1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_INCOMPLETE_CHOlESKY_H
12 #define EIGEN_INCOMPLETE_CHOlESKY_H
13 
14 #include <vector>
15 #include <list>
16 
17 namespace Eigen {
18 /**
19   * \brief Modified Incomplete Cholesky with dual threshold
20   *
21   * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
22   *              Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999
23   *
24   * \tparam Scalar the scalar type of the input matrices
25   * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
26     *               or Upper. Default is Lower.
27   * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
28   *                       unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
29   *
30   * \implsparsesolverconcept
31   *
32   * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
33   * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
34   * fill-in reducing permutation as computed by the ordering method.
35   *
36   * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$  be the scaled matrix on which the factorization is carried out,
37   * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
38   * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
39   * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
40   * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
41   * the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
42   *
43   */
44 template <typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int> >
45 class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
46 {
47   protected:
48     typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
49     using Base::m_isInitialized;
50   public:
51     typedef typename NumTraits<Scalar>::Real RealScalar;
52     typedef _OrderingType OrderingType;
53     typedef typename OrderingType::PermutationType PermutationType;
54     typedef typename PermutationType::StorageIndex StorageIndex;
55     typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
56     typedef Matrix<Scalar,Dynamic,1> VectorSx;
57     typedef Matrix<RealScalar,Dynamic,1> VectorRx;
58     typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
59     typedef std::vector<std::list<StorageIndex> > VectorList;
60     enum { UpLo = _UpLo };
61     enum {
62       ColsAtCompileTime = Dynamic,
63       MaxColsAtCompileTime = Dynamic
64     };
65   public:
66 
67     /** Default constructor leaving the object in a partly non-initialized stage.
68       *
69       * You must call compute() or the pair analyzePattern()/factorize() to make it valid.
70       *
71       * \sa IncompleteCholesky(const MatrixType&)
72       */
IncompleteCholesky()73     IncompleteCholesky() : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false) {}
74 
75     /** Constructor computing the incomplete factorization for the given matrix \a matrix.
76       */
77     template<typename MatrixType>
IncompleteCholesky(const MatrixType & matrix)78     IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false)
79     {
80       compute(matrix);
81     }
82 
83     /** \returns number of rows of the factored matrix */
rows()84     EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); }
85 
86     /** \returns number of columns of the factored matrix */
cols()87     EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); }
88 
89 
90     /** \brief Reports whether previous computation was successful.
91       *
92       * It triggers an assertion if \c *this has not been initialized through the respective constructor,
93       * or a call to compute() or analyzePattern().
94       *
95       * \returns \c Success if computation was successful,
96       *          \c NumericalIssue if the matrix appears to be negative.
97       */
info()98     ComputationInfo info() const
99     {
100       eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
101       return m_info;
102     }
103 
104     /** \brief Set the initial shift parameter \f$ \sigma \f$.
105       */
setInitialShift(RealScalar shift)106     void setInitialShift(RealScalar shift) { m_initialShift = shift; }
107 
108     /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
109       */
110     template<typename MatrixType>
analyzePattern(const MatrixType & mat)111     void analyzePattern(const MatrixType& mat)
112     {
113       OrderingType ord;
114       PermutationType pinv;
115       ord(mat.template selfadjointView<UpLo>(), pinv);
116       if(pinv.size()>0) m_perm = pinv.inverse();
117       else              m_perm.resize(0);
118       m_L.resize(mat.rows(), mat.cols());
119       m_analysisIsOk = true;
120       m_isInitialized = true;
121       m_info = Success;
122     }
123 
124     /** \brief Performs the numerical factorization of the input matrix \a mat
125       *
126       * The method analyzePattern() or compute() must have been called beforehand
127       * with a matrix having the same pattern.
128       *
129       * \sa compute(), analyzePattern()
130       */
131     template<typename MatrixType>
132     void factorize(const MatrixType& mat);
133 
134     /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
135       *
136       * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
137       *
138       * \sa analyzePattern(), factorize()
139       */
140     template<typename MatrixType>
compute(const MatrixType & mat)141     void compute(const MatrixType& mat)
142     {
143       analyzePattern(mat);
144       factorize(mat);
145     }
146 
147     // internal
148     template<typename Rhs, typename Dest>
_solve_impl(const Rhs & b,Dest & x)149     void _solve_impl(const Rhs& b, Dest& x) const
150     {
151       eigen_assert(m_factorizationIsOk && "factorize() should be called first");
152       if (m_perm.rows() == b.rows())  x = m_perm * b;
153       else                            x = b;
154       x = m_scale.asDiagonal() * x;
155       x = m_L.template triangularView<Lower>().solve(x);
156       x = m_L.adjoint().template triangularView<Upper>().solve(x);
157       x = m_scale.asDiagonal() * x;
158       if (m_perm.rows() == b.rows())
159         x = m_perm.inverse() * x;
160     }
161 
162     /** \returns the sparse lower triangular factor L */
matrixL()163     const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }
164 
165     /** \returns a vector representing the scaling factor S */
scalingS()166     const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }
167 
168     /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
permutationP()169     const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }
170 
171   protected:
172     FactorType m_L;              // The lower part stored in CSC
173     VectorRx m_scale;            // The vector for scaling the matrix
174     RealScalar m_initialShift;   // The initial shift parameter
175     bool m_analysisIsOk;
176     bool m_factorizationIsOk;
177     ComputationInfo m_info;
178     PermutationType m_perm;
179 
180   private:
181     inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
182 };
183 
184 // Based on the following paper:
185 //   C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
186 //   Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999
187 //   http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
188 template<typename Scalar, int _UpLo, typename OrderingType>
189 template<typename _MatrixType>
factorize(const _MatrixType & mat)190 void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
191 {
192   using std::sqrt;
193   eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
194 
195   // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
196 
197   // Apply the fill-reducing permutation computed in analyzePattern()
198   if (m_perm.rows() == mat.rows() ) // To detect the null permutation
199   {
200     // The temporary is needed to make sure that the diagonal entry is properly sorted
201     FactorType tmp(mat.rows(), mat.cols());
202     tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
203     m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
204   }
205   else
206   {
207     m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
208   }
209 
210   Index n = m_L.cols();
211   Index nnz = m_L.nonZeros();
212   Map<VectorSx> vals(m_L.valuePtr(), nnz);         //values
213   Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz);  //Row indices
214   Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
215   VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
216   VectorList listCol(n);  // listCol(j) is a linked list of columns to update column j
217   VectorSx col_vals(n);   // Store a  nonzero values in each column
218   VectorIx col_irow(n);   // Row indices of nonzero elements in each column
219   VectorIx col_pattern(n);
220   col_pattern.fill(-1);
221   StorageIndex col_nnz;
222 
223 
224   // Computes the scaling factors
225   m_scale.resize(n);
226   m_scale.setZero();
227   for (Index j = 0; j < n; j++)
228     for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
229     {
230       m_scale(j) += numext::abs2(vals(k));
231       if(rowIdx[k]!=j)
232         m_scale(rowIdx[k]) += numext::abs2(vals(k));
233     }
234 
235   m_scale = m_scale.cwiseSqrt().cwiseSqrt();
236 
237   for (Index j = 0; j < n; ++j)
238     if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
239       m_scale(j) = RealScalar(1)/m_scale(j);
240     else
241       m_scale(j) = 1;
242 
243   // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
244 
245   // Scale and compute the shift for the matrix
246   RealScalar mindiag = NumTraits<RealScalar>::highest();
247   for (Index j = 0; j < n; j++)
248   {
249     for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
250       vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
251     eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
252     mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
253   }
254 
255   FactorType L_save = m_L;
256 
257   RealScalar shift = 0;
258   if(mindiag <= RealScalar(0.))
259     shift = m_initialShift - mindiag;
260 
261   m_info = NumericalIssue;
262 
263   // Try to perform the incomplete factorization using the current shift
264   int iter = 0;
265   do
266   {
267     // Apply the shift to the diagonal elements of the matrix
268     for (Index j = 0; j < n; j++)
269       vals[colPtr[j]] += shift;
270 
271     // jki version of the Cholesky factorization
272     Index j=0;
273     for (; j < n; ++j)
274     {
275       // Left-looking factorization of the j-th column
276       // First, load the j-th column into col_vals
277       Scalar diag = vals[colPtr[j]];  // It is assumed that only the lower part is stored
278       col_nnz = 0;
279       for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
280       {
281         StorageIndex l = rowIdx[i];
282         col_vals(col_nnz) = vals[i];
283         col_irow(col_nnz) = l;
284         col_pattern(l) = col_nnz;
285         col_nnz++;
286       }
287       {
288         typename std::list<StorageIndex>::iterator k;
289         // Browse all previous columns that will update column j
290         for(k = listCol[j].begin(); k != listCol[j].end(); k++)
291         {
292           Index jk = firstElt(*k); // First element to use in the column
293           eigen_internal_assert(rowIdx[jk]==j);
294           Scalar v_j_jk = numext::conj(vals[jk]);
295 
296           jk += 1;
297           for (Index i = jk; i < colPtr[*k+1]; i++)
298           {
299             StorageIndex l = rowIdx[i];
300             if(col_pattern[l]<0)
301             {
302               col_vals(col_nnz) = vals[i] * v_j_jk;
303               col_irow[col_nnz] = l;
304               col_pattern(l) = col_nnz;
305               col_nnz++;
306             }
307             else
308               col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
309           }
310           updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
311         }
312       }
313 
314       // Scale the current column
315       if(numext::real(diag) <= 0)
316       {
317         if(++iter>=10)
318           return;
319 
320         // increase shift
321         shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
322         // restore m_L, col_pattern, and listCol
323         vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
324         rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
325         colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
326         col_pattern.fill(-1);
327         for(Index i=0; i<n; ++i)
328           listCol[i].clear();
329 
330         break;
331       }
332 
333       RealScalar rdiag = sqrt(numext::real(diag));
334       vals[colPtr[j]] = rdiag;
335       for (Index k = 0; k<col_nnz; ++k)
336       {
337         Index i = col_irow[k];
338         //Scale
339         col_vals(k) /= rdiag;
340         //Update the remaining diagonals with col_vals
341         vals[colPtr[i]] -= numext::abs2(col_vals(k));
342       }
343       // Select the largest p elements
344       // p is the original number of elements in the column (without the diagonal)
345       Index p = colPtr[j+1] - colPtr[j] - 1 ;
346       Ref<VectorSx> cvals = col_vals.head(col_nnz);
347       Ref<VectorIx> cirow = col_irow.head(col_nnz);
348       internal::QuickSplit(cvals,cirow, p);
349       // Insert the largest p elements in the matrix
350       Index cpt = 0;
351       for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
352       {
353         vals[i] = col_vals(cpt);
354         rowIdx[i] = col_irow(cpt);
355         // restore col_pattern:
356         col_pattern(col_irow(cpt)) = -1;
357         cpt++;
358       }
359       // Get the first smallest row index and put it after the diagonal element
360       Index jk = colPtr(j)+1;
361       updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
362     }
363 
364     if(j==n)
365     {
366       m_factorizationIsOk = true;
367       m_info = Success;
368     }
369   } while(m_info!=Success);
370 }
371 
372 template<typename Scalar, int _UpLo, typename OrderingType>
updateList(Ref<const VectorIx> colPtr,Ref<VectorIx> rowIdx,Ref<VectorSx> vals,const Index & col,const Index & jk,VectorIx & firstElt,VectorList & listCol)373 inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
374 {
375   if (jk < colPtr(col+1) )
376   {
377     Index p = colPtr(col+1) - jk;
378     Index minpos;
379     rowIdx.segment(jk,p).minCoeff(&minpos);
380     minpos += jk;
381     if (rowIdx(minpos) != rowIdx(jk))
382     {
383       //Swap
384       std::swap(rowIdx(jk),rowIdx(minpos));
385       std::swap(vals(jk),vals(minpos));
386     }
387     firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
388     listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
389   }
390 }
391 
392 } // end namespace Eigen
393 
394 #endif
395