1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: fixed_array.h
17 // -----------------------------------------------------------------------------
18 //
19 // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20 // the array can be determined at run-time. It is a good replacement for
21 // non-standard and deprecated uses of `alloca()` and variable length arrays
22 // within the GCC extension. (See
23 // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24 //
25 // `FixedArray` allocates small arrays inline, keeping performance fast by
26 // avoiding heap operations. It also helps reduce the chances of
27 // accidentally overflowing your stack if large input is passed to
28 // your function.
29 
30 #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31 #define ABSL_CONTAINER_FIXED_ARRAY_H_
32 
33 #include <algorithm>
34 #include <array>
35 #include <cassert>
36 #include <cstddef>
37 #include <initializer_list>
38 #include <iterator>
39 #include <limits>
40 #include <memory>
41 #include <new>
42 #include <type_traits>
43 
44 #include "absl/algorithm/algorithm.h"
45 #include "absl/base/dynamic_annotations.h"
46 #include "absl/base/internal/throw_delegate.h"
47 #include "absl/base/macros.h"
48 #include "absl/base/optimization.h"
49 #include "absl/base/port.h"
50 #include "absl/container/internal/compressed_tuple.h"
51 #include "absl/memory/memory.h"
52 
53 namespace absl {
54 
55 constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
56 
57 // -----------------------------------------------------------------------------
58 // FixedArray
59 // -----------------------------------------------------------------------------
60 //
61 // A `FixedArray` provides a run-time fixed-size array, allocating a small array
62 // inline for efficiency.
63 //
64 // Most users should not specify an `inline_elements` argument and let
65 // `FixedArray` automatically determine the number of elements
66 // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
67 // `FixedArray` implementation will use inline storage for arrays with a
68 // length <= `inline_elements`.
69 //
70 // Note that a `FixedArray` constructed with a `size_type` argument will
71 // default-initialize its values by leaving trivially constructible types
72 // uninitialized (e.g. int, int[4], double), and others default-constructed.
73 // This matches the behavior of c-style arrays and `std::array`, but not
74 // `std::vector`.
75 //
76 // Note that `FixedArray` does not provide a public allocator; if it requires a
77 // heap allocation, it will do so with global `::operator new[]()` and
78 // `::operator delete[]()`, even if T provides class-scope overrides for these
79 // operators.
80 template <typename T, size_t N = kFixedArrayUseDefault,
81           typename A = std::allocator<T>>
82 class FixedArray {
83   static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
84                 "Arrays with unknown bounds cannot be used with FixedArray.");
85 
86   static constexpr size_t kInlineBytesDefault = 256;
87 
88   using AllocatorTraits = std::allocator_traits<A>;
89   // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
90   // but this seems to be mostly pedantic.
91   template <typename Iterator>
92   using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
93       typename std::iterator_traits<Iterator>::iterator_category,
94       std::forward_iterator_tag>::value>;
NoexceptCopyable()95   static constexpr bool NoexceptCopyable() {
96     return std::is_nothrow_copy_constructible<StorageElement>::value &&
97            absl::allocator_is_nothrow<allocator_type>::value;
98   }
NoexceptMovable()99   static constexpr bool NoexceptMovable() {
100     return std::is_nothrow_move_constructible<StorageElement>::value &&
101            absl::allocator_is_nothrow<allocator_type>::value;
102   }
DefaultConstructorIsNonTrivial()103   static constexpr bool DefaultConstructorIsNonTrivial() {
104     return !absl::is_trivially_default_constructible<StorageElement>::value;
105   }
106 
107  public:
108   using allocator_type = typename AllocatorTraits::allocator_type;
109   using value_type = typename allocator_type::value_type;
110   using pointer = typename allocator_type::pointer;
111   using const_pointer = typename allocator_type::const_pointer;
112   using reference = typename allocator_type::reference;
113   using const_reference = typename allocator_type::const_reference;
114   using size_type = typename allocator_type::size_type;
115   using difference_type = typename allocator_type::difference_type;
116   using iterator = pointer;
117   using const_iterator = const_pointer;
118   using reverse_iterator = std::reverse_iterator<iterator>;
119   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
120 
121   static constexpr size_type inline_elements =
122       (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
123                                   : static_cast<size_type>(N));
124 
125   FixedArray(
126       const FixedArray& other,
noexcept(NoexceptCopyable ())127       const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
128       : FixedArray(other.begin(), other.end(), a) {}
129 
130   FixedArray(
131       FixedArray&& other,
noexcept(NoexceptMovable ())132       const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
133       : FixedArray(std::make_move_iterator(other.begin()),
134                    std::make_move_iterator(other.end()), a) {}
135 
136   // Creates an array object that can store `n` elements.
137   // Note that trivially constructible elements will be uninitialized.
138   explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
storage_(n,a)139       : storage_(n, a) {
140     if (DefaultConstructorIsNonTrivial()) {
141       memory_internal::ConstructStorage(storage_.alloc(), storage_.begin(),
142                                         storage_.end());
143     }
144   }
145 
146   // Creates an array initialized with `n` copies of `val`.
147   FixedArray(size_type n, const value_type& val,
148              const allocator_type& a = allocator_type())
storage_(n,a)149       : storage_(n, a) {
150     memory_internal::ConstructStorage(storage_.alloc(), storage_.begin(),
151                                       storage_.end(), val);
152   }
153 
154   // Creates an array initialized with the size and contents of `init_list`.
155   FixedArray(std::initializer_list<value_type> init_list,
156              const allocator_type& a = allocator_type())
157       : FixedArray(init_list.begin(), init_list.end(), a) {}
158 
159   // Creates an array initialized with the elements from the input
160   // range. The array's size will always be `std::distance(first, last)`.
161   // REQUIRES: Iterator must be a forward_iterator or better.
162   template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
163   FixedArray(Iterator first, Iterator last,
164              const allocator_type& a = allocator_type())
storage_(std::distance (first,last),a)165       : storage_(std::distance(first, last), a) {
166     memory_internal::CopyToStorageFromRange(storage_.alloc(), storage_.begin(),
167                                             first, last);
168   }
169 
~FixedArray()170   ~FixedArray() noexcept {
171     for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
172       AllocatorTraits::destroy(*storage_.alloc(), cur);
173     }
174   }
175 
176   // Assignments are deleted because they break the invariant that the size of a
177   // `FixedArray` never changes.
178   void operator=(FixedArray&&) = delete;
179   void operator=(const FixedArray&) = delete;
180 
181   // FixedArray::size()
182   //
183   // Returns the length of the fixed array.
size()184   size_type size() const { return storage_.size(); }
185 
186   // FixedArray::max_size()
187   //
188   // Returns the largest possible value of `std::distance(begin(), end())` for a
189   // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
190   // over the number of bytes taken by T.
max_size()191   constexpr size_type max_size() const {
192     return std::numeric_limits<difference_type>::max() / sizeof(value_type);
193   }
194 
195   // FixedArray::empty()
196   //
197   // Returns whether or not the fixed array is empty.
empty()198   bool empty() const { return size() == 0; }
199 
200   // FixedArray::memsize()
201   //
202   // Returns the memory size of the fixed array in bytes.
memsize()203   size_t memsize() const { return size() * sizeof(value_type); }
204 
205   // FixedArray::data()
206   //
207   // Returns a const T* pointer to elements of the `FixedArray`. This pointer
208   // can be used to access (but not modify) the contained elements.
data()209   const_pointer data() const { return AsValueType(storage_.begin()); }
210 
211   // Overload of FixedArray::data() to return a T* pointer to elements of the
212   // fixed array. This pointer can be used to access and modify the contained
213   // elements.
data()214   pointer data() { return AsValueType(storage_.begin()); }
215 
216   // FixedArray::operator[]
217   //
218   // Returns a reference the ith element of the fixed array.
219   // REQUIRES: 0 <= i < size()
220   reference operator[](size_type i) {
221     assert(i < size());
222     return data()[i];
223   }
224 
225   // Overload of FixedArray::operator()[] to return a const reference to the
226   // ith element of the fixed array.
227   // REQUIRES: 0 <= i < size()
228   const_reference operator[](size_type i) const {
229     assert(i < size());
230     return data()[i];
231   }
232 
233   // FixedArray::at
234   //
235   // Bounds-checked access.  Returns a reference to the ith element of the
236   // fiexed array, or throws std::out_of_range
at(size_type i)237   reference at(size_type i) {
238     if (ABSL_PREDICT_FALSE(i >= size())) {
239       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
240     }
241     return data()[i];
242   }
243 
244   // Overload of FixedArray::at() to return a const reference to the ith element
245   // of the fixed array.
at(size_type i)246   const_reference at(size_type i) const {
247     if (ABSL_PREDICT_FALSE(i >= size())) {
248       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
249     }
250     return data()[i];
251   }
252 
253   // FixedArray::front()
254   //
255   // Returns a reference to the first element of the fixed array.
front()256   reference front() { return *begin(); }
257 
258   // Overload of FixedArray::front() to return a reference to the first element
259   // of a fixed array of const values.
front()260   const_reference front() const { return *begin(); }
261 
262   // FixedArray::back()
263   //
264   // Returns a reference to the last element of the fixed array.
back()265   reference back() { return *(end() - 1); }
266 
267   // Overload of FixedArray::back() to return a reference to the last element
268   // of a fixed array of const values.
back()269   const_reference back() const { return *(end() - 1); }
270 
271   // FixedArray::begin()
272   //
273   // Returns an iterator to the beginning of the fixed array.
begin()274   iterator begin() { return data(); }
275 
276   // Overload of FixedArray::begin() to return a const iterator to the
277   // beginning of the fixed array.
begin()278   const_iterator begin() const { return data(); }
279 
280   // FixedArray::cbegin()
281   //
282   // Returns a const iterator to the beginning of the fixed array.
cbegin()283   const_iterator cbegin() const { return begin(); }
284 
285   // FixedArray::end()
286   //
287   // Returns an iterator to the end of the fixed array.
end()288   iterator end() { return data() + size(); }
289 
290   // Overload of FixedArray::end() to return a const iterator to the end of the
291   // fixed array.
end()292   const_iterator end() const { return data() + size(); }
293 
294   // FixedArray::cend()
295   //
296   // Returns a const iterator to the end of the fixed array.
cend()297   const_iterator cend() const { return end(); }
298 
299   // FixedArray::rbegin()
300   //
301   // Returns a reverse iterator from the end of the fixed array.
rbegin()302   reverse_iterator rbegin() { return reverse_iterator(end()); }
303 
304   // Overload of FixedArray::rbegin() to return a const reverse iterator from
305   // the end of the fixed array.
rbegin()306   const_reverse_iterator rbegin() const {
307     return const_reverse_iterator(end());
308   }
309 
310   // FixedArray::crbegin()
311   //
312   // Returns a const reverse iterator from the end of the fixed array.
crbegin()313   const_reverse_iterator crbegin() const { return rbegin(); }
314 
315   // FixedArray::rend()
316   //
317   // Returns a reverse iterator from the beginning of the fixed array.
rend()318   reverse_iterator rend() { return reverse_iterator(begin()); }
319 
320   // Overload of FixedArray::rend() for returning a const reverse iterator
321   // from the beginning of the fixed array.
rend()322   const_reverse_iterator rend() const {
323     return const_reverse_iterator(begin());
324   }
325 
326   // FixedArray::crend()
327   //
328   // Returns a reverse iterator from the beginning of the fixed array.
crend()329   const_reverse_iterator crend() const { return rend(); }
330 
331   // FixedArray::fill()
332   //
333   // Assigns the given `value` to all elements in the fixed array.
fill(const value_type & val)334   void fill(const value_type& val) { std::fill(begin(), end(), val); }
335 
336   // Relational operators. Equality operators are elementwise using
337   // `operator==`, while order operators order FixedArrays lexicographically.
338   friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
339     return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
340   }
341 
342   friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
343     return !(lhs == rhs);
344   }
345 
346   friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
347     return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
348                                         rhs.end());
349   }
350 
351   friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
352     return rhs < lhs;
353   }
354 
355   friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
356     return !(rhs < lhs);
357   }
358 
359   friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
360     return !(lhs < rhs);
361   }
362  private:
363   // StorageElement
364   //
365   // For FixedArrays with a C-style-array value_type, StorageElement is a POD
366   // wrapper struct called StorageElementWrapper that holds the value_type
367   // instance inside. This is needed for construction and destruction of the
368   // entire array regardless of how many dimensions it has. For all other cases,
369   // StorageElement is just an alias of value_type.
370   //
371   // Maintainer's Note: The simpler solution would be to simply wrap value_type
372   // in a struct whether it's an array or not. That causes some paranoid
373   // diagnostics to misfire, believing that 'data()' returns a pointer to a
374   // single element, rather than the packed array that it really is.
375   // e.g.:
376   //
377   //     FixedArray<char> buf(1);
378   //     sprintf(buf.data(), "foo");
379   //
380   //     error: call to int __builtin___sprintf_chk(etc...)
381   //     will always overflow destination buffer [-Werror]
382   //
383   template <typename OuterT = value_type,
384             typename InnerT = absl::remove_extent_t<OuterT>,
385             size_t InnerN = std::extent<OuterT>::value>
386   struct StorageElementWrapper {
387     InnerT array[InnerN];
388   };
389 
390   using StorageElement =
391       absl::conditional_t<std::is_array<value_type>::value,
392                           StorageElementWrapper<value_type>, value_type>;
393   using StorageElementBuffer =
394       absl::aligned_storage_t<sizeof(StorageElement), alignof(StorageElement)>;
395 
AsValueType(pointer ptr)396   static pointer AsValueType(pointer ptr) { return ptr; }
AsValueType(StorageElementWrapper<value_type> * ptr)397   static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
398     return std::addressof(ptr->array);
399   }
400 
401   static_assert(sizeof(StorageElement) == sizeof(value_type), "");
402   static_assert(alignof(StorageElement) == alignof(value_type), "");
403 
404   struct NonEmptyInlinedStorage {
dataNonEmptyInlinedStorage405     StorageElement* data() {
406       return reinterpret_cast<StorageElement*>(inlined_storage_.data());
407     }
408 
409 #ifdef ADDRESS_SANITIZER
RedzoneBeginNonEmptyInlinedStorage410     void* RedzoneBegin() { return &redzone_begin_; }
RedzoneEndNonEmptyInlinedStorage411     void* RedzoneEnd() { return &redzone_end_ + 1; }
412 #endif  // ADDRESS_SANITIZER
413 
414     void AnnotateConstruct(size_type);
415     void AnnotateDestruct(size_type);
416 
417     ADDRESS_SANITIZER_REDZONE(redzone_begin_);
418     std::array<StorageElementBuffer, inline_elements> inlined_storage_;
419     ADDRESS_SANITIZER_REDZONE(redzone_end_);
420   };
421 
422   struct EmptyInlinedStorage {
dataEmptyInlinedStorage423     StorageElement* data() { return nullptr; }
AnnotateConstructEmptyInlinedStorage424     void AnnotateConstruct(size_type) {}
AnnotateDestructEmptyInlinedStorage425     void AnnotateDestruct(size_type) {}
426   };
427 
428   using InlinedStorage =
429       absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
430                           NonEmptyInlinedStorage>;
431 
432   // Storage
433   //
434   // An instance of Storage manages the inline and out-of-line memory for
435   // instances of FixedArray. This guarantees that even when construction of
436   // individual elements fails in the FixedArray constructor body, the
437   // destructor for Storage will still be called and out-of-line memory will be
438   // properly deallocated.
439   //
440   class Storage : public InlinedStorage {
441    public:
Storage(size_type n,const allocator_type & a)442     Storage(size_type n, const allocator_type& a)
443         : size_alloc_(n, a), data_(InitializeData()) {}
444 
~Storage()445     ~Storage() noexcept {
446       if (UsingInlinedStorage(size())) {
447         InlinedStorage::AnnotateDestruct(size());
448       } else {
449         AllocatorTraits::deallocate(*alloc(), AsValueType(begin()), size());
450       }
451     }
452 
size()453     size_type size() const { return size_alloc_.template get<0>(); }
begin()454     StorageElement* begin() const { return data_; }
end()455     StorageElement* end() const { return begin() + size(); }
alloc()456     allocator_type* alloc() {
457       return std::addressof(size_alloc_.template get<1>());
458     }
459 
460    private:
UsingInlinedStorage(size_type n)461     static bool UsingInlinedStorage(size_type n) {
462       return n <= inline_elements;
463     }
464 
InitializeData()465     StorageElement* InitializeData() {
466       if (UsingInlinedStorage(size())) {
467         InlinedStorage::AnnotateConstruct(size());
468         return InlinedStorage::data();
469       } else {
470         return reinterpret_cast<StorageElement*>(
471             AllocatorTraits::allocate(*alloc(), size()));
472       }
473     }
474 
475     // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
476     container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
477     StorageElement* data_;
478   };
479 
480   Storage storage_;
481 };
482 
483 template <typename T, size_t N, typename A>
484 constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
485 
486 template <typename T, size_t N, typename A>
487 constexpr typename FixedArray<T, N, A>::size_type
488     FixedArray<T, N, A>::inline_elements;
489 
490 template <typename T, size_t N, typename A>
AnnotateConstruct(typename FixedArray<T,N,A>::size_type n)491 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
492     typename FixedArray<T, N, A>::size_type n) {
493 #ifdef ADDRESS_SANITIZER
494   if (!n) return;
495   ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n);
496   ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin());
497 #endif                   // ADDRESS_SANITIZER
498   static_cast<void>(n);  // Mark used when not in asan mode
499 }
500 
501 template <typename T, size_t N, typename A>
AnnotateDestruct(typename FixedArray<T,N,A>::size_type n)502 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
503     typename FixedArray<T, N, A>::size_type n) {
504 #ifdef ADDRESS_SANITIZER
505   if (!n) return;
506   ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd());
507   ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data());
508 #endif                   // ADDRESS_SANITIZER
509   static_cast<void>(n);  // Mark used when not in asan mode
510 }
511 }  // namespace absl
512 #endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
513