1 /* X86-64 specific support for 64-bit ELF
2    Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006
3    Free Software Foundation, Inc.
4    Contributed by Jan Hubicka <jh@suse.cz>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
21 
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 
28 #include "elf/x86-64.h"
29 
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32 
33 /* The relocation "howto" table.  Order of fields:
34    type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
35    special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset.  */
36 static reloc_howto_type x86_64_elf_howto_table[] =
37 {
38   HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
39 	bfd_elf_generic_reloc, "R_X86_64_NONE",	FALSE, 0x00000000, 0x00000000,
40 	FALSE),
41   HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
42 	bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
43 	FALSE),
44   HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
45 	bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
46 	TRUE),
47   HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
48 	bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
49 	FALSE),
50   HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
51 	bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
52 	TRUE),
53   HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
54 	bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
55 	FALSE),
56   HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
57 	bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
58 	MINUS_ONE, FALSE),
59   HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
60 	bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
61 	MINUS_ONE, FALSE),
62   HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 	bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
64 	MINUS_ONE, FALSE),
65   HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 	bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
67 	0xffffffff, TRUE),
68   HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
69 	bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
70 	FALSE),
71   HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
72 	bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
73 	FALSE),
74   HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
75 	bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
76   HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
77 	bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
78   HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
79 	bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
80   HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
81 	bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
82   HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 	bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
84 	MINUS_ONE, FALSE),
85   HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
86 	bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
87 	MINUS_ONE, FALSE),
88   HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
89 	bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
90 	MINUS_ONE, FALSE),
91   HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
92 	bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
93 	0xffffffff, TRUE),
94   HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
95 	bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
96 	0xffffffff, TRUE),
97   HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
98 	bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
99 	0xffffffff, FALSE),
100   HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
101 	bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
102 	0xffffffff, TRUE),
103   HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
104 	bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
105 	0xffffffff, FALSE),
106   HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
107 	bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
108 	TRUE),
109   HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 	bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
111 	FALSE, MINUS_ONE, MINUS_ONE, FALSE),
112   HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 	bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
114 	FALSE, 0xffffffff, 0xffffffff, TRUE),
115   HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
116 	bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
117 	FALSE),
118   HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
119 	bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
120 	MINUS_ONE, TRUE),
121   HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
122 	bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
123 	FALSE, MINUS_ONE, MINUS_ONE, TRUE),
124   HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
125 	bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
126 	MINUS_ONE, FALSE),
127   HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
128 	bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
129 	MINUS_ONE, FALSE),
130   EMPTY_HOWTO (32),
131   EMPTY_HOWTO (33),
132   HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
133 	complain_overflow_bitfield, bfd_elf_generic_reloc,
134 	"R_X86_64_GOTPC32_TLSDESC",
135 	FALSE, 0xffffffff, 0xffffffff, TRUE),
136   HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
137 	complain_overflow_dont, bfd_elf_generic_reloc,
138 	"R_X86_64_TLSDESC_CALL",
139 	FALSE, 0, 0, FALSE),
140   HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
141 	complain_overflow_bitfield, bfd_elf_generic_reloc,
142 	"R_X86_64_TLSDESC",
143 	FALSE, MINUS_ONE, MINUS_ONE, FALSE),
144 
145   /* We have a gap in the reloc numbers here.
146      R_X86_64_standard counts the number up to this point, and
147      R_X86_64_vt_offset is the value to subtract from a reloc type of
148      R_X86_64_GNU_VT* to form an index into this table.  */
149 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
150 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
151 
152 /* GNU extension to record C++ vtable hierarchy.  */
153   HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
154 	 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
155 
156 /* GNU extension to record C++ vtable member usage.  */
157   HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
158 	 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
159 	 FALSE)
160 };
161 
162 /* Map BFD relocs to the x86_64 elf relocs.  */
163 struct elf_reloc_map
164 {
165   bfd_reloc_code_real_type bfd_reloc_val;
166   unsigned char elf_reloc_val;
167 };
168 
169 static const struct elf_reloc_map x86_64_reloc_map[] =
170 {
171   { BFD_RELOC_NONE,		R_X86_64_NONE, },
172   { BFD_RELOC_64,		R_X86_64_64,   },
173   { BFD_RELOC_32_PCREL,		R_X86_64_PC32, },
174   { BFD_RELOC_X86_64_GOT32,	R_X86_64_GOT32,},
175   { BFD_RELOC_X86_64_PLT32,	R_X86_64_PLT32,},
176   { BFD_RELOC_X86_64_COPY,	R_X86_64_COPY, },
177   { BFD_RELOC_X86_64_GLOB_DAT,	R_X86_64_GLOB_DAT, },
178   { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
179   { BFD_RELOC_X86_64_RELATIVE,	R_X86_64_RELATIVE, },
180   { BFD_RELOC_X86_64_GOTPCREL,	R_X86_64_GOTPCREL, },
181   { BFD_RELOC_32,		R_X86_64_32, },
182   { BFD_RELOC_X86_64_32S,	R_X86_64_32S, },
183   { BFD_RELOC_16,		R_X86_64_16, },
184   { BFD_RELOC_16_PCREL,		R_X86_64_PC16, },
185   { BFD_RELOC_8,		R_X86_64_8, },
186   { BFD_RELOC_8_PCREL,		R_X86_64_PC8, },
187   { BFD_RELOC_X86_64_DTPMOD64,	R_X86_64_DTPMOD64, },
188   { BFD_RELOC_X86_64_DTPOFF64,	R_X86_64_DTPOFF64, },
189   { BFD_RELOC_X86_64_TPOFF64,	R_X86_64_TPOFF64, },
190   { BFD_RELOC_X86_64_TLSGD,	R_X86_64_TLSGD, },
191   { BFD_RELOC_X86_64_TLSLD,	R_X86_64_TLSLD, },
192   { BFD_RELOC_X86_64_DTPOFF32,	R_X86_64_DTPOFF32, },
193   { BFD_RELOC_X86_64_GOTTPOFF,	R_X86_64_GOTTPOFF, },
194   { BFD_RELOC_X86_64_TPOFF32,	R_X86_64_TPOFF32, },
195   { BFD_RELOC_64_PCREL,		R_X86_64_PC64, },
196   { BFD_RELOC_X86_64_GOTOFF64,	R_X86_64_GOTOFF64, },
197   { BFD_RELOC_X86_64_GOTPC32,	R_X86_64_GOTPC32, },
198   { BFD_RELOC_X86_64_GOT64,	R_X86_64_GOT64, },
199   { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
200   { BFD_RELOC_X86_64_GOTPC64,	R_X86_64_GOTPC64, },
201   { BFD_RELOC_X86_64_GOTPLT64,	R_X86_64_GOTPLT64, },
202   { BFD_RELOC_X86_64_PLTOFF64,	R_X86_64_PLTOFF64, },
203   { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
204   { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
205   { BFD_RELOC_X86_64_TLSDESC,	R_X86_64_TLSDESC, },
206   { BFD_RELOC_VTABLE_INHERIT,	R_X86_64_GNU_VTINHERIT, },
207   { BFD_RELOC_VTABLE_ENTRY,	R_X86_64_GNU_VTENTRY, },
208 };
209 
210 static reloc_howto_type *
elf64_x86_64_rtype_to_howto(bfd * abfd,unsigned r_type)211 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
212 {
213   unsigned i;
214 
215   if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
216       || r_type >= (unsigned int) R_X86_64_max)
217     {
218       if (r_type >= (unsigned int) R_X86_64_standard)
219 	{
220 	  (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
221 				 abfd, (int) r_type);
222 	  r_type = R_X86_64_NONE;
223 	}
224       i = r_type;
225     }
226   else
227     i = r_type - (unsigned int) R_X86_64_vt_offset;
228   BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
229   return &x86_64_elf_howto_table[i];
230 }
231 
232 /* Given a BFD reloc type, return a HOWTO structure.  */
233 static reloc_howto_type *
elf64_x86_64_reloc_type_lookup(bfd * abfd,bfd_reloc_code_real_type code)234 elf64_x86_64_reloc_type_lookup (bfd *abfd,
235 				bfd_reloc_code_real_type code)
236 {
237   unsigned int i;
238 
239   for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
240        i++)
241     {
242       if (x86_64_reloc_map[i].bfd_reloc_val == code)
243 	return elf64_x86_64_rtype_to_howto (abfd,
244 					    x86_64_reloc_map[i].elf_reloc_val);
245     }
246   return 0;
247 }
248 
249 /* Given an x86_64 ELF reloc type, fill in an arelent structure.  */
250 
251 static void
elf64_x86_64_info_to_howto(bfd * abfd ATTRIBUTE_UNUSED,arelent * cache_ptr,Elf_Internal_Rela * dst)252 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
253 			    Elf_Internal_Rela *dst)
254 {
255   unsigned r_type;
256 
257   r_type = ELF64_R_TYPE (dst->r_info);
258   cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
259   BFD_ASSERT (r_type == cache_ptr->howto->type);
260 }
261 
262 /* Support for core dump NOTE sections.  */
263 static bfd_boolean
elf64_x86_64_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)264 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
265 {
266   int offset;
267   size_t size;
268 
269   switch (note->descsz)
270     {
271       default:
272 	return FALSE;
273 
274       case 336:		/* sizeof(istruct elf_prstatus) on Linux/x86_64 */
275 	/* pr_cursig */
276 	elf_tdata (abfd)->core_signal
277 	  = bfd_get_16 (abfd, note->descdata + 12);
278 
279 	/* pr_pid */
280 	elf_tdata (abfd)->core_pid
281 	  = bfd_get_32 (abfd, note->descdata + 32);
282 
283 	/* pr_reg */
284 	offset = 112;
285 	size = 216;
286 
287 	break;
288     }
289 
290   /* Make a ".reg/999" section.  */
291   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
292 					  size, note->descpos + offset);
293 }
294 
295 static bfd_boolean
elf64_x86_64_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)296 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
297 {
298   switch (note->descsz)
299     {
300       default:
301 	return FALSE;
302 
303       case 136:		/* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
304 	elf_tdata (abfd)->core_program
305 	 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
306 	elf_tdata (abfd)->core_command
307 	 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
308     }
309 
310   /* Note that for some reason, a spurious space is tacked
311      onto the end of the args in some (at least one anyway)
312      implementations, so strip it off if it exists.  */
313 
314   {
315     char *command = elf_tdata (abfd)->core_command;
316     int n = strlen (command);
317 
318     if (0 < n && command[n - 1] == ' ')
319       command[n - 1] = '\0';
320   }
321 
322   return TRUE;
323 }
324 
325 /* Functions for the x86-64 ELF linker.	 */
326 
327 /* The name of the dynamic interpreter.	 This is put in the .interp
328    section.  */
329 
330 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
331 
332 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
333    copying dynamic variables from a shared lib into an app's dynbss
334    section, and instead use a dynamic relocation to point into the
335    shared lib.  */
336 #define ELIMINATE_COPY_RELOCS 1
337 
338 /* The size in bytes of an entry in the global offset table.  */
339 
340 #define GOT_ENTRY_SIZE 8
341 
342 /* The size in bytes of an entry in the procedure linkage table.  */
343 
344 #define PLT_ENTRY_SIZE 16
345 
346 /* The first entry in a procedure linkage table looks like this.  See the
347    SVR4 ABI i386 supplement and the x86-64 ABI to see how this works.  */
348 
349 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
350 {
351   0xff, 0x35, 8, 0, 0, 0,	/* pushq GOT+8(%rip)  */
352   0xff, 0x25, 16, 0, 0, 0,	/* jmpq *GOT+16(%rip) */
353   0x90, 0x90, 0x90, 0x90	/* pad out to 16 bytes with nops.  */
354 };
355 
356 /* Subsequent entries in a procedure linkage table look like this.  */
357 
358 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
359 {
360   0xff, 0x25,	/* jmpq *name@GOTPC(%rip) */
361   0, 0, 0, 0,	/* replaced with offset to this symbol in .got.	 */
362   0x68,		/* pushq immediate */
363   0, 0, 0, 0,	/* replaced with index into relocation table.  */
364   0xe9,		/* jmp relative */
365   0, 0, 0, 0	/* replaced with offset to start of .plt0.  */
366 };
367 
368 /* The x86-64 linker needs to keep track of the number of relocs that
369    it decides to copy as dynamic relocs in check_relocs for each symbol.
370    This is so that it can later discard them if they are found to be
371    unnecessary.  We store the information in a field extending the
372    regular ELF linker hash table.  */
373 
374 struct elf64_x86_64_dyn_relocs
375 {
376   /* Next section.  */
377   struct elf64_x86_64_dyn_relocs *next;
378 
379   /* The input section of the reloc.  */
380   asection *sec;
381 
382   /* Total number of relocs copied for the input section.  */
383   bfd_size_type count;
384 
385   /* Number of pc-relative relocs copied for the input section.  */
386   bfd_size_type pc_count;
387 };
388 
389 /* x86-64 ELF linker hash entry.  */
390 
391 struct elf64_x86_64_link_hash_entry
392 {
393   struct elf_link_hash_entry elf;
394 
395   /* Track dynamic relocs copied for this symbol.  */
396   struct elf64_x86_64_dyn_relocs *dyn_relocs;
397 
398 #define GOT_UNKNOWN	0
399 #define GOT_NORMAL	1
400 #define GOT_TLS_GD	2
401 #define GOT_TLS_IE	3
402 #define GOT_TLS_GDESC	4
403 #define GOT_TLS_GD_BOTH_P(type) \
404   ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
405 #define GOT_TLS_GD_P(type) \
406   ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
407 #define GOT_TLS_GDESC_P(type) \
408   ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
409 #define GOT_TLS_GD_ANY_P(type) \
410   (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
411   unsigned char tls_type;
412 
413   /* Offset of the GOTPLT entry reserved for the TLS descriptor,
414      starting at the end of the jump table.  */
415   bfd_vma tlsdesc_got;
416 };
417 
418 #define elf64_x86_64_hash_entry(ent) \
419   ((struct elf64_x86_64_link_hash_entry *)(ent))
420 
421 struct elf64_x86_64_obj_tdata
422 {
423   struct elf_obj_tdata root;
424 
425   /* tls_type for each local got entry.  */
426   char *local_got_tls_type;
427 
428   /* GOTPLT entries for TLS descriptors.  */
429   bfd_vma *local_tlsdesc_gotent;
430 };
431 
432 #define elf64_x86_64_tdata(abfd) \
433   ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
434 
435 #define elf64_x86_64_local_got_tls_type(abfd) \
436   (elf64_x86_64_tdata (abfd)->local_got_tls_type)
437 
438 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
439   (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
440 
441 /* x86-64 ELF linker hash table.  */
442 
443 struct elf64_x86_64_link_hash_table
444 {
445   struct elf_link_hash_table elf;
446 
447   /* Short-cuts to get to dynamic linker sections.  */
448   asection *sgot;
449   asection *sgotplt;
450   asection *srelgot;
451   asection *splt;
452   asection *srelplt;
453   asection *sdynbss;
454   asection *srelbss;
455 
456   /* The offset into splt of the PLT entry for the TLS descriptor
457      resolver.  Special values are 0, if not necessary (or not found
458      to be necessary yet), and -1 if needed but not determined
459      yet.  */
460   bfd_vma tlsdesc_plt;
461   /* The offset into sgot of the GOT entry used by the PLT entry
462      above.  */
463   bfd_vma tlsdesc_got;
464 
465   union {
466     bfd_signed_vma refcount;
467     bfd_vma offset;
468   } tls_ld_got;
469 
470   /* The amount of space used by the jump slots in the GOT.  */
471   bfd_vma sgotplt_jump_table_size;
472 
473   /* Small local sym to section mapping cache.  */
474   struct sym_sec_cache sym_sec;
475 };
476 
477 /* Get the x86-64 ELF linker hash table from a link_info structure.  */
478 
479 #define elf64_x86_64_hash_table(p) \
480   ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
481 
482 #define elf64_x86_64_compute_jump_table_size(htab) \
483   ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
484 
485 /* Create an entry in an x86-64 ELF linker hash table.	*/
486 
487 static struct bfd_hash_entry *
link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)488 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
489 		   const char *string)
490 {
491   /* Allocate the structure if it has not already been allocated by a
492      subclass.  */
493   if (entry == NULL)
494     {
495       entry = bfd_hash_allocate (table,
496 				 sizeof (struct elf64_x86_64_link_hash_entry));
497       if (entry == NULL)
498 	return entry;
499     }
500 
501   /* Call the allocation method of the superclass.  */
502   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
503   if (entry != NULL)
504     {
505       struct elf64_x86_64_link_hash_entry *eh;
506 
507       eh = (struct elf64_x86_64_link_hash_entry *) entry;
508       eh->dyn_relocs = NULL;
509       eh->tls_type = GOT_UNKNOWN;
510       eh->tlsdesc_got = (bfd_vma) -1;
511     }
512 
513   return entry;
514 }
515 
516 /* Create an X86-64 ELF linker hash table.  */
517 
518 static struct bfd_link_hash_table *
elf64_x86_64_link_hash_table_create(bfd * abfd)519 elf64_x86_64_link_hash_table_create (bfd *abfd)
520 {
521   struct elf64_x86_64_link_hash_table *ret;
522   bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
523 
524   ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
525   if (ret == NULL)
526     return NULL;
527 
528   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
529 				      sizeof (struct elf64_x86_64_link_hash_entry)))
530     {
531       free (ret);
532       return NULL;
533     }
534 
535   ret->sgot = NULL;
536   ret->sgotplt = NULL;
537   ret->srelgot = NULL;
538   ret->splt = NULL;
539   ret->srelplt = NULL;
540   ret->sdynbss = NULL;
541   ret->srelbss = NULL;
542   ret->sym_sec.abfd = NULL;
543   ret->tlsdesc_plt = 0;
544   ret->tlsdesc_got = 0;
545   ret->tls_ld_got.refcount = 0;
546   ret->sgotplt_jump_table_size = 0;
547 
548   return &ret->elf.root;
549 }
550 
551 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
552    shortcuts to them in our hash table.  */
553 
554 static bfd_boolean
create_got_section(bfd * dynobj,struct bfd_link_info * info)555 create_got_section (bfd *dynobj, struct bfd_link_info *info)
556 {
557   struct elf64_x86_64_link_hash_table *htab;
558 
559   if (! _bfd_elf_create_got_section (dynobj, info))
560     return FALSE;
561 
562   htab = elf64_x86_64_hash_table (info);
563   htab->sgot = bfd_get_section_by_name (dynobj, ".got");
564   htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
565   if (!htab->sgot || !htab->sgotplt)
566     abort ();
567 
568   htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
569 					       (SEC_ALLOC | SEC_LOAD
570 						| SEC_HAS_CONTENTS
571 						| SEC_IN_MEMORY
572 						| SEC_LINKER_CREATED
573 						| SEC_READONLY));
574   if (htab->srelgot == NULL
575       || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
576     return FALSE;
577   return TRUE;
578 }
579 
580 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
581    .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
582    hash table.  */
583 
584 static bfd_boolean
elf64_x86_64_create_dynamic_sections(bfd * dynobj,struct bfd_link_info * info)585 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
586 {
587   struct elf64_x86_64_link_hash_table *htab;
588 
589   htab = elf64_x86_64_hash_table (info);
590   if (!htab->sgot && !create_got_section (dynobj, info))
591     return FALSE;
592 
593   if (!_bfd_elf_create_dynamic_sections (dynobj, info))
594     return FALSE;
595 
596   htab->splt = bfd_get_section_by_name (dynobj, ".plt");
597   htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
598   htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
599   if (!info->shared)
600     htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
601 
602   if (!htab->splt || !htab->srelplt || !htab->sdynbss
603       || (!info->shared && !htab->srelbss))
604     abort ();
605 
606   return TRUE;
607 }
608 
609 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
610 
611 static void
elf64_x86_64_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)612 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
613 				   struct elf_link_hash_entry *dir,
614 				   struct elf_link_hash_entry *ind)
615 {
616   struct elf64_x86_64_link_hash_entry *edir, *eind;
617 
618   edir = (struct elf64_x86_64_link_hash_entry *) dir;
619   eind = (struct elf64_x86_64_link_hash_entry *) ind;
620 
621   if (eind->dyn_relocs != NULL)
622     {
623       if (edir->dyn_relocs != NULL)
624 	{
625 	  struct elf64_x86_64_dyn_relocs **pp;
626 	  struct elf64_x86_64_dyn_relocs *p;
627 
628 	  /* Add reloc counts against the indirect sym to the direct sym
629 	     list.  Merge any entries against the same section.  */
630 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
631 	    {
632 	      struct elf64_x86_64_dyn_relocs *q;
633 
634 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
635 		if (q->sec == p->sec)
636 		  {
637 		    q->pc_count += p->pc_count;
638 		    q->count += p->count;
639 		    *pp = p->next;
640 		    break;
641 		  }
642 	      if (q == NULL)
643 		pp = &p->next;
644 	    }
645 	  *pp = edir->dyn_relocs;
646 	}
647 
648       edir->dyn_relocs = eind->dyn_relocs;
649       eind->dyn_relocs = NULL;
650     }
651 
652   if (ind->root.type == bfd_link_hash_indirect
653       && dir->got.refcount <= 0)
654     {
655       edir->tls_type = eind->tls_type;
656       eind->tls_type = GOT_UNKNOWN;
657     }
658 
659   if (ELIMINATE_COPY_RELOCS
660       && ind->root.type != bfd_link_hash_indirect
661       && dir->dynamic_adjusted)
662     {
663       /* If called to transfer flags for a weakdef during processing
664 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
665 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
666       dir->ref_dynamic |= ind->ref_dynamic;
667       dir->ref_regular |= ind->ref_regular;
668       dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
669       dir->needs_plt |= ind->needs_plt;
670       dir->pointer_equality_needed |= ind->pointer_equality_needed;
671     }
672   else
673     _bfd_elf_link_hash_copy_indirect (info, dir, ind);
674 }
675 
676 static bfd_boolean
elf64_x86_64_mkobject(bfd * abfd)677 elf64_x86_64_mkobject (bfd *abfd)
678 {
679   bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
680   abfd->tdata.any = bfd_zalloc (abfd, amt);
681   if (abfd->tdata.any == NULL)
682     return FALSE;
683   return TRUE;
684 }
685 
686 static bfd_boolean
elf64_x86_64_elf_object_p(bfd * abfd)687 elf64_x86_64_elf_object_p (bfd *abfd)
688 {
689   /* Set the right machine number for an x86-64 elf64 file.  */
690   bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
691   return TRUE;
692 }
693 
694 static int
elf64_x86_64_tls_transition(struct bfd_link_info * info,int r_type,int is_local)695 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
696 {
697   if (info->shared)
698     return r_type;
699 
700   switch (r_type)
701     {
702     case R_X86_64_TLSGD:
703     case R_X86_64_GOTPC32_TLSDESC:
704     case R_X86_64_TLSDESC_CALL:
705     case R_X86_64_GOTTPOFF:
706       if (is_local)
707 	return R_X86_64_TPOFF32;
708       return R_X86_64_GOTTPOFF;
709     case R_X86_64_TLSLD:
710       return R_X86_64_TPOFF32;
711     }
712 
713    return r_type;
714 }
715 
716 /* Look through the relocs for a section during the first phase, and
717    calculate needed space in the global offset table, procedure
718    linkage table, and dynamic reloc sections.  */
719 
720 static bfd_boolean
elf64_x86_64_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)721 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
722 			   const Elf_Internal_Rela *relocs)
723 {
724   struct elf64_x86_64_link_hash_table *htab;
725   Elf_Internal_Shdr *symtab_hdr;
726   struct elf_link_hash_entry **sym_hashes;
727   const Elf_Internal_Rela *rel;
728   const Elf_Internal_Rela *rel_end;
729   asection *sreloc;
730 
731   if (info->relocatable)
732     return TRUE;
733 
734   htab = elf64_x86_64_hash_table (info);
735   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
736   sym_hashes = elf_sym_hashes (abfd);
737 
738   sreloc = NULL;
739 
740   rel_end = relocs + sec->reloc_count;
741   for (rel = relocs; rel < rel_end; rel++)
742     {
743       unsigned int r_type;
744       unsigned long r_symndx;
745       struct elf_link_hash_entry *h;
746 
747       r_symndx = ELF64_R_SYM (rel->r_info);
748       r_type = ELF64_R_TYPE (rel->r_info);
749 
750       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
751 	{
752 	  (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
753 				 abfd, r_symndx);
754 	  return FALSE;
755 	}
756 
757       if (r_symndx < symtab_hdr->sh_info)
758 	h = NULL;
759       else
760 	{
761 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
762 	  while (h->root.type == bfd_link_hash_indirect
763 		 || h->root.type == bfd_link_hash_warning)
764 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
765 	}
766 
767       r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
768       switch (r_type)
769 	{
770 	case R_X86_64_TLSLD:
771 	  htab->tls_ld_got.refcount += 1;
772 	  goto create_got;
773 
774 	case R_X86_64_TPOFF32:
775 	  if (info->shared)
776 	    {
777 	      (*_bfd_error_handler)
778 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
779 		 abfd,
780 		 x86_64_elf_howto_table[r_type].name,
781 		 (h) ? h->root.root.string : "a local symbol");
782 	      bfd_set_error (bfd_error_bad_value);
783 	      return FALSE;
784 	    }
785 	  break;
786 
787 	case R_X86_64_GOTTPOFF:
788 	  if (info->shared)
789 	    info->flags |= DF_STATIC_TLS;
790 	  /* Fall through */
791 
792 	case R_X86_64_GOT32:
793 	case R_X86_64_GOTPCREL:
794 	case R_X86_64_TLSGD:
795 	case R_X86_64_GOT64:
796 	case R_X86_64_GOTPCREL64:
797 	case R_X86_64_GOTPLT64:
798 	case R_X86_64_GOTPC32_TLSDESC:
799 	case R_X86_64_TLSDESC_CALL:
800 	  /* This symbol requires a global offset table entry.	*/
801 	  {
802 	    int tls_type, old_tls_type;
803 
804 	    switch (r_type)
805 	      {
806 	      default: tls_type = GOT_NORMAL; break;
807 	      case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
808 	      case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
809 	      case R_X86_64_GOTPC32_TLSDESC:
810 	      case R_X86_64_TLSDESC_CALL:
811 		tls_type = GOT_TLS_GDESC; break;
812 	      }
813 
814 	    if (h != NULL)
815 	      {
816 		if (r_type == R_X86_64_GOTPLT64)
817 		  {
818 		    /* This relocation indicates that we also need
819 		       a PLT entry, as this is a function.  We don't need
820 		       a PLT entry for local symbols.  */
821 		    h->needs_plt = 1;
822 		    h->plt.refcount += 1;
823 		  }
824 		h->got.refcount += 1;
825 		old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
826 	      }
827 	    else
828 	      {
829 		bfd_signed_vma *local_got_refcounts;
830 
831 		/* This is a global offset table entry for a local symbol.  */
832 		local_got_refcounts = elf_local_got_refcounts (abfd);
833 		if (local_got_refcounts == NULL)
834 		  {
835 		    bfd_size_type size;
836 
837 		    size = symtab_hdr->sh_info;
838 		    size *= sizeof (bfd_signed_vma)
839 		      + sizeof (bfd_vma) + sizeof (char);
840 		    local_got_refcounts = ((bfd_signed_vma *)
841 					   bfd_zalloc (abfd, size));
842 		    if (local_got_refcounts == NULL)
843 		      return FALSE;
844 		    elf_local_got_refcounts (abfd) = local_got_refcounts;
845 		    elf64_x86_64_local_tlsdesc_gotent (abfd)
846 		      = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
847 		    elf64_x86_64_local_got_tls_type (abfd)
848 		      = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
849 		  }
850 		local_got_refcounts[r_symndx] += 1;
851 		old_tls_type
852 		  = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
853 	      }
854 
855 	    /* If a TLS symbol is accessed using IE at least once,
856 	       there is no point to use dynamic model for it.  */
857 	    if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
858 		&& (! GOT_TLS_GD_ANY_P (old_tls_type)
859 		    || tls_type != GOT_TLS_IE))
860 	      {
861 		if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
862 		  tls_type = old_tls_type;
863 		else if (GOT_TLS_GD_ANY_P (old_tls_type)
864 			 && GOT_TLS_GD_ANY_P (tls_type))
865 		  tls_type |= old_tls_type;
866 		else
867 		  {
868 		    (*_bfd_error_handler)
869 		      (_("%B: %s' accessed both as normal and thread local symbol"),
870 		       abfd, h ? h->root.root.string : "<local>");
871 		    return FALSE;
872 		  }
873 	      }
874 
875 	    if (old_tls_type != tls_type)
876 	      {
877 		if (h != NULL)
878 		  elf64_x86_64_hash_entry (h)->tls_type = tls_type;
879 		else
880 		  elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
881 	      }
882 	  }
883 	  /* Fall through */
884 
885 	case R_X86_64_GOTOFF64:
886 	case R_X86_64_GOTPC32:
887 	case R_X86_64_GOTPC64:
888 	create_got:
889 	  if (htab->sgot == NULL)
890 	    {
891 	      if (htab->elf.dynobj == NULL)
892 		htab->elf.dynobj = abfd;
893 	      if (!create_got_section (htab->elf.dynobj, info))
894 		return FALSE;
895 	    }
896 	  break;
897 
898 	case R_X86_64_PLT32:
899 	  /* This symbol requires a procedure linkage table entry.  We
900 	     actually build the entry in adjust_dynamic_symbol,
901 	     because this might be a case of linking PIC code which is
902 	     never referenced by a dynamic object, in which case we
903 	     don't need to generate a procedure linkage table entry
904 	     after all.	 */
905 
906 	  /* If this is a local symbol, we resolve it directly without
907 	     creating a procedure linkage table entry.	*/
908 	  if (h == NULL)
909 	    continue;
910 
911 	  h->needs_plt = 1;
912 	  h->plt.refcount += 1;
913 	  break;
914 
915 	case R_X86_64_PLTOFF64:
916 	  /* This tries to form the 'address' of a function relative
917 	     to GOT.  For global symbols we need a PLT entry.  */
918 	  if (h != NULL)
919 	    {
920 	      h->needs_plt = 1;
921 	      h->plt.refcount += 1;
922 	    }
923 	  goto create_got;
924 
925 	case R_X86_64_8:
926 	case R_X86_64_16:
927 	case R_X86_64_32:
928 	case R_X86_64_32S:
929 	  /* Let's help debug shared library creation.  These relocs
930 	     cannot be used in shared libs.  Don't error out for
931 	     sections we don't care about, such as debug sections or
932 	     non-constant sections.  */
933 	  if (info->shared
934 	      && (sec->flags & SEC_ALLOC) != 0
935 	      && (sec->flags & SEC_READONLY) != 0)
936 	    {
937 	      (*_bfd_error_handler)
938 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
939 		 abfd,
940 		 x86_64_elf_howto_table[r_type].name,
941 		 (h) ? h->root.root.string : "a local symbol");
942 	      bfd_set_error (bfd_error_bad_value);
943 	      return FALSE;
944 	    }
945 	  /* Fall through.  */
946 
947 	case R_X86_64_PC8:
948 	case R_X86_64_PC16:
949 	case R_X86_64_PC32:
950 	case R_X86_64_PC64:
951 	case R_X86_64_64:
952 	  if (h != NULL && !info->shared)
953 	    {
954 	      /* If this reloc is in a read-only section, we might
955 		 need a copy reloc.  We can't check reliably at this
956 		 stage whether the section is read-only, as input
957 		 sections have not yet been mapped to output sections.
958 		 Tentatively set the flag for now, and correct in
959 		 adjust_dynamic_symbol.  */
960 	      h->non_got_ref = 1;
961 
962 	      /* We may need a .plt entry if the function this reloc
963 		 refers to is in a shared lib.  */
964 	      h->plt.refcount += 1;
965 	      if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
966 		h->pointer_equality_needed = 1;
967 	    }
968 
969 	  /* If we are creating a shared library, and this is a reloc
970 	     against a global symbol, or a non PC relative reloc
971 	     against a local symbol, then we need to copy the reloc
972 	     into the shared library.  However, if we are linking with
973 	     -Bsymbolic, we do not need to copy a reloc against a
974 	     global symbol which is defined in an object we are
975 	     including in the link (i.e., DEF_REGULAR is set).	At
976 	     this point we have not seen all the input files, so it is
977 	     possible that DEF_REGULAR is not set now but will be set
978 	     later (it is never cleared).  In case of a weak definition,
979 	     DEF_REGULAR may be cleared later by a strong definition in
980 	     a shared library.  We account for that possibility below by
981 	     storing information in the relocs_copied field of the hash
982 	     table entry.  A similar situation occurs when creating
983 	     shared libraries and symbol visibility changes render the
984 	     symbol local.
985 
986 	     If on the other hand, we are creating an executable, we
987 	     may need to keep relocations for symbols satisfied by a
988 	     dynamic library if we manage to avoid copy relocs for the
989 	     symbol.  */
990 	  if ((info->shared
991 	       && (sec->flags & SEC_ALLOC) != 0
992 	       && (((r_type != R_X86_64_PC8)
993 		    && (r_type != R_X86_64_PC16)
994 		    && (r_type != R_X86_64_PC32)
995 		    && (r_type != R_X86_64_PC64))
996 		   || (h != NULL
997 		       && (! info->symbolic
998 			   || h->root.type == bfd_link_hash_defweak
999 			   || !h->def_regular))))
1000 	      || (ELIMINATE_COPY_RELOCS
1001 		  && !info->shared
1002 		  && (sec->flags & SEC_ALLOC) != 0
1003 		  && h != NULL
1004 		  && (h->root.type == bfd_link_hash_defweak
1005 		      || !h->def_regular)))
1006 	    {
1007 	      struct elf64_x86_64_dyn_relocs *p;
1008 	      struct elf64_x86_64_dyn_relocs **head;
1009 
1010 	      /* We must copy these reloc types into the output file.
1011 		 Create a reloc section in dynobj and make room for
1012 		 this reloc.  */
1013 	      if (sreloc == NULL)
1014 		{
1015 		  const char *name;
1016 		  bfd *dynobj;
1017 
1018 		  name = (bfd_elf_string_from_elf_section
1019 			  (abfd,
1020 			   elf_elfheader (abfd)->e_shstrndx,
1021 			   elf_section_data (sec)->rel_hdr.sh_name));
1022 		  if (name == NULL)
1023 		    return FALSE;
1024 
1025 		  if (strncmp (name, ".rela", 5) != 0
1026 		      || strcmp (bfd_get_section_name (abfd, sec),
1027 				 name + 5) != 0)
1028 		    {
1029 		      (*_bfd_error_handler)
1030 			(_("%B: bad relocation section name `%s\'"),
1031 			 abfd, name);
1032 		    }
1033 
1034 		  if (htab->elf.dynobj == NULL)
1035 		    htab->elf.dynobj = abfd;
1036 
1037 		  dynobj = htab->elf.dynobj;
1038 
1039 		  sreloc = bfd_get_section_by_name (dynobj, name);
1040 		  if (sreloc == NULL)
1041 		    {
1042 		      flagword flags;
1043 
1044 		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1045 			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1046 		      if ((sec->flags & SEC_ALLOC) != 0)
1047 			flags |= SEC_ALLOC | SEC_LOAD;
1048 		      sreloc = bfd_make_section_with_flags (dynobj,
1049 							    name,
1050 							    flags);
1051 		      if (sreloc == NULL
1052 			  || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1053 			return FALSE;
1054 		    }
1055 		  elf_section_data (sec)->sreloc = sreloc;
1056 		}
1057 
1058 	      /* If this is a global symbol, we count the number of
1059 		 relocations we need for this symbol.  */
1060 	      if (h != NULL)
1061 		{
1062 		  head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1063 		}
1064 	      else
1065 		{
1066 		  void **vpp;
1067 		  /* Track dynamic relocs needed for local syms too.
1068 		     We really need local syms available to do this
1069 		     easily.  Oh well.  */
1070 
1071 		  asection *s;
1072 		  s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1073 						 sec, r_symndx);
1074 		  if (s == NULL)
1075 		    return FALSE;
1076 
1077 		  /* Beware of type punned pointers vs strict aliasing
1078 		     rules.  */
1079 		  vpp = &(elf_section_data (s)->local_dynrel);
1080 		  head = (struct elf64_x86_64_dyn_relocs **)vpp;
1081 		}
1082 
1083 	      p = *head;
1084 	      if (p == NULL || p->sec != sec)
1085 		{
1086 		  bfd_size_type amt = sizeof *p;
1087 		  p = ((struct elf64_x86_64_dyn_relocs *)
1088 		       bfd_alloc (htab->elf.dynobj, amt));
1089 		  if (p == NULL)
1090 		    return FALSE;
1091 		  p->next = *head;
1092 		  *head = p;
1093 		  p->sec = sec;
1094 		  p->count = 0;
1095 		  p->pc_count = 0;
1096 		}
1097 
1098 	      p->count += 1;
1099 	      if (r_type == R_X86_64_PC8
1100 		  || r_type == R_X86_64_PC16
1101 		  || r_type == R_X86_64_PC32
1102 		  || r_type == R_X86_64_PC64)
1103 		p->pc_count += 1;
1104 	    }
1105 	  break;
1106 
1107 	  /* This relocation describes the C++ object vtable hierarchy.
1108 	     Reconstruct it for later use during GC.  */
1109 	case R_X86_64_GNU_VTINHERIT:
1110 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1111 	    return FALSE;
1112 	  break;
1113 
1114 	  /* This relocation describes which C++ vtable entries are actually
1115 	     used.  Record for later use during GC.  */
1116 	case R_X86_64_GNU_VTENTRY:
1117 	  if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1118 	    return FALSE;
1119 	  break;
1120 
1121 	default:
1122 	  break;
1123 	}
1124     }
1125 
1126   return TRUE;
1127 }
1128 
1129 /* Return the section that should be marked against GC for a given
1130    relocation.	*/
1131 
1132 static asection *
elf64_x86_64_gc_mark_hook(asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)1133 elf64_x86_64_gc_mark_hook (asection *sec,
1134 			   struct bfd_link_info *info ATTRIBUTE_UNUSED,
1135 			   Elf_Internal_Rela *rel,
1136 			   struct elf_link_hash_entry *h,
1137 			   Elf_Internal_Sym *sym)
1138 {
1139   if (h != NULL)
1140     {
1141       switch (ELF64_R_TYPE (rel->r_info))
1142 	{
1143 	case R_X86_64_GNU_VTINHERIT:
1144 	case R_X86_64_GNU_VTENTRY:
1145 	  break;
1146 
1147 	default:
1148 	  switch (h->root.type)
1149 	    {
1150 	    case bfd_link_hash_defined:
1151 	    case bfd_link_hash_defweak:
1152 	      return h->root.u.def.section;
1153 
1154 	    case bfd_link_hash_common:
1155 	      return h->root.u.c.p->section;
1156 
1157 	    default:
1158 	      break;
1159 	    }
1160 	}
1161     }
1162   else
1163     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1164 
1165   return NULL;
1166 }
1167 
1168 /* Update the got entry reference counts for the section being removed.	 */
1169 
1170 static bfd_boolean
elf64_x86_64_gc_sweep_hook(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1171 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1172 			    asection *sec, const Elf_Internal_Rela *relocs)
1173 {
1174   Elf_Internal_Shdr *symtab_hdr;
1175   struct elf_link_hash_entry **sym_hashes;
1176   bfd_signed_vma *local_got_refcounts;
1177   const Elf_Internal_Rela *rel, *relend;
1178 
1179   elf_section_data (sec)->local_dynrel = NULL;
1180 
1181   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1182   sym_hashes = elf_sym_hashes (abfd);
1183   local_got_refcounts = elf_local_got_refcounts (abfd);
1184 
1185   relend = relocs + sec->reloc_count;
1186   for (rel = relocs; rel < relend; rel++)
1187     {
1188       unsigned long r_symndx;
1189       unsigned int r_type;
1190       struct elf_link_hash_entry *h = NULL;
1191 
1192       r_symndx = ELF64_R_SYM (rel->r_info);
1193       if (r_symndx >= symtab_hdr->sh_info)
1194 	{
1195 	  struct elf64_x86_64_link_hash_entry *eh;
1196 	  struct elf64_x86_64_dyn_relocs **pp;
1197 	  struct elf64_x86_64_dyn_relocs *p;
1198 
1199 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1200 	  while (h->root.type == bfd_link_hash_indirect
1201 		 || h->root.type == bfd_link_hash_warning)
1202 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1203 	  eh = (struct elf64_x86_64_link_hash_entry *) h;
1204 
1205 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1206 	    if (p->sec == sec)
1207 	      {
1208 		/* Everything must go for SEC.  */
1209 		*pp = p->next;
1210 		break;
1211 	      }
1212 	}
1213 
1214       r_type = ELF64_R_TYPE (rel->r_info);
1215       r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1216       switch (r_type)
1217 	{
1218 	case R_X86_64_TLSLD:
1219 	  if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1220 	    elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1221 	  break;
1222 
1223 	case R_X86_64_TLSGD:
1224 	case R_X86_64_GOTPC32_TLSDESC:
1225 	case R_X86_64_TLSDESC_CALL:
1226 	case R_X86_64_GOTTPOFF:
1227 	case R_X86_64_GOT32:
1228 	case R_X86_64_GOTPCREL:
1229 	case R_X86_64_GOT64:
1230 	case R_X86_64_GOTPCREL64:
1231 	case R_X86_64_GOTPLT64:
1232 	  if (h != NULL)
1233 	    {
1234 	      if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1235 	        h->plt.refcount -= 1;
1236 	      if (h->got.refcount > 0)
1237 		h->got.refcount -= 1;
1238 	    }
1239 	  else if (local_got_refcounts != NULL)
1240 	    {
1241 	      if (local_got_refcounts[r_symndx] > 0)
1242 		local_got_refcounts[r_symndx] -= 1;
1243 	    }
1244 	  break;
1245 
1246 	case R_X86_64_8:
1247 	case R_X86_64_16:
1248 	case R_X86_64_32:
1249 	case R_X86_64_64:
1250 	case R_X86_64_32S:
1251 	case R_X86_64_PC8:
1252 	case R_X86_64_PC16:
1253 	case R_X86_64_PC32:
1254 	case R_X86_64_PC64:
1255 	  if (info->shared)
1256 	    break;
1257 	  /* Fall thru */
1258 
1259 	case R_X86_64_PLT32:
1260 	case R_X86_64_PLTOFF64:
1261 	  if (h != NULL)
1262 	    {
1263 	      if (h->plt.refcount > 0)
1264 		h->plt.refcount -= 1;
1265 	    }
1266 	  break;
1267 
1268 	default:
1269 	  break;
1270 	}
1271     }
1272 
1273   return TRUE;
1274 }
1275 
1276 /* Adjust a symbol defined by a dynamic object and referenced by a
1277    regular object.  The current definition is in some section of the
1278    dynamic object, but we're not including those sections.  We have to
1279    change the definition to something the rest of the link can
1280    understand.	*/
1281 
1282 static bfd_boolean
elf64_x86_64_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)1283 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1284 				    struct elf_link_hash_entry *h)
1285 {
1286   struct elf64_x86_64_link_hash_table *htab;
1287   asection *s;
1288   unsigned int power_of_two;
1289 
1290   /* If this is a function, put it in the procedure linkage table.  We
1291      will fill in the contents of the procedure linkage table later,
1292      when we know the address of the .got section.  */
1293   if (h->type == STT_FUNC
1294       || h->needs_plt)
1295     {
1296       if (h->plt.refcount <= 0
1297 	  || SYMBOL_CALLS_LOCAL (info, h)
1298 	  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1299 	      && h->root.type == bfd_link_hash_undefweak))
1300 	{
1301 	  /* This case can occur if we saw a PLT32 reloc in an input
1302 	     file, but the symbol was never referred to by a dynamic
1303 	     object, or if all references were garbage collected.  In
1304 	     such a case, we don't actually need to build a procedure
1305 	     linkage table, and we can just do a PC32 reloc instead.  */
1306 	  h->plt.offset = (bfd_vma) -1;
1307 	  h->needs_plt = 0;
1308 	}
1309 
1310       return TRUE;
1311     }
1312   else
1313     /* It's possible that we incorrectly decided a .plt reloc was
1314        needed for an R_X86_64_PC32 reloc to a non-function sym in
1315        check_relocs.  We can't decide accurately between function and
1316        non-function syms in check-relocs;  Objects loaded later in
1317        the link may change h->type.  So fix it now.  */
1318     h->plt.offset = (bfd_vma) -1;
1319 
1320   /* If this is a weak symbol, and there is a real definition, the
1321      processor independent code will have arranged for us to see the
1322      real definition first, and we can just use the same value.	 */
1323   if (h->u.weakdef != NULL)
1324     {
1325       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1326 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
1327       h->root.u.def.section = h->u.weakdef->root.u.def.section;
1328       h->root.u.def.value = h->u.weakdef->root.u.def.value;
1329       if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1330 	h->non_got_ref = h->u.weakdef->non_got_ref;
1331       return TRUE;
1332     }
1333 
1334   /* This is a reference to a symbol defined by a dynamic object which
1335      is not a function.	 */
1336 
1337   /* If we are creating a shared library, we must presume that the
1338      only references to the symbol are via the global offset table.
1339      For such cases we need not do anything here; the relocations will
1340      be handled correctly by relocate_section.	*/
1341   if (info->shared)
1342     return TRUE;
1343 
1344   /* If there are no references to this symbol that do not use the
1345      GOT, we don't need to generate a copy reloc.  */
1346   if (!h->non_got_ref)
1347     return TRUE;
1348 
1349   /* If -z nocopyreloc was given, we won't generate them either.  */
1350   if (info->nocopyreloc)
1351     {
1352       h->non_got_ref = 0;
1353       return TRUE;
1354     }
1355 
1356   if (ELIMINATE_COPY_RELOCS)
1357     {
1358       struct elf64_x86_64_link_hash_entry * eh;
1359       struct elf64_x86_64_dyn_relocs *p;
1360 
1361       eh = (struct elf64_x86_64_link_hash_entry *) h;
1362       for (p = eh->dyn_relocs; p != NULL; p = p->next)
1363 	{
1364 	  s = p->sec->output_section;
1365 	  if (s != NULL && (s->flags & SEC_READONLY) != 0)
1366 	    break;
1367 	}
1368 
1369       /* If we didn't find any dynamic relocs in read-only sections, then
1370 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1371       if (p == NULL)
1372 	{
1373 	  h->non_got_ref = 0;
1374 	  return TRUE;
1375 	}
1376     }
1377 
1378   if (h->size == 0)
1379     {
1380       (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1381 			     h->root.root.string);
1382       return TRUE;
1383     }
1384 
1385   /* We must allocate the symbol in our .dynbss section, which will
1386      become part of the .bss section of the executable.	 There will be
1387      an entry for this symbol in the .dynsym section.  The dynamic
1388      object will contain position independent code, so all references
1389      from the dynamic object to this symbol will go through the global
1390      offset table.  The dynamic linker will use the .dynsym entry to
1391      determine the address it must put in the global offset table, so
1392      both the dynamic object and the regular object will refer to the
1393      same memory location for the variable.  */
1394 
1395   htab = elf64_x86_64_hash_table (info);
1396 
1397   /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1398      to copy the initial value out of the dynamic object and into the
1399      runtime process image.  */
1400   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1401     {
1402       htab->srelbss->size += sizeof (Elf64_External_Rela);
1403       h->needs_copy = 1;
1404     }
1405 
1406   /* We need to figure out the alignment required for this symbol.  I
1407      have no idea how ELF linkers handle this.	16-bytes is the size
1408      of the largest type that requires hard alignment -- long double.  */
1409   /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1410      this construct.  */
1411   power_of_two = bfd_log2 (h->size);
1412   if (power_of_two > 4)
1413     power_of_two = 4;
1414 
1415   /* Apply the required alignment.  */
1416   s = htab->sdynbss;
1417   s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1418   if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1419     {
1420       if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1421 	return FALSE;
1422     }
1423 
1424   /* Define the symbol as being at this point in the section.  */
1425   h->root.u.def.section = s;
1426   h->root.u.def.value = s->size;
1427 
1428   /* Increment the section size to make room for the symbol.  */
1429   s->size += h->size;
1430 
1431   return TRUE;
1432 }
1433 
1434 /* Allocate space in .plt, .got and associated reloc sections for
1435    dynamic relocs.  */
1436 
1437 static bfd_boolean
allocate_dynrelocs(struct elf_link_hash_entry * h,void * inf)1438 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1439 {
1440   struct bfd_link_info *info;
1441   struct elf64_x86_64_link_hash_table *htab;
1442   struct elf64_x86_64_link_hash_entry *eh;
1443   struct elf64_x86_64_dyn_relocs *p;
1444 
1445   if (h->root.type == bfd_link_hash_indirect)
1446     return TRUE;
1447 
1448   if (h->root.type == bfd_link_hash_warning)
1449     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1450 
1451   info = (struct bfd_link_info *) inf;
1452   htab = elf64_x86_64_hash_table (info);
1453 
1454   if (htab->elf.dynamic_sections_created
1455       && h->plt.refcount > 0)
1456     {
1457       /* Make sure this symbol is output as a dynamic symbol.
1458 	 Undefined weak syms won't yet be marked as dynamic.  */
1459       if (h->dynindx == -1
1460 	  && !h->forced_local)
1461 	{
1462 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1463 	    return FALSE;
1464 	}
1465 
1466       if (info->shared
1467 	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1468 	{
1469 	  asection *s = htab->splt;
1470 
1471 	  /* If this is the first .plt entry, make room for the special
1472 	     first entry.  */
1473 	  if (s->size == 0)
1474 	    s->size += PLT_ENTRY_SIZE;
1475 
1476 	  h->plt.offset = s->size;
1477 
1478 	  /* If this symbol is not defined in a regular file, and we are
1479 	     not generating a shared library, then set the symbol to this
1480 	     location in the .plt.  This is required to make function
1481 	     pointers compare as equal between the normal executable and
1482 	     the shared library.  */
1483 	  if (! info->shared
1484 	      && !h->def_regular)
1485 	    {
1486 	      h->root.u.def.section = s;
1487 	      h->root.u.def.value = h->plt.offset;
1488 	    }
1489 
1490 	  /* Make room for this entry.  */
1491 	  s->size += PLT_ENTRY_SIZE;
1492 
1493 	  /* We also need to make an entry in the .got.plt section, which
1494 	     will be placed in the .got section by the linker script.  */
1495 	  htab->sgotplt->size += GOT_ENTRY_SIZE;
1496 
1497 	  /* We also need to make an entry in the .rela.plt section.  */
1498 	  htab->srelplt->size += sizeof (Elf64_External_Rela);
1499 	  htab->srelplt->reloc_count++;
1500 	}
1501       else
1502 	{
1503 	  h->plt.offset = (bfd_vma) -1;
1504 	  h->needs_plt = 0;
1505 	}
1506     }
1507   else
1508     {
1509       h->plt.offset = (bfd_vma) -1;
1510       h->needs_plt = 0;
1511     }
1512 
1513   eh = (struct elf64_x86_64_link_hash_entry *) h;
1514   eh->tlsdesc_got = (bfd_vma) -1;
1515 
1516   /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1517      make it a R_X86_64_TPOFF32 requiring no GOT entry.  */
1518   if (h->got.refcount > 0
1519       && !info->shared
1520       && h->dynindx == -1
1521       && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1522     h->got.offset = (bfd_vma) -1;
1523   else if (h->got.refcount > 0)
1524     {
1525       asection *s;
1526       bfd_boolean dyn;
1527       int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1528 
1529       /* Make sure this symbol is output as a dynamic symbol.
1530 	 Undefined weak syms won't yet be marked as dynamic.  */
1531       if (h->dynindx == -1
1532 	  && !h->forced_local)
1533 	{
1534 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1535 	    return FALSE;
1536 	}
1537 
1538       if (GOT_TLS_GDESC_P (tls_type))
1539 	{
1540 	  eh->tlsdesc_got = htab->sgotplt->size
1541 	    - elf64_x86_64_compute_jump_table_size (htab);
1542 	  htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1543 	  h->got.offset = (bfd_vma) -2;
1544 	}
1545       if (! GOT_TLS_GDESC_P (tls_type)
1546 	  || GOT_TLS_GD_P (tls_type))
1547 	{
1548 	  s = htab->sgot;
1549 	  h->got.offset = s->size;
1550 	  s->size += GOT_ENTRY_SIZE;
1551 	  if (GOT_TLS_GD_P (tls_type))
1552 	    s->size += GOT_ENTRY_SIZE;
1553 	}
1554       dyn = htab->elf.dynamic_sections_created;
1555       /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1556 	 and two if global.
1557 	 R_X86_64_GOTTPOFF needs one dynamic relocation.  */
1558       if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1559 	  || tls_type == GOT_TLS_IE)
1560 	htab->srelgot->size += sizeof (Elf64_External_Rela);
1561       else if (GOT_TLS_GD_P (tls_type))
1562 	htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1563       else if (! GOT_TLS_GDESC_P (tls_type)
1564 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1565 		   || h->root.type != bfd_link_hash_undefweak)
1566 	       && (info->shared
1567 		   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1568 	htab->srelgot->size += sizeof (Elf64_External_Rela);
1569       if (GOT_TLS_GDESC_P (tls_type))
1570 	{
1571 	  htab->srelplt->size += sizeof (Elf64_External_Rela);
1572 	  htab->tlsdesc_plt = (bfd_vma) -1;
1573 	}
1574     }
1575   else
1576     h->got.offset = (bfd_vma) -1;
1577 
1578   if (eh->dyn_relocs == NULL)
1579     return TRUE;
1580 
1581   /* In the shared -Bsymbolic case, discard space allocated for
1582      dynamic pc-relative relocs against symbols which turn out to be
1583      defined in regular objects.  For the normal shared case, discard
1584      space for pc-relative relocs that have become local due to symbol
1585      visibility changes.  */
1586 
1587   if (info->shared)
1588     {
1589       /* Relocs that use pc_count are those that appear on a call
1590 	 insn, or certain REL relocs that can generated via assembly.
1591 	 We want calls to protected symbols to resolve directly to the
1592 	 function rather than going via the plt.  If people want
1593 	 function pointer comparisons to work as expected then they
1594 	 should avoid writing weird assembly.  */
1595       if (SYMBOL_CALLS_LOCAL (info, h))
1596 	{
1597 	  struct elf64_x86_64_dyn_relocs **pp;
1598 
1599 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1600 	    {
1601 	      p->count -= p->pc_count;
1602 	      p->pc_count = 0;
1603 	      if (p->count == 0)
1604 		*pp = p->next;
1605 	      else
1606 		pp = &p->next;
1607 	    }
1608 	}
1609 
1610       /* Also discard relocs on undefined weak syms with non-default
1611 	 visibility.  */
1612       if (eh->dyn_relocs != NULL
1613 	  && h->root.type == bfd_link_hash_undefweak)
1614 	{
1615 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1616 	    eh->dyn_relocs = NULL;
1617 
1618 	  /* Make sure undefined weak symbols are output as a dynamic
1619 	     symbol in PIEs.  */
1620 	  else if (h->dynindx == -1
1621 		   && !h->forced_local)
1622 	    {
1623 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
1624 		return FALSE;
1625 	    }
1626 	}
1627     }
1628   else if (ELIMINATE_COPY_RELOCS)
1629     {
1630       /* For the non-shared case, discard space for relocs against
1631 	 symbols which turn out to need copy relocs or are not
1632 	 dynamic.  */
1633 
1634       if (!h->non_got_ref
1635 	  && ((h->def_dynamic
1636 	       && !h->def_regular)
1637 	      || (htab->elf.dynamic_sections_created
1638 		  && (h->root.type == bfd_link_hash_undefweak
1639 		      || h->root.type == bfd_link_hash_undefined))))
1640 	{
1641 	  /* Make sure this symbol is output as a dynamic symbol.
1642 	     Undefined weak syms won't yet be marked as dynamic.  */
1643 	  if (h->dynindx == -1
1644 	      && !h->forced_local)
1645 	    {
1646 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
1647 		return FALSE;
1648 	    }
1649 
1650 	  /* If that succeeded, we know we'll be keeping all the
1651 	     relocs.  */
1652 	  if (h->dynindx != -1)
1653 	    goto keep;
1654 	}
1655 
1656       eh->dyn_relocs = NULL;
1657 
1658     keep: ;
1659     }
1660 
1661   /* Finally, allocate space.  */
1662   for (p = eh->dyn_relocs; p != NULL; p = p->next)
1663     {
1664       asection *sreloc = elf_section_data (p->sec)->sreloc;
1665       sreloc->size += p->count * sizeof (Elf64_External_Rela);
1666     }
1667 
1668   return TRUE;
1669 }
1670 
1671 /* Find any dynamic relocs that apply to read-only sections.  */
1672 
1673 static bfd_boolean
readonly_dynrelocs(struct elf_link_hash_entry * h,void * inf)1674 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1675 {
1676   struct elf64_x86_64_link_hash_entry *eh;
1677   struct elf64_x86_64_dyn_relocs *p;
1678 
1679   if (h->root.type == bfd_link_hash_warning)
1680     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1681 
1682   eh = (struct elf64_x86_64_link_hash_entry *) h;
1683   for (p = eh->dyn_relocs; p != NULL; p = p->next)
1684     {
1685       asection *s = p->sec->output_section;
1686 
1687       if (s != NULL && (s->flags & SEC_READONLY) != 0)
1688 	{
1689 	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
1690 
1691 	  info->flags |= DF_TEXTREL;
1692 
1693 	  /* Not an error, just cut short the traversal.  */
1694 	  return FALSE;
1695 	}
1696     }
1697   return TRUE;
1698 }
1699 
1700 /* Set the sizes of the dynamic sections.  */
1701 
1702 static bfd_boolean
elf64_x86_64_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)1703 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1704 				    struct bfd_link_info *info)
1705 {
1706   struct elf64_x86_64_link_hash_table *htab;
1707   bfd *dynobj;
1708   asection *s;
1709   bfd_boolean relocs;
1710   bfd *ibfd;
1711 
1712   htab = elf64_x86_64_hash_table (info);
1713   dynobj = htab->elf.dynobj;
1714   if (dynobj == NULL)
1715     abort ();
1716 
1717   if (htab->elf.dynamic_sections_created)
1718     {
1719       /* Set the contents of the .interp section to the interpreter.  */
1720       if (info->executable)
1721 	{
1722 	  s = bfd_get_section_by_name (dynobj, ".interp");
1723 	  if (s == NULL)
1724 	    abort ();
1725 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1726 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1727 	}
1728     }
1729 
1730   /* Set up .got offsets for local syms, and space for local dynamic
1731      relocs.  */
1732   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1733     {
1734       bfd_signed_vma *local_got;
1735       bfd_signed_vma *end_local_got;
1736       char *local_tls_type;
1737       bfd_vma *local_tlsdesc_gotent;
1738       bfd_size_type locsymcount;
1739       Elf_Internal_Shdr *symtab_hdr;
1740       asection *srel;
1741 
1742       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1743 	continue;
1744 
1745       for (s = ibfd->sections; s != NULL; s = s->next)
1746 	{
1747 	  struct elf64_x86_64_dyn_relocs *p;
1748 
1749 	  for (p = (struct elf64_x86_64_dyn_relocs *)
1750 		    (elf_section_data (s)->local_dynrel);
1751 	       p != NULL;
1752 	       p = p->next)
1753 	    {
1754 	      if (!bfd_is_abs_section (p->sec)
1755 		  && bfd_is_abs_section (p->sec->output_section))
1756 		{
1757 		  /* Input section has been discarded, either because
1758 		     it is a copy of a linkonce section or due to
1759 		     linker script /DISCARD/, so we'll be discarding
1760 		     the relocs too.  */
1761 		}
1762 	      else if (p->count != 0)
1763 		{
1764 		  srel = elf_section_data (p->sec)->sreloc;
1765 		  srel->size += p->count * sizeof (Elf64_External_Rela);
1766 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1767 		    info->flags |= DF_TEXTREL;
1768 
1769 		}
1770 	    }
1771 	}
1772 
1773       local_got = elf_local_got_refcounts (ibfd);
1774       if (!local_got)
1775 	continue;
1776 
1777       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1778       locsymcount = symtab_hdr->sh_info;
1779       end_local_got = local_got + locsymcount;
1780       local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1781       local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
1782       s = htab->sgot;
1783       srel = htab->srelgot;
1784       for (; local_got < end_local_got;
1785 	   ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
1786 	{
1787 	  *local_tlsdesc_gotent = (bfd_vma) -1;
1788 	  if (*local_got > 0)
1789 	    {
1790 	      if (GOT_TLS_GDESC_P (*local_tls_type))
1791 		{
1792 		  *local_tlsdesc_gotent = htab->sgotplt->size
1793 		    - elf64_x86_64_compute_jump_table_size (htab);
1794 		  htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1795 		  *local_got = (bfd_vma) -2;
1796 		}
1797 	      if (! GOT_TLS_GDESC_P (*local_tls_type)
1798 		  || GOT_TLS_GD_P (*local_tls_type))
1799 		{
1800 		  *local_got = s->size;
1801 		  s->size += GOT_ENTRY_SIZE;
1802 		  if (GOT_TLS_GD_P (*local_tls_type))
1803 		    s->size += GOT_ENTRY_SIZE;
1804 		}
1805 	      if (info->shared
1806 		  || GOT_TLS_GD_ANY_P (*local_tls_type)
1807 		  || *local_tls_type == GOT_TLS_IE)
1808 		{
1809 		  if (GOT_TLS_GDESC_P (*local_tls_type))
1810 		    {
1811 		      htab->srelplt->size += sizeof (Elf64_External_Rela);
1812 		      htab->tlsdesc_plt = (bfd_vma) -1;
1813 		    }
1814 		  if (! GOT_TLS_GDESC_P (*local_tls_type)
1815 		      || GOT_TLS_GD_P (*local_tls_type))
1816 		    srel->size += sizeof (Elf64_External_Rela);
1817 		}
1818 	    }
1819 	  else
1820 	    *local_got = (bfd_vma) -1;
1821 	}
1822     }
1823 
1824   if (htab->tls_ld_got.refcount > 0)
1825     {
1826       /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1827 	 relocs.  */
1828       htab->tls_ld_got.offset = htab->sgot->size;
1829       htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1830       htab->srelgot->size += sizeof (Elf64_External_Rela);
1831     }
1832   else
1833     htab->tls_ld_got.offset = -1;
1834 
1835   /* Allocate global sym .plt and .got entries, and space for global
1836      sym dynamic relocs.  */
1837   elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1838 
1839   /* For every jump slot reserved in the sgotplt, reloc_count is
1840      incremented.  However, when we reserve space for TLS descriptors,
1841      it's not incremented, so in order to compute the space reserved
1842      for them, it suffices to multiply the reloc count by the jump
1843      slot size.  */
1844   if (htab->srelplt)
1845     htab->sgotplt_jump_table_size
1846       = elf64_x86_64_compute_jump_table_size (htab);
1847 
1848   if (htab->tlsdesc_plt)
1849     {
1850       /* If we're not using lazy TLS relocations, don't generate the
1851 	 PLT and GOT entries they require.  */
1852       if ((info->flags & DF_BIND_NOW))
1853 	htab->tlsdesc_plt = 0;
1854       else
1855 	{
1856 	  htab->tlsdesc_got = htab->sgot->size;
1857 	  htab->sgot->size += GOT_ENTRY_SIZE;
1858 	  /* Reserve room for the initial entry.
1859 	     FIXME: we could probably do away with it in this case.  */
1860 	  if (htab->splt->size == 0)
1861 	    htab->splt->size += PLT_ENTRY_SIZE;
1862 	  htab->tlsdesc_plt = htab->splt->size;
1863 	  htab->splt->size += PLT_ENTRY_SIZE;
1864 	}
1865     }
1866 
1867   /* We now have determined the sizes of the various dynamic sections.
1868      Allocate memory for them.  */
1869   relocs = FALSE;
1870   for (s = dynobj->sections; s != NULL; s = s->next)
1871     {
1872       if ((s->flags & SEC_LINKER_CREATED) == 0)
1873 	continue;
1874 
1875       if (s == htab->splt
1876 	  || s == htab->sgot
1877 	  || s == htab->sgotplt
1878 	  || s == htab->sdynbss)
1879 	{
1880 	  /* Strip this section if we don't need it; see the
1881 	     comment below.  */
1882 	}
1883       else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1884 	{
1885 	  if (s->size != 0 && s != htab->srelplt)
1886 	    relocs = TRUE;
1887 
1888 	  /* We use the reloc_count field as a counter if we need
1889 	     to copy relocs into the output file.  */
1890 	  if (s != htab->srelplt)
1891 	    s->reloc_count = 0;
1892 	}
1893       else
1894 	{
1895 	  /* It's not one of our sections, so don't allocate space.  */
1896 	  continue;
1897 	}
1898 
1899       if (s->size == 0)
1900 	{
1901 	  /* If we don't need this section, strip it from the
1902 	     output file.  This is mostly to handle .rela.bss and
1903 	     .rela.plt.  We must create both sections in
1904 	     create_dynamic_sections, because they must be created
1905 	     before the linker maps input sections to output
1906 	     sections.  The linker does that before
1907 	     adjust_dynamic_symbol is called, and it is that
1908 	     function which decides whether anything needs to go
1909 	     into these sections.  */
1910 
1911 	  s->flags |= SEC_EXCLUDE;
1912 	  continue;
1913 	}
1914 
1915       if ((s->flags & SEC_HAS_CONTENTS) == 0)
1916 	continue;
1917 
1918       /* Allocate memory for the section contents.  We use bfd_zalloc
1919 	 here in case unused entries are not reclaimed before the
1920 	 section's contents are written out.  This should not happen,
1921 	 but this way if it does, we get a R_X86_64_NONE reloc instead
1922 	 of garbage.  */
1923       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1924       if (s->contents == NULL)
1925 	return FALSE;
1926     }
1927 
1928   if (htab->elf.dynamic_sections_created)
1929     {
1930       /* Add some entries to the .dynamic section.  We fill in the
1931 	 values later, in elf64_x86_64_finish_dynamic_sections, but we
1932 	 must add the entries now so that we get the correct size for
1933 	 the .dynamic section.	The DT_DEBUG entry is filled in by the
1934 	 dynamic linker and used by the debugger.  */
1935 #define add_dynamic_entry(TAG, VAL) \
1936   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1937 
1938       if (info->executable)
1939 	{
1940 	  if (!add_dynamic_entry (DT_DEBUG, 0))
1941 	    return FALSE;
1942 	}
1943 
1944       if (htab->splt->size != 0)
1945 	{
1946 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
1947 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
1948 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1949 	      || !add_dynamic_entry (DT_JMPREL, 0))
1950 	    return FALSE;
1951 
1952 	  if (htab->tlsdesc_plt
1953 	      && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
1954 		  || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
1955 	    return FALSE;
1956 	}
1957 
1958       if (relocs)
1959 	{
1960 	  if (!add_dynamic_entry (DT_RELA, 0)
1961 	      || !add_dynamic_entry (DT_RELASZ, 0)
1962 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1963 	    return FALSE;
1964 
1965 	  /* If any dynamic relocs apply to a read-only section,
1966 	     then we need a DT_TEXTREL entry.  */
1967 	  if ((info->flags & DF_TEXTREL) == 0)
1968 	    elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1969 				    (PTR) info);
1970 
1971 	  if ((info->flags & DF_TEXTREL) != 0)
1972 	    {
1973 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
1974 		return FALSE;
1975 	    }
1976 	}
1977     }
1978 #undef add_dynamic_entry
1979 
1980   return TRUE;
1981 }
1982 
1983 static bfd_boolean
elf64_x86_64_always_size_sections(bfd * output_bfd,struct bfd_link_info * info)1984 elf64_x86_64_always_size_sections (bfd *output_bfd,
1985 				   struct bfd_link_info *info)
1986 {
1987   asection *tls_sec = elf_hash_table (info)->tls_sec;
1988 
1989   if (tls_sec)
1990     {
1991       struct elf_link_hash_entry *tlsbase;
1992 
1993       tlsbase = elf_link_hash_lookup (elf_hash_table (info),
1994 				      "_TLS_MODULE_BASE_",
1995 				      FALSE, FALSE, FALSE);
1996 
1997       if (tlsbase && tlsbase->type == STT_TLS)
1998 	{
1999 	  struct bfd_link_hash_entry *bh = NULL;
2000 	  const struct elf_backend_data *bed
2001 	    = get_elf_backend_data (output_bfd);
2002 
2003 	  if (!(_bfd_generic_link_add_one_symbol
2004 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2005 		 tls_sec, 0, NULL, FALSE,
2006 		 bed->collect, &bh)))
2007 	    return FALSE;
2008 	  tlsbase = (struct elf_link_hash_entry *)bh;
2009 	  tlsbase->def_regular = 1;
2010 	  tlsbase->other = STV_HIDDEN;
2011 	  (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2012 	}
2013     }
2014 
2015   return TRUE;
2016 }
2017 
2018 /* Return the base VMA address which should be subtracted from real addresses
2019    when resolving @dtpoff relocation.
2020    This is PT_TLS segment p_vaddr.  */
2021 
2022 static bfd_vma
dtpoff_base(struct bfd_link_info * info)2023 dtpoff_base (struct bfd_link_info *info)
2024 {
2025   /* If tls_sec is NULL, we should have signalled an error already.  */
2026   if (elf_hash_table (info)->tls_sec == NULL)
2027     return 0;
2028   return elf_hash_table (info)->tls_sec->vma;
2029 }
2030 
2031 /* Return the relocation value for @tpoff relocation
2032    if STT_TLS virtual address is ADDRESS.  */
2033 
2034 static bfd_vma
tpoff(struct bfd_link_info * info,bfd_vma address)2035 tpoff (struct bfd_link_info *info, bfd_vma address)
2036 {
2037   struct elf_link_hash_table *htab = elf_hash_table (info);
2038 
2039   /* If tls_segment is NULL, we should have signalled an error already.  */
2040   if (htab->tls_sec == NULL)
2041     return 0;
2042   return address - htab->tls_size - htab->tls_sec->vma;
2043 }
2044 
2045 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2046    branch?  */
2047 
2048 static bfd_boolean
is_32bit_relative_branch(bfd_byte * contents,bfd_vma offset)2049 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2050 {
2051   /* Opcode		Instruction
2052      0xe8		call
2053      0xe9		jump
2054      0x0f 0x8x		conditional jump */
2055   return ((offset > 0
2056 	   && (contents [offset - 1] == 0xe8
2057 	       || contents [offset - 1] == 0xe9))
2058 	  || (offset > 1
2059 	      && contents [offset - 2] == 0x0f
2060 	      && (contents [offset - 1] & 0xf0) == 0x80));
2061 }
2062 
2063 /* Relocate an x86_64 ELF section.  */
2064 
2065 static bfd_boolean
elf64_x86_64_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)2066 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2067 			       bfd *input_bfd, asection *input_section,
2068 			       bfd_byte *contents, Elf_Internal_Rela *relocs,
2069 			       Elf_Internal_Sym *local_syms,
2070 			       asection **local_sections)
2071 {
2072   struct elf64_x86_64_link_hash_table *htab;
2073   Elf_Internal_Shdr *symtab_hdr;
2074   struct elf_link_hash_entry **sym_hashes;
2075   bfd_vma *local_got_offsets;
2076   bfd_vma *local_tlsdesc_gotents;
2077   Elf_Internal_Rela *rel;
2078   Elf_Internal_Rela *relend;
2079 
2080   if (info->relocatable)
2081     return TRUE;
2082 
2083   htab = elf64_x86_64_hash_table (info);
2084   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2085   sym_hashes = elf_sym_hashes (input_bfd);
2086   local_got_offsets = elf_local_got_offsets (input_bfd);
2087   local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2088 
2089   rel = relocs;
2090   relend = relocs + input_section->reloc_count;
2091   for (; rel < relend; rel++)
2092     {
2093       unsigned int r_type;
2094       reloc_howto_type *howto;
2095       unsigned long r_symndx;
2096       struct elf_link_hash_entry *h;
2097       Elf_Internal_Sym *sym;
2098       asection *sec;
2099       bfd_vma off, offplt;
2100       bfd_vma relocation;
2101       bfd_boolean unresolved_reloc;
2102       bfd_reloc_status_type r;
2103       int tls_type;
2104 
2105       r_type = ELF64_R_TYPE (rel->r_info);
2106       if (r_type == (int) R_X86_64_GNU_VTINHERIT
2107 	  || r_type == (int) R_X86_64_GNU_VTENTRY)
2108 	continue;
2109 
2110       if (r_type >= R_X86_64_max)
2111 	{
2112 	  bfd_set_error (bfd_error_bad_value);
2113 	  return FALSE;
2114 	}
2115 
2116       howto = x86_64_elf_howto_table + r_type;
2117       r_symndx = ELF64_R_SYM (rel->r_info);
2118       h = NULL;
2119       sym = NULL;
2120       sec = NULL;
2121       unresolved_reloc = FALSE;
2122       if (r_symndx < symtab_hdr->sh_info)
2123 	{
2124 	  sym = local_syms + r_symndx;
2125 	  sec = local_sections[r_symndx];
2126 
2127 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2128 	}
2129       else
2130 	{
2131 	  bfd_boolean warned;
2132 
2133 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2134 				   r_symndx, symtab_hdr, sym_hashes,
2135 				   h, sec, relocation,
2136 				   unresolved_reloc, warned);
2137 	}
2138       /* When generating a shared object, the relocations handled here are
2139 	 copied into the output file to be resolved at run time.  */
2140       switch (r_type)
2141 	{
2142 	asection *base_got;
2143 	case R_X86_64_GOT32:
2144 	case R_X86_64_GOT64:
2145 	  /* Relocation is to the entry for this symbol in the global
2146 	     offset table.  */
2147 	case R_X86_64_GOTPCREL:
2148 	case R_X86_64_GOTPCREL64:
2149 	  /* Use global offset table entry as symbol value.  */
2150 	case R_X86_64_GOTPLT64:
2151 	  /* This is the same as GOT64 for relocation purposes, but
2152 	     indicates the existence of a PLT entry.  The difficulty is,
2153 	     that we must calculate the GOT slot offset from the PLT
2154 	     offset, if this symbol got a PLT entry (it was global).
2155 	     Additionally if it's computed from the PLT entry, then that
2156 	     GOT offset is relative to .got.plt, not to .got.  */
2157 	  base_got = htab->sgot;
2158 
2159 	  if (htab->sgot == NULL)
2160 	    abort ();
2161 
2162 	  if (h != NULL)
2163 	    {
2164 	      bfd_boolean dyn;
2165 
2166 	      off = h->got.offset;
2167 	      if (h->needs_plt
2168 	          && h->plt.offset != (bfd_vma)-1
2169 		  && off == (bfd_vma)-1)
2170 		{
2171 		  /* We can't use h->got.offset here to save
2172 		     state, or even just remember the offset, as
2173 		     finish_dynamic_symbol would use that as offset into
2174 		     .got.  */
2175 		  bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2176 		  off = (plt_index + 3) * GOT_ENTRY_SIZE;
2177 		  base_got = htab->sgotplt;
2178 		}
2179 
2180 	      dyn = htab->elf.dynamic_sections_created;
2181 
2182 	      if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2183 		  || (info->shared
2184 		      && SYMBOL_REFERENCES_LOCAL (info, h))
2185 		  || (ELF_ST_VISIBILITY (h->other)
2186 		      && h->root.type == bfd_link_hash_undefweak))
2187 		{
2188 		  /* This is actually a static link, or it is a -Bsymbolic
2189 		     link and the symbol is defined locally, or the symbol
2190 		     was forced to be local because of a version file.	We
2191 		     must initialize this entry in the global offset table.
2192 		     Since the offset must always be a multiple of 8, we
2193 		     use the least significant bit to record whether we
2194 		     have initialized it already.
2195 
2196 		     When doing a dynamic link, we create a .rela.got
2197 		     relocation entry to initialize the value.	This is
2198 		     done in the finish_dynamic_symbol routine.	 */
2199 		  if ((off & 1) != 0)
2200 		    off &= ~1;
2201 		  else
2202 		    {
2203 		      bfd_put_64 (output_bfd, relocation,
2204 				  base_got->contents + off);
2205 		      /* Note that this is harmless for the GOTPLT64 case,
2206 		         as -1 | 1 still is -1.  */
2207 		      h->got.offset |= 1;
2208 		    }
2209 		}
2210 	      else
2211 		unresolved_reloc = FALSE;
2212 	    }
2213 	  else
2214 	    {
2215 	      if (local_got_offsets == NULL)
2216 		abort ();
2217 
2218 	      off = local_got_offsets[r_symndx];
2219 
2220 	      /* The offset must always be a multiple of 8.  We use
2221 		 the least significant bit to record whether we have
2222 		 already generated the necessary reloc.	 */
2223 	      if ((off & 1) != 0)
2224 		off &= ~1;
2225 	      else
2226 		{
2227 		  bfd_put_64 (output_bfd, relocation,
2228 			      base_got->contents + off);
2229 
2230 		  if (info->shared)
2231 		    {
2232 		      asection *s;
2233 		      Elf_Internal_Rela outrel;
2234 		      bfd_byte *loc;
2235 
2236 		      /* We need to generate a R_X86_64_RELATIVE reloc
2237 			 for the dynamic linker.  */
2238 		      s = htab->srelgot;
2239 		      if (s == NULL)
2240 			abort ();
2241 
2242 		      outrel.r_offset = (base_got->output_section->vma
2243 					 + base_got->output_offset
2244 					 + off);
2245 		      outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2246 		      outrel.r_addend = relocation;
2247 		      loc = s->contents;
2248 		      loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2249 		      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2250 		    }
2251 
2252 		  local_got_offsets[r_symndx] |= 1;
2253 		}
2254 	    }
2255 
2256 	  if (off >= (bfd_vma) -2)
2257 	    abort ();
2258 
2259 	  relocation = base_got->output_section->vma
2260 		       + base_got->output_offset + off;
2261 	  if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2262 	    relocation -= htab->sgotplt->output_section->vma
2263 			  - htab->sgotplt->output_offset;
2264 
2265 	  break;
2266 
2267 	case R_X86_64_GOTOFF64:
2268 	  /* Relocation is relative to the start of the global offset
2269 	     table.  */
2270 
2271 	  /* Check to make sure it isn't a protected function symbol
2272 	     for shared library since it may not be local when used
2273 	     as function address.  */
2274 	  if (info->shared
2275 	      && h
2276 	      && h->def_regular
2277 	      && h->type == STT_FUNC
2278 	      && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2279 	    {
2280 	      (*_bfd_error_handler)
2281 		(_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2282 		 input_bfd, h->root.root.string);
2283 	      bfd_set_error (bfd_error_bad_value);
2284 	      return FALSE;
2285 	    }
2286 
2287 	  /* Note that sgot is not involved in this
2288 	     calculation.  We always want the start of .got.plt.  If we
2289 	     defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2290 	     permitted by the ABI, we might have to change this
2291 	     calculation.  */
2292 	  relocation -= htab->sgotplt->output_section->vma
2293 			+ htab->sgotplt->output_offset;
2294 	  break;
2295 
2296 	case R_X86_64_GOTPC32:
2297 	case R_X86_64_GOTPC64:
2298 	  /* Use global offset table as symbol value.  */
2299 	  relocation = htab->sgotplt->output_section->vma
2300 		       + htab->sgotplt->output_offset;
2301 	  unresolved_reloc = FALSE;
2302 	  break;
2303 
2304 	case R_X86_64_PLTOFF64:
2305 	  /* Relocation is PLT entry relative to GOT.  For local
2306 	     symbols it's the symbol itself relative to GOT.  */
2307           if (h != NULL
2308 	      /* See PLT32 handling.  */
2309 	      && h->plt.offset != (bfd_vma) -1
2310 	      && htab->splt != NULL)
2311 	    {
2312 	      relocation = (htab->splt->output_section->vma
2313 			    + htab->splt->output_offset
2314 			    + h->plt.offset);
2315 	      unresolved_reloc = FALSE;
2316 	    }
2317 
2318 	  relocation -= htab->sgotplt->output_section->vma
2319 			+ htab->sgotplt->output_offset;
2320 	  break;
2321 
2322 	case R_X86_64_PLT32:
2323 	  /* Relocation is to the entry for this symbol in the
2324 	     procedure linkage table.  */
2325 
2326 	  /* Resolve a PLT32 reloc against a local symbol directly,
2327 	     without using the procedure linkage table.	 */
2328 	  if (h == NULL)
2329 	    break;
2330 
2331 	  if (h->plt.offset == (bfd_vma) -1
2332 	      || htab->splt == NULL)
2333 	    {
2334 	      /* We didn't make a PLT entry for this symbol.  This
2335 		 happens when statically linking PIC code, or when
2336 		 using -Bsymbolic.  */
2337 	      break;
2338 	    }
2339 
2340 	  relocation = (htab->splt->output_section->vma
2341 			+ htab->splt->output_offset
2342 			+ h->plt.offset);
2343 	  unresolved_reloc = FALSE;
2344 	  break;
2345 
2346 	case R_X86_64_PC8:
2347 	case R_X86_64_PC16:
2348 	case R_X86_64_PC32:
2349 	  if (info->shared
2350 	      && !SYMBOL_REFERENCES_LOCAL (info, h)
2351 	      && (input_section->flags & SEC_ALLOC) != 0
2352 	      && (input_section->flags & SEC_READONLY) != 0
2353 	      && (!h->def_regular
2354 		  || r_type != R_X86_64_PC32
2355 		  || h->type != STT_FUNC
2356 		  || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2357 		  || !is_32bit_relative_branch (contents,
2358 						rel->r_offset)))
2359 	    {
2360 	      if (h->def_regular
2361 		  && r_type == R_X86_64_PC32
2362 		  && h->type == STT_FUNC
2363 		  && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2364 		(*_bfd_error_handler)
2365 		   (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2366 		    input_bfd, h->root.root.string);
2367 	      else
2368 		(*_bfd_error_handler)
2369 		  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2370 		   input_bfd, x86_64_elf_howto_table[r_type].name,
2371 		   h->root.root.string);
2372 	      bfd_set_error (bfd_error_bad_value);
2373 	      return FALSE;
2374 	    }
2375 	  /* Fall through.  */
2376 
2377 	case R_X86_64_8:
2378 	case R_X86_64_16:
2379 	case R_X86_64_32:
2380 	case R_X86_64_PC64:
2381 	case R_X86_64_64:
2382 	  /* FIXME: The ABI says the linker should make sure the value is
2383 	     the same when it's zeroextended to 64 bit.	 */
2384 
2385 	  /* r_symndx will be zero only for relocs against symbols
2386 	     from removed linkonce sections, or sections discarded by
2387 	     a linker script.  */
2388 	  if (r_symndx == 0
2389 	      || (input_section->flags & SEC_ALLOC) == 0)
2390 	    break;
2391 
2392 	  if ((info->shared
2393 	       && (h == NULL
2394 		   || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2395 		   || h->root.type != bfd_link_hash_undefweak)
2396 	       && ((r_type != R_X86_64_PC8
2397 		    && r_type != R_X86_64_PC16
2398 		    && r_type != R_X86_64_PC32
2399 		    && r_type != R_X86_64_PC64)
2400 		   || !SYMBOL_CALLS_LOCAL (info, h)))
2401 	      || (ELIMINATE_COPY_RELOCS
2402 		  && !info->shared
2403 		  && h != NULL
2404 		  && h->dynindx != -1
2405 		  && !h->non_got_ref
2406 		  && ((h->def_dynamic
2407 		       && !h->def_regular)
2408 		      || h->root.type == bfd_link_hash_undefweak
2409 		      || h->root.type == bfd_link_hash_undefined)))
2410 	    {
2411 	      Elf_Internal_Rela outrel;
2412 	      bfd_byte *loc;
2413 	      bfd_boolean skip, relocate;
2414 	      asection *sreloc;
2415 
2416 	      /* When generating a shared object, these relocations
2417 		 are copied into the output file to be resolved at run
2418 		 time.	*/
2419 	      skip = FALSE;
2420 	      relocate = FALSE;
2421 
2422 	      outrel.r_offset =
2423 		_bfd_elf_section_offset (output_bfd, info, input_section,
2424 					 rel->r_offset);
2425 	      if (outrel.r_offset == (bfd_vma) -1)
2426 		skip = TRUE;
2427 	      else if (outrel.r_offset == (bfd_vma) -2)
2428 		skip = TRUE, relocate = TRUE;
2429 
2430 	      outrel.r_offset += (input_section->output_section->vma
2431 				  + input_section->output_offset);
2432 
2433 	      if (skip)
2434 		memset (&outrel, 0, sizeof outrel);
2435 
2436 	      /* h->dynindx may be -1 if this symbol was marked to
2437 		 become local.  */
2438 	      else if (h != NULL
2439 		       && h->dynindx != -1
2440 		       && (r_type == R_X86_64_PC8
2441 			   || r_type == R_X86_64_PC16
2442 			   || r_type == R_X86_64_PC32
2443 			   || r_type == R_X86_64_PC64
2444 			   || !info->shared
2445 			   || !info->symbolic
2446 			   || !h->def_regular))
2447 		{
2448 		  outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2449 		  outrel.r_addend = rel->r_addend;
2450 		}
2451 	      else
2452 		{
2453 		  /* This symbol is local, or marked to become local.  */
2454 		  if (r_type == R_X86_64_64)
2455 		    {
2456 		      relocate = TRUE;
2457 		      outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2458 		      outrel.r_addend = relocation + rel->r_addend;
2459 		    }
2460 		  else
2461 		    {
2462 		      long sindx;
2463 
2464 		      if (bfd_is_abs_section (sec))
2465 			sindx = 0;
2466 		      else if (sec == NULL || sec->owner == NULL)
2467 			{
2468 			  bfd_set_error (bfd_error_bad_value);
2469 			  return FALSE;
2470 			}
2471 		      else
2472 			{
2473 			  asection *osec;
2474 
2475 			  osec = sec->output_section;
2476 			  sindx = elf_section_data (osec)->dynindx;
2477 			  BFD_ASSERT (sindx > 0);
2478 			}
2479 
2480 		      outrel.r_info = ELF64_R_INFO (sindx, r_type);
2481 		      outrel.r_addend = relocation + rel->r_addend;
2482 		    }
2483 		}
2484 
2485 	      sreloc = elf_section_data (input_section)->sreloc;
2486 	      if (sreloc == NULL)
2487 		abort ();
2488 
2489 	      loc = sreloc->contents;
2490 	      loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2491 	      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2492 
2493 	      /* If this reloc is against an external symbol, we do
2494 		 not want to fiddle with the addend.  Otherwise, we
2495 		 need to include the symbol value so that it becomes
2496 		 an addend for the dynamic reloc.  */
2497 	      if (! relocate)
2498 		continue;
2499 	    }
2500 
2501 	  break;
2502 
2503 	case R_X86_64_TLSGD:
2504 	case R_X86_64_GOTPC32_TLSDESC:
2505 	case R_X86_64_TLSDESC_CALL:
2506 	case R_X86_64_GOTTPOFF:
2507 	  r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2508 	  tls_type = GOT_UNKNOWN;
2509 	  if (h == NULL && local_got_offsets)
2510 	    tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2511 	  else if (h != NULL)
2512 	    {
2513 	      tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2514 	      if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2515 		r_type = R_X86_64_TPOFF32;
2516 	    }
2517 	  if (r_type == R_X86_64_TLSGD
2518 	      || r_type == R_X86_64_GOTPC32_TLSDESC
2519 	      || r_type == R_X86_64_TLSDESC_CALL)
2520 	    {
2521 	      if (tls_type == GOT_TLS_IE)
2522 		r_type = R_X86_64_GOTTPOFF;
2523 	    }
2524 
2525 	  if (r_type == R_X86_64_TPOFF32)
2526 	    {
2527 	      BFD_ASSERT (! unresolved_reloc);
2528 	      if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2529 		{
2530 		  unsigned int i;
2531 		  static unsigned char tlsgd[8]
2532 		    = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2533 
2534 		  /* GD->LE transition.
2535 		     .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2536 		     .word 0x6666; rex64; call __tls_get_addr@plt
2537 		     Change it into:
2538 		     movq %fs:0, %rax
2539 		     leaq foo@tpoff(%rax), %rax */
2540 		  BFD_ASSERT (rel->r_offset >= 4);
2541 		  for (i = 0; i < 4; i++)
2542 		    BFD_ASSERT (bfd_get_8 (input_bfd,
2543 					   contents + rel->r_offset - 4 + i)
2544 				== tlsgd[i]);
2545 		  BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2546 		  for (i = 0; i < 4; i++)
2547 		    BFD_ASSERT (bfd_get_8 (input_bfd,
2548 					   contents + rel->r_offset + 4 + i)
2549 				== tlsgd[i+4]);
2550 		  BFD_ASSERT (rel + 1 < relend);
2551 		  BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2552 		  memcpy (contents + rel->r_offset - 4,
2553 			  "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2554 			  16);
2555 		  bfd_put_32 (output_bfd, tpoff (info, relocation),
2556 			      contents + rel->r_offset + 8);
2557 		  /* Skip R_X86_64_PLT32.  */
2558 		  rel++;
2559 		  continue;
2560 		}
2561 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2562 		{
2563 		  /* GDesc -> LE transition.
2564 		     It's originally something like:
2565 		     leaq x@tlsdesc(%rip), %rax
2566 
2567 		     Change it to:
2568 		     movl $x@tpoff, %rax
2569 
2570 		     Registers other than %rax may be set up here.  */
2571 
2572 		  unsigned int val, type, type2;
2573 		  bfd_vma roff;
2574 
2575 		  /* First, make sure it's a leaq adding rip to a
2576 		     32-bit offset into any register, although it's
2577 		     probably almost always going to be rax.  */
2578 		  roff = rel->r_offset;
2579 		  BFD_ASSERT (roff >= 3);
2580 		  type = bfd_get_8 (input_bfd, contents + roff - 3);
2581 		  BFD_ASSERT ((type & 0xfb) == 0x48);
2582 		  type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2583 		  BFD_ASSERT (type2 == 0x8d);
2584 		  val = bfd_get_8 (input_bfd, contents + roff - 1);
2585 		  BFD_ASSERT ((val & 0xc7) == 0x05);
2586 		  BFD_ASSERT (roff + 4 <= input_section->size);
2587 
2588 		  /* Now modify the instruction as appropriate.  */
2589 		  bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2590 			     contents + roff - 3);
2591 		  bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2592 		  bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2593 			     contents + roff - 1);
2594 		  bfd_put_32 (output_bfd, tpoff (info, relocation),
2595 			      contents + roff);
2596 		  continue;
2597 		}
2598 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2599 		{
2600 		  /* GDesc -> LE transition.
2601 		     It's originally:
2602 		     call *(%rax)
2603 		     Turn it into:
2604 		     nop; nop.  */
2605 
2606 		  unsigned int val, type;
2607 		  bfd_vma roff;
2608 
2609 		  /* First, make sure it's a call *(%rax).  */
2610 		  roff = rel->r_offset;
2611 		  BFD_ASSERT (roff + 2 <= input_section->size);
2612 		  type = bfd_get_8 (input_bfd, contents + roff);
2613 		  BFD_ASSERT (type == 0xff);
2614 		  val = bfd_get_8 (input_bfd, contents + roff + 1);
2615 		  BFD_ASSERT (val == 0x10);
2616 
2617 		  /* Now modify the instruction as appropriate.  */
2618 		  bfd_put_8 (output_bfd, 0x90, contents + roff);
2619 		  bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2620 		  continue;
2621 		}
2622 	      else
2623 		{
2624 		  unsigned int val, type, reg;
2625 
2626 		  /* IE->LE transition:
2627 		     Originally it can be one of:
2628 		     movq foo@gottpoff(%rip), %reg
2629 		     addq foo@gottpoff(%rip), %reg
2630 		     We change it into:
2631 		     movq $foo, %reg
2632 		     leaq foo(%reg), %reg
2633 		     addq $foo, %reg.  */
2634 		  BFD_ASSERT (rel->r_offset >= 3);
2635 		  val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2636 		  BFD_ASSERT (val == 0x48 || val == 0x4c);
2637 		  type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2638 		  BFD_ASSERT (type == 0x8b || type == 0x03);
2639 		  reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2640 		  BFD_ASSERT ((reg & 0xc7) == 5);
2641 		  reg >>= 3;
2642 		  BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2643 		  if (type == 0x8b)
2644 		    {
2645 		      /* movq */
2646 		      if (val == 0x4c)
2647 			bfd_put_8 (output_bfd, 0x49,
2648 				   contents + rel->r_offset - 3);
2649 		      bfd_put_8 (output_bfd, 0xc7,
2650 				 contents + rel->r_offset - 2);
2651 		      bfd_put_8 (output_bfd, 0xc0 | reg,
2652 				 contents + rel->r_offset - 1);
2653 		    }
2654 		  else if (reg == 4)
2655 		    {
2656 		      /* addq -> addq - addressing with %rsp/%r12 is
2657 			 special  */
2658 		      if (val == 0x4c)
2659 			bfd_put_8 (output_bfd, 0x49,
2660 				   contents + rel->r_offset - 3);
2661 		      bfd_put_8 (output_bfd, 0x81,
2662 				 contents + rel->r_offset - 2);
2663 		      bfd_put_8 (output_bfd, 0xc0 | reg,
2664 				 contents + rel->r_offset - 1);
2665 		    }
2666 		  else
2667 		    {
2668 		      /* addq -> leaq */
2669 		      if (val == 0x4c)
2670 			bfd_put_8 (output_bfd, 0x4d,
2671 				   contents + rel->r_offset - 3);
2672 		      bfd_put_8 (output_bfd, 0x8d,
2673 				 contents + rel->r_offset - 2);
2674 		      bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2675 				 contents + rel->r_offset - 1);
2676 		    }
2677 		  bfd_put_32 (output_bfd, tpoff (info, relocation),
2678 			      contents + rel->r_offset);
2679 		  continue;
2680 		}
2681 	    }
2682 
2683 	  if (htab->sgot == NULL)
2684 	    abort ();
2685 
2686 	  if (h != NULL)
2687 	    {
2688 	      off = h->got.offset;
2689 	      offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2690 	    }
2691 	  else
2692 	    {
2693 	      if (local_got_offsets == NULL)
2694 		abort ();
2695 
2696 	      off = local_got_offsets[r_symndx];
2697 	      offplt = local_tlsdesc_gotents[r_symndx];
2698 	    }
2699 
2700 	  if ((off & 1) != 0)
2701 	    off &= ~1;
2702 	  else
2703 	    {
2704 	      Elf_Internal_Rela outrel;
2705 	      bfd_byte *loc;
2706 	      int dr_type, indx;
2707 	      asection *sreloc;
2708 
2709 	      if (htab->srelgot == NULL)
2710 		abort ();
2711 
2712 	      indx = h && h->dynindx != -1 ? h->dynindx : 0;
2713 
2714 	      if (GOT_TLS_GDESC_P (tls_type))
2715 		{
2716 		  outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2717 		  BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2718 			      + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2719 		  outrel.r_offset = (htab->sgotplt->output_section->vma
2720 				     + htab->sgotplt->output_offset
2721 				     + offplt
2722 				     + htab->sgotplt_jump_table_size);
2723 		  sreloc = htab->srelplt;
2724 		  loc = sreloc->contents;
2725 		  loc += sreloc->reloc_count++
2726 		    * sizeof (Elf64_External_Rela);
2727 		  BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2728 			      <= sreloc->contents + sreloc->size);
2729 		  if (indx == 0)
2730 		    outrel.r_addend = relocation - dtpoff_base (info);
2731 		  else
2732 		    outrel.r_addend = 0;
2733 		  bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2734 		}
2735 
2736 	      sreloc = htab->srelgot;
2737 
2738 	      outrel.r_offset = (htab->sgot->output_section->vma
2739 				 + htab->sgot->output_offset + off);
2740 
2741 	      if (GOT_TLS_GD_P (tls_type))
2742 		dr_type = R_X86_64_DTPMOD64;
2743 	      else if (GOT_TLS_GDESC_P (tls_type))
2744 		goto dr_done;
2745 	      else
2746 		dr_type = R_X86_64_TPOFF64;
2747 
2748 	      bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2749 	      outrel.r_addend = 0;
2750 	      if ((dr_type == R_X86_64_TPOFF64
2751 		   || dr_type == R_X86_64_TLSDESC) && indx == 0)
2752 		outrel.r_addend = relocation - dtpoff_base (info);
2753 	      outrel.r_info = ELF64_R_INFO (indx, dr_type);
2754 
2755 	      loc = sreloc->contents;
2756 	      loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2757 	      BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2758 			  <= sreloc->contents + sreloc->size);
2759 	      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2760 
2761 	      if (GOT_TLS_GD_P (tls_type))
2762 		{
2763 		  if (indx == 0)
2764 		    {
2765 		      BFD_ASSERT (! unresolved_reloc);
2766 		      bfd_put_64 (output_bfd,
2767 				  relocation - dtpoff_base (info),
2768 				  htab->sgot->contents + off + GOT_ENTRY_SIZE);
2769 		    }
2770 		  else
2771 		    {
2772 		      bfd_put_64 (output_bfd, 0,
2773 				  htab->sgot->contents + off + GOT_ENTRY_SIZE);
2774 		      outrel.r_info = ELF64_R_INFO (indx,
2775 						    R_X86_64_DTPOFF64);
2776 		      outrel.r_offset += GOT_ENTRY_SIZE;
2777 		      sreloc->reloc_count++;
2778 		      loc += sizeof (Elf64_External_Rela);
2779 		      BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2780 				  <= sreloc->contents + sreloc->size);
2781 		      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2782 		    }
2783 		}
2784 
2785 	    dr_done:
2786 	      if (h != NULL)
2787 		h->got.offset |= 1;
2788 	      else
2789 		local_got_offsets[r_symndx] |= 1;
2790 	    }
2791 
2792 	  if (off >= (bfd_vma) -2
2793 	      && ! GOT_TLS_GDESC_P (tls_type))
2794 	    abort ();
2795 	  if (r_type == ELF64_R_TYPE (rel->r_info))
2796 	    {
2797 	      if (r_type == R_X86_64_GOTPC32_TLSDESC
2798 		  || r_type == R_X86_64_TLSDESC_CALL)
2799 		relocation = htab->sgotplt->output_section->vma
2800 		  + htab->sgotplt->output_offset
2801 		  + offplt + htab->sgotplt_jump_table_size;
2802 	      else
2803 		relocation = htab->sgot->output_section->vma
2804 		  + htab->sgot->output_offset + off;
2805 	      unresolved_reloc = FALSE;
2806 	    }
2807 	  else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2808 	    {
2809 	      unsigned int i;
2810 	      static unsigned char tlsgd[8]
2811 		= { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2812 
2813 	      /* GD->IE transition.
2814 		 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2815 		 .word 0x6666; rex64; call __tls_get_addr@plt
2816 		 Change it into:
2817 		 movq %fs:0, %rax
2818 		 addq foo@gottpoff(%rip), %rax */
2819 	      BFD_ASSERT (rel->r_offset >= 4);
2820 	      for (i = 0; i < 4; i++)
2821 		BFD_ASSERT (bfd_get_8 (input_bfd,
2822 				       contents + rel->r_offset - 4 + i)
2823 			    == tlsgd[i]);
2824 	      BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2825 	      for (i = 0; i < 4; i++)
2826 		BFD_ASSERT (bfd_get_8 (input_bfd,
2827 				       contents + rel->r_offset + 4 + i)
2828 			    == tlsgd[i+4]);
2829 	      BFD_ASSERT (rel + 1 < relend);
2830 	      BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2831 	      memcpy (contents + rel->r_offset - 4,
2832 		      "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2833 		      16);
2834 
2835 	      relocation = (htab->sgot->output_section->vma
2836 			    + htab->sgot->output_offset + off
2837 			    - rel->r_offset
2838 			    - input_section->output_section->vma
2839 			    - input_section->output_offset
2840 			    - 12);
2841 	      bfd_put_32 (output_bfd, relocation,
2842 			  contents + rel->r_offset + 8);
2843 	      /* Skip R_X86_64_PLT32.  */
2844 	      rel++;
2845 	      continue;
2846 	    }
2847 	  else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2848 	    {
2849 	      /* GDesc -> IE transition.
2850 		 It's originally something like:
2851 		 leaq x@tlsdesc(%rip), %rax
2852 
2853 		 Change it to:
2854 		 movq x@gottpoff(%rip), %rax # before nop; nop
2855 
2856 		 Registers other than %rax may be set up here.  */
2857 
2858 	      unsigned int val, type, type2;
2859 	      bfd_vma roff;
2860 
2861 	      /* First, make sure it's a leaq adding rip to a 32-bit
2862 		 offset into any register, although it's probably
2863 		 almost always going to be rax.  */
2864 	      roff = rel->r_offset;
2865 	      BFD_ASSERT (roff >= 3);
2866 	      type = bfd_get_8 (input_bfd, contents + roff - 3);
2867 	      BFD_ASSERT ((type & 0xfb) == 0x48);
2868 	      type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2869 	      BFD_ASSERT (type2 == 0x8d);
2870 	      val = bfd_get_8 (input_bfd, contents + roff - 1);
2871 	      BFD_ASSERT ((val & 0xc7) == 0x05);
2872 	      BFD_ASSERT (roff + 4 <= input_section->size);
2873 
2874 	      /* Now modify the instruction as appropriate.  */
2875 	      /* To turn a leaq into a movq in the form we use it, it
2876 		 suffices to change the second byte from 0x8d to
2877 		 0x8b.  */
2878 	      bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
2879 
2880 	      bfd_put_32 (output_bfd,
2881 			  htab->sgot->output_section->vma
2882 			  + htab->sgot->output_offset + off
2883 			  - rel->r_offset
2884 			  - input_section->output_section->vma
2885 			  - input_section->output_offset
2886 			  - 4,
2887 			  contents + roff);
2888 	      continue;
2889 	    }
2890 	  else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2891 	    {
2892 	      /* GDesc -> IE transition.
2893 		 It's originally:
2894 		 call *(%rax)
2895 
2896 		 Change it to:
2897 		 nop; nop.  */
2898 
2899 	      unsigned int val, type;
2900 	      bfd_vma roff;
2901 
2902 	      /* First, make sure it's a call *(%eax).  */
2903 	      roff = rel->r_offset;
2904 	      BFD_ASSERT (roff + 2 <= input_section->size);
2905 	      type = bfd_get_8 (input_bfd, contents + roff);
2906 	      BFD_ASSERT (type == 0xff);
2907 	      val = bfd_get_8 (input_bfd, contents + roff + 1);
2908 	      BFD_ASSERT (val == 0x10);
2909 
2910 	      /* Now modify the instruction as appropriate.  */
2911 	      bfd_put_8 (output_bfd, 0x90, contents + roff);
2912 	      bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2913 
2914 	      continue;
2915 	    }
2916 	  else
2917 	    BFD_ASSERT (FALSE);
2918 	  break;
2919 
2920 	case R_X86_64_TLSLD:
2921 	  if (! info->shared)
2922 	    {
2923 	      /* LD->LE transition:
2924 		 Ensure it is:
2925 		 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2926 		 We change it into:
2927 		 .word 0x6666; .byte 0x66; movl %fs:0, %rax.  */
2928 	      BFD_ASSERT (rel->r_offset >= 3);
2929 	      BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2930 			  == 0x48);
2931 	      BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2932 			  == 0x8d);
2933 	      BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2934 			  == 0x3d);
2935 	      BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2936 	      BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2937 			  == 0xe8);
2938 	      BFD_ASSERT (rel + 1 < relend);
2939 	      BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2940 	      memcpy (contents + rel->r_offset - 3,
2941 		      "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2942 	      /* Skip R_X86_64_PLT32.  */
2943 	      rel++;
2944 	      continue;
2945 	    }
2946 
2947 	  if (htab->sgot == NULL)
2948 	    abort ();
2949 
2950 	  off = htab->tls_ld_got.offset;
2951 	  if (off & 1)
2952 	    off &= ~1;
2953 	  else
2954 	    {
2955 	      Elf_Internal_Rela outrel;
2956 	      bfd_byte *loc;
2957 
2958 	      if (htab->srelgot == NULL)
2959 		abort ();
2960 
2961 	      outrel.r_offset = (htab->sgot->output_section->vma
2962 				 + htab->sgot->output_offset + off);
2963 
2964 	      bfd_put_64 (output_bfd, 0,
2965 			  htab->sgot->contents + off);
2966 	      bfd_put_64 (output_bfd, 0,
2967 			  htab->sgot->contents + off + GOT_ENTRY_SIZE);
2968 	      outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2969 	      outrel.r_addend = 0;
2970 	      loc = htab->srelgot->contents;
2971 	      loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2972 	      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2973 	      htab->tls_ld_got.offset |= 1;
2974 	    }
2975 	  relocation = htab->sgot->output_section->vma
2976 		       + htab->sgot->output_offset + off;
2977 	  unresolved_reloc = FALSE;
2978 	  break;
2979 
2980 	case R_X86_64_DTPOFF32:
2981 	  if (info->shared || (input_section->flags & SEC_CODE) == 0)
2982 	    relocation -= dtpoff_base (info);
2983 	  else
2984 	    relocation = tpoff (info, relocation);
2985 	  break;
2986 
2987 	case R_X86_64_TPOFF32:
2988 	  BFD_ASSERT (! info->shared);
2989 	  relocation = tpoff (info, relocation);
2990 	  break;
2991 
2992 	default:
2993 	  break;
2994 	}
2995 
2996       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2997 	 because such sections are not SEC_ALLOC and thus ld.so will
2998 	 not process them.  */
2999       if (unresolved_reloc
3000 	  && !((input_section->flags & SEC_DEBUGGING) != 0
3001 	       && h->def_dynamic))
3002 	(*_bfd_error_handler)
3003 	  (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3004 	   input_bfd,
3005 	   input_section,
3006 	   (long) rel->r_offset,
3007 	   howto->name,
3008 	   h->root.root.string);
3009 
3010       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3011 				    contents, rel->r_offset,
3012 				    relocation, rel->r_addend);
3013 
3014       if (r != bfd_reloc_ok)
3015 	{
3016 	  const char *name;
3017 
3018 	  if (h != NULL)
3019 	    name = h->root.root.string;
3020 	  else
3021 	    {
3022 	      name = bfd_elf_string_from_elf_section (input_bfd,
3023 						      symtab_hdr->sh_link,
3024 						      sym->st_name);
3025 	      if (name == NULL)
3026 		return FALSE;
3027 	      if (*name == '\0')
3028 		name = bfd_section_name (input_bfd, sec);
3029 	    }
3030 
3031 	  if (r == bfd_reloc_overflow)
3032 	    {
3033 	      if (h != NULL
3034 		  && h->root.type == bfd_link_hash_undefweak
3035 		  && howto->pc_relative)
3036 		/* Ignore reloc overflow on branches to undefweak syms.  */
3037 		continue;
3038 
3039 	      if (! ((*info->callbacks->reloc_overflow)
3040 		     (info, (h ? &h->root : NULL), name, howto->name,
3041 		      (bfd_vma) 0, input_bfd, input_section,
3042 		      rel->r_offset)))
3043 		return FALSE;
3044 	    }
3045 	  else
3046 	    {
3047 	      (*_bfd_error_handler)
3048 		(_("%B(%A+0x%lx): reloc against `%s': error %d"),
3049 		 input_bfd, input_section,
3050 		 (long) rel->r_offset, name, (int) r);
3051 	      return FALSE;
3052 	    }
3053 	}
3054     }
3055 
3056   return TRUE;
3057 }
3058 
3059 /* Finish up dynamic symbol handling.  We set the contents of various
3060    dynamic sections here.  */
3061 
3062 static bfd_boolean
elf64_x86_64_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)3063 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3064 				    struct bfd_link_info *info,
3065 				    struct elf_link_hash_entry *h,
3066 				    Elf_Internal_Sym *sym)
3067 {
3068   struct elf64_x86_64_link_hash_table *htab;
3069 
3070   htab = elf64_x86_64_hash_table (info);
3071 
3072   if (h->plt.offset != (bfd_vma) -1)
3073     {
3074       bfd_vma plt_index;
3075       bfd_vma got_offset;
3076       Elf_Internal_Rela rela;
3077       bfd_byte *loc;
3078 
3079       /* This symbol has an entry in the procedure linkage table.  Set
3080 	 it up.	 */
3081       if (h->dynindx == -1
3082 	  || htab->splt == NULL
3083 	  || htab->sgotplt == NULL
3084 	  || htab->srelplt == NULL)
3085 	abort ();
3086 
3087       /* Get the index in the procedure linkage table which
3088 	 corresponds to this symbol.  This is the index of this symbol
3089 	 in all the symbols for which we are making plt entries.  The
3090 	 first entry in the procedure linkage table is reserved.  */
3091       plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3092 
3093       /* Get the offset into the .got table of the entry that
3094 	 corresponds to this function.	Each .got entry is GOT_ENTRY_SIZE
3095 	 bytes. The first three are reserved for the dynamic linker.  */
3096       got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3097 
3098       /* Fill in the entry in the procedure linkage table.  */
3099       memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3100 	      PLT_ENTRY_SIZE);
3101 
3102       /* Insert the relocation positions of the plt section.  The magic
3103 	 numbers at the end of the statements are the positions of the
3104 	 relocations in the plt section.  */
3105       /* Put offset for jmp *name@GOTPCREL(%rip), since the
3106 	 instruction uses 6 bytes, subtract this value.  */
3107       bfd_put_32 (output_bfd,
3108 		      (htab->sgotplt->output_section->vma
3109 		       + htab->sgotplt->output_offset
3110 		       + got_offset
3111 		       - htab->splt->output_section->vma
3112 		       - htab->splt->output_offset
3113 		       - h->plt.offset
3114 		       - 6),
3115 		  htab->splt->contents + h->plt.offset + 2);
3116       /* Put relocation index.  */
3117       bfd_put_32 (output_bfd, plt_index,
3118 		  htab->splt->contents + h->plt.offset + 7);
3119       /* Put offset for jmp .PLT0.  */
3120       bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3121 		  htab->splt->contents + h->plt.offset + 12);
3122 
3123       /* Fill in the entry in the global offset table, initially this
3124 	 points to the pushq instruction in the PLT which is at offset 6.  */
3125       bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3126 			       + htab->splt->output_offset
3127 			       + h->plt.offset + 6),
3128 		  htab->sgotplt->contents + got_offset);
3129 
3130       /* Fill in the entry in the .rela.plt section.  */
3131       rela.r_offset = (htab->sgotplt->output_section->vma
3132 		       + htab->sgotplt->output_offset
3133 		       + got_offset);
3134       rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3135       rela.r_addend = 0;
3136       loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3137       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3138 
3139       if (!h->def_regular)
3140 	{
3141 	  /* Mark the symbol as undefined, rather than as defined in
3142 	     the .plt section.  Leave the value if there were any
3143 	     relocations where pointer equality matters (this is a clue
3144 	     for the dynamic linker, to make function pointer
3145 	     comparisons work between an application and shared
3146 	     library), otherwise set it to zero.  If a function is only
3147 	     called from a binary, there is no need to slow down
3148 	     shared libraries because of that.  */
3149 	  sym->st_shndx = SHN_UNDEF;
3150 	  if (!h->pointer_equality_needed)
3151 	    sym->st_value = 0;
3152 	}
3153     }
3154 
3155   if (h->got.offset != (bfd_vma) -1
3156       && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3157       && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3158     {
3159       Elf_Internal_Rela rela;
3160       bfd_byte *loc;
3161 
3162       /* This symbol has an entry in the global offset table.  Set it
3163 	 up.  */
3164       if (htab->sgot == NULL || htab->srelgot == NULL)
3165 	abort ();
3166 
3167       rela.r_offset = (htab->sgot->output_section->vma
3168 		       + htab->sgot->output_offset
3169 		       + (h->got.offset &~ (bfd_vma) 1));
3170 
3171       /* If this is a static link, or it is a -Bsymbolic link and the
3172 	 symbol is defined locally or was forced to be local because
3173 	 of a version file, we just want to emit a RELATIVE reloc.
3174 	 The entry in the global offset table will already have been
3175 	 initialized in the relocate_section function.  */
3176       if (info->shared
3177 	  && SYMBOL_REFERENCES_LOCAL (info, h))
3178 	{
3179 	  BFD_ASSERT((h->got.offset & 1) != 0);
3180 	  rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3181 	  rela.r_addend = (h->root.u.def.value
3182 			   + h->root.u.def.section->output_section->vma
3183 			   + h->root.u.def.section->output_offset);
3184 	}
3185       else
3186 	{
3187 	  BFD_ASSERT((h->got.offset & 1) == 0);
3188 	  bfd_put_64 (output_bfd, (bfd_vma) 0,
3189 		      htab->sgot->contents + h->got.offset);
3190 	  rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3191 	  rela.r_addend = 0;
3192 	}
3193 
3194       loc = htab->srelgot->contents;
3195       loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3196       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3197     }
3198 
3199   if (h->needs_copy)
3200     {
3201       Elf_Internal_Rela rela;
3202       bfd_byte *loc;
3203 
3204       /* This symbol needs a copy reloc.  Set it up.  */
3205 
3206       if (h->dynindx == -1
3207 	  || (h->root.type != bfd_link_hash_defined
3208 	      && h->root.type != bfd_link_hash_defweak)
3209 	  || htab->srelbss == NULL)
3210 	abort ();
3211 
3212       rela.r_offset = (h->root.u.def.value
3213 		       + h->root.u.def.section->output_section->vma
3214 		       + h->root.u.def.section->output_offset);
3215       rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3216       rela.r_addend = 0;
3217       loc = htab->srelbss->contents;
3218       loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3219       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3220     }
3221 
3222   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
3223   if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3224       || h == htab->elf.hgot)
3225     sym->st_shndx = SHN_ABS;
3226 
3227   return TRUE;
3228 }
3229 
3230 /* Used to decide how to sort relocs in an optimal manner for the
3231    dynamic linker, before writing them out.  */
3232 
3233 static enum elf_reloc_type_class
elf64_x86_64_reloc_type_class(const Elf_Internal_Rela * rela)3234 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3235 {
3236   switch ((int) ELF64_R_TYPE (rela->r_info))
3237     {
3238     case R_X86_64_RELATIVE:
3239       return reloc_class_relative;
3240     case R_X86_64_JUMP_SLOT:
3241       return reloc_class_plt;
3242     case R_X86_64_COPY:
3243       return reloc_class_copy;
3244     default:
3245       return reloc_class_normal;
3246     }
3247 }
3248 
3249 /* Finish up the dynamic sections.  */
3250 
3251 static bfd_boolean
elf64_x86_64_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)3252 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3253 {
3254   struct elf64_x86_64_link_hash_table *htab;
3255   bfd *dynobj;
3256   asection *sdyn;
3257 
3258   htab = elf64_x86_64_hash_table (info);
3259   dynobj = htab->elf.dynobj;
3260   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3261 
3262   if (htab->elf.dynamic_sections_created)
3263     {
3264       Elf64_External_Dyn *dyncon, *dynconend;
3265 
3266       if (sdyn == NULL || htab->sgot == NULL)
3267 	abort ();
3268 
3269       dyncon = (Elf64_External_Dyn *) sdyn->contents;
3270       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3271       for (; dyncon < dynconend; dyncon++)
3272 	{
3273 	  Elf_Internal_Dyn dyn;
3274 	  asection *s;
3275 
3276 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3277 
3278 	  switch (dyn.d_tag)
3279 	    {
3280 	    default:
3281 	      continue;
3282 
3283 	    case DT_PLTGOT:
3284 	      s = htab->sgotplt;
3285 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3286 	      break;
3287 
3288 	    case DT_JMPREL:
3289 	      dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3290 	      break;
3291 
3292 	    case DT_PLTRELSZ:
3293 	      s = htab->srelplt->output_section;
3294 	      dyn.d_un.d_val = s->size;
3295 	      break;
3296 
3297 	    case DT_RELASZ:
3298 	      /* The procedure linkage table relocs (DT_JMPREL) should
3299 		 not be included in the overall relocs (DT_RELA).
3300 		 Therefore, we override the DT_RELASZ entry here to
3301 		 make it not include the JMPREL relocs.  Since the
3302 		 linker script arranges for .rela.plt to follow all
3303 		 other relocation sections, we don't have to worry
3304 		 about changing the DT_RELA entry.  */
3305 	      if (htab->srelplt != NULL)
3306 		{
3307 		  s = htab->srelplt->output_section;
3308 		  dyn.d_un.d_val -= s->size;
3309 		}
3310 	      break;
3311 
3312 	    case DT_TLSDESC_PLT:
3313 	      s = htab->splt;
3314 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3315 		+ htab->tlsdesc_plt;
3316 	      break;
3317 
3318 	    case DT_TLSDESC_GOT:
3319 	      s = htab->sgot;
3320 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3321 		+ htab->tlsdesc_got;
3322 	      break;
3323 	    }
3324 
3325 	  bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3326 	}
3327 
3328       /* Fill in the special first entry in the procedure linkage table.  */
3329       if (htab->splt && htab->splt->size > 0)
3330 	{
3331 	  /* Fill in the first entry in the procedure linkage table.  */
3332 	  memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3333 		  PLT_ENTRY_SIZE);
3334 	  /* Add offset for pushq GOT+8(%rip), since the instruction
3335 	     uses 6 bytes subtract this value.  */
3336 	  bfd_put_32 (output_bfd,
3337 		      (htab->sgotplt->output_section->vma
3338 		       + htab->sgotplt->output_offset
3339 		       + 8
3340 		       - htab->splt->output_section->vma
3341 		       - htab->splt->output_offset
3342 		       - 6),
3343 		      htab->splt->contents + 2);
3344 	  /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3345 	     the end of the instruction.  */
3346 	  bfd_put_32 (output_bfd,
3347 		      (htab->sgotplt->output_section->vma
3348 		       + htab->sgotplt->output_offset
3349 		       + 16
3350 		       - htab->splt->output_section->vma
3351 		       - htab->splt->output_offset
3352 		       - 12),
3353 		      htab->splt->contents + 8);
3354 
3355 	  elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3356 	    PLT_ENTRY_SIZE;
3357 
3358 	  if (htab->tlsdesc_plt)
3359 	    {
3360 	      bfd_put_64 (output_bfd, (bfd_vma) 0,
3361 			  htab->sgot->contents + htab->tlsdesc_got);
3362 
3363 	      memcpy (htab->splt->contents + htab->tlsdesc_plt,
3364 		      elf64_x86_64_plt0_entry,
3365 		      PLT_ENTRY_SIZE);
3366 
3367 	      /* Add offset for pushq GOT+8(%rip), since the
3368 		 instruction uses 6 bytes subtract this value.  */
3369 	      bfd_put_32 (output_bfd,
3370 			  (htab->sgotplt->output_section->vma
3371 			   + htab->sgotplt->output_offset
3372 			   + 8
3373 			   - htab->splt->output_section->vma
3374 			   - htab->splt->output_offset
3375 			   - htab->tlsdesc_plt
3376 			   - 6),
3377 			  htab->splt->contents + htab->tlsdesc_plt + 2);
3378 	      /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3379 		 htab->tlsdesc_got. The 12 is the offset to the end of
3380 		 the instruction.  */
3381 	      bfd_put_32 (output_bfd,
3382 			  (htab->sgot->output_section->vma
3383 			   + htab->sgot->output_offset
3384 			   + htab->tlsdesc_got
3385 			   - htab->splt->output_section->vma
3386 			   - htab->splt->output_offset
3387 			   - htab->tlsdesc_plt
3388 			   - 12),
3389 			  htab->splt->contents + htab->tlsdesc_plt + 8);
3390 	    }
3391 	}
3392     }
3393 
3394   if (htab->sgotplt)
3395     {
3396       /* Fill in the first three entries in the global offset table.  */
3397       if (htab->sgotplt->size > 0)
3398 	{
3399 	  /* Set the first entry in the global offset table to the address of
3400 	     the dynamic section.  */
3401 	  if (sdyn == NULL)
3402 	    bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3403 	  else
3404 	    bfd_put_64 (output_bfd,
3405 			sdyn->output_section->vma + sdyn->output_offset,
3406 			htab->sgotplt->contents);
3407 	  /* Write GOT[1] and GOT[2], needed for the dynamic linker.  */
3408 	  bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3409 	  bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3410 	}
3411 
3412       elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3413 	GOT_ENTRY_SIZE;
3414     }
3415 
3416   if (htab->sgot && htab->sgot->size > 0)
3417     elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3418       = GOT_ENTRY_SIZE;
3419 
3420   return TRUE;
3421 }
3422 
3423 /* Return address for Ith PLT stub in section PLT, for relocation REL
3424    or (bfd_vma) -1 if it should not be included.  */
3425 
3426 static bfd_vma
elf64_x86_64_plt_sym_val(bfd_vma i,const asection * plt,const arelent * rel ATTRIBUTE_UNUSED)3427 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3428 			  const arelent *rel ATTRIBUTE_UNUSED)
3429 {
3430   return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3431 }
3432 
3433 /* Handle an x86-64 specific section when reading an object file.  This
3434    is called when elfcode.h finds a section with an unknown type.  */
3435 
3436 static bfd_boolean
elf64_x86_64_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)3437 elf64_x86_64_section_from_shdr (bfd *abfd,
3438 				Elf_Internal_Shdr *hdr,
3439 				const char *name,
3440 				int shindex)
3441 {
3442   if (hdr->sh_type != SHT_X86_64_UNWIND)
3443     return FALSE;
3444 
3445   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3446     return FALSE;
3447 
3448   return TRUE;
3449 }
3450 
3451 /* Hook called by the linker routine which adds symbols from an object
3452    file.  We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3453    of .bss.  */
3454 
3455 static bfd_boolean
elf64_x86_64_add_symbol_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,const char ** namep ATTRIBUTE_UNUSED,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp)3456 elf64_x86_64_add_symbol_hook (bfd *abfd,
3457 			      struct bfd_link_info *info ATTRIBUTE_UNUSED,
3458 			      Elf_Internal_Sym *sym,
3459 			      const char **namep ATTRIBUTE_UNUSED,
3460 			      flagword *flagsp ATTRIBUTE_UNUSED,
3461 			      asection **secp, bfd_vma *valp)
3462 {
3463   asection *lcomm;
3464 
3465   switch (sym->st_shndx)
3466     {
3467     case SHN_X86_64_LCOMMON:
3468       lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3469       if (lcomm == NULL)
3470 	{
3471 	  lcomm = bfd_make_section_with_flags (abfd,
3472 					       "LARGE_COMMON",
3473 					       (SEC_ALLOC
3474 						| SEC_IS_COMMON
3475 						| SEC_LINKER_CREATED));
3476 	  if (lcomm == NULL)
3477 	    return FALSE;
3478 	  elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3479 	}
3480       *secp = lcomm;
3481       *valp = sym->st_size;
3482       break;
3483     }
3484   return TRUE;
3485 }
3486 
3487 
3488 /* Given a BFD section, try to locate the corresponding ELF section
3489    index.  */
3490 
3491 static bfd_boolean
elf64_x86_64_elf_section_from_bfd_section(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,int * index)3492 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3493 					   asection *sec, int *index)
3494 {
3495   if (sec == &_bfd_elf_large_com_section)
3496     {
3497       *index = SHN_X86_64_LCOMMON;
3498       return TRUE;
3499     }
3500   return FALSE;
3501 }
3502 
3503 /* Process a symbol.  */
3504 
3505 static void
elf64_x86_64_symbol_processing(bfd * abfd ATTRIBUTE_UNUSED,asymbol * asym)3506 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3507 				asymbol *asym)
3508 {
3509   elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3510 
3511   switch (elfsym->internal_elf_sym.st_shndx)
3512     {
3513     case SHN_X86_64_LCOMMON:
3514       asym->section = &_bfd_elf_large_com_section;
3515       asym->value = elfsym->internal_elf_sym.st_size;
3516       /* Common symbol doesn't set BSF_GLOBAL.  */
3517       asym->flags &= ~BSF_GLOBAL;
3518       break;
3519     }
3520 }
3521 
3522 static bfd_boolean
elf64_x86_64_common_definition(Elf_Internal_Sym * sym)3523 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3524 {
3525   return (sym->st_shndx == SHN_COMMON
3526 	  || sym->st_shndx == SHN_X86_64_LCOMMON);
3527 }
3528 
3529 static unsigned int
elf64_x86_64_common_section_index(asection * sec)3530 elf64_x86_64_common_section_index (asection *sec)
3531 {
3532   if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3533     return SHN_COMMON;
3534   else
3535     return SHN_X86_64_LCOMMON;
3536 }
3537 
3538 static asection *
elf64_x86_64_common_section(asection * sec)3539 elf64_x86_64_common_section (asection *sec)
3540 {
3541   if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3542     return bfd_com_section_ptr;
3543   else
3544     return &_bfd_elf_large_com_section;
3545 }
3546 
3547 static bfd_boolean
elf64_x86_64_merge_symbol(struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf_link_hash_entry ** sym_hash ATTRIBUTE_UNUSED,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym,asection ** psec,bfd_vma * pvalue ATTRIBUTE_UNUSED,unsigned int * pold_alignment ATTRIBUTE_UNUSED,bfd_boolean * skip ATTRIBUTE_UNUSED,bfd_boolean * override ATTRIBUTE_UNUSED,bfd_boolean * type_change_ok ATTRIBUTE_UNUSED,bfd_boolean * size_change_ok ATTRIBUTE_UNUSED,bfd_boolean * newdef ATTRIBUTE_UNUSED,bfd_boolean * newdyn,bfd_boolean * newdyncommon ATTRIBUTE_UNUSED,bfd_boolean * newweak ATTRIBUTE_UNUSED,bfd * abfd ATTRIBUTE_UNUSED,asection ** sec,bfd_boolean * olddef ATTRIBUTE_UNUSED,bfd_boolean * olddyn,bfd_boolean * olddyncommon ATTRIBUTE_UNUSED,bfd_boolean * oldweak ATTRIBUTE_UNUSED,bfd * oldbfd,asection ** oldsec)3548 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3549 			   struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3550 			   struct elf_link_hash_entry *h,
3551 			   Elf_Internal_Sym *sym,
3552 			   asection **psec,
3553 			   bfd_vma *pvalue ATTRIBUTE_UNUSED,
3554 			   unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3555 			   bfd_boolean *skip ATTRIBUTE_UNUSED,
3556 			   bfd_boolean *override ATTRIBUTE_UNUSED,
3557 			   bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3558 			   bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3559 			   bfd_boolean *newdef ATTRIBUTE_UNUSED,
3560 			   bfd_boolean *newdyn,
3561 			   bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3562 			   bfd_boolean *newweak ATTRIBUTE_UNUSED,
3563 			   bfd *abfd ATTRIBUTE_UNUSED,
3564 			   asection **sec,
3565 			   bfd_boolean *olddef ATTRIBUTE_UNUSED,
3566 			   bfd_boolean *olddyn,
3567 			   bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3568 			   bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3569 			   bfd *oldbfd,
3570 			   asection **oldsec)
3571 {
3572   /* A normal common symbol and a large common symbol result in a
3573      normal common symbol.  We turn the large common symbol into a
3574      normal one.  */
3575   if (!*olddyn
3576       && h->root.type == bfd_link_hash_common
3577       && !*newdyn
3578       && bfd_is_com_section (*sec)
3579       && *oldsec != *sec)
3580     {
3581       if (sym->st_shndx == SHN_COMMON
3582 	  && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3583 	{
3584 	  h->root.u.c.p->section
3585 	    = bfd_make_section_old_way (oldbfd, "COMMON");
3586 	  h->root.u.c.p->section->flags = SEC_ALLOC;
3587 	}
3588       else if (sym->st_shndx == SHN_X86_64_LCOMMON
3589 	       && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3590 	*psec = *sec = bfd_com_section_ptr;
3591     }
3592 
3593   return TRUE;
3594 }
3595 
3596 static int
elf64_x86_64_additional_program_headers(bfd * abfd)3597 elf64_x86_64_additional_program_headers (bfd *abfd)
3598 {
3599   asection *s;
3600   int count = 0;
3601 
3602   /* Check to see if we need a large readonly segment.  */
3603   s = bfd_get_section_by_name (abfd, ".lrodata");
3604   if (s && (s->flags & SEC_LOAD))
3605     count++;
3606 
3607   /* Check to see if we need a large data segment.  Since .lbss sections
3608      is placed right after the .bss section, there should be no need for
3609      a large data segment just because of .lbss.  */
3610   s = bfd_get_section_by_name (abfd, ".ldata");
3611   if (s && (s->flags & SEC_LOAD))
3612     count++;
3613 
3614   return count;
3615 }
3616 
3617 static const struct bfd_elf_special_section
3618   elf64_x86_64_special_sections[]=
3619 {
3620   { ".gnu.linkonce.lb",	16, -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3621   { ".gnu.linkonce.lr",	16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3622   { ".gnu.linkonce.lt",	16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3623   { ".lbss",	5, -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3624   { ".ldata",	6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3625   { ".lrodata",	8, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3626   { NULL,	0,  0, 0,            0 }
3627 };
3628 
3629 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_vec
3630 #define TARGET_LITTLE_NAME		    "elf64-x86-64"
3631 #define ELF_ARCH			    bfd_arch_i386
3632 #define ELF_MACHINE_CODE		    EM_X86_64
3633 #define ELF_MAXPAGESIZE			    0x100000
3634 
3635 #define elf_backend_can_gc_sections	    1
3636 #define elf_backend_can_refcount	    1
3637 #define elf_backend_want_got_plt	    1
3638 #define elf_backend_plt_readonly	    1
3639 #define elf_backend_want_plt_sym	    0
3640 #define elf_backend_got_header_size	    (GOT_ENTRY_SIZE*3)
3641 #define elf_backend_rela_normal		    1
3642 
3643 #define elf_info_to_howto		    elf64_x86_64_info_to_howto
3644 
3645 #define bfd_elf64_bfd_link_hash_table_create \
3646   elf64_x86_64_link_hash_table_create
3647 #define bfd_elf64_bfd_reloc_type_lookup	    elf64_x86_64_reloc_type_lookup
3648 
3649 #define elf_backend_adjust_dynamic_symbol   elf64_x86_64_adjust_dynamic_symbol
3650 #define elf_backend_check_relocs	    elf64_x86_64_check_relocs
3651 #define elf_backend_copy_indirect_symbol    elf64_x86_64_copy_indirect_symbol
3652 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3653 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3654 #define elf_backend_finish_dynamic_symbol   elf64_x86_64_finish_dynamic_symbol
3655 #define elf_backend_gc_mark_hook	    elf64_x86_64_gc_mark_hook
3656 #define elf_backend_gc_sweep_hook	    elf64_x86_64_gc_sweep_hook
3657 #define elf_backend_grok_prstatus	    elf64_x86_64_grok_prstatus
3658 #define elf_backend_grok_psinfo		    elf64_x86_64_grok_psinfo
3659 #define elf_backend_reloc_type_class	    elf64_x86_64_reloc_type_class
3660 #define elf_backend_relocate_section	    elf64_x86_64_relocate_section
3661 #define elf_backend_size_dynamic_sections   elf64_x86_64_size_dynamic_sections
3662 #define elf_backend_always_size_sections    elf64_x86_64_always_size_sections
3663 #define elf_backend_plt_sym_val		    elf64_x86_64_plt_sym_val
3664 #define elf_backend_object_p		    elf64_x86_64_elf_object_p
3665 #define bfd_elf64_mkobject		    elf64_x86_64_mkobject
3666 
3667 #define elf_backend_section_from_shdr \
3668 	elf64_x86_64_section_from_shdr
3669 
3670 #define elf_backend_section_from_bfd_section \
3671   elf64_x86_64_elf_section_from_bfd_section
3672 #define elf_backend_add_symbol_hook \
3673   elf64_x86_64_add_symbol_hook
3674 #define elf_backend_symbol_processing \
3675   elf64_x86_64_symbol_processing
3676 #define elf_backend_common_section_index \
3677   elf64_x86_64_common_section_index
3678 #define elf_backend_common_section \
3679   elf64_x86_64_common_section
3680 #define elf_backend_common_definition \
3681   elf64_x86_64_common_definition
3682 #define elf_backend_merge_symbol \
3683   elf64_x86_64_merge_symbol
3684 #define elf_backend_special_sections \
3685   elf64_x86_64_special_sections
3686 #define elf_backend_additional_program_headers \
3687   elf64_x86_64_additional_program_headers
3688 
3689 #include "elf64-target.h"
3690