1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans  https://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_MT_H
17 #define BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_MT_H
18 
19 #include "btSequentialImpulseConstraintSolver.h"
20 #include "btBatchedConstraints.h"
21 #include "LinearMath/btThreads.h"
22 
23 ///
24 /// btSequentialImpulseConstraintSolverMt
25 ///
26 ///  A multithreaded variant of the sequential impulse constraint solver. The constraints to be solved are grouped into
27 ///  batches and phases where each batch of constraints within a given phase can be solved in parallel with the rest.
28 ///  Ideally we want as few phases as possible, and each phase should have many batches, and all of the batches should
29 ///  have about the same number of constraints.
30 ///  This method works best on a large island of many constraints.
31 ///
32 ///  Supports all of the features of the normal sequential impulse solver such as:
33 ///    - split penetration impulse
34 ///    - rolling friction
35 ///    - interleaving constraints
36 ///    - warmstarting
37 ///    - 2 friction directions
38 ///    - randomized constraint ordering
39 ///    - early termination when leastSquaresResidualThreshold is satisfied
40 ///
41 ///  When the SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS flag is enabled, unlike the normal SequentialImpulse solver,
42 ///  the rolling friction is interleaved as well.
43 ///  Interleaving the contact penetration constraints with friction reduces the number of parallel loops that need to be done,
44 ///  which reduces threading overhead so it can be a performance win, however, it does seem to produce a less stable simulation,
45 ///  at least on stacks of blocks.
46 ///
47 ///  When the SOLVER_RANDMIZE_ORDER flag is enabled, the ordering of phases, and the ordering of constraints within each batch
48 ///  is randomized, however it does not swap constraints between batches.
49 ///  This is to avoid regenerating the batches for each solver iteration which would be quite costly in performance.
50 ///
51 ///  Note that a non-zero leastSquaresResidualThreshold could possibly affect the determinism of the simulation
52 ///  if the task scheduler's parallelSum operation is non-deterministic. The parallelSum operation can be non-deterministic
53 ///  because floating point addition is not associative due to rounding errors.
54 ///  The task scheduler can and should ensure that the result of any parallelSum operation is deterministic.
55 ///
ATTRIBUTE_ALIGNED16(class)56 ATTRIBUTE_ALIGNED16(class)
57 btSequentialImpulseConstraintSolverMt : public btSequentialImpulseConstraintSolver
58 {
59 public:
60 	virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer) BT_OVERRIDE;
61 	virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer) BT_OVERRIDE;
62 	virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer) BT_OVERRIDE;
63 	virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal) BT_OVERRIDE;
64 
65 	// temp struct used to collect info from persistent manifolds into a cache-friendly struct using multiple threads
66 	struct btContactManifoldCachedInfo
67 	{
68 		static const int MAX_NUM_CONTACT_POINTS = 4;
69 
70 		int numTouchingContacts;
71 		int solverBodyIds[2];
72 		int contactIndex;
73 		int rollingFrictionIndex;
74 		bool contactHasRollingFriction[MAX_NUM_CONTACT_POINTS];
75 		btManifoldPoint* contactPoints[MAX_NUM_CONTACT_POINTS];
76 	};
77 	// temp struct used for setting up joint constraints in parallel
78 	struct JointParams
79 	{
80 		int m_solverConstraint;
81 		int m_solverBodyA;
82 		int m_solverBodyB;
83 	};
84 	void internalInitMultipleJoints(btTypedConstraint * *constraints, int iBegin, int iEnd);
85 	void internalConvertMultipleJoints(const btAlignedObjectArray<JointParams>& jointParamsArray, btTypedConstraint** constraints, int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
86 
87 	// parameters to control batching
88 	static bool s_allowNestedParallelForLoops;        // whether to allow nested parallel operations
89 	static int s_minimumContactManifoldsForBatching;  // don't even try to batch if fewer manifolds than this
90 	static btBatchedConstraints::BatchingMethod s_contactBatchingMethod;
91 	static btBatchedConstraints::BatchingMethod s_jointBatchingMethod;
92 	static int s_minBatchSize;  // desired number of constraints per batch
93 	static int s_maxBatchSize;
94 
95 protected:
96 	static const int CACHE_LINE_SIZE = 64;
97 
98 	btBatchedConstraints m_batchedContactConstraints;
99 	btBatchedConstraints m_batchedJointConstraints;
100 	int m_numFrictionDirections;
101 	bool m_useBatching;
102 	bool m_useObsoleteJointConstraints;
103 	btAlignedObjectArray<btContactManifoldCachedInfo> m_manifoldCachedInfoArray;
104 	btAlignedObjectArray<int> m_rollingFrictionIndexTable;  // lookup table mapping contact index to rolling friction index
105 	btSpinMutex m_bodySolverArrayMutex;
106 	char m_antiFalseSharingPadding[CACHE_LINE_SIZE];  // padding to keep mutexes in separate cachelines
107 	btSpinMutex m_kinematicBodyUniqueIdToSolverBodyTableMutex;
108 	btAlignedObjectArray<char> m_scratchMemory;
109 
110 	virtual void randomizeConstraintOrdering(int iteration, int numIterations);
111 	virtual btScalar resolveAllJointConstraints(int iteration);
112 	virtual btScalar resolveAllContactConstraints();
113 	virtual btScalar resolveAllContactFrictionConstraints();
114 	virtual btScalar resolveAllContactConstraintsInterleaved();
115 	virtual btScalar resolveAllRollingFrictionConstraints();
116 
117 	virtual void setupBatchedContactConstraints();
118 	virtual void setupBatchedJointConstraints();
119 	virtual void convertJoints(btTypedConstraint * *constraints, int numConstraints, const btContactSolverInfo& infoGlobal) BT_OVERRIDE;
120 	virtual void convertContacts(btPersistentManifold * *manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal) BT_OVERRIDE;
121 	virtual void convertBodies(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal) BT_OVERRIDE;
122 
123 	int getOrInitSolverBodyThreadsafe(btCollisionObject & body, btScalar timeStep);
124 	void allocAllContactConstraints(btPersistentManifold * *manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
125 	void setupAllContactConstraints(const btContactSolverInfo& infoGlobal);
126 	void randomizeBatchedConstraintOrdering(btBatchedConstraints * batchedConstraints);
127 
128 public:
129 	BT_DECLARE_ALIGNED_ALLOCATOR();
130 
131 	btSequentialImpulseConstraintSolverMt();
132 	virtual ~btSequentialImpulseConstraintSolverMt();
133 
134 	btScalar resolveMultipleJointConstraints(const btAlignedObjectArray<int>& consIndices, int batchBegin, int batchEnd, int iteration);
135 	btScalar resolveMultipleContactConstraints(const btAlignedObjectArray<int>& consIndices, int batchBegin, int batchEnd);
136 	btScalar resolveMultipleContactSplitPenetrationImpulseConstraints(const btAlignedObjectArray<int>& consIndices, int batchBegin, int batchEnd);
137 	btScalar resolveMultipleContactFrictionConstraints(const btAlignedObjectArray<int>& consIndices, int batchBegin, int batchEnd);
138 	btScalar resolveMultipleContactRollingFrictionConstraints(const btAlignedObjectArray<int>& consIndices, int batchBegin, int batchEnd);
139 	btScalar resolveMultipleContactConstraintsInterleaved(const btAlignedObjectArray<int>& contactIndices, int batchBegin, int batchEnd);
140 
141 	void internalCollectContactManifoldCachedInfo(btContactManifoldCachedInfo * cachedInfoArray, btPersistentManifold * *manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
142 	void internalAllocContactConstraints(const btContactManifoldCachedInfo* cachedInfoArray, int numManifolds);
143 	void internalSetupContactConstraints(int iContactConstraint, const btContactSolverInfo& infoGlobal);
144 	void internalConvertBodies(btCollisionObject * *bodies, int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
145 	void internalWriteBackContacts(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
146 	void internalWriteBackJoints(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
147 	void internalWriteBackBodies(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
148 };
149 
150 #endif  //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_MT_H
151