1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 
32 #include <asm/irq_regs.h>
33 
34 /*
35  * Each CPU has a list of per CPU events:
36  */
37 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38 
39 int perf_max_events __read_mostly = 1;
40 static int perf_reserved_percpu __read_mostly;
41 static int perf_overcommit __read_mostly = 1;
42 
43 static atomic_t nr_events __read_mostly;
44 static atomic_t nr_mmap_events __read_mostly;
45 static atomic_t nr_comm_events __read_mostly;
46 static atomic_t nr_task_events __read_mostly;
47 
48 /*
49  * perf event paranoia level:
50  *  -1 - not paranoid at all
51  *   0 - disallow raw tracepoint access for unpriv
52  *   1 - disallow cpu events for unpriv
53  *   2 - disallow kernel profiling for unpriv
54  */
55 int sysctl_perf_event_paranoid __read_mostly = 1;
56 
perf_paranoid_tracepoint_raw(void)57 static inline bool perf_paranoid_tracepoint_raw(void)
58 {
59 	return sysctl_perf_event_paranoid > -1;
60 }
61 
perf_paranoid_cpu(void)62 static inline bool perf_paranoid_cpu(void)
63 {
64 	return sysctl_perf_event_paranoid > 0;
65 }
66 
perf_paranoid_kernel(void)67 static inline bool perf_paranoid_kernel(void)
68 {
69 	return sysctl_perf_event_paranoid > 1;
70 }
71 
72 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
73 
74 /*
75  * max perf event sample rate
76  */
77 int sysctl_perf_event_sample_rate __read_mostly = 100000;
78 
79 static atomic64_t perf_event_id;
80 
81 /*
82  * Lock for (sysadmin-configurable) event reservations:
83  */
84 static DEFINE_SPINLOCK(perf_resource_lock);
85 
86 /*
87  * Architecture provided APIs - weak aliases:
88  */
hw_perf_event_init(struct perf_event * event)89 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
90 {
91 	return NULL;
92 }
93 
hw_perf_disable(void)94 void __weak hw_perf_disable(void)		{ barrier(); }
hw_perf_enable(void)95 void __weak hw_perf_enable(void)		{ barrier(); }
96 
hw_perf_event_setup(int cpu)97 void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
hw_perf_event_setup_online(int cpu)98 void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
99 
100 int __weak
hw_perf_group_sched_in(struct perf_event * group_leader,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,int cpu)101 hw_perf_group_sched_in(struct perf_event *group_leader,
102 	       struct perf_cpu_context *cpuctx,
103 	       struct perf_event_context *ctx, int cpu)
104 {
105 	return 0;
106 }
107 
perf_event_print_debug(void)108 void __weak perf_event_print_debug(void)	{ }
109 
110 static DEFINE_PER_CPU(int, perf_disable_count);
111 
__perf_disable(void)112 void __perf_disable(void)
113 {
114 	__get_cpu_var(perf_disable_count)++;
115 }
116 
__perf_enable(void)117 bool __perf_enable(void)
118 {
119 	return !--__get_cpu_var(perf_disable_count);
120 }
121 
perf_disable(void)122 void perf_disable(void)
123 {
124 	__perf_disable();
125 	hw_perf_disable();
126 }
127 
perf_enable(void)128 void perf_enable(void)
129 {
130 	if (__perf_enable())
131 		hw_perf_enable();
132 }
133 
get_ctx(struct perf_event_context * ctx)134 static void get_ctx(struct perf_event_context *ctx)
135 {
136 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
137 }
138 
free_ctx(struct rcu_head * head)139 static void free_ctx(struct rcu_head *head)
140 {
141 	struct perf_event_context *ctx;
142 
143 	ctx = container_of(head, struct perf_event_context, rcu_head);
144 	kfree(ctx);
145 }
146 
put_ctx(struct perf_event_context * ctx)147 static void put_ctx(struct perf_event_context *ctx)
148 {
149 	if (atomic_dec_and_test(&ctx->refcount)) {
150 		if (ctx->parent_ctx)
151 			put_ctx(ctx->parent_ctx);
152 		if (ctx->task)
153 			put_task_struct(ctx->task);
154 		call_rcu(&ctx->rcu_head, free_ctx);
155 	}
156 }
157 
unclone_ctx(struct perf_event_context * ctx)158 static void unclone_ctx(struct perf_event_context *ctx)
159 {
160 	if (ctx->parent_ctx) {
161 		put_ctx(ctx->parent_ctx);
162 		ctx->parent_ctx = NULL;
163 	}
164 }
165 
166 /*
167  * If we inherit events we want to return the parent event id
168  * to userspace.
169  */
primary_event_id(struct perf_event * event)170 static u64 primary_event_id(struct perf_event *event)
171 {
172 	u64 id = event->id;
173 
174 	if (event->parent)
175 		id = event->parent->id;
176 
177 	return id;
178 }
179 
180 /*
181  * Get the perf_event_context for a task and lock it.
182  * This has to cope with with the fact that until it is locked,
183  * the context could get moved to another task.
184  */
185 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)186 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
187 {
188 	struct perf_event_context *ctx;
189 
190 	rcu_read_lock();
191  retry:
192 	ctx = rcu_dereference(task->perf_event_ctxp);
193 	if (ctx) {
194 		/*
195 		 * If this context is a clone of another, it might
196 		 * get swapped for another underneath us by
197 		 * perf_event_task_sched_out, though the
198 		 * rcu_read_lock() protects us from any context
199 		 * getting freed.  Lock the context and check if it
200 		 * got swapped before we could get the lock, and retry
201 		 * if so.  If we locked the right context, then it
202 		 * can't get swapped on us any more.
203 		 */
204 		spin_lock_irqsave(&ctx->lock, *flags);
205 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
206 			spin_unlock_irqrestore(&ctx->lock, *flags);
207 			goto retry;
208 		}
209 
210 		if (!atomic_inc_not_zero(&ctx->refcount)) {
211 			spin_unlock_irqrestore(&ctx->lock, *flags);
212 			ctx = NULL;
213 		}
214 	}
215 	rcu_read_unlock();
216 	return ctx;
217 }
218 
219 /*
220  * Get the context for a task and increment its pin_count so it
221  * can't get swapped to another task.  This also increments its
222  * reference count so that the context can't get freed.
223  */
perf_pin_task_context(struct task_struct * task)224 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
225 {
226 	struct perf_event_context *ctx;
227 	unsigned long flags;
228 
229 	ctx = perf_lock_task_context(task, &flags);
230 	if (ctx) {
231 		++ctx->pin_count;
232 		spin_unlock_irqrestore(&ctx->lock, flags);
233 	}
234 	return ctx;
235 }
236 
perf_unpin_context(struct perf_event_context * ctx)237 static void perf_unpin_context(struct perf_event_context *ctx)
238 {
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&ctx->lock, flags);
242 	--ctx->pin_count;
243 	spin_unlock_irqrestore(&ctx->lock, flags);
244 	put_ctx(ctx);
245 }
246 
247 /*
248  * Add a event from the lists for its context.
249  * Must be called with ctx->mutex and ctx->lock held.
250  */
251 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)252 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
253 {
254 	struct perf_event *group_leader = event->group_leader;
255 
256 	/*
257 	 * Depending on whether it is a standalone or sibling event,
258 	 * add it straight to the context's event list, or to the group
259 	 * leader's sibling list:
260 	 */
261 	if (group_leader == event)
262 		list_add_tail(&event->group_entry, &ctx->group_list);
263 	else {
264 		list_add_tail(&event->group_entry, &group_leader->sibling_list);
265 		group_leader->nr_siblings++;
266 	}
267 
268 	list_add_rcu(&event->event_entry, &ctx->event_list);
269 	ctx->nr_events++;
270 	if (event->attr.inherit_stat)
271 		ctx->nr_stat++;
272 }
273 
274 /*
275  * Remove a event from the lists for its context.
276  * Must be called with ctx->mutex and ctx->lock held.
277  */
278 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)279 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
280 {
281 	struct perf_event *sibling, *tmp;
282 
283 	if (list_empty(&event->group_entry))
284 		return;
285 	ctx->nr_events--;
286 	if (event->attr.inherit_stat)
287 		ctx->nr_stat--;
288 
289 	list_del_init(&event->group_entry);
290 	list_del_rcu(&event->event_entry);
291 
292 	if (event->group_leader != event)
293 		event->group_leader->nr_siblings--;
294 
295 	/*
296 	 * If this was a group event with sibling events then
297 	 * upgrade the siblings to singleton events by adding them
298 	 * to the context list directly:
299 	 */
300 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
301 
302 		list_move_tail(&sibling->group_entry, &ctx->group_list);
303 		sibling->group_leader = sibling;
304 	}
305 }
306 
307 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)308 event_sched_out(struct perf_event *event,
309 		  struct perf_cpu_context *cpuctx,
310 		  struct perf_event_context *ctx)
311 {
312 	if (event->state != PERF_EVENT_STATE_ACTIVE)
313 		return;
314 
315 	event->state = PERF_EVENT_STATE_INACTIVE;
316 	if (event->pending_disable) {
317 		event->pending_disable = 0;
318 		event->state = PERF_EVENT_STATE_OFF;
319 	}
320 	event->tstamp_stopped = ctx->time;
321 	event->pmu->disable(event);
322 	event->oncpu = -1;
323 
324 	if (!is_software_event(event))
325 		cpuctx->active_oncpu--;
326 	ctx->nr_active--;
327 	if (event->attr.exclusive || !cpuctx->active_oncpu)
328 		cpuctx->exclusive = 0;
329 }
330 
331 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)332 group_sched_out(struct perf_event *group_event,
333 		struct perf_cpu_context *cpuctx,
334 		struct perf_event_context *ctx)
335 {
336 	struct perf_event *event;
337 
338 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
339 		return;
340 
341 	event_sched_out(group_event, cpuctx, ctx);
342 
343 	/*
344 	 * Schedule out siblings (if any):
345 	 */
346 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
347 		event_sched_out(event, cpuctx, ctx);
348 
349 	if (group_event->attr.exclusive)
350 		cpuctx->exclusive = 0;
351 }
352 
353 /*
354  * Cross CPU call to remove a performance event
355  *
356  * We disable the event on the hardware level first. After that we
357  * remove it from the context list.
358  */
__perf_event_remove_from_context(void * info)359 static void __perf_event_remove_from_context(void *info)
360 {
361 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362 	struct perf_event *event = info;
363 	struct perf_event_context *ctx = event->ctx;
364 
365 	/*
366 	 * If this is a task context, we need to check whether it is
367 	 * the current task context of this cpu. If not it has been
368 	 * scheduled out before the smp call arrived.
369 	 */
370 	if (ctx->task && cpuctx->task_ctx != ctx)
371 		return;
372 
373 	spin_lock(&ctx->lock);
374 	/*
375 	 * Protect the list operation against NMI by disabling the
376 	 * events on a global level.
377 	 */
378 	perf_disable();
379 
380 	event_sched_out(event, cpuctx, ctx);
381 
382 	list_del_event(event, ctx);
383 
384 	if (!ctx->task) {
385 		/*
386 		 * Allow more per task events with respect to the
387 		 * reservation:
388 		 */
389 		cpuctx->max_pertask =
390 			min(perf_max_events - ctx->nr_events,
391 			    perf_max_events - perf_reserved_percpu);
392 	}
393 
394 	perf_enable();
395 	spin_unlock(&ctx->lock);
396 }
397 
398 
399 /*
400  * Remove the event from a task's (or a CPU's) list of events.
401  *
402  * Must be called with ctx->mutex held.
403  *
404  * CPU events are removed with a smp call. For task events we only
405  * call when the task is on a CPU.
406  *
407  * If event->ctx is a cloned context, callers must make sure that
408  * every task struct that event->ctx->task could possibly point to
409  * remains valid.  This is OK when called from perf_release since
410  * that only calls us on the top-level context, which can't be a clone.
411  * When called from perf_event_exit_task, it's OK because the
412  * context has been detached from its task.
413  */
perf_event_remove_from_context(struct perf_event * event)414 static void perf_event_remove_from_context(struct perf_event *event)
415 {
416 	struct perf_event_context *ctx = event->ctx;
417 	struct task_struct *task = ctx->task;
418 
419 	if (!task) {
420 		/*
421 		 * Per cpu events are removed via an smp call and
422 		 * the removal is always sucessful.
423 		 */
424 		smp_call_function_single(event->cpu,
425 					 __perf_event_remove_from_context,
426 					 event, 1);
427 		return;
428 	}
429 
430 retry:
431 	task_oncpu_function_call(task, __perf_event_remove_from_context,
432 				 event);
433 
434 	spin_lock_irq(&ctx->lock);
435 	/*
436 	 * If the context is active we need to retry the smp call.
437 	 */
438 	if (ctx->nr_active && !list_empty(&event->group_entry)) {
439 		spin_unlock_irq(&ctx->lock);
440 		goto retry;
441 	}
442 
443 	/*
444 	 * The lock prevents that this context is scheduled in so we
445 	 * can remove the event safely, if the call above did not
446 	 * succeed.
447 	 */
448 	if (!list_empty(&event->group_entry)) {
449 		list_del_event(event, ctx);
450 	}
451 	spin_unlock_irq(&ctx->lock);
452 }
453 
perf_clock(void)454 static inline u64 perf_clock(void)
455 {
456 	return cpu_clock(smp_processor_id());
457 }
458 
459 /*
460  * Update the record of the current time in a context.
461  */
update_context_time(struct perf_event_context * ctx)462 static void update_context_time(struct perf_event_context *ctx)
463 {
464 	u64 now = perf_clock();
465 
466 	ctx->time += now - ctx->timestamp;
467 	ctx->timestamp = now;
468 }
469 
470 /*
471  * Update the total_time_enabled and total_time_running fields for a event.
472  */
update_event_times(struct perf_event * event)473 static void update_event_times(struct perf_event *event)
474 {
475 	struct perf_event_context *ctx = event->ctx;
476 	u64 run_end;
477 
478 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
479 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
480 		return;
481 
482 	event->total_time_enabled = ctx->time - event->tstamp_enabled;
483 
484 	if (event->state == PERF_EVENT_STATE_INACTIVE)
485 		run_end = event->tstamp_stopped;
486 	else
487 		run_end = ctx->time;
488 
489 	event->total_time_running = run_end - event->tstamp_running;
490 }
491 
492 /*
493  * Update total_time_enabled and total_time_running for all events in a group.
494  */
update_group_times(struct perf_event * leader)495 static void update_group_times(struct perf_event *leader)
496 {
497 	struct perf_event *event;
498 
499 	update_event_times(leader);
500 	list_for_each_entry(event, &leader->sibling_list, group_entry)
501 		update_event_times(event);
502 }
503 
504 /*
505  * Cross CPU call to disable a performance event
506  */
__perf_event_disable(void * info)507 static void __perf_event_disable(void *info)
508 {
509 	struct perf_event *event = info;
510 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511 	struct perf_event_context *ctx = event->ctx;
512 
513 	/*
514 	 * If this is a per-task event, need to check whether this
515 	 * event's task is the current task on this cpu.
516 	 */
517 	if (ctx->task && cpuctx->task_ctx != ctx)
518 		return;
519 
520 	spin_lock(&ctx->lock);
521 
522 	/*
523 	 * If the event is on, turn it off.
524 	 * If it is in error state, leave it in error state.
525 	 */
526 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
527 		update_context_time(ctx);
528 		update_group_times(event);
529 		if (event == event->group_leader)
530 			group_sched_out(event, cpuctx, ctx);
531 		else
532 			event_sched_out(event, cpuctx, ctx);
533 		event->state = PERF_EVENT_STATE_OFF;
534 	}
535 
536 	spin_unlock(&ctx->lock);
537 }
538 
539 /*
540  * Disable a event.
541  *
542  * If event->ctx is a cloned context, callers must make sure that
543  * every task struct that event->ctx->task could possibly point to
544  * remains valid.  This condition is satisifed when called through
545  * perf_event_for_each_child or perf_event_for_each because they
546  * hold the top-level event's child_mutex, so any descendant that
547  * goes to exit will block in sync_child_event.
548  * When called from perf_pending_event it's OK because event->ctx
549  * is the current context on this CPU and preemption is disabled,
550  * hence we can't get into perf_event_task_sched_out for this context.
551  */
perf_event_disable(struct perf_event * event)552 static void perf_event_disable(struct perf_event *event)
553 {
554 	struct perf_event_context *ctx = event->ctx;
555 	struct task_struct *task = ctx->task;
556 
557 	if (!task) {
558 		/*
559 		 * Disable the event on the cpu that it's on
560 		 */
561 		smp_call_function_single(event->cpu, __perf_event_disable,
562 					 event, 1);
563 		return;
564 	}
565 
566  retry:
567 	task_oncpu_function_call(task, __perf_event_disable, event);
568 
569 	spin_lock_irq(&ctx->lock);
570 	/*
571 	 * If the event is still active, we need to retry the cross-call.
572 	 */
573 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
574 		spin_unlock_irq(&ctx->lock);
575 		goto retry;
576 	}
577 
578 	/*
579 	 * Since we have the lock this context can't be scheduled
580 	 * in, so we can change the state safely.
581 	 */
582 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
583 		update_group_times(event);
584 		event->state = PERF_EVENT_STATE_OFF;
585 	}
586 
587 	spin_unlock_irq(&ctx->lock);
588 }
589 
590 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,int cpu)591 event_sched_in(struct perf_event *event,
592 		 struct perf_cpu_context *cpuctx,
593 		 struct perf_event_context *ctx,
594 		 int cpu)
595 {
596 	if (event->state <= PERF_EVENT_STATE_OFF)
597 		return 0;
598 
599 	event->state = PERF_EVENT_STATE_ACTIVE;
600 	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
601 	/*
602 	 * The new state must be visible before we turn it on in the hardware:
603 	 */
604 	smp_wmb();
605 
606 	if (event->pmu->enable(event)) {
607 		event->state = PERF_EVENT_STATE_INACTIVE;
608 		event->oncpu = -1;
609 		return -EAGAIN;
610 	}
611 
612 	event->tstamp_running += ctx->time - event->tstamp_stopped;
613 
614 	if (!is_software_event(event))
615 		cpuctx->active_oncpu++;
616 	ctx->nr_active++;
617 
618 	if (event->attr.exclusive)
619 		cpuctx->exclusive = 1;
620 
621 	return 0;
622 }
623 
624 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,int cpu)625 group_sched_in(struct perf_event *group_event,
626 	       struct perf_cpu_context *cpuctx,
627 	       struct perf_event_context *ctx,
628 	       int cpu)
629 {
630 	struct perf_event *event, *partial_group;
631 	int ret;
632 
633 	if (group_event->state == PERF_EVENT_STATE_OFF)
634 		return 0;
635 
636 	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
637 	if (ret)
638 		return ret < 0 ? ret : 0;
639 
640 	if (event_sched_in(group_event, cpuctx, ctx, cpu))
641 		return -EAGAIN;
642 
643 	/*
644 	 * Schedule in siblings as one group (if any):
645 	 */
646 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
647 		if (event_sched_in(event, cpuctx, ctx, cpu)) {
648 			partial_group = event;
649 			goto group_error;
650 		}
651 	}
652 
653 	return 0;
654 
655 group_error:
656 	/*
657 	 * Groups can be scheduled in as one unit only, so undo any
658 	 * partial group before returning:
659 	 */
660 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661 		if (event == partial_group)
662 			break;
663 		event_sched_out(event, cpuctx, ctx);
664 	}
665 	event_sched_out(group_event, cpuctx, ctx);
666 
667 	return -EAGAIN;
668 }
669 
670 /*
671  * Return 1 for a group consisting entirely of software events,
672  * 0 if the group contains any hardware events.
673  */
is_software_only_group(struct perf_event * leader)674 static int is_software_only_group(struct perf_event *leader)
675 {
676 	struct perf_event *event;
677 
678 	if (!is_software_event(leader))
679 		return 0;
680 
681 	list_for_each_entry(event, &leader->sibling_list, group_entry)
682 		if (!is_software_event(event))
683 			return 0;
684 
685 	return 1;
686 }
687 
688 /*
689  * Work out whether we can put this event group on the CPU now.
690  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)691 static int group_can_go_on(struct perf_event *event,
692 			   struct perf_cpu_context *cpuctx,
693 			   int can_add_hw)
694 {
695 	/*
696 	 * Groups consisting entirely of software events can always go on.
697 	 */
698 	if (is_software_only_group(event))
699 		return 1;
700 	/*
701 	 * If an exclusive group is already on, no other hardware
702 	 * events can go on.
703 	 */
704 	if (cpuctx->exclusive)
705 		return 0;
706 	/*
707 	 * If this group is exclusive and there are already
708 	 * events on the CPU, it can't go on.
709 	 */
710 	if (event->attr.exclusive && cpuctx->active_oncpu)
711 		return 0;
712 	/*
713 	 * Otherwise, try to add it if all previous groups were able
714 	 * to go on.
715 	 */
716 	return can_add_hw;
717 }
718 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)719 static void add_event_to_ctx(struct perf_event *event,
720 			       struct perf_event_context *ctx)
721 {
722 	list_add_event(event, ctx);
723 	event->tstamp_enabled = ctx->time;
724 	event->tstamp_running = ctx->time;
725 	event->tstamp_stopped = ctx->time;
726 }
727 
728 /*
729  * Cross CPU call to install and enable a performance event
730  *
731  * Must be called with ctx->mutex held
732  */
__perf_install_in_context(void * info)733 static void __perf_install_in_context(void *info)
734 {
735 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736 	struct perf_event *event = info;
737 	struct perf_event_context *ctx = event->ctx;
738 	struct perf_event *leader = event->group_leader;
739 	int cpu = smp_processor_id();
740 	int err;
741 
742 	/*
743 	 * If this is a task context, we need to check whether it is
744 	 * the current task context of this cpu. If not it has been
745 	 * scheduled out before the smp call arrived.
746 	 * Or possibly this is the right context but it isn't
747 	 * on this cpu because it had no events.
748 	 */
749 	if (ctx->task && cpuctx->task_ctx != ctx) {
750 		if (cpuctx->task_ctx || ctx->task != current)
751 			return;
752 		cpuctx->task_ctx = ctx;
753 	}
754 
755 	spin_lock(&ctx->lock);
756 	ctx->is_active = 1;
757 	update_context_time(ctx);
758 
759 	/*
760 	 * Protect the list operation against NMI by disabling the
761 	 * events on a global level. NOP for non NMI based events.
762 	 */
763 	perf_disable();
764 
765 	add_event_to_ctx(event, ctx);
766 
767 	/*
768 	 * Don't put the event on if it is disabled or if
769 	 * it is in a group and the group isn't on.
770 	 */
771 	if (event->state != PERF_EVENT_STATE_INACTIVE ||
772 	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
773 		goto unlock;
774 
775 	/*
776 	 * An exclusive event can't go on if there are already active
777 	 * hardware events, and no hardware event can go on if there
778 	 * is already an exclusive event on.
779 	 */
780 	if (!group_can_go_on(event, cpuctx, 1))
781 		err = -EEXIST;
782 	else
783 		err = event_sched_in(event, cpuctx, ctx, cpu);
784 
785 	if (err) {
786 		/*
787 		 * This event couldn't go on.  If it is in a group
788 		 * then we have to pull the whole group off.
789 		 * If the event group is pinned then put it in error state.
790 		 */
791 		if (leader != event)
792 			group_sched_out(leader, cpuctx, ctx);
793 		if (leader->attr.pinned) {
794 			update_group_times(leader);
795 			leader->state = PERF_EVENT_STATE_ERROR;
796 		}
797 	}
798 
799 	if (!err && !ctx->task && cpuctx->max_pertask)
800 		cpuctx->max_pertask--;
801 
802  unlock:
803 	perf_enable();
804 
805 	spin_unlock(&ctx->lock);
806 }
807 
808 /*
809  * Attach a performance event to a context
810  *
811  * First we add the event to the list with the hardware enable bit
812  * in event->hw_config cleared.
813  *
814  * If the event is attached to a task which is on a CPU we use a smp
815  * call to enable it in the task context. The task might have been
816  * scheduled away, but we check this in the smp call again.
817  *
818  * Must be called with ctx->mutex held.
819  */
820 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)821 perf_install_in_context(struct perf_event_context *ctx,
822 			struct perf_event *event,
823 			int cpu)
824 {
825 	struct task_struct *task = ctx->task;
826 
827 	if (!task) {
828 		/*
829 		 * Per cpu events are installed via an smp call and
830 		 * the install is always sucessful.
831 		 */
832 		smp_call_function_single(cpu, __perf_install_in_context,
833 					 event, 1);
834 		return;
835 	}
836 
837 retry:
838 	task_oncpu_function_call(task, __perf_install_in_context,
839 				 event);
840 
841 	spin_lock_irq(&ctx->lock);
842 	/*
843 	 * we need to retry the smp call.
844 	 */
845 	if (ctx->is_active && list_empty(&event->group_entry)) {
846 		spin_unlock_irq(&ctx->lock);
847 		goto retry;
848 	}
849 
850 	/*
851 	 * The lock prevents that this context is scheduled in so we
852 	 * can add the event safely, if it the call above did not
853 	 * succeed.
854 	 */
855 	if (list_empty(&event->group_entry))
856 		add_event_to_ctx(event, ctx);
857 	spin_unlock_irq(&ctx->lock);
858 }
859 
860 /*
861  * Put a event into inactive state and update time fields.
862  * Enabling the leader of a group effectively enables all
863  * the group members that aren't explicitly disabled, so we
864  * have to update their ->tstamp_enabled also.
865  * Note: this works for group members as well as group leaders
866  * since the non-leader members' sibling_lists will be empty.
867  */
__perf_event_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)868 static void __perf_event_mark_enabled(struct perf_event *event,
869 					struct perf_event_context *ctx)
870 {
871 	struct perf_event *sub;
872 
873 	event->state = PERF_EVENT_STATE_INACTIVE;
874 	event->tstamp_enabled = ctx->time - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry)
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
877 			sub->tstamp_enabled =
878 				ctx->time - sub->total_time_enabled;
879 }
880 
881 /*
882  * Cross CPU call to enable a performance event
883  */
__perf_event_enable(void * info)884 static void __perf_event_enable(void *info)
885 {
886 	struct perf_event *event = info;
887 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 	struct perf_event_context *ctx = event->ctx;
889 	struct perf_event *leader = event->group_leader;
890 	int err;
891 
892 	/*
893 	 * If this is a per-task event, need to check whether this
894 	 * event's task is the current task on this cpu.
895 	 */
896 	if (ctx->task && cpuctx->task_ctx != ctx) {
897 		if (cpuctx->task_ctx || ctx->task != current)
898 			return;
899 		cpuctx->task_ctx = ctx;
900 	}
901 
902 	spin_lock(&ctx->lock);
903 	ctx->is_active = 1;
904 	update_context_time(ctx);
905 
906 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
907 		goto unlock;
908 	__perf_event_mark_enabled(event, ctx);
909 
910 	/*
911 	 * If the event is in a group and isn't the group leader,
912 	 * then don't put it on unless the group is on.
913 	 */
914 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915 		goto unlock;
916 
917 	if (!group_can_go_on(event, cpuctx, 1)) {
918 		err = -EEXIST;
919 	} else {
920 		perf_disable();
921 		if (event == leader)
922 			err = group_sched_in(event, cpuctx, ctx,
923 					     smp_processor_id());
924 		else
925 			err = event_sched_in(event, cpuctx, ctx,
926 					       smp_processor_id());
927 		perf_enable();
928 	}
929 
930 	if (err) {
931 		/*
932 		 * If this event can't go on and it's part of a
933 		 * group, then the whole group has to come off.
934 		 */
935 		if (leader != event)
936 			group_sched_out(leader, cpuctx, ctx);
937 		if (leader->attr.pinned) {
938 			update_group_times(leader);
939 			leader->state = PERF_EVENT_STATE_ERROR;
940 		}
941 	}
942 
943  unlock:
944 	spin_unlock(&ctx->lock);
945 }
946 
947 /*
948  * Enable a event.
949  *
950  * If event->ctx is a cloned context, callers must make sure that
951  * every task struct that event->ctx->task could possibly point to
952  * remains valid.  This condition is satisfied when called through
953  * perf_event_for_each_child or perf_event_for_each as described
954  * for perf_event_disable.
955  */
perf_event_enable(struct perf_event * event)956 static void perf_event_enable(struct perf_event *event)
957 {
958 	struct perf_event_context *ctx = event->ctx;
959 	struct task_struct *task = ctx->task;
960 
961 	if (!task) {
962 		/*
963 		 * Enable the event on the cpu that it's on
964 		 */
965 		smp_call_function_single(event->cpu, __perf_event_enable,
966 					 event, 1);
967 		return;
968 	}
969 
970 	spin_lock_irq(&ctx->lock);
971 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
972 		goto out;
973 
974 	/*
975 	 * If the event is in error state, clear that first.
976 	 * That way, if we see the event in error state below, we
977 	 * know that it has gone back into error state, as distinct
978 	 * from the task having been scheduled away before the
979 	 * cross-call arrived.
980 	 */
981 	if (event->state == PERF_EVENT_STATE_ERROR)
982 		event->state = PERF_EVENT_STATE_OFF;
983 
984  retry:
985 	spin_unlock_irq(&ctx->lock);
986 	task_oncpu_function_call(task, __perf_event_enable, event);
987 
988 	spin_lock_irq(&ctx->lock);
989 
990 	/*
991 	 * If the context is active and the event is still off,
992 	 * we need to retry the cross-call.
993 	 */
994 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
995 		goto retry;
996 
997 	/*
998 	 * Since we have the lock this context can't be scheduled
999 	 * in, so we can change the state safely.
1000 	 */
1001 	if (event->state == PERF_EVENT_STATE_OFF)
1002 		__perf_event_mark_enabled(event, ctx);
1003 
1004  out:
1005 	spin_unlock_irq(&ctx->lock);
1006 }
1007 
perf_event_refresh(struct perf_event * event,int refresh)1008 static int perf_event_refresh(struct perf_event *event, int refresh)
1009 {
1010 	/*
1011 	 * not supported on inherited events
1012 	 */
1013 	if (event->attr.inherit)
1014 		return -EINVAL;
1015 
1016 	atomic_add(refresh, &event->event_limit);
1017 	perf_event_enable(event);
1018 
1019 	return 0;
1020 }
1021 
__perf_event_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)1022 void __perf_event_sched_out(struct perf_event_context *ctx,
1023 			      struct perf_cpu_context *cpuctx)
1024 {
1025 	struct perf_event *event;
1026 
1027 	spin_lock(&ctx->lock);
1028 	ctx->is_active = 0;
1029 	if (likely(!ctx->nr_events))
1030 		goto out;
1031 	update_context_time(ctx);
1032 
1033 	perf_disable();
1034 	if (ctx->nr_active)
1035 		list_for_each_entry(event, &ctx->group_list, group_entry)
1036 			group_sched_out(event, cpuctx, ctx);
1037 
1038 	perf_enable();
1039  out:
1040 	spin_unlock(&ctx->lock);
1041 }
1042 
1043 /*
1044  * Test whether two contexts are equivalent, i.e. whether they
1045  * have both been cloned from the same version of the same context
1046  * and they both have the same number of enabled events.
1047  * If the number of enabled events is the same, then the set
1048  * of enabled events should be the same, because these are both
1049  * inherited contexts, therefore we can't access individual events
1050  * in them directly with an fd; we can only enable/disable all
1051  * events via prctl, or enable/disable all events in a family
1052  * via ioctl, which will have the same effect on both contexts.
1053  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)1054 static int context_equiv(struct perf_event_context *ctx1,
1055 			 struct perf_event_context *ctx2)
1056 {
1057 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1058 		&& ctx1->parent_gen == ctx2->parent_gen
1059 		&& !ctx1->pin_count && !ctx2->pin_count;
1060 }
1061 
1062 static void __perf_event_read(void *event);
1063 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)1064 static void __perf_event_sync_stat(struct perf_event *event,
1065 				     struct perf_event *next_event)
1066 {
1067 	u64 value;
1068 
1069 	if (!event->attr.inherit_stat)
1070 		return;
1071 
1072 	/*
1073 	 * Update the event value, we cannot use perf_event_read()
1074 	 * because we're in the middle of a context switch and have IRQs
1075 	 * disabled, which upsets smp_call_function_single(), however
1076 	 * we know the event must be on the current CPU, therefore we
1077 	 * don't need to use it.
1078 	 */
1079 	switch (event->state) {
1080 	case PERF_EVENT_STATE_ACTIVE:
1081 		__perf_event_read(event);
1082 		break;
1083 
1084 	case PERF_EVENT_STATE_INACTIVE:
1085 		update_event_times(event);
1086 		break;
1087 
1088 	default:
1089 		break;
1090 	}
1091 
1092 	/*
1093 	 * In order to keep per-task stats reliable we need to flip the event
1094 	 * values when we flip the contexts.
1095 	 */
1096 	value = atomic64_read(&next_event->count);
1097 	value = atomic64_xchg(&event->count, value);
1098 	atomic64_set(&next_event->count, value);
1099 
1100 	swap(event->total_time_enabled, next_event->total_time_enabled);
1101 	swap(event->total_time_running, next_event->total_time_running);
1102 
1103 	/*
1104 	 * Since we swizzled the values, update the user visible data too.
1105 	 */
1106 	perf_event_update_userpage(event);
1107 	perf_event_update_userpage(next_event);
1108 }
1109 
1110 #define list_next_entry(pos, member) \
1111 	list_entry(pos->member.next, typeof(*pos), member)
1112 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)1113 static void perf_event_sync_stat(struct perf_event_context *ctx,
1114 				   struct perf_event_context *next_ctx)
1115 {
1116 	struct perf_event *event, *next_event;
1117 
1118 	if (!ctx->nr_stat)
1119 		return;
1120 
1121 	event = list_first_entry(&ctx->event_list,
1122 				   struct perf_event, event_entry);
1123 
1124 	next_event = list_first_entry(&next_ctx->event_list,
1125 					struct perf_event, event_entry);
1126 
1127 	while (&event->event_entry != &ctx->event_list &&
1128 	       &next_event->event_entry != &next_ctx->event_list) {
1129 
1130 		__perf_event_sync_stat(event, next_event);
1131 
1132 		event = list_next_entry(event, event_entry);
1133 		next_event = list_next_entry(next_event, event_entry);
1134 	}
1135 }
1136 
1137 /*
1138  * Called from scheduler to remove the events of the current task,
1139  * with interrupts disabled.
1140  *
1141  * We stop each event and update the event value in event->count.
1142  *
1143  * This does not protect us against NMI, but disable()
1144  * sets the disabled bit in the control field of event _before_
1145  * accessing the event control register. If a NMI hits, then it will
1146  * not restart the event.
1147  */
perf_event_task_sched_out(struct task_struct * task,struct task_struct * next,int cpu)1148 void perf_event_task_sched_out(struct task_struct *task,
1149 				 struct task_struct *next, int cpu)
1150 {
1151 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1152 	struct perf_event_context *ctx = task->perf_event_ctxp;
1153 	struct perf_event_context *next_ctx;
1154 	struct perf_event_context *parent;
1155 	struct pt_regs *regs;
1156 	int do_switch = 1;
1157 
1158 	regs = task_pt_regs(task);
1159 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1160 
1161 	if (likely(!ctx || !cpuctx->task_ctx))
1162 		return;
1163 
1164 	update_context_time(ctx);
1165 
1166 	rcu_read_lock();
1167 	parent = rcu_dereference(ctx->parent_ctx);
1168 	next_ctx = next->perf_event_ctxp;
1169 	if (parent && next_ctx &&
1170 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1171 		/*
1172 		 * Looks like the two contexts are clones, so we might be
1173 		 * able to optimize the context switch.  We lock both
1174 		 * contexts and check that they are clones under the
1175 		 * lock (including re-checking that neither has been
1176 		 * uncloned in the meantime).  It doesn't matter which
1177 		 * order we take the locks because no other cpu could
1178 		 * be trying to lock both of these tasks.
1179 		 */
1180 		spin_lock(&ctx->lock);
1181 		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182 		if (context_equiv(ctx, next_ctx)) {
1183 			/*
1184 			 * XXX do we need a memory barrier of sorts
1185 			 * wrt to rcu_dereference() of perf_event_ctxp
1186 			 */
1187 			task->perf_event_ctxp = next_ctx;
1188 			next->perf_event_ctxp = ctx;
1189 			ctx->task = next;
1190 			next_ctx->task = task;
1191 			do_switch = 0;
1192 
1193 			perf_event_sync_stat(ctx, next_ctx);
1194 		}
1195 		spin_unlock(&next_ctx->lock);
1196 		spin_unlock(&ctx->lock);
1197 	}
1198 	rcu_read_unlock();
1199 
1200 	if (do_switch) {
1201 		__perf_event_sched_out(ctx, cpuctx);
1202 		cpuctx->task_ctx = NULL;
1203 	}
1204 }
1205 
1206 /*
1207  * Called with IRQs disabled
1208  */
__perf_event_task_sched_out(struct perf_event_context * ctx)1209 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 {
1211 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1212 
1213 	if (!cpuctx->task_ctx)
1214 		return;
1215 
1216 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217 		return;
1218 
1219 	__perf_event_sched_out(ctx, cpuctx);
1220 	cpuctx->task_ctx = NULL;
1221 }
1222 
1223 /*
1224  * Called with IRQs disabled
1225  */
perf_event_cpu_sched_out(struct perf_cpu_context * cpuctx)1226 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227 {
1228 	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 }
1230 
1231 static void
__perf_event_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,int cpu)1232 __perf_event_sched_in(struct perf_event_context *ctx,
1233 			struct perf_cpu_context *cpuctx, int cpu)
1234 {
1235 	struct perf_event *event;
1236 	int can_add_hw = 1;
1237 
1238 	spin_lock(&ctx->lock);
1239 	ctx->is_active = 1;
1240 	if (likely(!ctx->nr_events))
1241 		goto out;
1242 
1243 	ctx->timestamp = perf_clock();
1244 
1245 	perf_disable();
1246 
1247 	/*
1248 	 * First go through the list and put on any pinned groups
1249 	 * in order to give them the best chance of going on.
1250 	 */
1251 	list_for_each_entry(event, &ctx->group_list, group_entry) {
1252 		if (event->state <= PERF_EVENT_STATE_OFF ||
1253 		    !event->attr.pinned)
1254 			continue;
1255 		if (event->cpu != -1 && event->cpu != cpu)
1256 			continue;
1257 
1258 		if (group_can_go_on(event, cpuctx, 1))
1259 			group_sched_in(event, cpuctx, ctx, cpu);
1260 
1261 		/*
1262 		 * If this pinned group hasn't been scheduled,
1263 		 * put it in error state.
1264 		 */
1265 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 			update_group_times(event);
1267 			event->state = PERF_EVENT_STATE_ERROR;
1268 		}
1269 	}
1270 
1271 	list_for_each_entry(event, &ctx->group_list, group_entry) {
1272 		/*
1273 		 * Ignore events in OFF or ERROR state, and
1274 		 * ignore pinned events since we did them already.
1275 		 */
1276 		if (event->state <= PERF_EVENT_STATE_OFF ||
1277 		    event->attr.pinned)
1278 			continue;
1279 
1280 		/*
1281 		 * Listen to the 'cpu' scheduling filter constraint
1282 		 * of events:
1283 		 */
1284 		if (event->cpu != -1 && event->cpu != cpu)
1285 			continue;
1286 
1287 		if (group_can_go_on(event, cpuctx, can_add_hw))
1288 			if (group_sched_in(event, cpuctx, ctx, cpu))
1289 				can_add_hw = 0;
1290 	}
1291 	perf_enable();
1292  out:
1293 	spin_unlock(&ctx->lock);
1294 }
1295 
1296 /*
1297  * Called from scheduler to add the events of the current task
1298  * with interrupts disabled.
1299  *
1300  * We restore the event value and then enable it.
1301  *
1302  * This does not protect us against NMI, but enable()
1303  * sets the enabled bit in the control field of event _before_
1304  * accessing the event control register. If a NMI hits, then it will
1305  * keep the event running.
1306  */
perf_event_task_sched_in(struct task_struct * task,int cpu)1307 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 {
1309 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310 	struct perf_event_context *ctx = task->perf_event_ctxp;
1311 
1312 	if (likely(!ctx))
1313 		return;
1314 	if (cpuctx->task_ctx == ctx)
1315 		return;
1316 	__perf_event_sched_in(ctx, cpuctx, cpu);
1317 	cpuctx->task_ctx = ctx;
1318 }
1319 
perf_event_cpu_sched_in(struct perf_cpu_context * cpuctx,int cpu)1320 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321 {
1322 	struct perf_event_context *ctx = &cpuctx->ctx;
1323 
1324 	__perf_event_sched_in(ctx, cpuctx, cpu);
1325 }
1326 
1327 #define MAX_INTERRUPTS (~0ULL)
1328 
1329 static void perf_log_throttle(struct perf_event *event, int enable);
1330 
perf_adjust_period(struct perf_event * event,u64 events)1331 static void perf_adjust_period(struct perf_event *event, u64 events)
1332 {
1333 	struct hw_perf_event *hwc = &event->hw;
1334 	u64 period, sample_period;
1335 	s64 delta;
1336 
1337 	events *= hwc->sample_period;
1338 	period = div64_u64(events, event->attr.sample_freq);
1339 
1340 	delta = (s64)(period - hwc->sample_period);
1341 	delta = (delta + 7) / 8; /* low pass filter */
1342 
1343 	sample_period = hwc->sample_period + delta;
1344 
1345 	if (!sample_period)
1346 		sample_period = 1;
1347 
1348 	hwc->sample_period = sample_period;
1349 }
1350 
perf_ctx_adjust_freq(struct perf_event_context * ctx)1351 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352 {
1353 	struct perf_event *event;
1354 	struct hw_perf_event *hwc;
1355 	u64 interrupts, freq;
1356 
1357 	spin_lock(&ctx->lock);
1358 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359 		if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 			continue;
1361 
1362 		if (event->cpu != -1 && event->cpu != smp_processor_id())
1363 			continue;
1364 
1365 		hwc = &event->hw;
1366 
1367 		interrupts = hwc->interrupts;
1368 		hwc->interrupts = 0;
1369 
1370 		/*
1371 		 * unthrottle events on the tick
1372 		 */
1373 		if (interrupts == MAX_INTERRUPTS) {
1374 			perf_log_throttle(event, 1);
1375 			event->pmu->unthrottle(event);
1376 			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1377 		}
1378 
1379 		if (!event->attr.freq || !event->attr.sample_freq)
1380 			continue;
1381 
1382 		/*
1383 		 * if the specified freq < HZ then we need to skip ticks
1384 		 */
1385 		if (event->attr.sample_freq < HZ) {
1386 			freq = event->attr.sample_freq;
1387 
1388 			hwc->freq_count += freq;
1389 			hwc->freq_interrupts += interrupts;
1390 
1391 			if (hwc->freq_count < HZ)
1392 				continue;
1393 
1394 			interrupts = hwc->freq_interrupts;
1395 			hwc->freq_interrupts = 0;
1396 			hwc->freq_count -= HZ;
1397 		} else
1398 			freq = HZ;
1399 
1400 		perf_adjust_period(event, freq * interrupts);
1401 
1402 		/*
1403 		 * In order to avoid being stalled by an (accidental) huge
1404 		 * sample period, force reset the sample period if we didn't
1405 		 * get any events in this freq period.
1406 		 */
1407 		if (!interrupts) {
1408 			perf_disable();
1409 			event->pmu->disable(event);
1410 			atomic64_set(&hwc->period_left, 0);
1411 			event->pmu->enable(event);
1412 			perf_enable();
1413 		}
1414 	}
1415 	spin_unlock(&ctx->lock);
1416 }
1417 
1418 /*
1419  * Round-robin a context's events:
1420  */
rotate_ctx(struct perf_event_context * ctx)1421 static void rotate_ctx(struct perf_event_context *ctx)
1422 {
1423 	struct perf_event *event;
1424 
1425 	if (!ctx->nr_events)
1426 		return;
1427 
1428 	spin_lock(&ctx->lock);
1429 	/*
1430 	 * Rotate the first entry last (works just fine for group events too):
1431 	 */
1432 	perf_disable();
1433 	list_for_each_entry(event, &ctx->group_list, group_entry) {
1434 		list_move_tail(&event->group_entry, &ctx->group_list);
1435 		break;
1436 	}
1437 	perf_enable();
1438 
1439 	spin_unlock(&ctx->lock);
1440 }
1441 
perf_event_task_tick(struct task_struct * curr,int cpu)1442 void perf_event_task_tick(struct task_struct *curr, int cpu)
1443 {
1444 	struct perf_cpu_context *cpuctx;
1445 	struct perf_event_context *ctx;
1446 
1447 	if (!atomic_read(&nr_events))
1448 		return;
1449 
1450 	cpuctx = &per_cpu(perf_cpu_context, cpu);
1451 	ctx = curr->perf_event_ctxp;
1452 
1453 	perf_ctx_adjust_freq(&cpuctx->ctx);
1454 	if (ctx)
1455 		perf_ctx_adjust_freq(ctx);
1456 
1457 	perf_event_cpu_sched_out(cpuctx);
1458 	if (ctx)
1459 		__perf_event_task_sched_out(ctx);
1460 
1461 	rotate_ctx(&cpuctx->ctx);
1462 	if (ctx)
1463 		rotate_ctx(ctx);
1464 
1465 	perf_event_cpu_sched_in(cpuctx, cpu);
1466 	if (ctx)
1467 		perf_event_task_sched_in(curr, cpu);
1468 }
1469 
1470 /*
1471  * Enable all of a task's events that have been marked enable-on-exec.
1472  * This expects task == current.
1473  */
perf_event_enable_on_exec(struct task_struct * task)1474 static void perf_event_enable_on_exec(struct task_struct *task)
1475 {
1476 	struct perf_event_context *ctx;
1477 	struct perf_event *event;
1478 	unsigned long flags;
1479 	int enabled = 0;
1480 
1481 	local_irq_save(flags);
1482 	ctx = task->perf_event_ctxp;
1483 	if (!ctx || !ctx->nr_events)
1484 		goto out;
1485 
1486 	__perf_event_task_sched_out(ctx);
1487 
1488 	spin_lock(&ctx->lock);
1489 
1490 	list_for_each_entry(event, &ctx->group_list, group_entry) {
1491 		if (!event->attr.enable_on_exec)
1492 			continue;
1493 		event->attr.enable_on_exec = 0;
1494 		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1495 			continue;
1496 		__perf_event_mark_enabled(event, ctx);
1497 		enabled = 1;
1498 	}
1499 
1500 	/*
1501 	 * Unclone this context if we enabled any event.
1502 	 */
1503 	if (enabled)
1504 		unclone_ctx(ctx);
1505 
1506 	spin_unlock(&ctx->lock);
1507 
1508 	perf_event_task_sched_in(task, smp_processor_id());
1509  out:
1510 	local_irq_restore(flags);
1511 }
1512 
1513 /*
1514  * Cross CPU call to read the hardware event
1515  */
__perf_event_read(void * info)1516 static void __perf_event_read(void *info)
1517 {
1518 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1519 	struct perf_event *event = info;
1520 	struct perf_event_context *ctx = event->ctx;
1521 	unsigned long flags;
1522 
1523 	/*
1524 	 * If this is a task context, we need to check whether it is
1525 	 * the current task context of this cpu.  If not it has been
1526 	 * scheduled out before the smp call arrived.  In that case
1527 	 * event->count would have been updated to a recent sample
1528 	 * when the event was scheduled out.
1529 	 */
1530 	if (ctx->task && cpuctx->task_ctx != ctx)
1531 		return;
1532 
1533 	local_irq_save(flags);
1534 	if (ctx->is_active)
1535 		update_context_time(ctx);
1536 	event->pmu->read(event);
1537 	update_event_times(event);
1538 	local_irq_restore(flags);
1539 }
1540 
perf_event_read(struct perf_event * event)1541 static u64 perf_event_read(struct perf_event *event)
1542 {
1543 	/*
1544 	 * If event is enabled and currently active on a CPU, update the
1545 	 * value in the event structure:
1546 	 */
1547 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1548 		smp_call_function_single(event->oncpu,
1549 					 __perf_event_read, event, 1);
1550 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1551 		update_event_times(event);
1552 	}
1553 
1554 	return atomic64_read(&event->count);
1555 }
1556 
1557 /*
1558  * Initialize the perf_event context in a task_struct:
1559  */
1560 static void
__perf_event_init_context(struct perf_event_context * ctx,struct task_struct * task)1561 __perf_event_init_context(struct perf_event_context *ctx,
1562 			    struct task_struct *task)
1563 {
1564 	memset(ctx, 0, sizeof(*ctx));
1565 	spin_lock_init(&ctx->lock);
1566 	mutex_init(&ctx->mutex);
1567 	INIT_LIST_HEAD(&ctx->group_list);
1568 	INIT_LIST_HEAD(&ctx->event_list);
1569 	atomic_set(&ctx->refcount, 1);
1570 	ctx->task = task;
1571 }
1572 
find_get_context(pid_t pid,int cpu)1573 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1574 {
1575 	struct perf_event_context *ctx;
1576 	struct perf_cpu_context *cpuctx;
1577 	struct task_struct *task;
1578 	unsigned long flags;
1579 	int err;
1580 
1581 	/*
1582 	 * If cpu is not a wildcard then this is a percpu event:
1583 	 */
1584 	if (cpu != -1) {
1585 		/* Must be root to operate on a CPU event: */
1586 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1587 			return ERR_PTR(-EACCES);
1588 
1589 		if (cpu < 0 || cpu >= nr_cpumask_bits)
1590 			return ERR_PTR(-EINVAL);
1591 
1592 		/*
1593 		 * We could be clever and allow to attach a event to an
1594 		 * offline CPU and activate it when the CPU comes up, but
1595 		 * that's for later.
1596 		 */
1597 		if (!cpu_isset(cpu, cpu_online_map))
1598 			return ERR_PTR(-ENODEV);
1599 
1600 		cpuctx = &per_cpu(perf_cpu_context, cpu);
1601 		ctx = &cpuctx->ctx;
1602 		get_ctx(ctx);
1603 
1604 		return ctx;
1605 	}
1606 
1607 	rcu_read_lock();
1608 	if (!pid)
1609 		task = current;
1610 	else
1611 		task = find_task_by_vpid(pid);
1612 	if (task)
1613 		get_task_struct(task);
1614 	rcu_read_unlock();
1615 
1616 	if (!task)
1617 		return ERR_PTR(-ESRCH);
1618 
1619 	/*
1620 	 * Can't attach events to a dying task.
1621 	 */
1622 	err = -ESRCH;
1623 	if (task->flags & PF_EXITING)
1624 		goto errout;
1625 
1626 	/* Reuse ptrace permission checks for now. */
1627 	err = -EACCES;
1628 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1629 		goto errout;
1630 
1631  retry:
1632 	ctx = perf_lock_task_context(task, &flags);
1633 	if (ctx) {
1634 		unclone_ctx(ctx);
1635 		spin_unlock_irqrestore(&ctx->lock, flags);
1636 	}
1637 
1638 	if (!ctx) {
1639 		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1640 		err = -ENOMEM;
1641 		if (!ctx)
1642 			goto errout;
1643 		__perf_event_init_context(ctx, task);
1644 		get_ctx(ctx);
1645 		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1646 			/*
1647 			 * We raced with some other task; use
1648 			 * the context they set.
1649 			 */
1650 			kfree(ctx);
1651 			goto retry;
1652 		}
1653 		get_task_struct(task);
1654 	}
1655 
1656 	put_task_struct(task);
1657 	return ctx;
1658 
1659  errout:
1660 	put_task_struct(task);
1661 	return ERR_PTR(err);
1662 }
1663 
free_event_rcu(struct rcu_head * head)1664 static void free_event_rcu(struct rcu_head *head)
1665 {
1666 	struct perf_event *event;
1667 
1668 	event = container_of(head, struct perf_event, rcu_head);
1669 	if (event->ns)
1670 		put_pid_ns(event->ns);
1671 	kfree(event);
1672 }
1673 
1674 static void perf_pending_sync(struct perf_event *event);
1675 
free_event(struct perf_event * event)1676 static void free_event(struct perf_event *event)
1677 {
1678 	perf_pending_sync(event);
1679 
1680 	if (!event->parent) {
1681 		atomic_dec(&nr_events);
1682 		if (event->attr.mmap)
1683 			atomic_dec(&nr_mmap_events);
1684 		if (event->attr.comm)
1685 			atomic_dec(&nr_comm_events);
1686 		if (event->attr.task)
1687 			atomic_dec(&nr_task_events);
1688 	}
1689 
1690 	if (event->output) {
1691 		fput(event->output->filp);
1692 		event->output = NULL;
1693 	}
1694 
1695 	if (event->destroy)
1696 		event->destroy(event);
1697 
1698 	put_ctx(event->ctx);
1699 	call_rcu(&event->rcu_head, free_event_rcu);
1700 }
1701 
1702 /*
1703  * Called when the last reference to the file is gone.
1704  */
perf_release(struct inode * inode,struct file * file)1705 static int perf_release(struct inode *inode, struct file *file)
1706 {
1707 	struct perf_event *event = file->private_data;
1708 	struct perf_event_context *ctx = event->ctx;
1709 
1710 	file->private_data = NULL;
1711 
1712 	WARN_ON_ONCE(ctx->parent_ctx);
1713 	mutex_lock(&ctx->mutex);
1714 	perf_event_remove_from_context(event);
1715 	mutex_unlock(&ctx->mutex);
1716 
1717 	mutex_lock(&event->owner->perf_event_mutex);
1718 	list_del_init(&event->owner_entry);
1719 	mutex_unlock(&event->owner->perf_event_mutex);
1720 	put_task_struct(event->owner);
1721 
1722 	free_event(event);
1723 
1724 	return 0;
1725 }
1726 
perf_event_read_size(struct perf_event * event)1727 static int perf_event_read_size(struct perf_event *event)
1728 {
1729 	int entry = sizeof(u64); /* value */
1730 	int size = 0;
1731 	int nr = 1;
1732 
1733 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1734 		size += sizeof(u64);
1735 
1736 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1737 		size += sizeof(u64);
1738 
1739 	if (event->attr.read_format & PERF_FORMAT_ID)
1740 		entry += sizeof(u64);
1741 
1742 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1743 		nr += event->group_leader->nr_siblings;
1744 		size += sizeof(u64);
1745 	}
1746 
1747 	size += entry * nr;
1748 
1749 	return size;
1750 }
1751 
perf_event_read_value(struct perf_event * event)1752 static u64 perf_event_read_value(struct perf_event *event)
1753 {
1754 	struct perf_event *child;
1755 	u64 total = 0;
1756 
1757 	total += perf_event_read(event);
1758 	list_for_each_entry(child, &event->child_list, child_list)
1759 		total += perf_event_read(child);
1760 
1761 	return total;
1762 }
1763 
perf_event_read_entry(struct perf_event * event,u64 read_format,char __user * buf)1764 static int perf_event_read_entry(struct perf_event *event,
1765 				   u64 read_format, char __user *buf)
1766 {
1767 	int n = 0, count = 0;
1768 	u64 values[2];
1769 
1770 	values[n++] = perf_event_read_value(event);
1771 	if (read_format & PERF_FORMAT_ID)
1772 		values[n++] = primary_event_id(event);
1773 
1774 	count = n * sizeof(u64);
1775 
1776 	if (copy_to_user(buf, values, count))
1777 		return -EFAULT;
1778 
1779 	return count;
1780 }
1781 
perf_event_read_group(struct perf_event * event,u64 read_format,char __user * buf)1782 static int perf_event_read_group(struct perf_event *event,
1783 				   u64 read_format, char __user *buf)
1784 {
1785 	struct perf_event *leader = event->group_leader, *sub;
1786 	int n = 0, size = 0, err = -EFAULT;
1787 	u64 values[3];
1788 
1789 	values[n++] = 1 + leader->nr_siblings;
1790 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1791 		values[n++] = leader->total_time_enabled +
1792 			atomic64_read(&leader->child_total_time_enabled);
1793 	}
1794 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1795 		values[n++] = leader->total_time_running +
1796 			atomic64_read(&leader->child_total_time_running);
1797 	}
1798 
1799 	size = n * sizeof(u64);
1800 
1801 	if (copy_to_user(buf, values, size))
1802 		return -EFAULT;
1803 
1804 	err = perf_event_read_entry(leader, read_format, buf + size);
1805 	if (err < 0)
1806 		return err;
1807 
1808 	size += err;
1809 
1810 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1811 		err = perf_event_read_entry(sub, read_format,
1812 				buf + size);
1813 		if (err < 0)
1814 			return err;
1815 
1816 		size += err;
1817 	}
1818 
1819 	return size;
1820 }
1821 
perf_event_read_one(struct perf_event * event,u64 read_format,char __user * buf)1822 static int perf_event_read_one(struct perf_event *event,
1823 				 u64 read_format, char __user *buf)
1824 {
1825 	u64 values[4];
1826 	int n = 0;
1827 
1828 	values[n++] = perf_event_read_value(event);
1829 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1830 		values[n++] = event->total_time_enabled +
1831 			atomic64_read(&event->child_total_time_enabled);
1832 	}
1833 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1834 		values[n++] = event->total_time_running +
1835 			atomic64_read(&event->child_total_time_running);
1836 	}
1837 	if (read_format & PERF_FORMAT_ID)
1838 		values[n++] = primary_event_id(event);
1839 
1840 	if (copy_to_user(buf, values, n * sizeof(u64)))
1841 		return -EFAULT;
1842 
1843 	return n * sizeof(u64);
1844 }
1845 
1846 /*
1847  * Read the performance event - simple non blocking version for now
1848  */
1849 static ssize_t
perf_read_hw(struct perf_event * event,char __user * buf,size_t count)1850 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1851 {
1852 	u64 read_format = event->attr.read_format;
1853 	int ret;
1854 
1855 	/*
1856 	 * Return end-of-file for a read on a event that is in
1857 	 * error state (i.e. because it was pinned but it couldn't be
1858 	 * scheduled on to the CPU at some point).
1859 	 */
1860 	if (event->state == PERF_EVENT_STATE_ERROR)
1861 		return 0;
1862 
1863 	if (count < perf_event_read_size(event))
1864 		return -ENOSPC;
1865 
1866 	WARN_ON_ONCE(event->ctx->parent_ctx);
1867 	mutex_lock(&event->child_mutex);
1868 	if (read_format & PERF_FORMAT_GROUP)
1869 		ret = perf_event_read_group(event, read_format, buf);
1870 	else
1871 		ret = perf_event_read_one(event, read_format, buf);
1872 	mutex_unlock(&event->child_mutex);
1873 
1874 	return ret;
1875 }
1876 
1877 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1878 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1879 {
1880 	struct perf_event *event = file->private_data;
1881 
1882 	return perf_read_hw(event, buf, count);
1883 }
1884 
perf_poll(struct file * file,poll_table * wait)1885 static unsigned int perf_poll(struct file *file, poll_table *wait)
1886 {
1887 	struct perf_event *event = file->private_data;
1888 	struct perf_mmap_data *data;
1889 	unsigned int events = POLL_HUP;
1890 
1891 	rcu_read_lock();
1892 	data = rcu_dereference(event->data);
1893 	if (data)
1894 		events = atomic_xchg(&data->poll, 0);
1895 	rcu_read_unlock();
1896 
1897 	poll_wait(file, &event->waitq, wait);
1898 
1899 	return events;
1900 }
1901 
perf_event_reset(struct perf_event * event)1902 static void perf_event_reset(struct perf_event *event)
1903 {
1904 	(void)perf_event_read(event);
1905 	atomic64_set(&event->count, 0);
1906 	perf_event_update_userpage(event);
1907 }
1908 
1909 /*
1910  * Holding the top-level event's child_mutex means that any
1911  * descendant process that has inherited this event will block
1912  * in sync_child_event if it goes to exit, thus satisfying the
1913  * task existence requirements of perf_event_enable/disable.
1914  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))1915 static void perf_event_for_each_child(struct perf_event *event,
1916 					void (*func)(struct perf_event *))
1917 {
1918 	struct perf_event *child;
1919 
1920 	WARN_ON_ONCE(event->ctx->parent_ctx);
1921 	mutex_lock(&event->child_mutex);
1922 	func(event);
1923 	list_for_each_entry(child, &event->child_list, child_list)
1924 		func(child);
1925 	mutex_unlock(&event->child_mutex);
1926 }
1927 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))1928 static void perf_event_for_each(struct perf_event *event,
1929 				  void (*func)(struct perf_event *))
1930 {
1931 	struct perf_event_context *ctx = event->ctx;
1932 	struct perf_event *sibling;
1933 
1934 	WARN_ON_ONCE(ctx->parent_ctx);
1935 	mutex_lock(&ctx->mutex);
1936 	event = event->group_leader;
1937 
1938 	perf_event_for_each_child(event, func);
1939 	func(event);
1940 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
1941 		perf_event_for_each_child(event, func);
1942 	mutex_unlock(&ctx->mutex);
1943 }
1944 
perf_event_period(struct perf_event * event,u64 __user * arg)1945 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1946 {
1947 	struct perf_event_context *ctx = event->ctx;
1948 	unsigned long size;
1949 	int ret = 0;
1950 	u64 value;
1951 
1952 	if (!event->attr.sample_period)
1953 		return -EINVAL;
1954 
1955 	size = copy_from_user(&value, arg, sizeof(value));
1956 	if (size != sizeof(value))
1957 		return -EFAULT;
1958 
1959 	if (!value)
1960 		return -EINVAL;
1961 
1962 	spin_lock_irq(&ctx->lock);
1963 	if (event->attr.freq) {
1964 		if (value > sysctl_perf_event_sample_rate) {
1965 			ret = -EINVAL;
1966 			goto unlock;
1967 		}
1968 
1969 		event->attr.sample_freq = value;
1970 	} else {
1971 		event->attr.sample_period = value;
1972 		event->hw.sample_period = value;
1973 	}
1974 unlock:
1975 	spin_unlock_irq(&ctx->lock);
1976 
1977 	return ret;
1978 }
1979 
1980 int perf_event_set_output(struct perf_event *event, int output_fd);
1981 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1982 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1983 {
1984 	struct perf_event *event = file->private_data;
1985 	void (*func)(struct perf_event *);
1986 	u32 flags = arg;
1987 
1988 	switch (cmd) {
1989 	case PERF_EVENT_IOC_ENABLE:
1990 		func = perf_event_enable;
1991 		break;
1992 	case PERF_EVENT_IOC_DISABLE:
1993 		func = perf_event_disable;
1994 		break;
1995 	case PERF_EVENT_IOC_RESET:
1996 		func = perf_event_reset;
1997 		break;
1998 
1999 	case PERF_EVENT_IOC_REFRESH:
2000 		return perf_event_refresh(event, arg);
2001 
2002 	case PERF_EVENT_IOC_PERIOD:
2003 		return perf_event_period(event, (u64 __user *)arg);
2004 
2005 	case PERF_EVENT_IOC_SET_OUTPUT:
2006 		return perf_event_set_output(event, arg);
2007 
2008 	default:
2009 		return -ENOTTY;
2010 	}
2011 
2012 	if (flags & PERF_IOC_FLAG_GROUP)
2013 		perf_event_for_each(event, func);
2014 	else
2015 		perf_event_for_each_child(event, func);
2016 
2017 	return 0;
2018 }
2019 
perf_event_task_enable(void)2020 int perf_event_task_enable(void)
2021 {
2022 	struct perf_event *event;
2023 
2024 	mutex_lock(&current->perf_event_mutex);
2025 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
2026 		perf_event_for_each_child(event, perf_event_enable);
2027 	mutex_unlock(&current->perf_event_mutex);
2028 
2029 	return 0;
2030 }
2031 
perf_event_task_disable(void)2032 int perf_event_task_disable(void)
2033 {
2034 	struct perf_event *event;
2035 
2036 	mutex_lock(&current->perf_event_mutex);
2037 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
2038 		perf_event_for_each_child(event, perf_event_disable);
2039 	mutex_unlock(&current->perf_event_mutex);
2040 
2041 	return 0;
2042 }
2043 
2044 #ifndef PERF_EVENT_INDEX_OFFSET
2045 # define PERF_EVENT_INDEX_OFFSET 0
2046 #endif
2047 
perf_event_index(struct perf_event * event)2048 static int perf_event_index(struct perf_event *event)
2049 {
2050 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2051 		return 0;
2052 
2053 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2054 }
2055 
2056 /*
2057  * Callers need to ensure there can be no nesting of this function, otherwise
2058  * the seqlock logic goes bad. We can not serialize this because the arch
2059  * code calls this from NMI context.
2060  */
perf_event_update_userpage(struct perf_event * event)2061 void perf_event_update_userpage(struct perf_event *event)
2062 {
2063 	struct perf_event_mmap_page *userpg;
2064 	struct perf_mmap_data *data;
2065 
2066 	rcu_read_lock();
2067 	data = rcu_dereference(event->data);
2068 	if (!data)
2069 		goto unlock;
2070 
2071 	userpg = data->user_page;
2072 
2073 	/*
2074 	 * Disable preemption so as to not let the corresponding user-space
2075 	 * spin too long if we get preempted.
2076 	 */
2077 	preempt_disable();
2078 	++userpg->lock;
2079 	barrier();
2080 	userpg->index = perf_event_index(event);
2081 	userpg->offset = atomic64_read(&event->count);
2082 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2083 		userpg->offset -= atomic64_read(&event->hw.prev_count);
2084 
2085 	userpg->time_enabled = event->total_time_enabled +
2086 			atomic64_read(&event->child_total_time_enabled);
2087 
2088 	userpg->time_running = event->total_time_running +
2089 			atomic64_read(&event->child_total_time_running);
2090 
2091 	barrier();
2092 	++userpg->lock;
2093 	preempt_enable();
2094 unlock:
2095 	rcu_read_unlock();
2096 }
2097 
perf_data_size(struct perf_mmap_data * data)2098 static unsigned long perf_data_size(struct perf_mmap_data *data)
2099 {
2100 	return data->nr_pages << (PAGE_SHIFT + data->data_order);
2101 }
2102 
2103 #ifndef CONFIG_PERF_USE_VMALLOC
2104 
2105 /*
2106  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2107  */
2108 
2109 static struct page *
perf_mmap_to_page(struct perf_mmap_data * data,unsigned long pgoff)2110 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2111 {
2112 	if (pgoff > data->nr_pages)
2113 		return NULL;
2114 
2115 	if (pgoff == 0)
2116 		return virt_to_page(data->user_page);
2117 
2118 	return virt_to_page(data->data_pages[pgoff - 1]);
2119 }
2120 
2121 static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event * event,int nr_pages)2122 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2123 {
2124 	struct perf_mmap_data *data;
2125 	unsigned long size;
2126 	int i;
2127 
2128 	WARN_ON(atomic_read(&event->mmap_count));
2129 
2130 	size = sizeof(struct perf_mmap_data);
2131 	size += nr_pages * sizeof(void *);
2132 
2133 	data = kzalloc(size, GFP_KERNEL);
2134 	if (!data)
2135 		goto fail;
2136 
2137 	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2138 	if (!data->user_page)
2139 		goto fail_user_page;
2140 
2141 	for (i = 0; i < nr_pages; i++) {
2142 		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2143 		if (!data->data_pages[i])
2144 			goto fail_data_pages;
2145 	}
2146 
2147 	data->data_order = 0;
2148 	data->nr_pages = nr_pages;
2149 
2150 	return data;
2151 
2152 fail_data_pages:
2153 	for (i--; i >= 0; i--)
2154 		free_page((unsigned long)data->data_pages[i]);
2155 
2156 	free_page((unsigned long)data->user_page);
2157 
2158 fail_user_page:
2159 	kfree(data);
2160 
2161 fail:
2162 	return NULL;
2163 }
2164 
perf_mmap_free_page(unsigned long addr)2165 static void perf_mmap_free_page(unsigned long addr)
2166 {
2167 	struct page *page = virt_to_page((void *)addr);
2168 
2169 	page->mapping = NULL;
2170 	__free_page(page);
2171 }
2172 
perf_mmap_data_free(struct perf_mmap_data * data)2173 static void perf_mmap_data_free(struct perf_mmap_data *data)
2174 {
2175 	int i;
2176 
2177 	perf_mmap_free_page((unsigned long)data->user_page);
2178 	for (i = 0; i < data->nr_pages; i++)
2179 		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2180 	kfree(data);
2181 }
2182 
2183 #else
2184 
2185 /*
2186  * Back perf_mmap() with vmalloc memory.
2187  *
2188  * Required for architectures that have d-cache aliasing issues.
2189  */
2190 
2191 static struct page *
perf_mmap_to_page(struct perf_mmap_data * data,unsigned long pgoff)2192 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2193 {
2194 	if (pgoff > (1UL << data->data_order))
2195 		return NULL;
2196 
2197 	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2198 }
2199 
perf_mmap_unmark_page(void * addr)2200 static void perf_mmap_unmark_page(void *addr)
2201 {
2202 	struct page *page = vmalloc_to_page(addr);
2203 
2204 	page->mapping = NULL;
2205 }
2206 
perf_mmap_data_free_work(struct work_struct * work)2207 static void perf_mmap_data_free_work(struct work_struct *work)
2208 {
2209 	struct perf_mmap_data *data;
2210 	void *base;
2211 	int i, nr;
2212 
2213 	data = container_of(work, struct perf_mmap_data, work);
2214 	nr = 1 << data->data_order;
2215 
2216 	base = data->user_page;
2217 	for (i = 0; i < nr + 1; i++)
2218 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2219 
2220 	vfree(base);
2221 	kfree(data);
2222 }
2223 
perf_mmap_data_free(struct perf_mmap_data * data)2224 static void perf_mmap_data_free(struct perf_mmap_data *data)
2225 {
2226 	schedule_work(&data->work);
2227 }
2228 
2229 static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event * event,int nr_pages)2230 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2231 {
2232 	struct perf_mmap_data *data;
2233 	unsigned long size;
2234 	void *all_buf;
2235 
2236 	WARN_ON(atomic_read(&event->mmap_count));
2237 
2238 	size = sizeof(struct perf_mmap_data);
2239 	size += sizeof(void *);
2240 
2241 	data = kzalloc(size, GFP_KERNEL);
2242 	if (!data)
2243 		goto fail;
2244 
2245 	INIT_WORK(&data->work, perf_mmap_data_free_work);
2246 
2247 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2248 	if (!all_buf)
2249 		goto fail_all_buf;
2250 
2251 	data->user_page = all_buf;
2252 	data->data_pages[0] = all_buf + PAGE_SIZE;
2253 	data->data_order = ilog2(nr_pages);
2254 	data->nr_pages = 1;
2255 
2256 	return data;
2257 
2258 fail_all_buf:
2259 	kfree(data);
2260 
2261 fail:
2262 	return NULL;
2263 }
2264 
2265 #endif
2266 
perf_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2267 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2268 {
2269 	struct perf_event *event = vma->vm_file->private_data;
2270 	struct perf_mmap_data *data;
2271 	int ret = VM_FAULT_SIGBUS;
2272 
2273 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
2274 		if (vmf->pgoff == 0)
2275 			ret = 0;
2276 		return ret;
2277 	}
2278 
2279 	rcu_read_lock();
2280 	data = rcu_dereference(event->data);
2281 	if (!data)
2282 		goto unlock;
2283 
2284 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2285 		goto unlock;
2286 
2287 	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2288 	if (!vmf->page)
2289 		goto unlock;
2290 
2291 	get_page(vmf->page);
2292 	vmf->page->mapping = vma->vm_file->f_mapping;
2293 	vmf->page->index   = vmf->pgoff;
2294 
2295 	ret = 0;
2296 unlock:
2297 	rcu_read_unlock();
2298 
2299 	return ret;
2300 }
2301 
2302 static void
perf_mmap_data_init(struct perf_event * event,struct perf_mmap_data * data)2303 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2304 {
2305 	long max_size = perf_data_size(data);
2306 
2307 	atomic_set(&data->lock, -1);
2308 
2309 	if (event->attr.watermark) {
2310 		data->watermark = min_t(long, max_size,
2311 					event->attr.wakeup_watermark);
2312 	}
2313 
2314 	if (!data->watermark)
2315 		data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2316 
2317 
2318 	rcu_assign_pointer(event->data, data);
2319 }
2320 
perf_mmap_data_free_rcu(struct rcu_head * rcu_head)2321 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2322 {
2323 	struct perf_mmap_data *data;
2324 
2325 	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2326 	perf_mmap_data_free(data);
2327 }
2328 
perf_mmap_data_release(struct perf_event * event)2329 static void perf_mmap_data_release(struct perf_event *event)
2330 {
2331 	struct perf_mmap_data *data = event->data;
2332 
2333 	WARN_ON(atomic_read(&event->mmap_count));
2334 
2335 	rcu_assign_pointer(event->data, NULL);
2336 	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2337 }
2338 
perf_mmap_open(struct vm_area_struct * vma)2339 static void perf_mmap_open(struct vm_area_struct *vma)
2340 {
2341 	struct perf_event *event = vma->vm_file->private_data;
2342 
2343 	atomic_inc(&event->mmap_count);
2344 }
2345 
perf_mmap_close(struct vm_area_struct * vma)2346 static void perf_mmap_close(struct vm_area_struct *vma)
2347 {
2348 	struct perf_event *event = vma->vm_file->private_data;
2349 
2350 	WARN_ON_ONCE(event->ctx->parent_ctx);
2351 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2352 		unsigned long size = perf_data_size(event->data);
2353 		struct user_struct *user = current_user();
2354 
2355 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2356 		vma->vm_mm->locked_vm -= event->data->nr_locked;
2357 		perf_mmap_data_release(event);
2358 		mutex_unlock(&event->mmap_mutex);
2359 	}
2360 }
2361 
2362 static const struct vm_operations_struct perf_mmap_vmops = {
2363 	.open		= perf_mmap_open,
2364 	.close		= perf_mmap_close,
2365 	.fault		= perf_mmap_fault,
2366 	.page_mkwrite	= perf_mmap_fault,
2367 };
2368 
perf_mmap(struct file * file,struct vm_area_struct * vma)2369 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2370 {
2371 	struct perf_event *event = file->private_data;
2372 	unsigned long user_locked, user_lock_limit;
2373 	struct user_struct *user = current_user();
2374 	unsigned long locked, lock_limit;
2375 	struct perf_mmap_data *data;
2376 	unsigned long vma_size;
2377 	unsigned long nr_pages;
2378 	long user_extra, extra;
2379 	int ret = 0;
2380 
2381 	if (!(vma->vm_flags & VM_SHARED))
2382 		return -EINVAL;
2383 
2384 	vma_size = vma->vm_end - vma->vm_start;
2385 	nr_pages = (vma_size / PAGE_SIZE) - 1;
2386 
2387 	/*
2388 	 * If we have data pages ensure they're a power-of-two number, so we
2389 	 * can do bitmasks instead of modulo.
2390 	 */
2391 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2392 		return -EINVAL;
2393 
2394 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2395 		return -EINVAL;
2396 
2397 	if (vma->vm_pgoff != 0)
2398 		return -EINVAL;
2399 
2400 	WARN_ON_ONCE(event->ctx->parent_ctx);
2401 	mutex_lock(&event->mmap_mutex);
2402 	if (event->output) {
2403 		ret = -EINVAL;
2404 		goto unlock;
2405 	}
2406 
2407 	if (atomic_inc_not_zero(&event->mmap_count)) {
2408 		if (nr_pages != event->data->nr_pages)
2409 			ret = -EINVAL;
2410 		goto unlock;
2411 	}
2412 
2413 	user_extra = nr_pages + 1;
2414 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2415 
2416 	/*
2417 	 * Increase the limit linearly with more CPUs:
2418 	 */
2419 	user_lock_limit *= num_online_cpus();
2420 
2421 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2422 
2423 	extra = 0;
2424 	if (user_locked > user_lock_limit)
2425 		extra = user_locked - user_lock_limit;
2426 
2427 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2428 	lock_limit >>= PAGE_SHIFT;
2429 	locked = vma->vm_mm->locked_vm + extra;
2430 
2431 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2432 		!capable(CAP_IPC_LOCK)) {
2433 		ret = -EPERM;
2434 		goto unlock;
2435 	}
2436 
2437 	WARN_ON(event->data);
2438 
2439 	data = perf_mmap_data_alloc(event, nr_pages);
2440 	ret = -ENOMEM;
2441 	if (!data)
2442 		goto unlock;
2443 
2444 	ret = 0;
2445 	perf_mmap_data_init(event, data);
2446 
2447 	atomic_set(&event->mmap_count, 1);
2448 	atomic_long_add(user_extra, &user->locked_vm);
2449 	vma->vm_mm->locked_vm += extra;
2450 	event->data->nr_locked = extra;
2451 	if (vma->vm_flags & VM_WRITE)
2452 		event->data->writable = 1;
2453 
2454 unlock:
2455 	mutex_unlock(&event->mmap_mutex);
2456 
2457 	vma->vm_flags |= VM_RESERVED;
2458 	vma->vm_ops = &perf_mmap_vmops;
2459 
2460 	return ret;
2461 }
2462 
perf_fasync(int fd,struct file * filp,int on)2463 static int perf_fasync(int fd, struct file *filp, int on)
2464 {
2465 	struct inode *inode = filp->f_path.dentry->d_inode;
2466 	struct perf_event *event = filp->private_data;
2467 	int retval;
2468 
2469 	mutex_lock(&inode->i_mutex);
2470 	retval = fasync_helper(fd, filp, on, &event->fasync);
2471 	mutex_unlock(&inode->i_mutex);
2472 
2473 	if (retval < 0)
2474 		return retval;
2475 
2476 	return 0;
2477 }
2478 
2479 static const struct file_operations perf_fops = {
2480 	.release		= perf_release,
2481 	.read			= perf_read,
2482 	.poll			= perf_poll,
2483 	.unlocked_ioctl		= perf_ioctl,
2484 	.compat_ioctl		= perf_ioctl,
2485 	.mmap			= perf_mmap,
2486 	.fasync			= perf_fasync,
2487 };
2488 
2489 /*
2490  * Perf event wakeup
2491  *
2492  * If there's data, ensure we set the poll() state and publish everything
2493  * to user-space before waking everybody up.
2494  */
2495 
perf_event_wakeup(struct perf_event * event)2496 void perf_event_wakeup(struct perf_event *event)
2497 {
2498 	wake_up_all(&event->waitq);
2499 
2500 	if (event->pending_kill) {
2501 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2502 		event->pending_kill = 0;
2503 	}
2504 }
2505 
2506 /*
2507  * Pending wakeups
2508  *
2509  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2510  *
2511  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2512  * single linked list and use cmpxchg() to add entries lockless.
2513  */
2514 
perf_pending_event(struct perf_pending_entry * entry)2515 static void perf_pending_event(struct perf_pending_entry *entry)
2516 {
2517 	struct perf_event *event = container_of(entry,
2518 			struct perf_event, pending);
2519 
2520 	if (event->pending_disable) {
2521 		event->pending_disable = 0;
2522 		__perf_event_disable(event);
2523 	}
2524 
2525 	if (event->pending_wakeup) {
2526 		event->pending_wakeup = 0;
2527 		perf_event_wakeup(event);
2528 	}
2529 }
2530 
2531 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2532 
2533 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2534 	PENDING_TAIL,
2535 };
2536 
perf_pending_queue(struct perf_pending_entry * entry,void (* func)(struct perf_pending_entry *))2537 static void perf_pending_queue(struct perf_pending_entry *entry,
2538 			       void (*func)(struct perf_pending_entry *))
2539 {
2540 	struct perf_pending_entry **head;
2541 
2542 	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2543 		return;
2544 
2545 	entry->func = func;
2546 
2547 	head = &get_cpu_var(perf_pending_head);
2548 
2549 	do {
2550 		entry->next = *head;
2551 	} while (cmpxchg(head, entry->next, entry) != entry->next);
2552 
2553 	set_perf_event_pending();
2554 
2555 	put_cpu_var(perf_pending_head);
2556 }
2557 
__perf_pending_run(void)2558 static int __perf_pending_run(void)
2559 {
2560 	struct perf_pending_entry *list;
2561 	int nr = 0;
2562 
2563 	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2564 	while (list != PENDING_TAIL) {
2565 		void (*func)(struct perf_pending_entry *);
2566 		struct perf_pending_entry *entry = list;
2567 
2568 		list = list->next;
2569 
2570 		func = entry->func;
2571 		entry->next = NULL;
2572 		/*
2573 		 * Ensure we observe the unqueue before we issue the wakeup,
2574 		 * so that we won't be waiting forever.
2575 		 * -- see perf_not_pending().
2576 		 */
2577 		smp_wmb();
2578 
2579 		func(entry);
2580 		nr++;
2581 	}
2582 
2583 	return nr;
2584 }
2585 
perf_not_pending(struct perf_event * event)2586 static inline int perf_not_pending(struct perf_event *event)
2587 {
2588 	/*
2589 	 * If we flush on whatever cpu we run, there is a chance we don't
2590 	 * need to wait.
2591 	 */
2592 	get_cpu();
2593 	__perf_pending_run();
2594 	put_cpu();
2595 
2596 	/*
2597 	 * Ensure we see the proper queue state before going to sleep
2598 	 * so that we do not miss the wakeup. -- see perf_pending_handle()
2599 	 */
2600 	smp_rmb();
2601 	return event->pending.next == NULL;
2602 }
2603 
perf_pending_sync(struct perf_event * event)2604 static void perf_pending_sync(struct perf_event *event)
2605 {
2606 	wait_event(event->waitq, perf_not_pending(event));
2607 }
2608 
perf_event_do_pending(void)2609 void perf_event_do_pending(void)
2610 {
2611 	__perf_pending_run();
2612 }
2613 
2614 /*
2615  * Callchain support -- arch specific
2616  */
2617 
perf_callchain(struct pt_regs * regs)2618 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2619 {
2620 	return NULL;
2621 }
2622 
2623 /*
2624  * Output
2625  */
perf_output_space(struct perf_mmap_data * data,unsigned long tail,unsigned long offset,unsigned long head)2626 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2627 			      unsigned long offset, unsigned long head)
2628 {
2629 	unsigned long mask;
2630 
2631 	if (!data->writable)
2632 		return true;
2633 
2634 	mask = perf_data_size(data) - 1;
2635 
2636 	offset = (offset - tail) & mask;
2637 	head   = (head   - tail) & mask;
2638 
2639 	if ((int)(head - offset) < 0)
2640 		return false;
2641 
2642 	return true;
2643 }
2644 
perf_output_wakeup(struct perf_output_handle * handle)2645 static void perf_output_wakeup(struct perf_output_handle *handle)
2646 {
2647 	atomic_set(&handle->data->poll, POLL_IN);
2648 
2649 	if (handle->nmi) {
2650 		handle->event->pending_wakeup = 1;
2651 		perf_pending_queue(&handle->event->pending,
2652 				   perf_pending_event);
2653 	} else
2654 		perf_event_wakeup(handle->event);
2655 }
2656 
2657 /*
2658  * Curious locking construct.
2659  *
2660  * We need to ensure a later event_id doesn't publish a head when a former
2661  * event_id isn't done writing. However since we need to deal with NMIs we
2662  * cannot fully serialize things.
2663  *
2664  * What we do is serialize between CPUs so we only have to deal with NMI
2665  * nesting on a single CPU.
2666  *
2667  * We only publish the head (and generate a wakeup) when the outer-most
2668  * event_id completes.
2669  */
perf_output_lock(struct perf_output_handle * handle)2670 static void perf_output_lock(struct perf_output_handle *handle)
2671 {
2672 	struct perf_mmap_data *data = handle->data;
2673 	int cpu;
2674 
2675 	handle->locked = 0;
2676 
2677 	local_irq_save(handle->flags);
2678 	cpu = smp_processor_id();
2679 
2680 	if (in_nmi() && atomic_read(&data->lock) == cpu)
2681 		return;
2682 
2683 	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2684 		cpu_relax();
2685 
2686 	handle->locked = 1;
2687 }
2688 
perf_output_unlock(struct perf_output_handle * handle)2689 static void perf_output_unlock(struct perf_output_handle *handle)
2690 {
2691 	struct perf_mmap_data *data = handle->data;
2692 	unsigned long head;
2693 	int cpu;
2694 
2695 	data->done_head = data->head;
2696 
2697 	if (!handle->locked)
2698 		goto out;
2699 
2700 again:
2701 	/*
2702 	 * The xchg implies a full barrier that ensures all writes are done
2703 	 * before we publish the new head, matched by a rmb() in userspace when
2704 	 * reading this position.
2705 	 */
2706 	while ((head = atomic_long_xchg(&data->done_head, 0)))
2707 		data->user_page->data_head = head;
2708 
2709 	/*
2710 	 * NMI can happen here, which means we can miss a done_head update.
2711 	 */
2712 
2713 	cpu = atomic_xchg(&data->lock, -1);
2714 	WARN_ON_ONCE(cpu != smp_processor_id());
2715 
2716 	/*
2717 	 * Therefore we have to validate we did not indeed do so.
2718 	 */
2719 	if (unlikely(atomic_long_read(&data->done_head))) {
2720 		/*
2721 		 * Since we had it locked, we can lock it again.
2722 		 */
2723 		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2724 			cpu_relax();
2725 
2726 		goto again;
2727 	}
2728 
2729 	if (atomic_xchg(&data->wakeup, 0))
2730 		perf_output_wakeup(handle);
2731 out:
2732 	local_irq_restore(handle->flags);
2733 }
2734 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)2735 void perf_output_copy(struct perf_output_handle *handle,
2736 		      const void *buf, unsigned int len)
2737 {
2738 	unsigned int pages_mask;
2739 	unsigned long offset;
2740 	unsigned int size;
2741 	void **pages;
2742 
2743 	offset		= handle->offset;
2744 	pages_mask	= handle->data->nr_pages - 1;
2745 	pages		= handle->data->data_pages;
2746 
2747 	do {
2748 		unsigned long page_offset;
2749 		unsigned long page_size;
2750 		int nr;
2751 
2752 		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2753 		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2754 		page_offset = offset & (page_size - 1);
2755 		size	    = min_t(unsigned int, page_size - page_offset, len);
2756 
2757 		memcpy(pages[nr] + page_offset, buf, size);
2758 
2759 		len	    -= size;
2760 		buf	    += size;
2761 		offset	    += size;
2762 	} while (len);
2763 
2764 	handle->offset = offset;
2765 
2766 	/*
2767 	 * Check we didn't copy past our reservation window, taking the
2768 	 * possible unsigned int wrap into account.
2769 	 */
2770 	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2771 }
2772 
perf_output_begin(struct perf_output_handle * handle,struct perf_event * event,unsigned int size,int nmi,int sample)2773 int perf_output_begin(struct perf_output_handle *handle,
2774 		      struct perf_event *event, unsigned int size,
2775 		      int nmi, int sample)
2776 {
2777 	struct perf_event *output_event;
2778 	struct perf_mmap_data *data;
2779 	unsigned long tail, offset, head;
2780 	int have_lost;
2781 	struct {
2782 		struct perf_event_header header;
2783 		u64			 id;
2784 		u64			 lost;
2785 	} lost_event;
2786 
2787 	rcu_read_lock();
2788 	/*
2789 	 * For inherited events we send all the output towards the parent.
2790 	 */
2791 	if (event->parent)
2792 		event = event->parent;
2793 
2794 	output_event = rcu_dereference(event->output);
2795 	if (output_event)
2796 		event = output_event;
2797 
2798 	data = rcu_dereference(event->data);
2799 	if (!data)
2800 		goto out;
2801 
2802 	handle->data	= data;
2803 	handle->event	= event;
2804 	handle->nmi	= nmi;
2805 	handle->sample	= sample;
2806 
2807 	if (!data->nr_pages)
2808 		goto fail;
2809 
2810 	have_lost = atomic_read(&data->lost);
2811 	if (have_lost)
2812 		size += sizeof(lost_event);
2813 
2814 	perf_output_lock(handle);
2815 
2816 	do {
2817 		/*
2818 		 * Userspace could choose to issue a mb() before updating the
2819 		 * tail pointer. So that all reads will be completed before the
2820 		 * write is issued.
2821 		 */
2822 		tail = ACCESS_ONCE(data->user_page->data_tail);
2823 		smp_rmb();
2824 		offset = head = atomic_long_read(&data->head);
2825 		head += size;
2826 		if (unlikely(!perf_output_space(data, tail, offset, head)))
2827 			goto fail;
2828 	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2829 
2830 	handle->offset	= offset;
2831 	handle->head	= head;
2832 
2833 	if (head - tail > data->watermark)
2834 		atomic_set(&data->wakeup, 1);
2835 
2836 	if (have_lost) {
2837 		lost_event.header.type = PERF_RECORD_LOST;
2838 		lost_event.header.misc = 0;
2839 		lost_event.header.size = sizeof(lost_event);
2840 		lost_event.id          = event->id;
2841 		lost_event.lost        = atomic_xchg(&data->lost, 0);
2842 
2843 		perf_output_put(handle, lost_event);
2844 	}
2845 
2846 	return 0;
2847 
2848 fail:
2849 	atomic_inc(&data->lost);
2850 	perf_output_unlock(handle);
2851 out:
2852 	rcu_read_unlock();
2853 
2854 	return -ENOSPC;
2855 }
2856 
perf_output_end(struct perf_output_handle * handle)2857 void perf_output_end(struct perf_output_handle *handle)
2858 {
2859 	struct perf_event *event = handle->event;
2860 	struct perf_mmap_data *data = handle->data;
2861 
2862 	int wakeup_events = event->attr.wakeup_events;
2863 
2864 	if (handle->sample && wakeup_events) {
2865 		int events = atomic_inc_return(&data->events);
2866 		if (events >= wakeup_events) {
2867 			atomic_sub(wakeup_events, &data->events);
2868 			atomic_set(&data->wakeup, 1);
2869 		}
2870 	}
2871 
2872 	perf_output_unlock(handle);
2873 	rcu_read_unlock();
2874 }
2875 
perf_event_pid(struct perf_event * event,struct task_struct * p)2876 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2877 {
2878 	/*
2879 	 * only top level events have the pid namespace they were created in
2880 	 */
2881 	if (event->parent)
2882 		event = event->parent;
2883 
2884 	return task_tgid_nr_ns(p, event->ns);
2885 }
2886 
perf_event_tid(struct perf_event * event,struct task_struct * p)2887 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2888 {
2889 	/*
2890 	 * only top level events have the pid namespace they were created in
2891 	 */
2892 	if (event->parent)
2893 		event = event->parent;
2894 
2895 	return task_pid_nr_ns(p, event->ns);
2896 }
2897 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event)2898 static void perf_output_read_one(struct perf_output_handle *handle,
2899 				 struct perf_event *event)
2900 {
2901 	u64 read_format = event->attr.read_format;
2902 	u64 values[4];
2903 	int n = 0;
2904 
2905 	values[n++] = atomic64_read(&event->count);
2906 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2907 		values[n++] = event->total_time_enabled +
2908 			atomic64_read(&event->child_total_time_enabled);
2909 	}
2910 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2911 		values[n++] = event->total_time_running +
2912 			atomic64_read(&event->child_total_time_running);
2913 	}
2914 	if (read_format & PERF_FORMAT_ID)
2915 		values[n++] = primary_event_id(event);
2916 
2917 	perf_output_copy(handle, values, n * sizeof(u64));
2918 }
2919 
2920 /*
2921  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2922  */
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event)2923 static void perf_output_read_group(struct perf_output_handle *handle,
2924 			    struct perf_event *event)
2925 {
2926 	struct perf_event *leader = event->group_leader, *sub;
2927 	u64 read_format = event->attr.read_format;
2928 	u64 values[5];
2929 	int n = 0;
2930 
2931 	values[n++] = 1 + leader->nr_siblings;
2932 
2933 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2934 		values[n++] = leader->total_time_enabled;
2935 
2936 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2937 		values[n++] = leader->total_time_running;
2938 
2939 	if (leader != event)
2940 		leader->pmu->read(leader);
2941 
2942 	values[n++] = atomic64_read(&leader->count);
2943 	if (read_format & PERF_FORMAT_ID)
2944 		values[n++] = primary_event_id(leader);
2945 
2946 	perf_output_copy(handle, values, n * sizeof(u64));
2947 
2948 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2949 		n = 0;
2950 
2951 		if (sub != event)
2952 			sub->pmu->read(sub);
2953 
2954 		values[n++] = atomic64_read(&sub->count);
2955 		if (read_format & PERF_FORMAT_ID)
2956 			values[n++] = primary_event_id(sub);
2957 
2958 		perf_output_copy(handle, values, n * sizeof(u64));
2959 	}
2960 }
2961 
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)2962 static void perf_output_read(struct perf_output_handle *handle,
2963 			     struct perf_event *event)
2964 {
2965 	if (event->attr.read_format & PERF_FORMAT_GROUP)
2966 		perf_output_read_group(handle, event);
2967 	else
2968 		perf_output_read_one(handle, event);
2969 }
2970 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)2971 void perf_output_sample(struct perf_output_handle *handle,
2972 			struct perf_event_header *header,
2973 			struct perf_sample_data *data,
2974 			struct perf_event *event)
2975 {
2976 	u64 sample_type = data->type;
2977 
2978 	perf_output_put(handle, *header);
2979 
2980 	if (sample_type & PERF_SAMPLE_IP)
2981 		perf_output_put(handle, data->ip);
2982 
2983 	if (sample_type & PERF_SAMPLE_TID)
2984 		perf_output_put(handle, data->tid_entry);
2985 
2986 	if (sample_type & PERF_SAMPLE_TIME)
2987 		perf_output_put(handle, data->time);
2988 
2989 	if (sample_type & PERF_SAMPLE_ADDR)
2990 		perf_output_put(handle, data->addr);
2991 
2992 	if (sample_type & PERF_SAMPLE_ID)
2993 		perf_output_put(handle, data->id);
2994 
2995 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2996 		perf_output_put(handle, data->stream_id);
2997 
2998 	if (sample_type & PERF_SAMPLE_CPU)
2999 		perf_output_put(handle, data->cpu_entry);
3000 
3001 	if (sample_type & PERF_SAMPLE_PERIOD)
3002 		perf_output_put(handle, data->period);
3003 
3004 	if (sample_type & PERF_SAMPLE_READ)
3005 		perf_output_read(handle, event);
3006 
3007 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3008 		if (data->callchain) {
3009 			int size = 1;
3010 
3011 			if (data->callchain)
3012 				size += data->callchain->nr;
3013 
3014 			size *= sizeof(u64);
3015 
3016 			perf_output_copy(handle, data->callchain, size);
3017 		} else {
3018 			u64 nr = 0;
3019 			perf_output_put(handle, nr);
3020 		}
3021 	}
3022 
3023 	if (sample_type & PERF_SAMPLE_RAW) {
3024 		if (data->raw) {
3025 			perf_output_put(handle, data->raw->size);
3026 			perf_output_copy(handle, data->raw->data,
3027 					 data->raw->size);
3028 		} else {
3029 			struct {
3030 				u32	size;
3031 				u32	data;
3032 			} raw = {
3033 				.size = sizeof(u32),
3034 				.data = 0,
3035 			};
3036 			perf_output_put(handle, raw);
3037 		}
3038 	}
3039 }
3040 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)3041 void perf_prepare_sample(struct perf_event_header *header,
3042 			 struct perf_sample_data *data,
3043 			 struct perf_event *event,
3044 			 struct pt_regs *regs)
3045 {
3046 	u64 sample_type = event->attr.sample_type;
3047 
3048 	data->type = sample_type;
3049 
3050 	header->type = PERF_RECORD_SAMPLE;
3051 	header->size = sizeof(*header);
3052 
3053 	header->misc = 0;
3054 	header->misc |= perf_misc_flags(regs);
3055 
3056 	if (sample_type & PERF_SAMPLE_IP) {
3057 		data->ip = perf_instruction_pointer(regs);
3058 
3059 		header->size += sizeof(data->ip);
3060 	}
3061 
3062 	if (sample_type & PERF_SAMPLE_TID) {
3063 		/* namespace issues */
3064 		data->tid_entry.pid = perf_event_pid(event, current);
3065 		data->tid_entry.tid = perf_event_tid(event, current);
3066 
3067 		header->size += sizeof(data->tid_entry);
3068 	}
3069 
3070 	if (sample_type & PERF_SAMPLE_TIME) {
3071 		data->time = perf_clock();
3072 
3073 		header->size += sizeof(data->time);
3074 	}
3075 
3076 	if (sample_type & PERF_SAMPLE_ADDR)
3077 		header->size += sizeof(data->addr);
3078 
3079 	if (sample_type & PERF_SAMPLE_ID) {
3080 		data->id = primary_event_id(event);
3081 
3082 		header->size += sizeof(data->id);
3083 	}
3084 
3085 	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3086 		data->stream_id = event->id;
3087 
3088 		header->size += sizeof(data->stream_id);
3089 	}
3090 
3091 	if (sample_type & PERF_SAMPLE_CPU) {
3092 		data->cpu_entry.cpu		= raw_smp_processor_id();
3093 		data->cpu_entry.reserved	= 0;
3094 
3095 		header->size += sizeof(data->cpu_entry);
3096 	}
3097 
3098 	if (sample_type & PERF_SAMPLE_PERIOD)
3099 		header->size += sizeof(data->period);
3100 
3101 	if (sample_type & PERF_SAMPLE_READ)
3102 		header->size += perf_event_read_size(event);
3103 
3104 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3105 		int size = 1;
3106 
3107 		data->callchain = perf_callchain(regs);
3108 
3109 		if (data->callchain)
3110 			size += data->callchain->nr;
3111 
3112 		header->size += size * sizeof(u64);
3113 	}
3114 
3115 	if (sample_type & PERF_SAMPLE_RAW) {
3116 		int size = sizeof(u32);
3117 
3118 		if (data->raw)
3119 			size += data->raw->size;
3120 		else
3121 			size += sizeof(u32);
3122 
3123 		WARN_ON_ONCE(size & (sizeof(u64)-1));
3124 		header->size += size;
3125 	}
3126 }
3127 
perf_event_output(struct perf_event * event,int nmi,struct perf_sample_data * data,struct pt_regs * regs)3128 static void perf_event_output(struct perf_event *event, int nmi,
3129 				struct perf_sample_data *data,
3130 				struct pt_regs *regs)
3131 {
3132 	struct perf_output_handle handle;
3133 	struct perf_event_header header;
3134 
3135 	perf_prepare_sample(&header, data, event, regs);
3136 
3137 	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3138 		return;
3139 
3140 	perf_output_sample(&handle, &header, data, event);
3141 
3142 	perf_output_end(&handle);
3143 }
3144 
3145 /*
3146  * read event_id
3147  */
3148 
3149 struct perf_read_event {
3150 	struct perf_event_header	header;
3151 
3152 	u32				pid;
3153 	u32				tid;
3154 };
3155 
3156 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)3157 perf_event_read_event(struct perf_event *event,
3158 			struct task_struct *task)
3159 {
3160 	struct perf_output_handle handle;
3161 	struct perf_read_event read_event = {
3162 		.header = {
3163 			.type = PERF_RECORD_READ,
3164 			.misc = 0,
3165 			.size = sizeof(read_event) + perf_event_read_size(event),
3166 		},
3167 		.pid = perf_event_pid(event, task),
3168 		.tid = perf_event_tid(event, task),
3169 	};
3170 	int ret;
3171 
3172 	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3173 	if (ret)
3174 		return;
3175 
3176 	perf_output_put(&handle, read_event);
3177 	perf_output_read(&handle, event);
3178 
3179 	perf_output_end(&handle);
3180 }
3181 
3182 /*
3183  * task tracking -- fork/exit
3184  *
3185  * enabled by: attr.comm | attr.mmap | attr.task
3186  */
3187 
3188 struct perf_task_event {
3189 	struct task_struct		*task;
3190 	struct perf_event_context	*task_ctx;
3191 
3192 	struct {
3193 		struct perf_event_header	header;
3194 
3195 		u32				pid;
3196 		u32				ppid;
3197 		u32				tid;
3198 		u32				ptid;
3199 		u64				time;
3200 	} event_id;
3201 };
3202 
perf_event_task_output(struct perf_event * event,struct perf_task_event * task_event)3203 static void perf_event_task_output(struct perf_event *event,
3204 				     struct perf_task_event *task_event)
3205 {
3206 	struct perf_output_handle handle;
3207 	int size;
3208 	struct task_struct *task = task_event->task;
3209 	int ret;
3210 
3211 	size  = task_event->event_id.header.size;
3212 	ret = perf_output_begin(&handle, event, size, 0, 0);
3213 
3214 	if (ret)
3215 		return;
3216 
3217 	task_event->event_id.pid = perf_event_pid(event, task);
3218 	task_event->event_id.ppid = perf_event_pid(event, current);
3219 
3220 	task_event->event_id.tid = perf_event_tid(event, task);
3221 	task_event->event_id.ptid = perf_event_tid(event, current);
3222 
3223 	task_event->event_id.time = perf_clock();
3224 
3225 	perf_output_put(&handle, task_event->event_id);
3226 
3227 	perf_output_end(&handle);
3228 }
3229 
perf_event_task_match(struct perf_event * event)3230 static int perf_event_task_match(struct perf_event *event)
3231 {
3232 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3233 		return 0;
3234 
3235 	if (event->cpu != -1 && event->cpu != smp_processor_id())
3236 		return 0;
3237 
3238 	if (event->attr.comm || event->attr.mmap || event->attr.task)
3239 		return 1;
3240 
3241 	return 0;
3242 }
3243 
perf_event_task_ctx(struct perf_event_context * ctx,struct perf_task_event * task_event)3244 static void perf_event_task_ctx(struct perf_event_context *ctx,
3245 				  struct perf_task_event *task_event)
3246 {
3247 	struct perf_event *event;
3248 
3249 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3250 		return;
3251 
3252 	rcu_read_lock();
3253 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3254 		if (perf_event_task_match(event))
3255 			perf_event_task_output(event, task_event);
3256 	}
3257 	rcu_read_unlock();
3258 }
3259 
perf_event_task_event(struct perf_task_event * task_event)3260 static void perf_event_task_event(struct perf_task_event *task_event)
3261 {
3262 	struct perf_cpu_context *cpuctx;
3263 	struct perf_event_context *ctx = task_event->task_ctx;
3264 
3265 	cpuctx = &get_cpu_var(perf_cpu_context);
3266 	perf_event_task_ctx(&cpuctx->ctx, task_event);
3267 
3268 	rcu_read_lock();
3269 	if (!ctx)
3270 		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3271 	if (ctx)
3272 		perf_event_task_ctx(ctx, task_event);
3273 	put_cpu_var(perf_cpu_context);
3274 	rcu_read_unlock();
3275 }
3276 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)3277 static void perf_event_task(struct task_struct *task,
3278 			      struct perf_event_context *task_ctx,
3279 			      int new)
3280 {
3281 	struct perf_task_event task_event;
3282 
3283 	if (!atomic_read(&nr_comm_events) &&
3284 	    !atomic_read(&nr_mmap_events) &&
3285 	    !atomic_read(&nr_task_events))
3286 		return;
3287 
3288 	task_event = (struct perf_task_event){
3289 		.task	  = task,
3290 		.task_ctx = task_ctx,
3291 		.event_id    = {
3292 			.header = {
3293 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3294 				.misc = 0,
3295 				.size = sizeof(task_event.event_id),
3296 			},
3297 			/* .pid  */
3298 			/* .ppid */
3299 			/* .tid  */
3300 			/* .ptid */
3301 		},
3302 	};
3303 
3304 	perf_event_task_event(&task_event);
3305 }
3306 
perf_event_fork(struct task_struct * task)3307 void perf_event_fork(struct task_struct *task)
3308 {
3309 	perf_event_task(task, NULL, 1);
3310 }
3311 
3312 /*
3313  * comm tracking
3314  */
3315 
3316 struct perf_comm_event {
3317 	struct task_struct	*task;
3318 	char			*comm;
3319 	int			comm_size;
3320 
3321 	struct {
3322 		struct perf_event_header	header;
3323 
3324 		u32				pid;
3325 		u32				tid;
3326 	} event_id;
3327 };
3328 
perf_event_comm_output(struct perf_event * event,struct perf_comm_event * comm_event)3329 static void perf_event_comm_output(struct perf_event *event,
3330 				     struct perf_comm_event *comm_event)
3331 {
3332 	struct perf_output_handle handle;
3333 	int size = comm_event->event_id.header.size;
3334 	int ret = perf_output_begin(&handle, event, size, 0, 0);
3335 
3336 	if (ret)
3337 		return;
3338 
3339 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3340 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3341 
3342 	perf_output_put(&handle, comm_event->event_id);
3343 	perf_output_copy(&handle, comm_event->comm,
3344 				   comm_event->comm_size);
3345 	perf_output_end(&handle);
3346 }
3347 
perf_event_comm_match(struct perf_event * event)3348 static int perf_event_comm_match(struct perf_event *event)
3349 {
3350 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3351 		return 0;
3352 
3353 	if (event->cpu != -1 && event->cpu != smp_processor_id())
3354 		return 0;
3355 
3356 	if (event->attr.comm)
3357 		return 1;
3358 
3359 	return 0;
3360 }
3361 
perf_event_comm_ctx(struct perf_event_context * ctx,struct perf_comm_event * comm_event)3362 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3363 				  struct perf_comm_event *comm_event)
3364 {
3365 	struct perf_event *event;
3366 
3367 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3368 		return;
3369 
3370 	rcu_read_lock();
3371 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3372 		if (perf_event_comm_match(event))
3373 			perf_event_comm_output(event, comm_event);
3374 	}
3375 	rcu_read_unlock();
3376 }
3377 
perf_event_comm_event(struct perf_comm_event * comm_event)3378 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3379 {
3380 	struct perf_cpu_context *cpuctx;
3381 	struct perf_event_context *ctx;
3382 	unsigned int size;
3383 	char comm[TASK_COMM_LEN];
3384 
3385 	memset(comm, 0, sizeof(comm));
3386 	strncpy(comm, comm_event->task->comm, sizeof(comm));
3387 	size = ALIGN(strlen(comm)+1, sizeof(u64));
3388 
3389 	comm_event->comm = comm;
3390 	comm_event->comm_size = size;
3391 
3392 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3393 
3394 	cpuctx = &get_cpu_var(perf_cpu_context);
3395 	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3396 
3397 	rcu_read_lock();
3398 	/*
3399 	 * doesn't really matter which of the child contexts the
3400 	 * events ends up in.
3401 	 */
3402 	ctx = rcu_dereference(current->perf_event_ctxp);
3403 	if (ctx)
3404 		perf_event_comm_ctx(ctx, comm_event);
3405 	put_cpu_var(perf_cpu_context);
3406 	rcu_read_unlock();
3407 }
3408 
perf_event_comm(struct task_struct * task)3409 void perf_event_comm(struct task_struct *task)
3410 {
3411 	struct perf_comm_event comm_event;
3412 
3413 	if (task->perf_event_ctxp)
3414 		perf_event_enable_on_exec(task);
3415 
3416 	if (!atomic_read(&nr_comm_events))
3417 		return;
3418 
3419 	comm_event = (struct perf_comm_event){
3420 		.task	= task,
3421 		/* .comm      */
3422 		/* .comm_size */
3423 		.event_id  = {
3424 			.header = {
3425 				.type = PERF_RECORD_COMM,
3426 				.misc = 0,
3427 				/* .size */
3428 			},
3429 			/* .pid */
3430 			/* .tid */
3431 		},
3432 	};
3433 
3434 	perf_event_comm_event(&comm_event);
3435 }
3436 
3437 /*
3438  * mmap tracking
3439  */
3440 
3441 struct perf_mmap_event {
3442 	struct vm_area_struct	*vma;
3443 
3444 	const char		*file_name;
3445 	int			file_size;
3446 
3447 	struct {
3448 		struct perf_event_header	header;
3449 
3450 		u32				pid;
3451 		u32				tid;
3452 		u64				start;
3453 		u64				len;
3454 		u64				pgoff;
3455 	} event_id;
3456 };
3457 
perf_event_mmap_output(struct perf_event * event,struct perf_mmap_event * mmap_event)3458 static void perf_event_mmap_output(struct perf_event *event,
3459 				     struct perf_mmap_event *mmap_event)
3460 {
3461 	struct perf_output_handle handle;
3462 	int size = mmap_event->event_id.header.size;
3463 	int ret = perf_output_begin(&handle, event, size, 0, 0);
3464 
3465 	if (ret)
3466 		return;
3467 
3468 	mmap_event->event_id.pid = perf_event_pid(event, current);
3469 	mmap_event->event_id.tid = perf_event_tid(event, current);
3470 
3471 	perf_output_put(&handle, mmap_event->event_id);
3472 	perf_output_copy(&handle, mmap_event->file_name,
3473 				   mmap_event->file_size);
3474 	perf_output_end(&handle);
3475 }
3476 
perf_event_mmap_match(struct perf_event * event,struct perf_mmap_event * mmap_event)3477 static int perf_event_mmap_match(struct perf_event *event,
3478 				   struct perf_mmap_event *mmap_event)
3479 {
3480 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3481 		return 0;
3482 
3483 	if (event->cpu != -1 && event->cpu != smp_processor_id())
3484 		return 0;
3485 
3486 	if (event->attr.mmap)
3487 		return 1;
3488 
3489 	return 0;
3490 }
3491 
perf_event_mmap_ctx(struct perf_event_context * ctx,struct perf_mmap_event * mmap_event)3492 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3493 				  struct perf_mmap_event *mmap_event)
3494 {
3495 	struct perf_event *event;
3496 
3497 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3498 		return;
3499 
3500 	rcu_read_lock();
3501 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3502 		if (perf_event_mmap_match(event, mmap_event))
3503 			perf_event_mmap_output(event, mmap_event);
3504 	}
3505 	rcu_read_unlock();
3506 }
3507 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)3508 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3509 {
3510 	struct perf_cpu_context *cpuctx;
3511 	struct perf_event_context *ctx;
3512 	struct vm_area_struct *vma = mmap_event->vma;
3513 	struct file *file = vma->vm_file;
3514 	unsigned int size;
3515 	char tmp[16];
3516 	char *buf = NULL;
3517 	const char *name;
3518 
3519 	memset(tmp, 0, sizeof(tmp));
3520 
3521 	if (file) {
3522 		/*
3523 		 * d_path works from the end of the buffer backwards, so we
3524 		 * need to add enough zero bytes after the string to handle
3525 		 * the 64bit alignment we do later.
3526 		 */
3527 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3528 		if (!buf) {
3529 			name = strncpy(tmp, "//enomem", sizeof(tmp));
3530 			goto got_name;
3531 		}
3532 		name = d_path(&file->f_path, buf, PATH_MAX);
3533 		if (IS_ERR(name)) {
3534 			name = strncpy(tmp, "//toolong", sizeof(tmp));
3535 			goto got_name;
3536 		}
3537 	} else {
3538 		if (arch_vma_name(mmap_event->vma)) {
3539 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3540 				       sizeof(tmp));
3541 			goto got_name;
3542 		}
3543 
3544 		if (!vma->vm_mm) {
3545 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
3546 			goto got_name;
3547 		}
3548 
3549 		name = strncpy(tmp, "//anon", sizeof(tmp));
3550 		goto got_name;
3551 	}
3552 
3553 got_name:
3554 	size = ALIGN(strlen(name)+1, sizeof(u64));
3555 
3556 	mmap_event->file_name = name;
3557 	mmap_event->file_size = size;
3558 
3559 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3560 
3561 	cpuctx = &get_cpu_var(perf_cpu_context);
3562 	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3563 
3564 	rcu_read_lock();
3565 	/*
3566 	 * doesn't really matter which of the child contexts the
3567 	 * events ends up in.
3568 	 */
3569 	ctx = rcu_dereference(current->perf_event_ctxp);
3570 	if (ctx)
3571 		perf_event_mmap_ctx(ctx, mmap_event);
3572 	put_cpu_var(perf_cpu_context);
3573 	rcu_read_unlock();
3574 
3575 	kfree(buf);
3576 }
3577 
__perf_event_mmap(struct vm_area_struct * vma)3578 void __perf_event_mmap(struct vm_area_struct *vma)
3579 {
3580 	struct perf_mmap_event mmap_event;
3581 
3582 	if (!atomic_read(&nr_mmap_events))
3583 		return;
3584 
3585 	mmap_event = (struct perf_mmap_event){
3586 		.vma	= vma,
3587 		/* .file_name */
3588 		/* .file_size */
3589 		.event_id  = {
3590 			.header = {
3591 				.type = PERF_RECORD_MMAP,
3592 				.misc = 0,
3593 				/* .size */
3594 			},
3595 			/* .pid */
3596 			/* .tid */
3597 			.start  = vma->vm_start,
3598 			.len    = vma->vm_end - vma->vm_start,
3599 			.pgoff  = vma->vm_pgoff,
3600 		},
3601 	};
3602 
3603 	perf_event_mmap_event(&mmap_event);
3604 }
3605 
3606 /*
3607  * IRQ throttle logging
3608  */
3609 
perf_log_throttle(struct perf_event * event,int enable)3610 static void perf_log_throttle(struct perf_event *event, int enable)
3611 {
3612 	struct perf_output_handle handle;
3613 	int ret;
3614 
3615 	struct {
3616 		struct perf_event_header	header;
3617 		u64				time;
3618 		u64				id;
3619 		u64				stream_id;
3620 	} throttle_event = {
3621 		.header = {
3622 			.type = PERF_RECORD_THROTTLE,
3623 			.misc = 0,
3624 			.size = sizeof(throttle_event),
3625 		},
3626 		.time		= perf_clock(),
3627 		.id		= primary_event_id(event),
3628 		.stream_id	= event->id,
3629 	};
3630 
3631 	if (enable)
3632 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3633 
3634 	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3635 	if (ret)
3636 		return;
3637 
3638 	perf_output_put(&handle, throttle_event);
3639 	perf_output_end(&handle);
3640 }
3641 
3642 /*
3643  * Generic event overflow handling, sampling.
3644  */
3645 
__perf_event_overflow(struct perf_event * event,int nmi,int throttle,struct perf_sample_data * data,struct pt_regs * regs)3646 static int __perf_event_overflow(struct perf_event *event, int nmi,
3647 				   int throttle, struct perf_sample_data *data,
3648 				   struct pt_regs *regs)
3649 {
3650 	int events = atomic_read(&event->event_limit);
3651 	struct hw_perf_event *hwc = &event->hw;
3652 	int ret = 0;
3653 
3654 	throttle = (throttle && event->pmu->unthrottle != NULL);
3655 
3656 	if (!throttle) {
3657 		hwc->interrupts++;
3658 	} else {
3659 		if (hwc->interrupts != MAX_INTERRUPTS) {
3660 			hwc->interrupts++;
3661 			if (HZ * hwc->interrupts >
3662 					(u64)sysctl_perf_event_sample_rate) {
3663 				hwc->interrupts = MAX_INTERRUPTS;
3664 				perf_log_throttle(event, 0);
3665 				ret = 1;
3666 			}
3667 		} else {
3668 			/*
3669 			 * Keep re-disabling events even though on the previous
3670 			 * pass we disabled it - just in case we raced with a
3671 			 * sched-in and the event got enabled again:
3672 			 */
3673 			ret = 1;
3674 		}
3675 	}
3676 
3677 	if (event->attr.freq) {
3678 		u64 now = perf_clock();
3679 		s64 delta = now - hwc->freq_stamp;
3680 
3681 		hwc->freq_stamp = now;
3682 
3683 		if (delta > 0 && delta < TICK_NSEC)
3684 			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3685 	}
3686 
3687 	/*
3688 	 * XXX event_limit might not quite work as expected on inherited
3689 	 * events
3690 	 */
3691 
3692 	event->pending_kill = POLL_IN;
3693 	if (events && atomic_dec_and_test(&event->event_limit)) {
3694 		ret = 1;
3695 		event->pending_kill = POLL_HUP;
3696 		if (nmi) {
3697 			event->pending_disable = 1;
3698 			perf_pending_queue(&event->pending,
3699 					   perf_pending_event);
3700 		} else
3701 			perf_event_disable(event);
3702 	}
3703 
3704 	perf_event_output(event, nmi, data, regs);
3705 	return ret;
3706 }
3707 
perf_event_overflow(struct perf_event * event,int nmi,struct perf_sample_data * data,struct pt_regs * regs)3708 int perf_event_overflow(struct perf_event *event, int nmi,
3709 			  struct perf_sample_data *data,
3710 			  struct pt_regs *regs)
3711 {
3712 	return __perf_event_overflow(event, nmi, 1, data, regs);
3713 }
3714 
3715 /*
3716  * Generic software event infrastructure
3717  */
3718 
3719 /*
3720  * We directly increment event->count and keep a second value in
3721  * event->hw.period_left to count intervals. This period event
3722  * is kept in the range [-sample_period, 0] so that we can use the
3723  * sign as trigger.
3724  */
3725 
perf_swevent_set_period(struct perf_event * event)3726 static u64 perf_swevent_set_period(struct perf_event *event)
3727 {
3728 	struct hw_perf_event *hwc = &event->hw;
3729 	u64 period = hwc->last_period;
3730 	u64 nr, offset;
3731 	s64 old, val;
3732 
3733 	hwc->last_period = hwc->sample_period;
3734 
3735 again:
3736 	old = val = atomic64_read(&hwc->period_left);
3737 	if (val < 0)
3738 		return 0;
3739 
3740 	nr = div64_u64(period + val, period);
3741 	offset = nr * period;
3742 	val -= offset;
3743 	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3744 		goto again;
3745 
3746 	return nr;
3747 }
3748 
perf_swevent_overflow(struct perf_event * event,int nmi,struct perf_sample_data * data,struct pt_regs * regs)3749 static void perf_swevent_overflow(struct perf_event *event,
3750 				    int nmi, struct perf_sample_data *data,
3751 				    struct pt_regs *regs)
3752 {
3753 	struct hw_perf_event *hwc = &event->hw;
3754 	int throttle = 0;
3755 	u64 overflow;
3756 
3757 	data->period = event->hw.last_period;
3758 	overflow = perf_swevent_set_period(event);
3759 
3760 	if (hwc->interrupts == MAX_INTERRUPTS)
3761 		return;
3762 
3763 	for (; overflow; overflow--) {
3764 		if (__perf_event_overflow(event, nmi, throttle,
3765 					    data, regs)) {
3766 			/*
3767 			 * We inhibit the overflow from happening when
3768 			 * hwc->interrupts == MAX_INTERRUPTS.
3769 			 */
3770 			break;
3771 		}
3772 		throttle = 1;
3773 	}
3774 }
3775 
perf_swevent_unthrottle(struct perf_event * event)3776 static void perf_swevent_unthrottle(struct perf_event *event)
3777 {
3778 	/*
3779 	 * Nothing to do, we already reset hwc->interrupts.
3780 	 */
3781 }
3782 
perf_swevent_add(struct perf_event * event,u64 nr,int nmi,struct perf_sample_data * data,struct pt_regs * regs)3783 static void perf_swevent_add(struct perf_event *event, u64 nr,
3784 			       int nmi, struct perf_sample_data *data,
3785 			       struct pt_regs *regs)
3786 {
3787 	struct hw_perf_event *hwc = &event->hw;
3788 
3789 	atomic64_add(nr, &event->count);
3790 
3791 	if (!hwc->sample_period)
3792 		return;
3793 
3794 	if (!regs)
3795 		return;
3796 
3797 	if (!atomic64_add_negative(nr, &hwc->period_left))
3798 		perf_swevent_overflow(event, nmi, data, regs);
3799 }
3800 
perf_swevent_is_counting(struct perf_event * event)3801 static int perf_swevent_is_counting(struct perf_event *event)
3802 {
3803 	/*
3804 	 * The event is active, we're good!
3805 	 */
3806 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3807 		return 1;
3808 
3809 	/*
3810 	 * The event is off/error, not counting.
3811 	 */
3812 	if (event->state != PERF_EVENT_STATE_INACTIVE)
3813 		return 0;
3814 
3815 	/*
3816 	 * The event is inactive, if the context is active
3817 	 * we're part of a group that didn't make it on the 'pmu',
3818 	 * not counting.
3819 	 */
3820 	if (event->ctx->is_active)
3821 		return 0;
3822 
3823 	/*
3824 	 * We're inactive and the context is too, this means the
3825 	 * task is scheduled out, we're counting events that happen
3826 	 * to us, like migration events.
3827 	 */
3828 	return 1;
3829 }
3830 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct pt_regs * regs)3831 static int perf_swevent_match(struct perf_event *event,
3832 				enum perf_type_id type,
3833 				u32 event_id, struct pt_regs *regs)
3834 {
3835 	if (event->cpu != -1 && event->cpu != smp_processor_id())
3836 		return 0;
3837 
3838 	if (!perf_swevent_is_counting(event))
3839 		return 0;
3840 
3841 	if (event->attr.type != type)
3842 		return 0;
3843 	if (event->attr.config != event_id)
3844 		return 0;
3845 
3846 	if (regs) {
3847 		if (event->attr.exclude_user && user_mode(regs))
3848 			return 0;
3849 
3850 		if (event->attr.exclude_kernel && !user_mode(regs))
3851 			return 0;
3852 	}
3853 
3854 	return 1;
3855 }
3856 
perf_swevent_ctx_event(struct perf_event_context * ctx,enum perf_type_id type,u32 event_id,u64 nr,int nmi,struct perf_sample_data * data,struct pt_regs * regs)3857 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3858 				     enum perf_type_id type,
3859 				     u32 event_id, u64 nr, int nmi,
3860 				     struct perf_sample_data *data,
3861 				     struct pt_regs *regs)
3862 {
3863 	struct perf_event *event;
3864 
3865 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3866 		return;
3867 
3868 	rcu_read_lock();
3869 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3870 		if (perf_swevent_match(event, type, event_id, regs))
3871 			perf_swevent_add(event, nr, nmi, data, regs);
3872 	}
3873 	rcu_read_unlock();
3874 }
3875 
perf_swevent_recursion_context(struct perf_cpu_context * cpuctx)3876 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3877 {
3878 	if (in_nmi())
3879 		return &cpuctx->recursion[3];
3880 
3881 	if (in_irq())
3882 		return &cpuctx->recursion[2];
3883 
3884 	if (in_softirq())
3885 		return &cpuctx->recursion[1];
3886 
3887 	return &cpuctx->recursion[0];
3888 }
3889 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,int nmi,struct perf_sample_data * data,struct pt_regs * regs)3890 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3891 				    u64 nr, int nmi,
3892 				    struct perf_sample_data *data,
3893 				    struct pt_regs *regs)
3894 {
3895 	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3896 	int *recursion = perf_swevent_recursion_context(cpuctx);
3897 	struct perf_event_context *ctx;
3898 
3899 	if (*recursion)
3900 		goto out;
3901 
3902 	(*recursion)++;
3903 	barrier();
3904 
3905 	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3906 				 nr, nmi, data, regs);
3907 	rcu_read_lock();
3908 	/*
3909 	 * doesn't really matter which of the child contexts the
3910 	 * events ends up in.
3911 	 */
3912 	ctx = rcu_dereference(current->perf_event_ctxp);
3913 	if (ctx)
3914 		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3915 	rcu_read_unlock();
3916 
3917 	barrier();
3918 	(*recursion)--;
3919 
3920 out:
3921 	put_cpu_var(perf_cpu_context);
3922 }
3923 
__perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)3924 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3925 			    struct pt_regs *regs, u64 addr)
3926 {
3927 	struct perf_sample_data data = {
3928 		.addr = addr,
3929 	};
3930 
3931 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3932 				&data, regs);
3933 }
3934 
perf_swevent_read(struct perf_event * event)3935 static void perf_swevent_read(struct perf_event *event)
3936 {
3937 }
3938 
perf_swevent_enable(struct perf_event * event)3939 static int perf_swevent_enable(struct perf_event *event)
3940 {
3941 	struct hw_perf_event *hwc = &event->hw;
3942 
3943 	if (hwc->sample_period) {
3944 		hwc->last_period = hwc->sample_period;
3945 		perf_swevent_set_period(event);
3946 	}
3947 	return 0;
3948 }
3949 
perf_swevent_disable(struct perf_event * event)3950 static void perf_swevent_disable(struct perf_event *event)
3951 {
3952 }
3953 
3954 static const struct pmu perf_ops_generic = {
3955 	.enable		= perf_swevent_enable,
3956 	.disable	= perf_swevent_disable,
3957 	.read		= perf_swevent_read,
3958 	.unthrottle	= perf_swevent_unthrottle,
3959 };
3960 
3961 /*
3962  * hrtimer based swevent callback
3963  */
3964 
perf_swevent_hrtimer(struct hrtimer * hrtimer)3965 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3966 {
3967 	enum hrtimer_restart ret = HRTIMER_RESTART;
3968 	struct perf_sample_data data;
3969 	struct pt_regs *regs;
3970 	struct perf_event *event;
3971 	u64 period;
3972 
3973 	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
3974 	event->pmu->read(event);
3975 
3976 	data.addr = 0;
3977 	data.period = event->hw.last_period;
3978 	regs = get_irq_regs();
3979 	/*
3980 	 * In case we exclude kernel IPs or are somehow not in interrupt
3981 	 * context, provide the next best thing, the user IP.
3982 	 */
3983 	if ((event->attr.exclude_kernel || !regs) &&
3984 			!event->attr.exclude_user)
3985 		regs = task_pt_regs(current);
3986 
3987 	if (regs) {
3988 		if (!(event->attr.exclude_idle && current->pid == 0))
3989 			if (perf_event_overflow(event, 0, &data, regs))
3990 				ret = HRTIMER_NORESTART;
3991 	}
3992 
3993 	period = max_t(u64, 10000, event->hw.sample_period);
3994 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3995 
3996 	return ret;
3997 }
3998 
perf_swevent_start_hrtimer(struct perf_event * event)3999 static void perf_swevent_start_hrtimer(struct perf_event *event)
4000 {
4001 	struct hw_perf_event *hwc = &event->hw;
4002 
4003 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4004 	hwc->hrtimer.function = perf_swevent_hrtimer;
4005 	if (hwc->sample_period) {
4006 		u64 period;
4007 
4008 		if (hwc->remaining) {
4009 			if (hwc->remaining < 0)
4010 				period = 10000;
4011 			else
4012 				period = hwc->remaining;
4013 			hwc->remaining = 0;
4014 		} else {
4015 			period = max_t(u64, 10000, hwc->sample_period);
4016 		}
4017 		__hrtimer_start_range_ns(&hwc->hrtimer,
4018 				ns_to_ktime(period), 0,
4019 				HRTIMER_MODE_REL, 0);
4020 	}
4021 }
4022 
perf_swevent_cancel_hrtimer(struct perf_event * event)4023 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4024 {
4025 	struct hw_perf_event *hwc = &event->hw;
4026 
4027 	if (hwc->sample_period) {
4028 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4029 		hwc->remaining = ktime_to_ns(remaining);
4030 
4031 		hrtimer_cancel(&hwc->hrtimer);
4032 	}
4033 }
4034 
4035 /*
4036  * Software event: cpu wall time clock
4037  */
4038 
cpu_clock_perf_event_update(struct perf_event * event)4039 static void cpu_clock_perf_event_update(struct perf_event *event)
4040 {
4041 	int cpu = raw_smp_processor_id();
4042 	s64 prev;
4043 	u64 now;
4044 
4045 	now = cpu_clock(cpu);
4046 	prev = atomic64_read(&event->hw.prev_count);
4047 	atomic64_set(&event->hw.prev_count, now);
4048 	atomic64_add(now - prev, &event->count);
4049 }
4050 
cpu_clock_perf_event_enable(struct perf_event * event)4051 static int cpu_clock_perf_event_enable(struct perf_event *event)
4052 {
4053 	struct hw_perf_event *hwc = &event->hw;
4054 	int cpu = raw_smp_processor_id();
4055 
4056 	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4057 	perf_swevent_start_hrtimer(event);
4058 
4059 	return 0;
4060 }
4061 
cpu_clock_perf_event_disable(struct perf_event * event)4062 static void cpu_clock_perf_event_disable(struct perf_event *event)
4063 {
4064 	perf_swevent_cancel_hrtimer(event);
4065 	cpu_clock_perf_event_update(event);
4066 }
4067 
cpu_clock_perf_event_read(struct perf_event * event)4068 static void cpu_clock_perf_event_read(struct perf_event *event)
4069 {
4070 	cpu_clock_perf_event_update(event);
4071 }
4072 
4073 static const struct pmu perf_ops_cpu_clock = {
4074 	.enable		= cpu_clock_perf_event_enable,
4075 	.disable	= cpu_clock_perf_event_disable,
4076 	.read		= cpu_clock_perf_event_read,
4077 };
4078 
4079 /*
4080  * Software event: task time clock
4081  */
4082 
task_clock_perf_event_update(struct perf_event * event,u64 now)4083 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4084 {
4085 	u64 prev;
4086 	s64 delta;
4087 
4088 	prev = atomic64_xchg(&event->hw.prev_count, now);
4089 	delta = now - prev;
4090 	atomic64_add(delta, &event->count);
4091 }
4092 
task_clock_perf_event_enable(struct perf_event * event)4093 static int task_clock_perf_event_enable(struct perf_event *event)
4094 {
4095 	struct hw_perf_event *hwc = &event->hw;
4096 	u64 now;
4097 
4098 	now = event->ctx->time;
4099 
4100 	atomic64_set(&hwc->prev_count, now);
4101 
4102 	perf_swevent_start_hrtimer(event);
4103 
4104 	return 0;
4105 }
4106 
task_clock_perf_event_disable(struct perf_event * event)4107 static void task_clock_perf_event_disable(struct perf_event *event)
4108 {
4109 	perf_swevent_cancel_hrtimer(event);
4110 	task_clock_perf_event_update(event, event->ctx->time);
4111 
4112 }
4113 
task_clock_perf_event_read(struct perf_event * event)4114 static void task_clock_perf_event_read(struct perf_event *event)
4115 {
4116 	u64 time;
4117 
4118 	if (!in_nmi()) {
4119 		update_context_time(event->ctx);
4120 		time = event->ctx->time;
4121 	} else {
4122 		u64 now = perf_clock();
4123 		u64 delta = now - event->ctx->timestamp;
4124 		time = event->ctx->time + delta;
4125 	}
4126 
4127 	task_clock_perf_event_update(event, time);
4128 }
4129 
4130 static const struct pmu perf_ops_task_clock = {
4131 	.enable		= task_clock_perf_event_enable,
4132 	.disable	= task_clock_perf_event_disable,
4133 	.read		= task_clock_perf_event_read,
4134 };
4135 
4136 #ifdef CONFIG_EVENT_PROFILE
perf_tp_event(int event_id,u64 addr,u64 count,void * record,int entry_size)4137 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4138 			  int entry_size)
4139 {
4140 	struct perf_raw_record raw = {
4141 		.size = entry_size,
4142 		.data = record,
4143 	};
4144 
4145 	struct perf_sample_data data = {
4146 		.addr = addr,
4147 		.raw = &raw,
4148 	};
4149 
4150 	struct pt_regs *regs = get_irq_regs();
4151 
4152 	if (!regs)
4153 		regs = task_pt_regs(current);
4154 
4155 	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4156 				&data, regs);
4157 }
4158 EXPORT_SYMBOL_GPL(perf_tp_event);
4159 
4160 extern int ftrace_profile_enable(int);
4161 extern void ftrace_profile_disable(int);
4162 
tp_perf_event_destroy(struct perf_event * event)4163 static void tp_perf_event_destroy(struct perf_event *event)
4164 {
4165 	ftrace_profile_disable(event->attr.config);
4166 }
4167 
tp_perf_event_init(struct perf_event * event)4168 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4169 {
4170 	/*
4171 	 * Raw tracepoint data is a severe data leak, only allow root to
4172 	 * have these.
4173 	 */
4174 	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4175 			perf_paranoid_tracepoint_raw() &&
4176 			!capable(CAP_SYS_ADMIN))
4177 		return ERR_PTR(-EPERM);
4178 
4179 	if (ftrace_profile_enable(event->attr.config))
4180 		return NULL;
4181 
4182 	event->destroy = tp_perf_event_destroy;
4183 
4184 	return &perf_ops_generic;
4185 }
4186 #else
tp_perf_event_init(struct perf_event * event)4187 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4188 {
4189 	return NULL;
4190 }
4191 #endif
4192 
4193 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4194 
sw_perf_event_destroy(struct perf_event * event)4195 static void sw_perf_event_destroy(struct perf_event *event)
4196 {
4197 	u64 event_id = event->attr.config;
4198 
4199 	WARN_ON(event->parent);
4200 
4201 	atomic_dec(&perf_swevent_enabled[event_id]);
4202 }
4203 
sw_perf_event_init(struct perf_event * event)4204 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4205 {
4206 	const struct pmu *pmu = NULL;
4207 	u64 event_id = event->attr.config;
4208 
4209 	/*
4210 	 * Software events (currently) can't in general distinguish
4211 	 * between user, kernel and hypervisor events.
4212 	 * However, context switches and cpu migrations are considered
4213 	 * to be kernel events, and page faults are never hypervisor
4214 	 * events.
4215 	 */
4216 	switch (event_id) {
4217 	case PERF_COUNT_SW_CPU_CLOCK:
4218 		pmu = &perf_ops_cpu_clock;
4219 
4220 		break;
4221 	case PERF_COUNT_SW_TASK_CLOCK:
4222 		/*
4223 		 * If the user instantiates this as a per-cpu event,
4224 		 * use the cpu_clock event instead.
4225 		 */
4226 		if (event->ctx->task)
4227 			pmu = &perf_ops_task_clock;
4228 		else
4229 			pmu = &perf_ops_cpu_clock;
4230 
4231 		break;
4232 	case PERF_COUNT_SW_PAGE_FAULTS:
4233 	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4234 	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4235 	case PERF_COUNT_SW_CONTEXT_SWITCHES:
4236 	case PERF_COUNT_SW_CPU_MIGRATIONS:
4237 		if (!event->parent) {
4238 			atomic_inc(&perf_swevent_enabled[event_id]);
4239 			event->destroy = sw_perf_event_destroy;
4240 		}
4241 		pmu = &perf_ops_generic;
4242 		break;
4243 	}
4244 
4245 	return pmu;
4246 }
4247 
4248 /*
4249  * Allocate and initialize a event structure
4250  */
4251 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct perf_event_context * ctx,struct perf_event * group_leader,struct perf_event * parent_event,gfp_t gfpflags)4252 perf_event_alloc(struct perf_event_attr *attr,
4253 		   int cpu,
4254 		   struct perf_event_context *ctx,
4255 		   struct perf_event *group_leader,
4256 		   struct perf_event *parent_event,
4257 		   gfp_t gfpflags)
4258 {
4259 	const struct pmu *pmu;
4260 	struct perf_event *event;
4261 	struct hw_perf_event *hwc;
4262 	long err;
4263 
4264 	event = kzalloc(sizeof(*event), gfpflags);
4265 	if (!event)
4266 		return ERR_PTR(-ENOMEM);
4267 
4268 	/*
4269 	 * Single events are their own group leaders, with an
4270 	 * empty sibling list:
4271 	 */
4272 	if (!group_leader)
4273 		group_leader = event;
4274 
4275 	mutex_init(&event->child_mutex);
4276 	INIT_LIST_HEAD(&event->child_list);
4277 
4278 	INIT_LIST_HEAD(&event->group_entry);
4279 	INIT_LIST_HEAD(&event->event_entry);
4280 	INIT_LIST_HEAD(&event->sibling_list);
4281 	init_waitqueue_head(&event->waitq);
4282 
4283 	mutex_init(&event->mmap_mutex);
4284 
4285 	event->cpu		= cpu;
4286 	event->attr		= *attr;
4287 	event->group_leader	= group_leader;
4288 	event->pmu		= NULL;
4289 	event->ctx		= ctx;
4290 	event->oncpu		= -1;
4291 
4292 	event->parent		= parent_event;
4293 
4294 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
4295 	event->id		= atomic64_inc_return(&perf_event_id);
4296 
4297 	event->state		= PERF_EVENT_STATE_INACTIVE;
4298 
4299 	if (attr->disabled)
4300 		event->state = PERF_EVENT_STATE_OFF;
4301 
4302 	pmu = NULL;
4303 
4304 	hwc = &event->hw;
4305 	hwc->sample_period = attr->sample_period;
4306 	if (attr->freq && attr->sample_freq)
4307 		hwc->sample_period = 1;
4308 	hwc->last_period = hwc->sample_period;
4309 
4310 	atomic64_set(&hwc->period_left, hwc->sample_period);
4311 
4312 	/*
4313 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4314 	 */
4315 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4316 		goto done;
4317 
4318 	switch (attr->type) {
4319 	case PERF_TYPE_RAW:
4320 	case PERF_TYPE_HARDWARE:
4321 	case PERF_TYPE_HW_CACHE:
4322 		pmu = hw_perf_event_init(event);
4323 		break;
4324 
4325 	case PERF_TYPE_SOFTWARE:
4326 		pmu = sw_perf_event_init(event);
4327 		break;
4328 
4329 	case PERF_TYPE_TRACEPOINT:
4330 		pmu = tp_perf_event_init(event);
4331 		break;
4332 
4333 	default:
4334 		break;
4335 	}
4336 done:
4337 	err = 0;
4338 	if (!pmu)
4339 		err = -EINVAL;
4340 	else if (IS_ERR(pmu))
4341 		err = PTR_ERR(pmu);
4342 
4343 	if (err) {
4344 		if (event->ns)
4345 			put_pid_ns(event->ns);
4346 		kfree(event);
4347 		return ERR_PTR(err);
4348 	}
4349 
4350 	event->pmu = pmu;
4351 
4352 	if (!event->parent) {
4353 		atomic_inc(&nr_events);
4354 		if (event->attr.mmap)
4355 			atomic_inc(&nr_mmap_events);
4356 		if (event->attr.comm)
4357 			atomic_inc(&nr_comm_events);
4358 		if (event->attr.task)
4359 			atomic_inc(&nr_task_events);
4360 	}
4361 
4362 	return event;
4363 }
4364 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)4365 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4366 			  struct perf_event_attr *attr)
4367 {
4368 	u32 size;
4369 	int ret;
4370 
4371 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4372 		return -EFAULT;
4373 
4374 	/*
4375 	 * zero the full structure, so that a short copy will be nice.
4376 	 */
4377 	memset(attr, 0, sizeof(*attr));
4378 
4379 	ret = get_user(size, &uattr->size);
4380 	if (ret)
4381 		return ret;
4382 
4383 	if (size > PAGE_SIZE)	/* silly large */
4384 		goto err_size;
4385 
4386 	if (!size)		/* abi compat */
4387 		size = PERF_ATTR_SIZE_VER0;
4388 
4389 	if (size < PERF_ATTR_SIZE_VER0)
4390 		goto err_size;
4391 
4392 	/*
4393 	 * If we're handed a bigger struct than we know of,
4394 	 * ensure all the unknown bits are 0 - i.e. new
4395 	 * user-space does not rely on any kernel feature
4396 	 * extensions we dont know about yet.
4397 	 */
4398 	if (size > sizeof(*attr)) {
4399 		unsigned char __user *addr;
4400 		unsigned char __user *end;
4401 		unsigned char val;
4402 
4403 		addr = (void __user *)uattr + sizeof(*attr);
4404 		end  = (void __user *)uattr + size;
4405 
4406 		for (; addr < end; addr++) {
4407 			ret = get_user(val, addr);
4408 			if (ret)
4409 				return ret;
4410 			if (val)
4411 				goto err_size;
4412 		}
4413 		size = sizeof(*attr);
4414 	}
4415 
4416 	ret = copy_from_user(attr, uattr, size);
4417 	if (ret)
4418 		return -EFAULT;
4419 
4420 	/*
4421 	 * If the type exists, the corresponding creation will verify
4422 	 * the attr->config.
4423 	 */
4424 	if (attr->type >= PERF_TYPE_MAX)
4425 		return -EINVAL;
4426 
4427 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4428 		return -EINVAL;
4429 
4430 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4431 		return -EINVAL;
4432 
4433 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4434 		return -EINVAL;
4435 
4436 out:
4437 	return ret;
4438 
4439 err_size:
4440 	put_user(sizeof(*attr), &uattr->size);
4441 	ret = -E2BIG;
4442 	goto out;
4443 }
4444 
perf_event_set_output(struct perf_event * event,int output_fd)4445 int perf_event_set_output(struct perf_event *event, int output_fd)
4446 {
4447 	struct perf_event *output_event = NULL;
4448 	struct file *output_file = NULL;
4449 	struct perf_event *old_output;
4450 	int fput_needed = 0;
4451 	int ret = -EINVAL;
4452 
4453 	if (!output_fd)
4454 		goto set;
4455 
4456 	output_file = fget_light(output_fd, &fput_needed);
4457 	if (!output_file)
4458 		return -EBADF;
4459 
4460 	if (output_file->f_op != &perf_fops)
4461 		goto out;
4462 
4463 	output_event = output_file->private_data;
4464 
4465 	/* Don't chain output fds */
4466 	if (output_event->output)
4467 		goto out;
4468 
4469 	/* Don't set an output fd when we already have an output channel */
4470 	if (event->data)
4471 		goto out;
4472 
4473 	atomic_long_inc(&output_file->f_count);
4474 
4475 set:
4476 	mutex_lock(&event->mmap_mutex);
4477 	old_output = event->output;
4478 	rcu_assign_pointer(event->output, output_event);
4479 	mutex_unlock(&event->mmap_mutex);
4480 
4481 	if (old_output) {
4482 		/*
4483 		 * we need to make sure no existing perf_output_*()
4484 		 * is still referencing this event.
4485 		 */
4486 		synchronize_rcu();
4487 		fput(old_output->filp);
4488 	}
4489 
4490 	ret = 0;
4491 out:
4492 	fput_light(output_file, fput_needed);
4493 	return ret;
4494 }
4495 
4496 /**
4497  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4498  *
4499  * @attr_uptr:	event_id type attributes for monitoring/sampling
4500  * @pid:		target pid
4501  * @cpu:		target cpu
4502  * @group_fd:		group leader event fd
4503  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)4504 SYSCALL_DEFINE5(perf_event_open,
4505 		struct perf_event_attr __user *, attr_uptr,
4506 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4507 {
4508 	struct perf_event *event, *group_leader;
4509 	struct perf_event_attr attr;
4510 	struct perf_event_context *ctx;
4511 	struct file *event_file = NULL;
4512 	struct file *group_file = NULL;
4513 	int fput_needed = 0;
4514 	int fput_needed2 = 0;
4515 	int err;
4516 
4517 	/* for future expandability... */
4518 	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4519 		return -EINVAL;
4520 
4521 	err = perf_copy_attr(attr_uptr, &attr);
4522 	if (err)
4523 		return err;
4524 
4525 	if (!attr.exclude_kernel) {
4526 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4527 			return -EACCES;
4528 	}
4529 
4530 	if (attr.freq) {
4531 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4532 			return -EINVAL;
4533 	}
4534 
4535 	/*
4536 	 * Get the target context (task or percpu):
4537 	 */
4538 	ctx = find_get_context(pid, cpu);
4539 	if (IS_ERR(ctx))
4540 		return PTR_ERR(ctx);
4541 
4542 	/*
4543 	 * Look up the group leader (we will attach this event to it):
4544 	 */
4545 	group_leader = NULL;
4546 	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4547 		err = -EINVAL;
4548 		group_file = fget_light(group_fd, &fput_needed);
4549 		if (!group_file)
4550 			goto err_put_context;
4551 		if (group_file->f_op != &perf_fops)
4552 			goto err_put_context;
4553 
4554 		group_leader = group_file->private_data;
4555 		/*
4556 		 * Do not allow a recursive hierarchy (this new sibling
4557 		 * becoming part of another group-sibling):
4558 		 */
4559 		if (group_leader->group_leader != group_leader)
4560 			goto err_put_context;
4561 		/*
4562 		 * Do not allow to attach to a group in a different
4563 		 * task or CPU context:
4564 		 */
4565 		if (group_leader->ctx != ctx)
4566 			goto err_put_context;
4567 		/*
4568 		 * Only a group leader can be exclusive or pinned
4569 		 */
4570 		if (attr.exclusive || attr.pinned)
4571 			goto err_put_context;
4572 	}
4573 
4574 	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4575 				     NULL, GFP_KERNEL);
4576 	err = PTR_ERR(event);
4577 	if (IS_ERR(event))
4578 		goto err_put_context;
4579 
4580 	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4581 	if (err < 0)
4582 		goto err_free_put_context;
4583 
4584 	event_file = fget_light(err, &fput_needed2);
4585 	if (!event_file)
4586 		goto err_free_put_context;
4587 
4588 	if (flags & PERF_FLAG_FD_OUTPUT) {
4589 		err = perf_event_set_output(event, group_fd);
4590 		if (err)
4591 			goto err_fput_free_put_context;
4592 	}
4593 
4594 	event->filp = event_file;
4595 	WARN_ON_ONCE(ctx->parent_ctx);
4596 	mutex_lock(&ctx->mutex);
4597 	perf_install_in_context(ctx, event, cpu);
4598 	++ctx->generation;
4599 	mutex_unlock(&ctx->mutex);
4600 
4601 	event->owner = current;
4602 	get_task_struct(current);
4603 	mutex_lock(&current->perf_event_mutex);
4604 	list_add_tail(&event->owner_entry, &current->perf_event_list);
4605 	mutex_unlock(&current->perf_event_mutex);
4606 
4607 err_fput_free_put_context:
4608 	fput_light(event_file, fput_needed2);
4609 
4610 err_free_put_context:
4611 	if (err < 0)
4612 		free_event(event);
4613 
4614 err_put_context:
4615 	if (err < 0)
4616 		put_ctx(ctx);
4617 
4618 	fput_light(group_file, fput_needed);
4619 
4620 	return err;
4621 }
4622 
4623 /*
4624  * inherit a event from parent task to child task:
4625  */
4626 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)4627 inherit_event(struct perf_event *parent_event,
4628 	      struct task_struct *parent,
4629 	      struct perf_event_context *parent_ctx,
4630 	      struct task_struct *child,
4631 	      struct perf_event *group_leader,
4632 	      struct perf_event_context *child_ctx)
4633 {
4634 	struct perf_event *child_event;
4635 
4636 	/*
4637 	 * Instead of creating recursive hierarchies of events,
4638 	 * we link inherited events back to the original parent,
4639 	 * which has a filp for sure, which we use as the reference
4640 	 * count:
4641 	 */
4642 	if (parent_event->parent)
4643 		parent_event = parent_event->parent;
4644 
4645 	child_event = perf_event_alloc(&parent_event->attr,
4646 					   parent_event->cpu, child_ctx,
4647 					   group_leader, parent_event,
4648 					   GFP_KERNEL);
4649 	if (IS_ERR(child_event))
4650 		return child_event;
4651 	get_ctx(child_ctx);
4652 
4653 	/*
4654 	 * Make the child state follow the state of the parent event,
4655 	 * not its attr.disabled bit.  We hold the parent's mutex,
4656 	 * so we won't race with perf_event_{en, dis}able_family.
4657 	 */
4658 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4659 		child_event->state = PERF_EVENT_STATE_INACTIVE;
4660 	else
4661 		child_event->state = PERF_EVENT_STATE_OFF;
4662 
4663 	if (parent_event->attr.freq)
4664 		child_event->hw.sample_period = parent_event->hw.sample_period;
4665 
4666 	/*
4667 	 * Link it up in the child's context:
4668 	 */
4669 	add_event_to_ctx(child_event, child_ctx);
4670 
4671 	/*
4672 	 * Get a reference to the parent filp - we will fput it
4673 	 * when the child event exits. This is safe to do because
4674 	 * we are in the parent and we know that the filp still
4675 	 * exists and has a nonzero count:
4676 	 */
4677 	atomic_long_inc(&parent_event->filp->f_count);
4678 
4679 	/*
4680 	 * Link this into the parent event's child list
4681 	 */
4682 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4683 	mutex_lock(&parent_event->child_mutex);
4684 	list_add_tail(&child_event->child_list, &parent_event->child_list);
4685 	mutex_unlock(&parent_event->child_mutex);
4686 
4687 	return child_event;
4688 }
4689 
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)4690 static int inherit_group(struct perf_event *parent_event,
4691 	      struct task_struct *parent,
4692 	      struct perf_event_context *parent_ctx,
4693 	      struct task_struct *child,
4694 	      struct perf_event_context *child_ctx)
4695 {
4696 	struct perf_event *leader;
4697 	struct perf_event *sub;
4698 	struct perf_event *child_ctr;
4699 
4700 	leader = inherit_event(parent_event, parent, parent_ctx,
4701 				 child, NULL, child_ctx);
4702 	if (IS_ERR(leader))
4703 		return PTR_ERR(leader);
4704 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4705 		child_ctr = inherit_event(sub, parent, parent_ctx,
4706 					    child, leader, child_ctx);
4707 		if (IS_ERR(child_ctr))
4708 			return PTR_ERR(child_ctr);
4709 	}
4710 	return 0;
4711 }
4712 
sync_child_event(struct perf_event * child_event,struct task_struct * child)4713 static void sync_child_event(struct perf_event *child_event,
4714 			       struct task_struct *child)
4715 {
4716 	struct perf_event *parent_event = child_event->parent;
4717 	u64 child_val;
4718 
4719 	if (child_event->attr.inherit_stat)
4720 		perf_event_read_event(child_event, child);
4721 
4722 	child_val = atomic64_read(&child_event->count);
4723 
4724 	/*
4725 	 * Add back the child's count to the parent's count:
4726 	 */
4727 	atomic64_add(child_val, &parent_event->count);
4728 	atomic64_add(child_event->total_time_enabled,
4729 		     &parent_event->child_total_time_enabled);
4730 	atomic64_add(child_event->total_time_running,
4731 		     &parent_event->child_total_time_running);
4732 
4733 	/*
4734 	 * Remove this event from the parent's list
4735 	 */
4736 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4737 	mutex_lock(&parent_event->child_mutex);
4738 	list_del_init(&child_event->child_list);
4739 	mutex_unlock(&parent_event->child_mutex);
4740 
4741 	/*
4742 	 * Release the parent event, if this was the last
4743 	 * reference to it.
4744 	 */
4745 	fput(parent_event->filp);
4746 }
4747 
4748 static void
__perf_event_exit_task(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)4749 __perf_event_exit_task(struct perf_event *child_event,
4750 			 struct perf_event_context *child_ctx,
4751 			 struct task_struct *child)
4752 {
4753 	struct perf_event *parent_event;
4754 
4755 	update_event_times(child_event);
4756 	perf_event_remove_from_context(child_event);
4757 
4758 	parent_event = child_event->parent;
4759 	/*
4760 	 * It can happen that parent exits first, and has events
4761 	 * that are still around due to the child reference. These
4762 	 * events need to be zapped - but otherwise linger.
4763 	 */
4764 	if (parent_event) {
4765 		sync_child_event(child_event, child);
4766 		free_event(child_event);
4767 	}
4768 }
4769 
4770 /*
4771  * When a child task exits, feed back event values to parent events.
4772  */
perf_event_exit_task(struct task_struct * child)4773 void perf_event_exit_task(struct task_struct *child)
4774 {
4775 	struct perf_event *child_event, *tmp;
4776 	struct perf_event_context *child_ctx;
4777 	unsigned long flags;
4778 
4779 	if (likely(!child->perf_event_ctxp)) {
4780 		perf_event_task(child, NULL, 0);
4781 		return;
4782 	}
4783 
4784 	local_irq_save(flags);
4785 	/*
4786 	 * We can't reschedule here because interrupts are disabled,
4787 	 * and either child is current or it is a task that can't be
4788 	 * scheduled, so we are now safe from rescheduling changing
4789 	 * our context.
4790 	 */
4791 	child_ctx = child->perf_event_ctxp;
4792 	__perf_event_task_sched_out(child_ctx);
4793 
4794 	/*
4795 	 * Take the context lock here so that if find_get_context is
4796 	 * reading child->perf_event_ctxp, we wait until it has
4797 	 * incremented the context's refcount before we do put_ctx below.
4798 	 */
4799 	spin_lock(&child_ctx->lock);
4800 	child->perf_event_ctxp = NULL;
4801 	/*
4802 	 * If this context is a clone; unclone it so it can't get
4803 	 * swapped to another process while we're removing all
4804 	 * the events from it.
4805 	 */
4806 	unclone_ctx(child_ctx);
4807 	spin_unlock_irqrestore(&child_ctx->lock, flags);
4808 
4809 	/*
4810 	 * Report the task dead after unscheduling the events so that we
4811 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
4812 	 * get a few PERF_RECORD_READ events.
4813 	 */
4814 	perf_event_task(child, child_ctx, 0);
4815 
4816 	/*
4817 	 * We can recurse on the same lock type through:
4818 	 *
4819 	 *   __perf_event_exit_task()
4820 	 *     sync_child_event()
4821 	 *       fput(parent_event->filp)
4822 	 *         perf_release()
4823 	 *           mutex_lock(&ctx->mutex)
4824 	 *
4825 	 * But since its the parent context it won't be the same instance.
4826 	 */
4827 	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4828 
4829 again:
4830 	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4831 				 group_entry)
4832 		__perf_event_exit_task(child_event, child_ctx, child);
4833 
4834 	/*
4835 	 * If the last event was a group event, it will have appended all
4836 	 * its siblings to the list, but we obtained 'tmp' before that which
4837 	 * will still point to the list head terminating the iteration.
4838 	 */
4839 	if (!list_empty(&child_ctx->group_list))
4840 		goto again;
4841 
4842 	mutex_unlock(&child_ctx->mutex);
4843 
4844 	put_ctx(child_ctx);
4845 }
4846 
4847 /*
4848  * free an unexposed, unused context as created by inheritance by
4849  * init_task below, used by fork() in case of fail.
4850  */
perf_event_free_task(struct task_struct * task)4851 void perf_event_free_task(struct task_struct *task)
4852 {
4853 	struct perf_event_context *ctx = task->perf_event_ctxp;
4854 	struct perf_event *event, *tmp;
4855 
4856 	if (!ctx)
4857 		return;
4858 
4859 	mutex_lock(&ctx->mutex);
4860 again:
4861 	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4862 		struct perf_event *parent = event->parent;
4863 
4864 		if (WARN_ON_ONCE(!parent))
4865 			continue;
4866 
4867 		mutex_lock(&parent->child_mutex);
4868 		list_del_init(&event->child_list);
4869 		mutex_unlock(&parent->child_mutex);
4870 
4871 		fput(parent->filp);
4872 
4873 		list_del_event(event, ctx);
4874 		free_event(event);
4875 	}
4876 
4877 	if (!list_empty(&ctx->group_list))
4878 		goto again;
4879 
4880 	mutex_unlock(&ctx->mutex);
4881 
4882 	put_ctx(ctx);
4883 }
4884 
4885 /*
4886  * Initialize the perf_event context in task_struct
4887  */
perf_event_init_task(struct task_struct * child)4888 int perf_event_init_task(struct task_struct *child)
4889 {
4890 	struct perf_event_context *child_ctx, *parent_ctx;
4891 	struct perf_event_context *cloned_ctx;
4892 	struct perf_event *event;
4893 	struct task_struct *parent = current;
4894 	int inherited_all = 1;
4895 	int ret = 0;
4896 
4897 	child->perf_event_ctxp = NULL;
4898 
4899 	mutex_init(&child->perf_event_mutex);
4900 	INIT_LIST_HEAD(&child->perf_event_list);
4901 
4902 	if (likely(!parent->perf_event_ctxp))
4903 		return 0;
4904 
4905 	/*
4906 	 * This is executed from the parent task context, so inherit
4907 	 * events that have been marked for cloning.
4908 	 * First allocate and initialize a context for the child.
4909 	 */
4910 
4911 	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4912 	if (!child_ctx)
4913 		return -ENOMEM;
4914 
4915 	__perf_event_init_context(child_ctx, child);
4916 	child->perf_event_ctxp = child_ctx;
4917 	get_task_struct(child);
4918 
4919 	/*
4920 	 * If the parent's context is a clone, pin it so it won't get
4921 	 * swapped under us.
4922 	 */
4923 	parent_ctx = perf_pin_task_context(parent);
4924 
4925 	/*
4926 	 * No need to check if parent_ctx != NULL here; since we saw
4927 	 * it non-NULL earlier, the only reason for it to become NULL
4928 	 * is if we exit, and since we're currently in the middle of
4929 	 * a fork we can't be exiting at the same time.
4930 	 */
4931 
4932 	/*
4933 	 * Lock the parent list. No need to lock the child - not PID
4934 	 * hashed yet and not running, so nobody can access it.
4935 	 */
4936 	mutex_lock(&parent_ctx->mutex);
4937 
4938 	/*
4939 	 * We dont have to disable NMIs - we are only looking at
4940 	 * the list, not manipulating it:
4941 	 */
4942 	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
4943 
4944 		if (!event->attr.inherit) {
4945 			inherited_all = 0;
4946 			continue;
4947 		}
4948 
4949 		ret = inherit_group(event, parent, parent_ctx,
4950 					     child, child_ctx);
4951 		if (ret) {
4952 			inherited_all = 0;
4953 			break;
4954 		}
4955 	}
4956 
4957 	if (inherited_all) {
4958 		/*
4959 		 * Mark the child context as a clone of the parent
4960 		 * context, or of whatever the parent is a clone of.
4961 		 * Note that if the parent is a clone, it could get
4962 		 * uncloned at any point, but that doesn't matter
4963 		 * because the list of events and the generation
4964 		 * count can't have changed since we took the mutex.
4965 		 */
4966 		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4967 		if (cloned_ctx) {
4968 			child_ctx->parent_ctx = cloned_ctx;
4969 			child_ctx->parent_gen = parent_ctx->parent_gen;
4970 		} else {
4971 			child_ctx->parent_ctx = parent_ctx;
4972 			child_ctx->parent_gen = parent_ctx->generation;
4973 		}
4974 		get_ctx(child_ctx->parent_ctx);
4975 	}
4976 
4977 	mutex_unlock(&parent_ctx->mutex);
4978 
4979 	perf_unpin_context(parent_ctx);
4980 
4981 	return ret;
4982 }
4983 
perf_event_init_all_cpus(void)4984 static void __init perf_event_init_all_cpus(void)
4985 {
4986 	int cpu;
4987 	struct perf_cpu_context *cpuctx;
4988 
4989 	for_each_possible_cpu(cpu) {
4990 		cpuctx = &per_cpu(perf_cpu_context, cpu);
4991 		__perf_event_init_context(&cpuctx->ctx, NULL);
4992 	}
4993 }
4994 
perf_event_init_cpu(int cpu)4995 static void __cpuinit perf_event_init_cpu(int cpu)
4996 {
4997 	struct perf_cpu_context *cpuctx;
4998 
4999 	cpuctx = &per_cpu(perf_cpu_context, cpu);
5000 
5001 	spin_lock(&perf_resource_lock);
5002 	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5003 	spin_unlock(&perf_resource_lock);
5004 
5005 	hw_perf_event_setup(cpu);
5006 }
5007 
5008 #ifdef CONFIG_HOTPLUG_CPU
__perf_event_exit_cpu(void * info)5009 static void __perf_event_exit_cpu(void *info)
5010 {
5011 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5012 	struct perf_event_context *ctx = &cpuctx->ctx;
5013 	struct perf_event *event, *tmp;
5014 
5015 	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5016 		__perf_event_remove_from_context(event);
5017 }
perf_event_exit_cpu(int cpu)5018 static void perf_event_exit_cpu(int cpu)
5019 {
5020 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5021 	struct perf_event_context *ctx = &cpuctx->ctx;
5022 
5023 	mutex_lock(&ctx->mutex);
5024 	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5025 	mutex_unlock(&ctx->mutex);
5026 }
5027 #else
perf_event_exit_cpu(int cpu)5028 static inline void perf_event_exit_cpu(int cpu) { }
5029 #endif
5030 
5031 static int __cpuinit
perf_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)5032 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5033 {
5034 	unsigned int cpu = (long)hcpu;
5035 
5036 	switch (action) {
5037 
5038 	case CPU_UP_PREPARE:
5039 	case CPU_UP_PREPARE_FROZEN:
5040 		perf_event_init_cpu(cpu);
5041 		break;
5042 
5043 	case CPU_ONLINE:
5044 	case CPU_ONLINE_FROZEN:
5045 		hw_perf_event_setup_online(cpu);
5046 		break;
5047 
5048 	case CPU_DOWN_PREPARE:
5049 	case CPU_DOWN_PREPARE_FROZEN:
5050 		perf_event_exit_cpu(cpu);
5051 		break;
5052 
5053 	default:
5054 		break;
5055 	}
5056 
5057 	return NOTIFY_OK;
5058 }
5059 
5060 /*
5061  * This has to have a higher priority than migration_notifier in sched.c.
5062  */
5063 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5064 	.notifier_call		= perf_cpu_notify,
5065 	.priority		= 20,
5066 };
5067 
perf_event_init(void)5068 void __init perf_event_init(void)
5069 {
5070 	perf_event_init_all_cpus();
5071 	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5072 			(void *)(long)smp_processor_id());
5073 	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5074 			(void *)(long)smp_processor_id());
5075 	register_cpu_notifier(&perf_cpu_nb);
5076 }
5077 
perf_show_reserve_percpu(struct sysdev_class * class,char * buf)5078 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5079 {
5080 	return sprintf(buf, "%d\n", perf_reserved_percpu);
5081 }
5082 
5083 static ssize_t
perf_set_reserve_percpu(struct sysdev_class * class,const char * buf,size_t count)5084 perf_set_reserve_percpu(struct sysdev_class *class,
5085 			const char *buf,
5086 			size_t count)
5087 {
5088 	struct perf_cpu_context *cpuctx;
5089 	unsigned long val;
5090 	int err, cpu, mpt;
5091 
5092 	err = strict_strtoul(buf, 10, &val);
5093 	if (err)
5094 		return err;
5095 	if (val > perf_max_events)
5096 		return -EINVAL;
5097 
5098 	spin_lock(&perf_resource_lock);
5099 	perf_reserved_percpu = val;
5100 	for_each_online_cpu(cpu) {
5101 		cpuctx = &per_cpu(perf_cpu_context, cpu);
5102 		spin_lock_irq(&cpuctx->ctx.lock);
5103 		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5104 			  perf_max_events - perf_reserved_percpu);
5105 		cpuctx->max_pertask = mpt;
5106 		spin_unlock_irq(&cpuctx->ctx.lock);
5107 	}
5108 	spin_unlock(&perf_resource_lock);
5109 
5110 	return count;
5111 }
5112 
perf_show_overcommit(struct sysdev_class * class,char * buf)5113 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5114 {
5115 	return sprintf(buf, "%d\n", perf_overcommit);
5116 }
5117 
5118 static ssize_t
perf_set_overcommit(struct sysdev_class * class,const char * buf,size_t count)5119 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5120 {
5121 	unsigned long val;
5122 	int err;
5123 
5124 	err = strict_strtoul(buf, 10, &val);
5125 	if (err)
5126 		return err;
5127 	if (val > 1)
5128 		return -EINVAL;
5129 
5130 	spin_lock(&perf_resource_lock);
5131 	perf_overcommit = val;
5132 	spin_unlock(&perf_resource_lock);
5133 
5134 	return count;
5135 }
5136 
5137 static SYSDEV_CLASS_ATTR(
5138 				reserve_percpu,
5139 				0644,
5140 				perf_show_reserve_percpu,
5141 				perf_set_reserve_percpu
5142 			);
5143 
5144 static SYSDEV_CLASS_ATTR(
5145 				overcommit,
5146 				0644,
5147 				perf_show_overcommit,
5148 				perf_set_overcommit
5149 			);
5150 
5151 static struct attribute *perfclass_attrs[] = {
5152 	&attr_reserve_percpu.attr,
5153 	&attr_overcommit.attr,
5154 	NULL
5155 };
5156 
5157 static struct attribute_group perfclass_attr_group = {
5158 	.attrs			= perfclass_attrs,
5159 	.name			= "perf_events",
5160 };
5161 
perf_event_sysfs_init(void)5162 static int __init perf_event_sysfs_init(void)
5163 {
5164 	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5165 				  &perfclass_attr_group);
5166 }
5167 device_initcall(perf_event_sysfs_init);
5168