1 /* Target-dependent code for the Motorola 88000 series.
2 
3    Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010, 2011
4    Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "gdbcore.h"
28 #include "gdbtypes.h"
29 #include "regcache.h"
30 #include "regset.h"
31 #include "symtab.h"
32 #include "trad-frame.h"
33 #include "value.h"
34 
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37 
38 #include "m88k-tdep.h"
39 
40 /* Fetch the instruction at PC.  */
41 
42 static unsigned long
m88k_fetch_instruction(CORE_ADDR pc,enum bfd_endian byte_order)43 m88k_fetch_instruction (CORE_ADDR pc, enum bfd_endian byte_order)
44 {
45   return read_memory_unsigned_integer (pc, 4, byte_order);
46 }
47 
48 /* Register information.  */
49 
50 /* Return the name of register REGNUM.  */
51 
52 static const char *
m88k_register_name(struct gdbarch * gdbarch,int regnum)53 m88k_register_name (struct gdbarch *gdbarch, int regnum)
54 {
55   static char *register_names[] =
56   {
57     "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
58     "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
59     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
60     "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
61     "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
62   };
63 
64   if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
65     return register_names[regnum];
66 
67   return NULL;
68 }
69 
70 /* Return the GDB type object for the "standard" data type of data in
71    register REGNUM.  */
72 
73 static struct type *
m88k_register_type(struct gdbarch * gdbarch,int regnum)74 m88k_register_type (struct gdbarch *gdbarch, int regnum)
75 {
76   /* SXIP, SNIP, SFIP and R1 contain code addresses.  */
77   if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
78       || regnum == M88K_R1_REGNUM)
79     return builtin_type (gdbarch)->builtin_func_ptr;
80 
81   /* R30 and R31 typically contains data addresses.  */
82   if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
83     return builtin_type (gdbarch)->builtin_data_ptr;
84 
85   return builtin_type (gdbarch)->builtin_int32;
86 }
87 
88 
89 static CORE_ADDR
m88k_addr_bits_remove(struct gdbarch * gdbarch,CORE_ADDR addr)90 m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
91 {
92   /* All instructures are 4-byte aligned.  The lower 2 bits of SXIP,
93      SNIP and SFIP are used for special purposes: bit 0 is the
94      exception bit and bit 1 is the valid bit.  */
95   return addr & ~0x3;
96 }
97 
98 /* Use the program counter to determine the contents and size of a
99    breakpoint instruction.  Return a pointer to a string of bytes that
100    encode a breakpoint instruction, store the length of the string in
101    *LEN and optionally adjust *PC to point to the correct memory
102    location for inserting the breakpoint.  */
103 
104 static const gdb_byte *
m88k_breakpoint_from_pc(struct gdbarch * gdbarch,CORE_ADDR * pc,int * len)105 m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
106 {
107   /* tb 0,r0,511 */
108   static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
109 
110   *len = sizeof (break_insn);
111   return break_insn;
112 }
113 
114 static CORE_ADDR
m88k_unwind_pc(struct gdbarch * gdbarch,struct frame_info * next_frame)115 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
116 {
117   CORE_ADDR pc;
118 
119   pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
120   return m88k_addr_bits_remove (gdbarch, pc);
121 }
122 
123 static void
m88k_write_pc(struct regcache * regcache,CORE_ADDR pc)124 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
125 {
126   /* According to the MC88100 RISC Microprocessor User's Manual,
127      section 6.4.3.1.2:
128 
129      "... can be made to return to a particular instruction by placing
130      a valid instruction address in the SNIP and the next sequential
131      instruction address in the SFIP (with V bits set and E bits
132      clear).  The rte resumes execution at the instruction pointed to
133      by the SNIP, then the SFIP."
134 
135      The E bit is the least significant bit (bit 0).  The V (valid)
136      bit is bit 1.  This is why we logical or 2 into the values we are
137      writing below.  It turns out that SXIP plays no role when
138      returning from an exception so nothing special has to be done
139      with it.  We could even (presumably) give it a totally bogus
140      value.  */
141 
142   regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
143   regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
144   regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
145 }
146 
147 
148 /* The functions on this page are intended to be used to classify
149    function arguments.  */
150 
151 /* Check whether TYPE is "Integral or Pointer".  */
152 
153 static int
m88k_integral_or_pointer_p(const struct type * type)154 m88k_integral_or_pointer_p (const struct type *type)
155 {
156   switch (TYPE_CODE (type))
157     {
158     case TYPE_CODE_INT:
159     case TYPE_CODE_BOOL:
160     case TYPE_CODE_CHAR:
161     case TYPE_CODE_ENUM:
162     case TYPE_CODE_RANGE:
163       {
164 	/* We have byte, half-word, word and extended-word/doubleword
165            integral types.  */
166 	int len = TYPE_LENGTH (type);
167 	return (len == 1 || len == 2 || len == 4 || len == 8);
168       }
169       return 1;
170     case TYPE_CODE_PTR:
171     case TYPE_CODE_REF:
172       {
173 	/* Allow only 32-bit pointers.  */
174 	return (TYPE_LENGTH (type) == 4);
175       }
176       return 1;
177     default:
178       break;
179     }
180 
181   return 0;
182 }
183 
184 /* Check whether TYPE is "Floating".  */
185 
186 static int
m88k_floating_p(const struct type * type)187 m88k_floating_p (const struct type *type)
188 {
189   switch (TYPE_CODE (type))
190     {
191     case TYPE_CODE_FLT:
192       {
193 	int len = TYPE_LENGTH (type);
194 	return (len == 4 || len == 8);
195       }
196     default:
197       break;
198     }
199 
200   return 0;
201 }
202 
203 /* Check whether TYPE is "Structure or Union".  */
204 
205 static int
m88k_structure_or_union_p(const struct type * type)206 m88k_structure_or_union_p (const struct type *type)
207 {
208   switch (TYPE_CODE (type))
209     {
210     case TYPE_CODE_STRUCT:
211     case TYPE_CODE_UNION:
212       return 1;
213     default:
214       break;
215     }
216 
217   return 0;
218 }
219 
220 /* Check whether TYPE has 8-byte alignment.  */
221 
222 static int
m88k_8_byte_align_p(struct type * type)223 m88k_8_byte_align_p (struct type *type)
224 {
225   if (m88k_structure_or_union_p (type))
226     {
227       int i;
228 
229       for (i = 0; i < TYPE_NFIELDS (type); i++)
230 	{
231 	  struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
232 
233 	  if (m88k_8_byte_align_p (subtype))
234 	    return 1;
235 	}
236     }
237 
238   if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
239     return (TYPE_LENGTH (type) == 8);
240 
241   return 0;
242 }
243 
244 /* Check whether TYPE can be passed in a register.  */
245 
246 static int
m88k_in_register_p(struct type * type)247 m88k_in_register_p (struct type *type)
248 {
249   if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
250     return 1;
251 
252   if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
253     return 1;
254 
255   return 0;
256 }
257 
258 static CORE_ADDR
m88k_store_arguments(struct regcache * regcache,int nargs,struct value ** args,CORE_ADDR sp)259 m88k_store_arguments (struct regcache *regcache, int nargs,
260 		      struct value **args, CORE_ADDR sp)
261 {
262   struct gdbarch *gdbarch = get_regcache_arch (regcache);
263   int num_register_words = 0;
264   int num_stack_words = 0;
265   int i;
266 
267   for (i = 0; i < nargs; i++)
268     {
269       struct type *type = value_type (args[i]);
270       int len = TYPE_LENGTH (type);
271 
272       if (m88k_integral_or_pointer_p (type) && len < 4)
273 	{
274 	  args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
275 				args[i]);
276 	  type = value_type (args[i]);
277 	  len = TYPE_LENGTH (type);
278 	}
279 
280       if (m88k_in_register_p (type))
281 	{
282 	  int num_words = 0;
283 
284 	  if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
285 	    num_words++;
286 
287 	  num_words += ((len + 3) / 4);
288 	  if (num_register_words + num_words <= 8)
289 	    {
290 	      num_register_words += num_words;
291 	      continue;
292 	    }
293 
294 	  /* We've run out of available registers.  Pass the argument
295              on the stack.  */
296 	}
297 
298       if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
299 	num_stack_words++;
300 
301       num_stack_words += ((len + 3) / 4);
302     }
303 
304   /* Allocate stack space.  */
305   sp = align_down (sp - 32 - num_stack_words * 4, 16);
306   num_stack_words = num_register_words = 0;
307 
308   for (i = 0; i < nargs; i++)
309     {
310       const bfd_byte *valbuf = value_contents (args[i]);
311       struct type *type = value_type (args[i]);
312       int len = TYPE_LENGTH (type);
313       int stack_word = num_stack_words;
314 
315       if (m88k_in_register_p (type))
316 	{
317 	  int register_word = num_register_words;
318 
319 	  if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
320 	    register_word++;
321 
322 	  gdb_assert (len == 4 || len == 8);
323 
324 	  if (register_word + len / 8 < 8)
325 	    {
326 	      int regnum = M88K_R2_REGNUM + register_word;
327 
328 	      regcache_raw_write (regcache, regnum, valbuf);
329 	      if (len > 4)
330 		regcache_raw_write (regcache, regnum + 1, valbuf + 4);
331 
332 	      num_register_words = (register_word + len / 4);
333 	      continue;
334 	    }
335 	}
336 
337       if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
338 	stack_word++;
339 
340       write_memory (sp + stack_word * 4, valbuf, len);
341       num_stack_words = (stack_word + (len + 3) / 4);
342     }
343 
344   return sp;
345 }
346 
347 static CORE_ADDR
m88k_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)348 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
349 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
350 		      struct value **args, CORE_ADDR sp, int struct_return,
351 		      CORE_ADDR struct_addr)
352 {
353   /* Set up the function arguments.  */
354   sp = m88k_store_arguments (regcache, nargs, args, sp);
355   gdb_assert (sp % 16 == 0);
356 
357   /* Store return value address.  */
358   if (struct_return)
359     regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
360 
361   /* Store the stack pointer and return address in the appropriate
362      registers.  */
363   regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
364   regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
365 
366   /* Return the stack pointer.  */
367   return sp;
368 }
369 
370 static struct frame_id
m88k_dummy_id(struct gdbarch * arch,struct frame_info * this_frame)371 m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
372 {
373   CORE_ADDR sp;
374 
375   sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
376   return frame_id_build (sp, get_frame_pc (this_frame));
377 }
378 
379 
380 /* Determine, for architecture GDBARCH, how a return value of TYPE
381    should be returned.  If it is supposed to be returned in registers,
382    and READBUF is non-zero, read the appropriate value from REGCACHE,
383    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
384    from WRITEBUF into REGCACHE.  */
385 
386 static enum return_value_convention
m88k_return_value(struct gdbarch * gdbarch,struct type * func_type,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)387 m88k_return_value (struct gdbarch *gdbarch, struct type *func_type,
388 		   struct type *type, struct regcache *regcache,
389 		   gdb_byte *readbuf, const gdb_byte *writebuf)
390 {
391   int len = TYPE_LENGTH (type);
392   gdb_byte buf[8];
393 
394   if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
395     return RETURN_VALUE_STRUCT_CONVENTION;
396 
397   if (readbuf)
398     {
399       /* Read the contents of R2 and (if necessary) R3.  */
400       regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
401       if (len > 4)
402 	{
403 	  regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
404 	  gdb_assert (len == 8);
405 	  memcpy (readbuf, buf, len);
406 	}
407       else
408 	{
409 	  /* Just stripping off any unused bytes should preserve the
410              signed-ness just fine.  */
411 	  memcpy (readbuf, buf + 4 - len, len);
412 	}
413     }
414 
415   if (writebuf)
416     {
417       /* Read the contents to R2 and (if necessary) R3.  */
418       if (len > 4)
419 	{
420 	  gdb_assert (len == 8);
421 	  memcpy (buf, writebuf, 8);
422 	  regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
423 	}
424       else
425 	{
426 	  /* ??? Do we need to do any sign-extension here?  */
427 	  memcpy (buf + 4 - len, writebuf, len);
428 	}
429       regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
430     }
431 
432   return RETURN_VALUE_REGISTER_CONVENTION;
433 }
434 
435 /* Default frame unwinder.  */
436 
437 struct m88k_frame_cache
438 {
439   /* Base address.  */
440   CORE_ADDR base;
441   CORE_ADDR pc;
442 
443   int sp_offset;
444   int fp_offset;
445 
446   /* Table of saved registers.  */
447   struct trad_frame_saved_reg *saved_regs;
448 };
449 
450 /* Prologue analysis.  */
451 
452 /* Macros for extracting fields from instructions.  */
453 
454 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
455 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
456 #define	SUBU_OFFSET(x)	((unsigned)(x & 0xFFFF))
457 #define	ST_OFFSET(x)	((unsigned)((x) & 0xFFFF))
458 #define	ST_SRC(x)	EXTRACT_FIELD ((x), 21, 5)
459 #define	ADDU_OFFSET(x)	((unsigned)(x & 0xFFFF))
460 
461 /* Possible actions to be taken by the prologue analyzer for the
462    instructions it encounters.  */
463 
464 enum m88k_prologue_insn_action
465 {
466   M88K_PIA_SKIP,		/* Ignore.  */
467   M88K_PIA_NOTE_ST,		/* Note register store.  */
468   M88K_PIA_NOTE_STD,		/* Note register pair store.  */
469   M88K_PIA_NOTE_SP_ADJUSTMENT,	/* Note stack pointer adjustment.  */
470   M88K_PIA_NOTE_FP_ASSIGNMENT,	/* Note frame pointer assignment.  */
471   M88K_PIA_NOTE_BRANCH,		/* Note branch.  */
472   M88K_PIA_NOTE_PROLOGUE_END	/* Note end of prologue.  */
473 };
474 
475 /* Table of instructions that may comprise a function prologue.  */
476 
477 struct m88k_prologue_insn
478 {
479   unsigned long insn;
480   unsigned long mask;
481   enum m88k_prologue_insn_action action;
482 };
483 
484 struct m88k_prologue_insn m88k_prologue_insn_table[] =
485 {
486   /* Various register move instructions.  */
487   { 0x58000000, 0xf800ffff, M88K_PIA_SKIP },     /* or/or.u with immed of 0 */
488   { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP },     /* or rd,r0,rs */
489   { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP },     /* or rd,rs,r0 */
490 
491   /* Various other instructions.  */
492   { 0x58000000, 0xf8000000, M88K_PIA_SKIP },     /* or/or.u */
493 
494   /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8.  */
495   { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
496 
497   /* Frame pointer assignment: "addu r30,r31,n".  */
498   { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
499 
500   /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n".  */
501   { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST },  /* st rx,sp,n */
502   { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
503 
504   /* Instructions needed for setting up r25 for pic code.  */
505   { 0x5f200000, 0xffff0000, M88K_PIA_SKIP },     /* or.u r25,r0,offset_high */
506   { 0xcc000002, 0xffffffff, M88K_PIA_SKIP },     /* bsr.n Lab */
507   { 0x5b390000, 0xffff0000, M88K_PIA_SKIP },     /* or r25,r25,offset_low */
508   { 0xf7396001, 0xffffffff, M88K_PIA_SKIP },     /* Lab: addu r25,r25,r1 */
509 
510   /* Various branch or jump instructions which have a delay slot --
511      these do not form part of the prologue, but the instruction in
512      the delay slot might be a store instruction which should be
513      noted.  */
514   { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
515                                       /* br.n, bsr.n, bb0.n, or bb1.n */
516   { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
517   { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
518 
519   /* Catch all.  Ends prologue analysis.  */
520   { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
521 };
522 
523 /* Do a full analysis of the function prologue at PC and update CACHE
524    accordingly.  Bail out early if LIMIT is reached.  Return the
525    address where the analysis stopped.  If LIMIT points beyond the
526    function prologue, the return address should be the end of the
527    prologue.  */
528 
529 static CORE_ADDR
m88k_analyze_prologue(struct gdbarch * gdbarch,CORE_ADDR pc,CORE_ADDR limit,struct m88k_frame_cache * cache)530 m88k_analyze_prologue (struct gdbarch *gdbarch,
531 		       CORE_ADDR pc, CORE_ADDR limit,
532 		       struct m88k_frame_cache *cache)
533 {
534   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
535   CORE_ADDR end = limit;
536 
537   /* Provide a dummy cache if necessary.  */
538   if (cache == NULL)
539     {
540       size_t sizeof_saved_regs =
541 	(M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
542 
543       cache = alloca (sizeof (struct m88k_frame_cache));
544       cache->saved_regs = alloca (sizeof_saved_regs);
545 
546       /* We only initialize the members we care about.  */
547       cache->saved_regs[M88K_R1_REGNUM].addr = -1;
548       cache->fp_offset = -1;
549     }
550 
551   while (pc < limit)
552     {
553       struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
554       unsigned long insn = m88k_fetch_instruction (pc, byte_order);
555 
556       while ((insn & pi->mask) != pi->insn)
557 	pi++;
558 
559       switch (pi->action)
560 	{
561 	case M88K_PIA_SKIP:
562 	  /* If we have a frame pointer, and R1 has been saved,
563              consider this instruction as not being part of the
564              prologue.  */
565 	  if (cache->fp_offset != -1
566 	      && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
567 	    return min (pc, end);
568 	  break;
569 
570 	case M88K_PIA_NOTE_ST:
571 	case M88K_PIA_NOTE_STD:
572 	  /* If no frame has been allocated, the stores aren't part of
573              the prologue.  */
574 	  if (cache->sp_offset == 0)
575 	    return min (pc, end);
576 
577 	  /* Record location of saved registers.  */
578 	  {
579 	    int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
580 	    ULONGEST offset = ST_OFFSET (insn);
581 
582 	    cache->saved_regs[regnum].addr = offset;
583 	    if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
584 	      cache->saved_regs[regnum + 1].addr = offset + 4;
585 	  }
586 	  break;
587 
588 	case M88K_PIA_NOTE_SP_ADJUSTMENT:
589 	  /* A second stack pointer adjustment isn't part of the
590              prologue.  */
591 	  if (cache->sp_offset != 0)
592 	    return min (pc, end);
593 
594 	  /* Store stack pointer adjustment.  */
595 	  cache->sp_offset = -SUBU_OFFSET (insn);
596 	  break;
597 
598 	case M88K_PIA_NOTE_FP_ASSIGNMENT:
599 	  /* A second frame pointer assignment isn't part of the
600              prologue.  */
601 	  if (cache->fp_offset != -1)
602 	    return min (pc, end);
603 
604 	  /* Record frame pointer assignment.  */
605 	  cache->fp_offset = ADDU_OFFSET (insn);
606 	  break;
607 
608 	case M88K_PIA_NOTE_BRANCH:
609 	  /* The branch instruction isn't part of the prologue, but
610              the instruction in the delay slot might be.  Limit the
611              prologue analysis to the delay slot and record the branch
612              instruction as the end of the prologue.  */
613 	  limit = min (limit, pc + 2 * M88K_INSN_SIZE);
614 	  end = pc;
615 	  break;
616 
617 	case M88K_PIA_NOTE_PROLOGUE_END:
618 	  return min (pc, end);
619 	}
620 
621       pc += M88K_INSN_SIZE;
622     }
623 
624   return end;
625 }
626 
627 /* An upper limit to the size of the prologue.  */
628 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
629 
630 /* Return the address of first real instruction of the function
631    starting at PC.  */
632 
633 static CORE_ADDR
m88k_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR pc)634 m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
635 {
636   struct symtab_and_line sal;
637   CORE_ADDR func_start, func_end;
638 
639   /* This is the preferred method, find the end of the prologue by
640      using the debugging information.  */
641   if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
642     {
643       sal = find_pc_line (func_start, 0);
644 
645       if (sal.end < func_end && pc <= sal.end)
646 	return sal.end;
647     }
648 
649   return m88k_analyze_prologue (gdbarch, pc, pc + m88k_max_prologue_size,
650 				NULL);
651 }
652 
653 static struct m88k_frame_cache *
m88k_frame_cache(struct frame_info * this_frame,void ** this_cache)654 m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
655 {
656   struct gdbarch *gdbarch = get_frame_arch (this_frame);
657   struct m88k_frame_cache *cache;
658   CORE_ADDR frame_sp;
659 
660   if (*this_cache)
661     return *this_cache;
662 
663   cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
664   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
665   cache->fp_offset = -1;
666 
667   cache->pc = get_frame_func (this_frame);
668   if (cache->pc != 0)
669     m88k_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
670 			   cache);
671 
672   /* Calculate the stack pointer used in the prologue.  */
673   if (cache->fp_offset != -1)
674     {
675       CORE_ADDR fp;
676 
677       fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
678       frame_sp = fp - cache->fp_offset;
679     }
680   else
681     {
682       /* If we know where the return address is saved, we can take a
683          solid guess at what the frame pointer should be.  */
684       if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
685 	cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
686       frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
687     }
688 
689   /* Now that we know the stack pointer, adjust the location of the
690      saved registers.  */
691   {
692     int regnum;
693 
694     for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
695       if (cache->saved_regs[regnum].addr != -1)
696 	cache->saved_regs[regnum].addr += frame_sp;
697   }
698 
699   /* Calculate the frame's base.  */
700   cache->base = frame_sp - cache->sp_offset;
701   trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
702 
703   /* Identify SXIP with the return address in R1.  */
704   cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
705 
706   *this_cache = cache;
707   return cache;
708 }
709 
710 static void
m88k_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)711 m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
712 		    struct frame_id *this_id)
713 {
714   struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
715 
716   /* This marks the outermost frame.  */
717   if (cache->base == 0)
718     return;
719 
720   (*this_id) = frame_id_build (cache->base, cache->pc);
721 }
722 
723 static struct value *
m88k_frame_prev_register(struct frame_info * this_frame,void ** this_cache,int regnum)724 m88k_frame_prev_register (struct frame_info *this_frame,
725 			  void **this_cache, int regnum)
726 {
727   struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
728 
729   if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
730     {
731       struct value *value;
732       CORE_ADDR pc;
733 
734       value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
735 					    M88K_SXIP_REGNUM);
736       pc = value_as_long (value);
737       release_value (value);
738       value_free (value);
739 
740       if (regnum == M88K_SFIP_REGNUM)
741 	pc += 4;
742 
743       return frame_unwind_got_constant (this_frame, regnum, pc + 4);
744     }
745 
746   return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
747 }
748 
749 static const struct frame_unwind m88k_frame_unwind =
750 {
751   NORMAL_FRAME,
752   default_frame_unwind_stop_reason,
753   m88k_frame_this_id,
754   m88k_frame_prev_register,
755   NULL,
756   default_frame_sniffer
757 };
758 
759 
760 static CORE_ADDR
m88k_frame_base_address(struct frame_info * this_frame,void ** this_cache)761 m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
762 {
763   struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
764 
765   if (cache->fp_offset != -1)
766     return cache->base + cache->sp_offset + cache->fp_offset;
767 
768   return 0;
769 }
770 
771 static const struct frame_base m88k_frame_base =
772 {
773   &m88k_frame_unwind,
774   m88k_frame_base_address,
775   m88k_frame_base_address,
776   m88k_frame_base_address
777 };
778 
779 
780 /* Core file support.  */
781 
782 /* Supply register REGNUM from the buffer specified by GREGS and LEN
783    in the general-purpose register set REGSET to register cache
784    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
785 
786 static void
m88k_supply_gregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * gregs,size_t len)787 m88k_supply_gregset (const struct regset *regset,
788 		     struct regcache *regcache,
789 		     int regnum, const void *gregs, size_t len)
790 {
791   const gdb_byte *regs = gregs;
792   int i;
793 
794   for (i = 0; i < M88K_NUM_REGS; i++)
795     {
796       if (regnum == i || regnum == -1)
797 	regcache_raw_supply (regcache, i, regs + i * 4);
798     }
799 }
800 
801 /* Motorola 88000 register set.  */
802 
803 static struct regset m88k_gregset =
804 {
805   NULL,
806   m88k_supply_gregset
807 };
808 
809 /* Return the appropriate register set for the core section identified
810    by SECT_NAME and SECT_SIZE.  */
811 
812 static const struct regset *
m88k_regset_from_core_section(struct gdbarch * gdbarch,const char * sect_name,size_t sect_size)813 m88k_regset_from_core_section (struct gdbarch *gdbarch,
814 			       const char *sect_name, size_t sect_size)
815 {
816   if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
817     return &m88k_gregset;
818 
819   return NULL;
820 }
821 
822 
823 static struct gdbarch *
m88k_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)824 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
825 {
826   struct gdbarch *gdbarch;
827 
828   /* If there is already a candidate, use it.  */
829   arches = gdbarch_list_lookup_by_info (arches, &info);
830   if (arches != NULL)
831     return arches->gdbarch;
832 
833   /* Allocate space for the new architecture.  */
834   gdbarch = gdbarch_alloc (&info, NULL);
835 
836   /* There is no real `long double'.  */
837   set_gdbarch_long_double_bit (gdbarch, 64);
838   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
839 
840   set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
841   set_gdbarch_register_name (gdbarch, m88k_register_name);
842   set_gdbarch_register_type (gdbarch, m88k_register_type);
843 
844   /* Register numbers of various important registers.  */
845   set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
846   set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
847 
848   /* Core file support.  */
849   set_gdbarch_regset_from_core_section
850     (gdbarch, m88k_regset_from_core_section);
851 
852   set_gdbarch_print_insn (gdbarch, print_insn_m88k);
853 
854   set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
855 
856   /* Stack grows downward.  */
857   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
858 
859   /* Call dummy code.  */
860   set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
861   set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
862 
863   /* Return value info.  */
864   set_gdbarch_return_value (gdbarch, m88k_return_value);
865 
866   set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
867   set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
868   set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
869   set_gdbarch_write_pc (gdbarch, m88k_write_pc);
870 
871   frame_base_set_default (gdbarch, &m88k_frame_base);
872   frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
873 
874   return gdbarch;
875 }
876 
877 
878 /* Provide a prototype to silence -Wmissing-prototypes.  */
879 void _initialize_m88k_tdep (void);
880 
881 void
_initialize_m88k_tdep(void)882 _initialize_m88k_tdep (void)
883 {
884   gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
885 }
886