values in soft-float code, so $6 is the
2427    first suitable candidate for TARGET_MIPS16.  For !TARGET_MIPS16 we can use
2428    $gp itself as the temporary.  */
2429 #define POST_CALL_TMP_REG \
2430   (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2431 
2432 /* 1 if N is a possible register number for function argument passing.
2433    We have no FP argument registers when soft-float.  Special handling
2434    is required for O32 where only even numbered registers are used for
2435    O32-FPXX and O32-FP64.  */
2436 
2437 #define FUNCTION_ARG_REGNO_P(N)					\
2438   ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
2439     || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) 		\
2440         && (mips_abi != ABI_32 					\
2441             || TARGET_FLOAT32 					\
2442             || ((N) % 2 == 0))))				\
2443    && !fixed_regs[N])
2444 
2445 /* This structure has to cope with two different argument allocation
2446    schemes.  Most MIPS ABIs view the arguments as a structure, of which
2447    the first N words go in registers and the rest go on the stack.  If I
2448    < N, the Ith word might go in Ith integer argument register or in a
2449    floating-point register.  For these ABIs, we only need to remember
2450    the offset of the current argument into the structure.
2451 
2452    The EABI instead allocates the integer and floating-point arguments
2453    separately.  The first N words of FP arguments go in FP registers,
2454    the rest go on the stack.  Likewise, the first N words of the other
2455    arguments go in integer registers, and the rest go on the stack.  We
2456    need to maintain three counts: the number of integer registers used,
2457    the number of floating-point registers used, and the number of words
2458    passed on the stack.
2459 
2460    We could keep separate information for the two ABIs (a word count for
2461    the standard ABIs, and three separate counts for the EABI).  But it
2462    seems simpler to view the standard ABIs as forms of EABI that do not
2463    allocate floating-point registers.
2464 
2465    So for the standard ABIs, the first N words are allocated to integer
2466    registers, and mips_function_arg decides on an argument-by-argument
2467    basis whether that argument should really go in an integer register,
2468    or in a floating-point one.  */
2469 
2470 typedef struct mips_args {
2471   /* Always true for varargs functions.  Otherwise true if at least
2472      one argument has been passed in an integer register.  */
2473   int gp_reg_found;
2474 
2475   /* The number of arguments seen so far.  */
2476   unsigned int arg_number;
2477 
2478   /* The number of integer registers used so far.  For all ABIs except
2479      EABI, this is the number of words that have been added to the
2480      argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
2481   unsigned int num_gprs;
2482 
2483   /* For EABI, the number of floating-point registers used so far.  */
2484   unsigned int num_fprs;
2485 
2486   /* The number of words passed on the stack.  */
2487   unsigned int stack_words;
2488 
2489   /* On the mips16, we need to keep track of which floating point
2490      arguments were passed in general registers, but would have been
2491      passed in the FP regs if this were a 32-bit function, so that we
2492      can move them to the FP regs if we wind up calling a 32-bit
2493      function.  We record this information in fp_code, encoded in base
2494      four.  A zero digit means no floating point argument, a one digit
2495      means an SFmode argument, and a two digit means a DFmode argument,
2496      and a three digit is not used.  The low order digit is the first
2497      argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2498      an SFmode argument.  ??? A more sophisticated approach will be
2499      needed if MIPS_ABI != ABI_32.  */
2500   int fp_code;
2501 
2502   /* True if the function has a prototype.  */
2503   int prototype;
2504 } CUMULATIVE_ARGS;
2505 
2506 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2507    for a call to a function whose data type is FNTYPE.
2508    For a library call, FNTYPE is 0.  */
2509 
2510 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2511   mips_init_cumulative_args (&CUM, FNTYPE)
2512 
2513 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2514   (mips_pad_reg_upward (MODE, TYPE) ? PAD_UPWARD : PAD_DOWNWARD)
2515 
2516 /* True if using EABI and varargs can be passed in floating-point
2517    registers.  Under these conditions, we need a more complex form
2518    of va_list, which tracks GPR, FPR and stack arguments separately.  */
2519 #define EABI_FLOAT_VARARGS_P \
2520 	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2521 
2522 
2523 #define EPILOGUE_USES(REGNO)	mips_epilogue_uses (REGNO)
2524 
2525 /* Treat LOC as a byte offset from the stack pointer and round it up
2526    to the next fully-aligned offset.  */
2527 #define MIPS_STACK_ALIGN(LOC) \
2528   (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
2529 
2530 
2531 /* Output assembler code to FILE to increment profiler label # LABELNO
2532    for profiling a function entry.  */
2533 
2534 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2535 
2536 /* The profiler preserves all interesting registers, including $31.  */
2537 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2538 
2539 /* No mips port has ever used the profiler counter word, so don't emit it
2540    or the label for it.  */
2541 
2542 #define NO_PROFILE_COUNTERS 1
2543 
2544 /* Define this macro if the code for function profiling should come
2545    before the function prologue.  Normally, the profiling code comes
2546    after.  */
2547 
2548 /* #define PROFILE_BEFORE_PROLOGUE */
2549 
2550 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2551    the stack pointer does not matter.  The value is tested only in
2552    functions that have frame pointers.
2553    No definition is equivalent to always zero.  */
2554 
2555 #define EXIT_IGNORE_STACK 1
2556 
2557 
2558 /* Trampolines are a block of code followed by two pointers.  */
2559 
2560 #define TRAMPOLINE_SIZE \
2561   (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2562 
2563 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2564    pointers from a single LUI base.  */
2565 
2566 #define TRAMPOLINE_ALIGNMENT 64
2567 
2568 /* mips_trampoline_init calls this library function to flush
2569    program and data caches.  */
2570 
2571 #ifndef CACHE_FLUSH_FUNC
2572 #define CACHE_FLUSH_FUNC "_flush_cache"
2573 #endif
2574 
2575 #define MIPS_ICACHE_SYNC(ADDR, SIZE)					\
2576   /* Flush both caches.  We need to flush the data cache in case	\
2577      the system has a write-back cache.  */				\
2578   emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),	\
2579 		     LCT_NORMAL, VOIDmode, ADDR, Pmode, SIZE, Pmode,	\
2580 		     GEN_INT (3), TYPE_MODE (integer_type_node))
2581 
2582 
2583 /* Addressing modes, and classification of registers for them.  */
2584 
2585 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2586 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2587   mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2588 
2589 /* Maximum number of registers that can appear in a valid memory address.  */
2590 
2591 #define MAX_REGS_PER_ADDRESS 1
2592 
2593 /* Check for constness inline but use mips_legitimate_address_p
2594    to check whether a constant really is an address.  */
2595 
2596 #define CONSTANT_ADDRESS_P(X) \
2597   (CONSTANT_P (X) && memory_address_p (SImode, X))
2598 
2599 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2600    'the start of the function that this code is output in'.  */
2601 
2602 #define ASM_OUTPUT_LABELREF(FILE,NAME)					\
2603   do {									\
2604     if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)			\
2605       asm_fprintf ((FILE), "%U%s",					\
2606 		   XSTR (XEXP (DECL_RTL (current_function_decl),	\
2607 			       0), 0));					\
2608     else								\
2609       asm_fprintf ((FILE), "%U%s", (NAME));				\
2610   } while (0)
2611 
2612 /* Flag to mark a function decl symbol that requires a long call.  */
2613 #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2614 #define SYMBOL_REF_LONG_CALL_P(X)					\
2615   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2616 
2617 /* This flag marks functions that cannot be lazily bound.  */
2618 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2619 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2620   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2621 
2622 /* True if we're generating a form of MIPS16 code in which jump tables
2623    are stored in the text section and encoded as 16-bit PC-relative
2624    offsets.  This is only possible when general text loads are allowed,
2625    since the table access itself will be an "lh" instruction.  If the
2626    PC-relative offsets grow too large, 32-bit offsets are used instead.  */
2627 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2628 
2629 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2630 
2631 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2632 
2633 /* Only use short offsets if their range will not overflow.  */
2634 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2635   (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2636    : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2637    : SImode)
2638 
2639 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2640 
2641 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2642 #ifndef DEFAULT_SIGNED_CHAR
2643 #define DEFAULT_SIGNED_CHAR 1
2644 #endif
2645 
2646 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2647    we generally don't want to use them for copying arbitrary data.
2648    A single N-word move is usually the same cost as N single-word moves.  */
2649 #define MOVE_MAX UNITS_PER_WORD
2650 /* We don't modify it for MSA as it is only used by the classic reload.  */
2651 #define MAX_MOVE_MAX 8
2652 
2653 /* Define this macro as a C expression which is nonzero if
2654    accessing less than a word of memory (i.e. a `char' or a
2655    `short') is no faster than accessing a word of memory, i.e., if
2656    such access require more than one instruction or if there is no
2657    difference in cost between byte and (aligned) word loads.
2658 
2659    On RISC machines, it tends to generate better code to define
2660    this as 1, since it avoids making a QI or HI mode register.
2661 
2662    But, generating word accesses for -mips16 is generally bad as shifts
2663    (often extended) would be needed for byte accesses.  */
2664 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2665 
2666 /* Standard MIPS integer shifts truncate the shift amount to the
2667    width of the shifted operand.  However, Loongson MMI shifts
2668    do not truncate the shift amount at all.  */
2669 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_MMI)
2670 
2671 
2672 /* Specify the machine mode that pointers have.
2673    After generation of rtl, the compiler makes no further distinction
2674    between pointers and any other objects of this machine mode.  */
2675 
2676 #ifndef Pmode
2677 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2678 #endif
2679 
2680 /* Give call MEMs SImode since it is the "most permissive" mode
2681    for both 32-bit and 64-bit targets.  */
2682 
2683 #define FUNCTION_MODE SImode
2684 
2685 
2686 /* We allocate $fcc registers by hand and can't cope with moves of
2687    CCmode registers to and from pseudos (or memory).  */
2688 #define AVOID_CCMODE_COPIES
2689 
2690 /* A C expression for the cost of a branch instruction.  A value of
2691    1 is the default; other values are interpreted relative to that.  */
2692 
2693 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2694 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2695 
2696 /* The MIPS port has several functions that return an instruction count.
2697    Multiplying the count by this value gives the number of bytes that
2698    the instructions occupy.  */
2699 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2700 
2701 /* The length of a NOP in bytes.  */
2702 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2703 
2704 /* If defined, modifies the length assigned to instruction INSN as a
2705    function of the context in which it is used.  LENGTH is an lvalue
2706    that contains the initially computed length of the insn and should
2707    be updated with the correct length of the insn.  */
2708 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2709   ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2710 
2711 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2712    OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2713    its operands.  */
2714 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2715   "%*" OPCODE "%?\t" OPERANDS "%/"
2716 
2717 #define MIPS_BRANCH_C(OPCODE, OPERANDS) \
2718   "%*" OPCODE "%:\t" OPERANDS
2719 
2720 /* Return an asm string that forces INSN to be treated as an absolute
2721    J or JAL instruction instead of an assembler macro.  */
2722 #define MIPS_ABSOLUTE_JUMP(INSN) \
2723   (TARGET_ABICALLS_PIC2						\
2724    ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2"		\
2725    : INSN)
2726 
2727 
2728 /* Control the assembler format that we output.  */
2729 
2730 /* Output to assembler file text saying following lines
2731    may contain character constants, extra white space, comments, etc.  */
2732 
2733 #ifndef ASM_APP_ON
2734 #define ASM_APP_ON " #APP\n"
2735 #endif
2736 
2737 /* Output to assembler file text saying following lines
2738    no longer contain unusual constructs.  */
2739 
2740 #ifndef ASM_APP_OFF
2741 #define ASM_APP_OFF " #NO_APP\n"
2742 #endif
2743 
2744 #define REGISTER_NAMES							   \
2745 { "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2746   "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2747   "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2748   "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2749   "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2750   "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2751   "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2752   "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2753   "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2754   "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec",	   \
2755   "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2756   "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2757   "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2758   "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2759   "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2760   "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2761   "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2762   "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2763   "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2764   "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2765   "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2766   "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2767   "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2768   "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2769 
2770 /* List the "software" names for each register.  Also list the numerical
2771    names for $fp and $sp.  */
2772 
2773 #define ADDITIONAL_REGISTER_NAMES					\
2774 {									\
2775   { "$29",	29 + GP_REG_FIRST },					\
2776   { "$30",	30 + GP_REG_FIRST },					\
2777   { "at",	 1 + GP_REG_FIRST },					\
2778   { "v0",	 2 + GP_REG_FIRST },					\
2779   { "v1",	 3 + GP_REG_FIRST },					\
2780   { "a0",	 4 + GP_REG_FIRST },					\
2781   { "a1",	 5 + GP_REG_FIRST },					\
2782   { "a2",	 6 + GP_REG_FIRST },					\
2783   { "a3",	 7 + GP_REG_FIRST },					\
2784   { "t0",	 8 + GP_REG_FIRST },					\
2785   { "t1",	 9 + GP_REG_FIRST },					\
2786   { "t2",	10 + GP_REG_FIRST },					\
2787   { "t3",	11 + GP_REG_FIRST },					\
2788   { "t4",	12 + GP_REG_FIRST },					\
2789   { "t5",	13 + GP_REG_FIRST },					\
2790   { "t6",	14 + GP_REG_FIRST },					\
2791   { "t7",	15 + GP_REG_FIRST },					\
2792   { "s0",	16 + GP_REG_FIRST },					\
2793   { "s1",	17 + GP_REG_FIRST },					\
2794   { "s2",	18 + GP_REG_FIRST },					\
2795   { "s3",	19 + GP_REG_FIRST },					\
2796   { "s4",	20 + GP_REG_FIRST },					\
2797   { "s5",	21 + GP_REG_FIRST },					\
2798   { "s6",	22 + GP_REG_FIRST },					\
2799   { "s7",	23 + GP_REG_FIRST },					\
2800   { "t8",	24 + GP_REG_FIRST },					\
2801   { "t9",	25 + GP_REG_FIRST },					\
2802   { "k0",	26 + GP_REG_FIRST },					\
2803   { "k1",	27 + GP_REG_FIRST },					\
2804   { "gp",	28 + GP_REG_FIRST },					\
2805   { "sp",	29 + GP_REG_FIRST },					\
2806   { "fp",	30 + GP_REG_FIRST },					\
2807   { "ra",	31 + GP_REG_FIRST },					\
2808   { "$w0",	 0 + FP_REG_FIRST },					\
2809   { "$w1",	 1 + FP_REG_FIRST },					\
2810   { "$w2",	 2 + FP_REG_FIRST },					\
2811   { "$w3",	 3 + FP_REG_FIRST },					\
2812   { "$w4",	 4 + FP_REG_FIRST },					\
2813   { "$w5",	 5 + FP_REG_FIRST },					\
2814   { "$w6",	 6 + FP_REG_FIRST },					\
2815   { "$w7",	 7 + FP_REG_FIRST },					\
2816   { "$w8",	 8 + FP_REG_FIRST },					\
2817   { "$w9",	 9 + FP_REG_FIRST },					\
2818   { "$w10",	10 + FP_REG_FIRST },					\
2819   { "$w11",	11 + FP_REG_FIRST },					\
2820   { "$w12",	12 + FP_REG_FIRST },					\
2821   { "$w13",	13 + FP_REG_FIRST },					\
2822   { "$w14",	14 + FP_REG_FIRST },					\
2823   { "$w15",	15 + FP_REG_FIRST },					\
2824   { "$w16",	16 + FP_REG_FIRST },					\
2825   { "$w17",	17 + FP_REG_FIRST },					\
2826   { "$w18",	18 + FP_REG_FIRST },					\
2827   { "$w19",	19 + FP_REG_FIRST },					\
2828   { "$w20",	20 + FP_REG_FIRST },					\
2829   { "$w21",	21 + FP_REG_FIRST },					\
2830   { "$w22",	22 + FP_REG_FIRST },					\
2831   { "$w23",	23 + FP_REG_FIRST },					\
2832   { "$w24",	24 + FP_REG_FIRST },					\
2833   { "$w25",	25 + FP_REG_FIRST },					\
2834   { "$w26",	26 + FP_REG_FIRST },					\
2835   { "$w27",	27 + FP_REG_FIRST },					\
2836   { "$w28",	28 + FP_REG_FIRST },					\
2837   { "$w29",	29 + FP_REG_FIRST },					\
2838   { "$w30",	30 + FP_REG_FIRST },					\
2839   { "$w31",	31 + FP_REG_FIRST }					\
2840 }
2841 
2842 #define DBR_OUTPUT_SEQEND(STREAM)					\
2843 do									\
2844   {									\
2845     /* Undo the effect of '%*'.  */					\
2846     mips_pop_asm_switch (&mips_nomacro);				\
2847     mips_pop_asm_switch (&mips_noreorder);				\
2848     /* Emit a blank line after the delay slot for emphasis.  */		\
2849     fputs ("\n", STREAM);						\
2850   }									\
2851 while (0)
2852 
2853 /* The MIPS implementation uses some labels for its own purpose.  The
2854    following lists what labels are created, and are all formed by the
2855    pattern $L[a-z].*.  The machine independent portion of GCC creates
2856    labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2857 
2858 	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2859 	$Lb[0-9]+	Begin blocks for MIPS debug support
2860 	$Lc[0-9]+	Label for use in s<xx> operation.
2861 	$Le[0-9]+	End blocks for MIPS debug support  */
2862 
2863 #undef ASM_DECLARE_OBJECT_NAME
2864 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2865   mips_declare_object (STREAM, NAME, "", ":\n")
2866 
2867 /* Globalizing directive for a label.  */
2868 #define GLOBAL_ASM_OP "\t.globl\t"
2869 
2870 /* This says how to define a global common symbol.  */
2871 
2872 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2873 
2874 /* This says how to define a local common symbol (i.e., not visible to
2875    linker).  */
2876 
2877 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2878 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2879   mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2880 #endif
2881 
2882 /* This says how to output an external.  It would be possible not to
2883    output anything and let undefined symbol become external. However
2884    the assembler uses length information on externals to allocate in
2885    data/sdata bss/sbss, thereby saving exec time.  */
2886 
2887 #undef ASM_OUTPUT_EXTERNAL
2888 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2889   mips_output_external(STREAM,DECL,NAME)
2890 
2891 /* This is how to declare a function name.  The actual work of
2892    emitting the label is moved to function_prologue, so that we can
2893    get the line number correctly emitted before the .ent directive,
2894    and after any .file directives.  Define as empty so that the function
2895    is not declared before the .ent directive elsewhere.  */
2896 
2897 #undef ASM_DECLARE_FUNCTION_NAME
2898 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2899 
2900 /* This is how to store into the string LABEL
2901    the symbol_ref name of an internal numbered label where
2902    PREFIX is the class of label and NUM is the number within the class.
2903    This is suitable for output with `assemble_name'.  */
2904 
2905 #undef ASM_GENERATE_INTERNAL_LABEL
2906 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2907   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2908 
2909 /* Print debug labels as "foo = ." rather than "foo:" because they should
2910    represent a byte pointer rather than an ISA-encoded address.  This is
2911    particularly important for code like:
2912 
2913 	$LFBxxx = .
2914 		.cfi_startproc
2915 		...
2916 		.section .gcc_except_table,...
2917 		...
2918 		.uleb128 foo-$LFBxxx
2919 
2920    The .uleb128 requies $LFBxxx to match the FDE start address, which is
2921    likewise a byte pointer rather than an ISA-encoded address.
2922 
2923    At the time of writing, this hook is not used for the function end
2924    label:
2925 
2926    	$LFExxx:
2927 		.end foo
2928 
2929    But this doesn't matter, because GAS doesn't treat a pre-.end label
2930    as a MIPS16 one anyway.  */
2931 
2932 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM)			\
2933   fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2934 
2935 /* This is how to output an element of a case-vector that is absolute.  */
2936 
2937 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2938   fprintf (STREAM, "\t%s\t%sL%d\n",					\
2939 	   ptr_mode == DImode ? ".dword" : ".word",			\
2940 	   LOCAL_LABEL_PREFIX,						\
2941 	   VALUE)
2942 
2943 /* This is how to output an element of a case-vector.  We can make the
2944    entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2945    is supported.  */
2946 
2947 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2948 do {									\
2949   if (TARGET_MIPS16_SHORT_JUMP_TABLES)					\
2950     {									\
2951       if (GET_MODE (BODY) == HImode)					\
2952 	fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",			\
2953 		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2954       else								\
2955 	fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n",			\
2956 		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2957     }									\
2958   else if (TARGET_GPWORD)						\
2959     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2960 	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2961 	     LOCAL_LABEL_PREFIX, VALUE);				\
2962   else if (TARGET_RTP_PIC)						\
2963     {									\
2964       /* Make the entry relative to the start of the function.  */	\
2965       rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0);		\
2966       fprintf (STREAM, "\t%s\t%sL%d-",					\
2967 	       Pmode == DImode ? ".dword" : ".word",			\
2968 	       LOCAL_LABEL_PREFIX, VALUE);				\
2969       assemble_name (STREAM, XSTR (fnsym, 0));				\
2970       fprintf (STREAM, "\n");						\
2971     }									\
2972   else									\
2973     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2974 	     ptr_mode == DImode ? ".dword" : ".word",			\
2975 	     LOCAL_LABEL_PREFIX, VALUE);				\
2976 } while (0)
2977 
2978 /* Mark inline jump tables as data for the purpose of disassembly.  For
2979    simplicity embed the jump table's label number in the local symbol
2980    produced so that multiple jump tables within a single function end
2981    up marked with unique symbols.  Retain the alignment setting from
2982    `elfos.h' as we are replacing the definition from there.  */
2983 
2984 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2985 #define ASM_OUTPUT_BEFORE_CASE_LABEL(STREAM, PREFIX, NUM, TABLE)	\
2986   do									\
2987     {									\
2988       ASM_OUTPUT_ALIGN ((STREAM), 2);					\
2989       if (JUMP_TABLES_IN_TEXT_SECTION)					\
2990 	mips_set_text_contents_type (STREAM, "__jump_", NUM, FALSE);	\
2991     }									\
2992   while (0)
2993 
2994 /* Reset text marking to code after an inline jump table.  Like with
2995    the beginning of a jump table use the label number to keep symbols
2996    unique.  */
2997 
2998 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE)				\
2999   do									\
3000     if (JUMP_TABLES_IN_TEXT_SECTION)					\
3001       mips_set_text_contents_type (STREAM, "__jend_", NUM, TRUE);	\
3002   while (0)
3003 
3004 /* This is how to output an assembler line
3005    that says to advance the location counter
3006    to a multiple of 2**LOG bytes.  */
3007 
3008 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
3009   fprintf (STREAM, "\t.align\t%d\n", (LOG))
3010 
3011 /* This is how to output an assembler line to advance the location
3012    counter by SIZE bytes.  */
3013 
3014 #undef ASM_OUTPUT_SKIP
3015 #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
3016   fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
3017 
3018 /* This is how to output a string.  */
3019 #undef ASM_OUTPUT_ASCII
3020 #define ASM_OUTPUT_ASCII mips_output_ascii
3021 
3022 
3023 /* Default to -G 8 */
3024 #ifndef MIPS_DEFAULT_GVALUE
3025 #define MIPS_DEFAULT_GVALUE 8
3026 #endif
3027 
3028 /* Define the strings to put out for each section in the object file.  */
3029 #define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
3030 #define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
3031 
3032 #undef READONLY_DATA_SECTION_ASM_OP
3033 #define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
3034 
3035 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
3036 do									\
3037   {									\
3038     fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n",		\
3039 	     TARGET_64BIT ? "daddiu" : "addiu",				\
3040 	     reg_names[STACK_POINTER_REGNUM],				\
3041 	     reg_names[STACK_POINTER_REGNUM],				\
3042 	     TARGET_64BIT ? "sd" : "sw",				\
3043 	     reg_names[REGNO],						\
3044 	     reg_names[STACK_POINTER_REGNUM]);				\
3045   }									\
3046 while (0)
3047 
3048 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
3049 do									\
3050   {									\
3051     mips_push_asm_switch (&mips_noreorder);				\
3052     fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
3053 	     TARGET_64BIT ? "ld" : "lw",				\
3054 	     reg_names[REGNO],						\
3055 	     reg_names[STACK_POINTER_REGNUM],				\
3056 	     TARGET_64BIT ? "daddu" : "addu",				\
3057 	     reg_names[STACK_POINTER_REGNUM],				\
3058 	     reg_names[STACK_POINTER_REGNUM]);				\
3059     mips_pop_asm_switch (&mips_noreorder);				\
3060   }									\
3061 while (0)
3062 
3063 /* How to start an assembler comment.
3064    The leading space is important (the mips native assembler requires it).  */
3065 #ifndef ASM_COMMENT_START
3066 #define ASM_COMMENT_START " #"
3067 #endif
3068 
3069 #undef SIZE_TYPE
3070 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
3071 
3072 #undef PTRDIFF_TYPE
3073 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
3074 
3075 /* The minimum alignment of any expanded block move.  */
3076 #define MIPS_MIN_MOVE_MEM_ALIGN 16
3077 
3078 /* The maximum number of bytes that can be copied by one iteration of
3079    a cpymemsi loop; see mips_block_move_loop.  */
3080 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
3081   (UNITS_PER_WORD * 4)
3082 
3083 /* The maximum number of bytes that can be copied by a straight-line
3084    implementation of cpymemsi; see mips_block_move_straight.  We want
3085    to make sure that any loop-based implementation will iterate at
3086    least twice.  */
3087 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
3088   (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
3089 
3090 /* The base cost of a memcpy call, for MOVE_RATIO and friends.  These
3091    values were determined experimentally by benchmarking with CSiBE.
3092    In theory, the call overhead is higher for TARGET_ABICALLS (especially
3093    for o32 where we have to restore $gp afterwards as well as make an
3094    indirect call), but in practice, bumping this up higher for
3095    TARGET_ABICALLS doesn't make much difference to code size.  */
3096 
3097 #define MIPS_CALL_RATIO 8
3098 
3099 /* Any loop-based implementation of cpymemsi will have at least
3100    MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
3101    moves, so allow individual copies of fewer elements.
3102 
3103    When cpymemsi is not available, use a value approximating
3104    the length of a memcpy call sequence, so that move_by_pieces
3105    will generate inline code if it is shorter than a function call.
3106    Since move_by_pieces_ninsns counts memory-to-memory moves, but
3107    we'll have to generate a load/store pair for each, halve the
3108    value of MIPS_CALL_RATIO to take that into account.  */
3109 
3110 #define MOVE_RATIO(speed)				\
3111   (HAVE_cpymemsi					\
3112    ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX		\
3113    : MIPS_CALL_RATIO / 2)
3114 
3115 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
3116    of the length of a memset call, but use the default otherwise.  */
3117 
3118 #define CLEAR_RATIO(speed)\
3119   ((speed) ? 15 : MIPS_CALL_RATIO)
3120 
3121 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3122    optimizing for size adjust the ratio to account for the overhead of
3123    loading the constant and replicating it across the word.  */
3124 
3125 #define SET_RATIO(speed) \
3126   ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3127 
3128 /* Since the bits of the _init and _fini function is spread across
3129    many object files, each potentially with its own GP, we must assume
3130    we need to load our GP.  We don't preserve $gp or $ra, since each
3131    init/fini chunk is supposed to initialize $gp, and crti/crtn
3132    already take care of preserving $ra and, when appropriate, $gp.  */
3133 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3134 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3135    asm (SECTION_OP "\n\
3136 	.set push\n\
3137 	.set nomips16\n\
3138 	.set noreorder\n\
3139 	bal 1f\n\
3140 	nop\n\
3141 1:	.cpload $31\n\
3142 	.set reorder\n\
3143 	la $25, " USER_LABEL_PREFIX #FUNC "\n\
3144 	jalr $25\n\
3145 	.set pop\n\
3146 	" TEXT_SECTION_ASM_OP);
3147 #elif (defined _ABIN32 && _MIPS_SIM == _ABIN32)
3148 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3149    asm (SECTION_OP "\n\
3150 	.set push\n\
3151 	.set nomips16\n\
3152 	.set noreorder\n\
3153 	bal 1f\n\
3154 	nop\n\
3155 1:	.set reorder\n\
3156 	.cpsetup $31, $2, 1b\n\
3157 	la $25, " USER_LABEL_PREFIX #FUNC "\n\
3158 	jalr $25\n\
3159 	.set pop\n\
3160 	" TEXT_SECTION_ASM_OP);
3161 #elif (defined _ABI64 && _MIPS_SIM == _ABI64)
3162 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3163    asm (SECTION_OP "\n\
3164 	.set push\n\
3165 	.set nomips16\n\
3166 	.set noreorder\n\
3167 	bal 1f\n\
3168 	nop\n\
3169 1:	.set reorder\n\
3170 	.cpsetup $31, $2, 1b\n\
3171 	dla $25, " USER_LABEL_PREFIX #FUNC "\n\
3172 	jalr $25\n\
3173 	.set pop\n\
3174 	" TEXT_SECTION_ASM_OP);
3175 #endif
3176 
3177 #ifndef HAVE_AS_TLS
3178 #define HAVE_AS_TLS 0
3179 #endif
3180 
3181 #ifndef HAVE_AS_NAN
3182 #define HAVE_AS_NAN 0
3183 #endif
3184 
3185 #ifndef USED_FOR_TARGET
3186 /* Information about ".set noFOO; ...; .set FOO" blocks.  */
3187 struct mips_asm_switch {
3188   /* The FOO in the description above.  */
3189   const char *name;
3190 
3191   /* The current block nesting level, or 0 if we aren't in a block.  */
3192   int nesting_level;
3193 };
3194 
3195 extern const enum reg_class mips_regno_to_class[];
3196 extern const char *current_function_file; /* filename current function is in */
3197 extern int num_source_filenames;	/* current .file # */
3198 extern struct mips_asm_switch mips_noreorder;
3199 extern struct mips_asm_switch mips_nomacro;
3200 extern struct mips_asm_switch mips_noat;
3201 extern int mips_dbx_regno[];
3202 extern int mips_dwarf_regno[];
3203 extern bool mips_split_p[];
3204 extern bool mips_split_hi_p[];
3205 extern bool mips_use_pcrel_pool_p[];
3206 extern const char *mips_lo_relocs[];
3207 extern const char *mips_hi_relocs[];
3208 extern enum processor mips_arch;        /* which cpu to codegen for */
3209 extern enum processor mips_tune;        /* which cpu to schedule for */
3210 extern int mips_isa;			/* architectural level */
3211 extern int mips_isa_rev;
3212 extern const struct mips_cpu_info *mips_arch_info;
3213 extern const struct mips_cpu_info *mips_tune_info;
3214 extern unsigned int mips_base_compression_flags;
3215 extern GTY(()) struct target_globals *mips16_globals;
3216 extern GTY(()) struct target_globals *micromips_globals;
3217 
3218 /* Information about a function's frame layout.  */
3219 struct GTY(())  mips_frame_info {
3220   /* The size of the frame in bytes.  */
3221   HOST_WIDE_INT total_size;
3222 
3223   /* The number of bytes allocated to variables.  */
3224   HOST_WIDE_INT var_size;
3225 
3226   /* The number of bytes allocated to outgoing function arguments.  */
3227   HOST_WIDE_INT args_size;
3228 
3229   /* The number of bytes allocated to the .cprestore slot, or 0 if there
3230      is no such slot.  */
3231   HOST_WIDE_INT cprestore_size;
3232 
3233   /* Bit X is set if the function saves or restores GPR X.  */
3234   unsigned int mask;
3235 
3236   /* Likewise FPR X.  */
3237   unsigned int fmask;
3238 
3239   /* Likewise doubleword accumulator X ($acX).  */
3240   unsigned int acc_mask;
3241 
3242   /* The number of GPRs, FPRs, doubleword accumulators and COP0
3243      registers saved.  */
3244   unsigned int num_gp;
3245   unsigned int num_fp;
3246   unsigned int num_acc;
3247   unsigned int num_cop0_regs;
3248 
3249   /* The offset of the topmost GPR, FPR, accumulator and COP0-register
3250      save slots from the top of the frame, or zero if no such slots are
3251      needed.  */
3252   HOST_WIDE_INT gp_save_offset;
3253   HOST_WIDE_INT fp_save_offset;
3254   HOST_WIDE_INT acc_save_offset;
3255   HOST_WIDE_INT cop0_save_offset;
3256 
3257   /* Likewise, but giving offsets from the bottom of the frame.  */
3258   HOST_WIDE_INT gp_sp_offset;
3259   HOST_WIDE_INT fp_sp_offset;
3260   HOST_WIDE_INT acc_sp_offset;
3261   HOST_WIDE_INT cop0_sp_offset;
3262 
3263   /* Similar, but the value passed to _mcount.  */
3264   HOST_WIDE_INT ra_fp_offset;
3265 
3266   /* The offset of arg_pointer_rtx from the bottom of the frame.  */
3267   HOST_WIDE_INT arg_pointer_offset;
3268 
3269   /* The offset of hard_frame_pointer_rtx from the bottom of the frame.  */
3270   HOST_WIDE_INT hard_frame_pointer_offset;
3271 };
3272 
3273 /* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts.  */
3274 enum mips_int_mask
3275 {
3276   INT_MASK_EIC = -1,
3277   INT_MASK_SW0 = 0,
3278   INT_MASK_SW1 = 1,
3279   INT_MASK_HW0 = 2,
3280   INT_MASK_HW1 = 3,
3281   INT_MASK_HW2 = 4,
3282   INT_MASK_HW3 = 5,
3283   INT_MASK_HW4 = 6,
3284   INT_MASK_HW5 = 7
3285 };
3286 
3287 /* Enumeration to mark the existence of the shadow register set.
3288    SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
3289    pointer.  */
3290 enum mips_shadow_set
3291 {
3292   SHADOW_SET_NO,
3293   SHADOW_SET_YES,
3294   SHADOW_SET_INTSTACK
3295 };
3296 
3297 struct GTY(())  machine_function {
3298   /* The next floating-point condition-code register to allocate
3299      for ISA_HAS_8CC targets, relative to ST_REG_FIRST.  */
3300   unsigned int next_fcc;
3301 
3302   /* The register returned by mips16_gp_pseudo_reg; see there for details.  */
3303   rtx mips16_gp_pseudo_rtx;
3304 
3305   /* The number of extra stack bytes taken up by register varargs.
3306      This area is allocated by the callee at the very top of the frame.  */
3307   int varargs_size;
3308 
3309   /* The current frame information, calculated by mips_compute_frame_info.  */
3310   struct mips_frame_info frame;
3311 
3312   /* The register to use as the function's global pointer, or INVALID_REGNUM
3313      if the function doesn't need one.  */
3314   unsigned int global_pointer;
3315 
3316   /* How many instructions it takes to load a label into $AT, or 0 if
3317      this property hasn't yet been calculated.  */
3318   unsigned int load_label_num_insns;
3319 
3320   /* True if mips_adjust_insn_length should ignore an instruction's
3321      hazard attribute.  */
3322   bool ignore_hazard_length_p;
3323 
3324   /* True if the whole function is suitable for .set noreorder and
3325      .set nomacro.  */
3326   bool all_noreorder_p;
3327 
3328   /* True if the function has "inflexible" and "flexible" references
3329      to the global pointer.  See mips_cfun_has_inflexible_gp_ref_p
3330      and mips_cfun_has_flexible_gp_ref_p for details.  */
3331   bool has_inflexible_gp_insn_p;
3332   bool has_flexible_gp_insn_p;
3333 
3334   /* True if the function's prologue must load the global pointer
3335      value into pic_offset_table_rtx and store the same value in
3336      the function's cprestore slot (if any).  Even if this value
3337      is currently false, we may decide to set it to true later;
3338      see mips_must_initialize_gp_p () for details.  */
3339   bool must_initialize_gp_p;
3340 
3341   /* True if the current function must restore $gp after any potential
3342      clobber.  This value is only meaningful during the first post-epilogue
3343      split_insns pass; see mips_must_initialize_gp_p () for details.  */
3344   bool must_restore_gp_when_clobbered_p;
3345 
3346   /* True if this is an interrupt handler.  */
3347   bool interrupt_handler_p;
3348 
3349   /* Records the way in which interrupts should be masked.  Only used if
3350      interrupts are not kept masked.  */
3351   enum mips_int_mask int_mask;
3352 
3353   /* Records if this is an interrupt handler that uses shadow registers.  */
3354   enum mips_shadow_set use_shadow_register_set;
3355 
3356   /* True if this is an interrupt handler that should keep interrupts
3357      masked.  */
3358   bool keep_interrupts_masked_p;
3359 
3360   /* True if this is an interrupt handler that should use DERET
3361      instead of ERET.  */
3362   bool use_debug_exception_return_p;
3363 
3364   /* True if at least one of the formal parameters to a function must be
3365      written to the frame header (probably so its address can be taken).  */
3366   bool does_not_use_frame_header;
3367 
3368   /* True if none of the functions that are called by this function need
3369      stack space allocated for their arguments.  */
3370   bool optimize_call_stack;
3371 
3372   /* True if one of the functions calling this function may not allocate
3373      a frame header.  */
3374   bool callers_may_not_allocate_frame;
3375 
3376   /* True if GCC stored callee saved registers in the frame header.  */
3377   bool use_frame_header_for_callee_saved_regs;
3378 };
3379 #endif
3380 
3381 /* Enable querying of DFA units.  */
3382 #define CPU_UNITS_QUERY 1
3383 
3384 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
3385   mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3386 
3387 /* As on most targets, we want the .eh_frame section to be read-only where
3388    possible.  And as on most targets, this means two things:
3389 
3390      (a) Non-locally-binding pointers must have an indirect encoding,
3391 	 so that the addresses in the .eh_frame section itself become
3392 	 locally-binding.
3393 
3394      (b) A shared library's .eh_frame section must encode locally-binding
3395 	 pointers in a relative (relocation-free) form.
3396 
3397    However, MIPS has traditionally not allowed directives like:
3398 
3399 	.long	x-.
3400 
3401    in cases where "x" is in a different section, or is not defined in the
3402    same assembly file.  We are therefore unable to emit the PC-relative
3403    form required by (b) at assembly time.
3404 
3405    Fortunately, the linker is able to convert absolute addresses into
3406    PC-relative addresses on our behalf.  Unfortunately, only certain
3407    versions of the linker know how to do this for indirect pointers,
3408    and for personality data.  We must fall back on using writable
3409    .eh_frame sections for shared libraries if the linker does not
3410    support this feature.  */
3411 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3412   (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
3413 
3414 /* For switching between MIPS16 and non-MIPS16 modes.  */
3415 #define SWITCHABLE_TARGET 1
3416 
3417 /* Several named MIPS patterns depend on Pmode.  These patterns have the
3418    form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3419    Add the appropriate suffix to generator function NAME and invoke it
3420    with arguments ARGS.  */
3421 #define PMODE_INSN(NAME, ARGS) \
3422   (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
3423 
3424 /* If we are *not* using multilibs and the default ABI is not ABI_32 we
3425    need to change these from /lib and /usr/lib.  */
3426 #if MIPS_ABI_DEFAULT == ABI_N32
3427 #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3428 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3429 #elif MIPS_ABI_DEFAULT == ABI_64
3430 #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3431 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3432 #endif
3433 
3434 /* Load store bonding is not supported by micromips and fix_24k.  The
3435    performance can be degraded for those targets.  Hence, do not bond for
3436    micromips or fix_24k.  */
3437 #define ENABLE_LD_ST_PAIRS \
3438   (TARGET_LOAD_STORE_PAIRS \
3439    && (TUNE_P5600 || TUNE_I6400 || TUNE_P6600) \
3440    && !TARGET_MICROMIPS && !TARGET_FIX_24K)
3441 
3442 #define NEED_INDICATE_EXEC_STACK 0
3443