1 /* Target dependent code for GDB on TI C6x systems.
2 
3    Copyright (C) 2010-2013 Free Software Foundation, Inc.
4    Contributed by Andrew Jenner <andrew@codesourcery.com>
5    Contributed by Yao Qi <yao@codesourcery.com>
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "gdb_assert.h"
48 #include "osabi.h"
49 #include "tic6x-tdep.h"
50 #include "language.h"
51 #include "target-descriptions.h"
52 
53 #include "features/tic6x-c64xp.c"
54 #include "features/tic6x-c64x.c"
55 #include "features/tic6x-c62x.c"
56 
57 #define TIC6X_OPCODE_SIZE 4
58 #define TIC6X_FETCH_PACKET_SIZE 32
59 
60 #define INST_S_BIT(INST) ((INST >> 1) & 1)
61 #define INST_X_BIT(INST) ((INST >> 12) & 1)
62 
63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
65 
66 struct tic6x_unwind_cache
67 {
68   /* The frame's base, optionally used by the high-level debug info.  */
69   CORE_ADDR base;
70 
71   /* The previous frame's inner most stack address.  Used as this
72      frame ID's stack_addr.  */
73   CORE_ADDR cfa;
74 
75   /* The address of the first instruction in this function */
76   CORE_ADDR pc;
77 
78   /* Which register holds the return address for the frame.  */
79   int return_regnum;
80 
81   /* The offset of register saved on stack.  If register is not saved, the
82      corresponding element is -1.  */
83   CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
84 };
85 
86 
87 /* Name of TI C6x core registers.  */
88 static const char *const tic6x_register_names[] =
89 {
90   "A0",  "A1",  "A2",  "A3",  /*  0  1  2  3 */
91   "A4",  "A5",  "A6",  "A7",  /*  4  5  6  7 */
92   "A8",  "A9",  "A10", "A11", /*  8  9 10 11 */
93   "A12", "A13", "A14", "A15", /* 12 13 14 15 */
94   "B0",  "B1",  "B2",  "B3",  /* 16 17 18 19 */
95   "B4",  "B5",  "B6",  "B7",  /* 20 21 22 23 */
96   "B8",  "B9",  "B10", "B11", /* 24 25 26 27 */
97   "B12", "B13", "B14", "B15", /* 28 29 30 31 */
98   "CSR", "PC",                /* 32 33       */
99 };
100 
101 /* This array maps the arguments to the register number which passes argument
102    in function call according to C6000 ELF ABI.  */
103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
104 
105 /* This is the implementation of gdbarch method register_name.  */
106 
107 static const char *
tic6x_register_name(struct gdbarch * gdbarch,int regno)108 tic6x_register_name (struct gdbarch *gdbarch, int regno)
109 {
110   if (regno < 0)
111     return NULL;
112 
113   if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
114     return tdesc_register_name (gdbarch, regno);
115   else if (regno >= ARRAY_SIZE (tic6x_register_names))
116     return "";
117   else
118     return tic6x_register_names[regno];
119 }
120 
121 /* This is the implementation of gdbarch method register_type.  */
122 
123 static struct type *
tic6x_register_type(struct gdbarch * gdbarch,int regno)124 tic6x_register_type (struct gdbarch *gdbarch, int regno)
125 {
126 
127   if (regno == TIC6X_PC_REGNUM)
128     return builtin_type (gdbarch)->builtin_func_ptr;
129   else
130     return builtin_type (gdbarch)->builtin_uint32;
131 }
132 
133 static void
tic6x_setup_default(struct tic6x_unwind_cache * cache)134 tic6x_setup_default (struct tic6x_unwind_cache *cache)
135 {
136   int i;
137 
138   for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
139     cache->reg_saved[i] = -1;
140 }
141 
142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
143 static int tic6x_register_number (int reg, int side, int crosspath);
144 
145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
146    Bail out early if CURRENT_PC is reached.  Returns the address of the first
147    instruction after the prologue.  */
148 
149 static CORE_ADDR
tic6x_analyze_prologue(struct gdbarch * gdbarch,const CORE_ADDR start_pc,const CORE_ADDR current_pc,struct tic6x_unwind_cache * cache,struct frame_info * this_frame)150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
151 			const CORE_ADDR current_pc,
152 			struct tic6x_unwind_cache *cache,
153 			struct frame_info *this_frame)
154 {
155   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
156   unsigned long inst;
157   unsigned int src_reg, base_reg, dst_reg;
158   int i;
159   CORE_ADDR pc = start_pc;
160   CORE_ADDR return_pc = start_pc;
161   int frame_base_offset_to_sp = 0;
162   /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'.  */
163   int non_stw_insn_counter = 0;
164 
165   if (start_pc >= current_pc)
166     return_pc = current_pc;
167 
168   cache->base = 0;
169 
170   /* The landmarks in prologue is one or two SUB instructions to SP.
171      Instructions on setting up dsbt are in the last part of prologue, if
172      needed.  In maxim, prologue can be divided to three parts by two
173      `sub sp, xx, sp' insns.  */
174 
175   /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp',  in which, the
176      2nd one is optional.  */
177   while (pc < current_pc)
178     {
179       int offset = 0;
180 
181       unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
182 
183       if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
184 	  || (inst & 0x0ffc) == 0x9c0)
185 	{
186 	  /* SUBAW/SUBAH/SUB, and src1 is ucst 5.  */
187 	  unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
188 						     INST_S_BIT (inst), 0);
189 	  unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
190 						    INST_S_BIT (inst), 0);
191 
192 	  if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
193 	    {
194 	      /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
195 		 offset.  The constant offset is decoded in bit 13-17 in all
196 		 these three kinds of instructions.  */
197 	      unsigned int ucst5 = (inst >> 13) & 0x1f;
198 
199 	      if ((inst & 0x1ffc) == 0x1dc0)	/* SUBAW */
200 		frame_base_offset_to_sp += ucst5 << 2;
201 	      else if ((inst & 0x1ffc) == 0x1bc0)	/* SUBAH */
202 		frame_base_offset_to_sp += ucst5 << 1;
203 	      else if ((inst & 0x0ffc) == 0x9c0)	/* SUB */
204 		frame_base_offset_to_sp += ucst5;
205 	      else
206 		gdb_assert_not_reached ("unexpected instruction");
207 
208 	      return_pc = pc + 4;
209 	    }
210 	}
211       else if ((inst & 0x174) == 0x74)	/* stw SRC, *+b15(uconst) */
212 	{
213 	  /* The y bit determines which file base is read from.  */
214 	  base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
215 					    (inst >> 7) & 1, 0);
216 
217 	  if (base_reg == TIC6X_SP_REGNUM)
218 	    {
219 	      src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
220 					       INST_S_BIT (inst), 0);
221 
222 	      cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
223 
224 	      return_pc = pc + 4;
225 	    }
226 	  non_stw_insn_counter = 0;
227 	}
228       else
229 	{
230 	  non_stw_insn_counter++;
231 	  /* Following instruction sequence may be emitted in prologue:
232 
233 	     <+0>: subah .D2 b15,28,b15
234 	     <+4>: or .L2X 0,a4,b0
235 	     <+8>: || stw .D2T2 b14,*+b15(56)
236 	     <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
237 	     <+16>:|| stw .D2T1 a10,*+b15(48)
238 	     <+20>:stw .D2T2 b3,*+b15(52)
239 	     <+24>:stw .D2T1 a4,*+b15(40)
240 
241 	     we should look forward for next instruction instead of breaking loop
242 	     here.  So far, we allow almost two sequential non-stw instructions
243 	     in prologue.  */
244 	  if (non_stw_insn_counter >= 2)
245 	    break;
246 	}
247 
248 
249       pc += 4;
250     }
251   /* Step 2: Skip insn on setting up dsbt if it is.  Usually, it looks like,
252      ldw .D2T2 *+b14(0),b14 */
253   inst = tic6x_fetch_instruction (gdbarch, pc);
254   /* The s bit determines which file dst will be loaded into, same effect as
255      other places.  */
256   dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
257   /* The y bit (bit 7), instead of s bit, determines which file base be
258      used.  */
259   base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
260 
261   if ((inst & 0x164) == 0x64	/* ldw */
262       && dst_reg == TIC6X_DP_REGNUM	/* dst is B14 */
263       && base_reg == TIC6X_DP_REGNUM)	/* baseR is B14 */
264     {
265       return_pc = pc + 4;
266     }
267 
268   if (this_frame)
269     {
270       cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
271 
272       if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
273 	{
274 	  /* If the FP now holds an offset from the CFA then this is a frame
275 	     which uses the frame pointer.  */
276 
277 	  cache->cfa = get_frame_register_unsigned (this_frame,
278 						    TIC6X_FP_REGNUM);
279 	}
280       else
281 	{
282 	  /* FP doesn't hold an offset from the CFA.  If SP still holds an
283 	     offset from the CFA then we might be in a function which omits
284 	     the frame pointer.  */
285 
286 	  cache->cfa = cache->base + frame_base_offset_to_sp;
287 	}
288     }
289 
290   /* Adjust all the saved registers such that they contain addresses
291      instead of offsets.  */
292   for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
293     if (cache->reg_saved[i] != -1)
294       cache->reg_saved[i] = cache->base + cache->reg_saved[i];
295 
296   return return_pc;
297 }
298 
299 /* This is the implementation of gdbarch method skip_prologue.  */
300 
301 static CORE_ADDR
tic6x_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR start_pc)302 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
303 {
304   CORE_ADDR func_addr;
305   struct tic6x_unwind_cache cache;
306 
307   /* See if we can determine the end of the prologue via the symbol table.
308      If so, then return either PC, or the PC after the prologue, whichever is
309      greater.  */
310   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
311     {
312       CORE_ADDR post_prologue_pc
313 	= skip_prologue_using_sal (gdbarch, func_addr);
314       if (post_prologue_pc != 0)
315 	return max (start_pc, post_prologue_pc);
316     }
317 
318   /* Can't determine prologue from the symbol table, need to examine
319      instructions.  */
320   return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
321 				 NULL);
322 }
323 
324 /* This is the implementation of gdbarch method breakpiont_from_pc.  */
325 
326 static const unsigned char*
tic6x_breakpoint_from_pc(struct gdbarch * gdbarch,CORE_ADDR * bp_addr,int * bp_size)327 tic6x_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
328 			  int *bp_size)
329 {
330   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 
332   *bp_size = 4;
333 
334   if (tdep == NULL || tdep->breakpoint == NULL)
335     {
336       if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
337 	return tic6x_bkpt_illegal_opcode_be;
338       else
339 	return tic6x_bkpt_illegal_opcode_le;
340     }
341   else
342     return tdep->breakpoint;
343 }
344 
345 /* This is the implementation of gdbarch method print_insn.  */
346 
347 static int
tic6x_print_insn(bfd_vma memaddr,disassemble_info * info)348 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
349 {
350   return print_insn_tic6x (memaddr, info);
351 }
352 
353 static void
tic6x_dwarf2_frame_init_reg(struct gdbarch * gdbarch,int regnum,struct dwarf2_frame_state_reg * reg,struct frame_info * this_frame)354 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
355 			     struct dwarf2_frame_state_reg *reg,
356 			     struct frame_info *this_frame)
357 {
358   /* Mark the PC as the destination for the return address.  */
359   if (regnum == gdbarch_pc_regnum (gdbarch))
360     reg->how = DWARF2_FRAME_REG_RA;
361 
362   /* Mark the stack pointer as the call frame address.  */
363   else if (regnum == gdbarch_sp_regnum (gdbarch))
364     reg->how = DWARF2_FRAME_REG_CFA;
365 
366   /* The above was taken from the default init_reg in dwarf2-frame.c
367      while the below is c6x specific.  */
368 
369   /* Callee save registers.  The ABI designates A10-A15 and B10-B15 as
370      callee-save.  */
371   else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
372     reg->how = DWARF2_FRAME_REG_SAME_VALUE;
373   else
374     /* All other registers are caller-save.  */
375     reg->how = DWARF2_FRAME_REG_UNDEFINED;
376 }
377 
378 /* This is the implementation of gdbarch method unwind_pc.  */
379 
380 static CORE_ADDR
tic6x_unwind_pc(struct gdbarch * gdbarch,struct frame_info * next_frame)381 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
382 {
383   gdb_byte buf[8];
384 
385   frame_unwind_register (next_frame,  TIC6X_PC_REGNUM, buf);
386   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
387 }
388 
389 /* This is the implementation of gdbarch method unwind_sp.  */
390 
391 static CORE_ADDR
tic6x_unwind_sp(struct gdbarch * gdbarch,struct frame_info * this_frame)392 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
393 {
394   return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
395 }
396 
397 
398 /* Frame base handling.  */
399 
400 static struct tic6x_unwind_cache*
tic6x_frame_unwind_cache(struct frame_info * this_frame,void ** this_prologue_cache)401 tic6x_frame_unwind_cache (struct frame_info *this_frame,
402 			  void **this_prologue_cache)
403 {
404   struct gdbarch *gdbarch = get_frame_arch (this_frame);
405   CORE_ADDR current_pc;
406   struct tic6x_unwind_cache *cache;
407 
408   if (*this_prologue_cache)
409     return *this_prologue_cache;
410 
411   cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
412   (*this_prologue_cache) = cache;
413 
414   cache->return_regnum = TIC6X_RA_REGNUM;
415 
416   tic6x_setup_default (cache);
417 
418   cache->pc = get_frame_func (this_frame);
419   current_pc = get_frame_pc (this_frame);
420 
421   /* Prologue analysis does the rest...  */
422   if (cache->pc != 0)
423     tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
424 
425   return cache;
426 }
427 
428 static void
tic6x_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)429 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
430 		     struct frame_id *this_id)
431 {
432   struct tic6x_unwind_cache *cache =
433     tic6x_frame_unwind_cache (this_frame, this_cache);
434 
435   /* This marks the outermost frame.  */
436   if (cache->base == 0)
437     return;
438 
439   (*this_id) = frame_id_build (cache->cfa, cache->pc);
440 }
441 
442 static struct value *
tic6x_frame_prev_register(struct frame_info * this_frame,void ** this_cache,int regnum)443 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
444 			   int regnum)
445 {
446   struct tic6x_unwind_cache *cache =
447     tic6x_frame_unwind_cache (this_frame, this_cache);
448 
449   gdb_assert (regnum >= 0);
450 
451   /* The PC of the previous frame is stored in the RA register of
452      the current frame.  Frob regnum so that we pull the value from
453      the correct place.  */
454   if (regnum == TIC6X_PC_REGNUM)
455     regnum = cache->return_regnum;
456 
457   if (regnum == TIC6X_SP_REGNUM && cache->cfa)
458     return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
459 
460   /* If we've worked out where a register is stored then load it from
461      there.  */
462   if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
463     return frame_unwind_got_memory (this_frame, regnum,
464 				    cache->reg_saved[regnum]);
465 
466   return frame_unwind_got_register (this_frame, regnum, regnum);
467 }
468 
469 static CORE_ADDR
tic6x_frame_base_address(struct frame_info * this_frame,void ** this_cache)470 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
471 {
472   struct tic6x_unwind_cache *info
473     = tic6x_frame_unwind_cache (this_frame, this_cache);
474   return info->base;
475 }
476 
477 static const struct frame_unwind tic6x_frame_unwind =
478 {
479   NORMAL_FRAME,
480   default_frame_unwind_stop_reason,
481   tic6x_frame_this_id,
482   tic6x_frame_prev_register,
483   NULL,
484   default_frame_sniffer
485 };
486 
487 static const struct frame_base tic6x_frame_base =
488 {
489   &tic6x_frame_unwind,
490   tic6x_frame_base_address,
491   tic6x_frame_base_address,
492   tic6x_frame_base_address
493 };
494 
495 
496 static struct tic6x_unwind_cache *
tic6x_make_stub_cache(struct frame_info * this_frame)497 tic6x_make_stub_cache (struct frame_info *this_frame)
498 {
499   struct tic6x_unwind_cache *cache;
500 
501   cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
502 
503   cache->return_regnum = TIC6X_RA_REGNUM;
504 
505   tic6x_setup_default (cache);
506 
507   cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
508 
509   return cache;
510 }
511 
512 static void
tic6x_stub_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)513 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
514 		    struct frame_id *this_id)
515 {
516   struct tic6x_unwind_cache *cache;
517 
518   if (*this_cache == NULL)
519     *this_cache = tic6x_make_stub_cache (this_frame);
520   cache = *this_cache;
521 
522   *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
523 }
524 
525 static int
tic6x_stub_unwind_sniffer(const struct frame_unwind * self,struct frame_info * this_frame,void ** this_prologue_cache)526 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
527 			   struct frame_info *this_frame,
528 			   void **this_prologue_cache)
529 {
530   CORE_ADDR addr_in_block;
531 
532   addr_in_block = get_frame_address_in_block (this_frame);
533   if (in_plt_section (addr_in_block, NULL))
534     return 1;
535 
536   return 0;
537 }
538 
539 static const struct frame_unwind tic6x_stub_unwind =
540 {
541   NORMAL_FRAME,
542   default_frame_unwind_stop_reason,
543   tic6x_stub_this_id,
544   tic6x_frame_prev_register,
545   NULL,
546   tic6x_stub_unwind_sniffer
547 };
548 
549 /* Return the instruction on address PC.  */
550 
551 static unsigned long
tic6x_fetch_instruction(struct gdbarch * gdbarch,CORE_ADDR pc)552 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
553 {
554   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
555   return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
556 }
557 
558 /* Compute the condition of INST if it is a conditional instruction.  Always
559    return 1 if INST is not a conditional instruction.  */
560 
561 static int
tic6x_condition_true(struct frame_info * frame,unsigned long inst)562 tic6x_condition_true (struct frame_info *frame, unsigned long inst)
563 {
564   int register_number;
565   int register_value;
566   static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
567 
568   register_number = register_numbers[(inst >> 29) & 7];
569   if (register_number == -1)
570     return 1;
571 
572   register_value = get_frame_register_signed (frame, register_number);
573   if ((inst & 0x10000000) != 0)
574     return register_value == 0;
575   return register_value != 0;
576 }
577 
578 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
579    instruction.  */
580 
581 static int
tic6x_register_number(int reg,int side,int crosspath)582 tic6x_register_number (int reg, int side, int crosspath)
583 {
584   int r = (reg & 15) | ((crosspath ^ side) << 4);
585   if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
586     r += 37;
587   return r;
588 }
589 
590 static int
tic6x_extract_signed_field(int value,int low_bit,int bits)591 tic6x_extract_signed_field (int value, int low_bit, int bits)
592 {
593   int mask = (1 << bits) - 1;
594   int r = (value >> low_bit) & mask;
595   if ((r & (1 << (bits - 1))) != 0)
596     r -= mask + 1;
597   return r;
598 }
599 
600 /* Determine where to set a single step breakpoint.  */
601 
602 static CORE_ADDR
tic6x_get_next_pc(struct frame_info * frame,CORE_ADDR pc)603 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
604 {
605   struct gdbarch *gdbarch = get_frame_arch (frame);
606   unsigned long inst;
607   int register_number;
608   int last = 0;
609 
610   do
611     {
612       inst = tic6x_fetch_instruction (gdbarch, pc);
613 
614       last = !(inst & 1);
615 
616       if (inst == TIC6X_INST_SWE)
617 	{
618 	  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
619 
620 	  if (tdep->syscall_next_pc != NULL)
621 	    return tdep->syscall_next_pc (frame);
622 	}
623 
624       if (tic6x_condition_true (frame, inst))
625 	{
626 	  if ((inst & 0x0000007c) == 0x00000010)
627 	    {
628 	      /* B with displacement */
629 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
630 	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
631 	      break;
632 	    }
633 	  if ((inst & 0x0f83effc) == 0x00000360)
634 	    {
635 	      /* B with register */
636 
637 	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
638 						       INST_S_BIT (inst),
639 						       INST_X_BIT (inst));
640 	      pc = get_frame_register_unsigned (frame, register_number);
641 	      break;
642 	    }
643 	  if ((inst & 0x00001ffc) == 0x00001020)
644 	    {
645 	      /* BDEC */
646 	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
647 						       INST_S_BIT (inst), 0);
648 	      if (get_frame_register_signed (frame, register_number) >= 0)
649 		{
650 		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
651 		  pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
652 		}
653 	      break;
654 	    }
655 	  if ((inst & 0x00001ffc) == 0x00000120)
656 	    {
657 	      /* BNOP with displacement */
658 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
659 	      pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
660 	      break;
661 	    }
662 	  if ((inst & 0x0f830ffe) == 0x00800362)
663 	    {
664 	      /* BNOP with register */
665 	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
666 						       1, INST_X_BIT (inst));
667 	      pc = get_frame_register_unsigned (frame, register_number);
668 	      break;
669 	    }
670 	  if ((inst & 0x00001ffc) == 0x00000020)
671 	    {
672 	      /* BPOS */
673 	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
674 						       INST_S_BIT (inst), 0);
675 	      if (get_frame_register_signed (frame, register_number) >= 0)
676 		{
677 		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
678 		  pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
679 		}
680 	      break;
681 	    }
682 	  if ((inst & 0xf000007c) == 0x10000010)
683 	    {
684 	      /* CALLP */
685 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
686 	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
687 	      break;
688 	    }
689 	}
690       pc += TIC6X_OPCODE_SIZE;
691     }
692   while (!last);
693   return pc;
694 }
695 
696 /* This is the implementation of gdbarch method software_single_step.  */
697 
698 static int
tic6x_software_single_step(struct frame_info * frame)699 tic6x_software_single_step (struct frame_info *frame)
700 {
701   struct gdbarch *gdbarch = get_frame_arch (frame);
702   struct address_space *aspace = get_frame_address_space (frame);
703   CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame));
704 
705   insert_single_step_breakpoint (gdbarch, aspace, next_pc);
706 
707   return 1;
708 }
709 
710 /* This is the implementation of gdbarch method frame_align.  */
711 
712 static CORE_ADDR
tic6x_frame_align(struct gdbarch * gdbarch,CORE_ADDR addr)713 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
714 {
715   return align_down (addr, 8);
716 }
717 
718 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
719    value into VALBUF.  */
720 
721 static void
tic6x_extract_return_value(struct type * valtype,struct regcache * regcache,enum bfd_endian byte_order,gdb_byte * valbuf)722 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
723 			    enum bfd_endian byte_order, gdb_byte *valbuf)
724 {
725   int len = TYPE_LENGTH (valtype);
726 
727   /* pointer types are returned in register A4,
728      up to 32-bit types in A4
729      up to 64-bit types in A5:A4  */
730   if (len <= 4)
731     {
732       /* In big-endian,
733 	 - one-byte structure or union occupies the LSB of single even register.
734 	 - for two-byte structure or union, the first byte occupies byte 1 of
735 	 register and the second byte occupies byte 0.
736 	 so, we read the contents in VAL from the LSBs of register.  */
737       if (len < 3 && byte_order == BFD_ENDIAN_BIG)
738 	regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
739 				   valbuf);
740       else
741 	regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
742     }
743   else if (len <= 8)
744     {
745       /* For a 5-8 byte structure or union in big-endian, the first byte
746 	 occupies byte 3 (the MSB) of the upper (odd) register and the
747 	 remaining bytes fill the decreasingly significant bytes.  5-7
748 	 byte structures or unions have padding in the LSBs of the
749 	 lower (even) register.  */
750       if (byte_order == BFD_ENDIAN_BIG)
751 	{
752 	  regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
753 	  regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
754 	}
755       else
756 	{
757 	  regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
758 	  regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
759 	}
760     }
761 }
762 
763 /* Write into appropriate registers a function return value
764    of type TYPE, given in virtual format.  */
765 
766 static void
tic6x_store_return_value(struct type * valtype,struct regcache * regcache,enum bfd_endian byte_order,const gdb_byte * valbuf)767 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
768 			  enum bfd_endian byte_order, const gdb_byte *valbuf)
769 {
770   int len = TYPE_LENGTH (valtype);
771 
772   /* return values of up to 8 bytes are returned in A5:A4 */
773 
774   if (len <= 4)
775     {
776       if (len < 3 && byte_order == BFD_ENDIAN_BIG)
777 	regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
778 				    valbuf);
779       else
780 	regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
781     }
782   else if (len <= 8)
783     {
784       if (byte_order == BFD_ENDIAN_BIG)
785 	{
786 	  regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
787 	  regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
788 	}
789       else
790 	{
791 	  regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
792 	  regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
793 	}
794     }
795 }
796 
797 /* This is the implementation of gdbarch method return_value.  */
798 
799 static enum return_value_convention
tic6x_return_value(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)800 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
801 		    struct type *type, struct regcache *regcache,
802 		    gdb_byte *readbuf, const gdb_byte *writebuf)
803 {
804   /* In C++, when function returns an object, even its size is small
805      enough, it stii has to be passed via reference, pointed by register
806      A3.  */
807   if (current_language->la_language == language_cplus)
808     {
809       if (type != NULL)
810 	{
811 	  CHECK_TYPEDEF (type);
812 	  if (language_pass_by_reference (type))
813 	    return RETURN_VALUE_STRUCT_CONVENTION;
814 	}
815     }
816 
817   if (TYPE_LENGTH (type) > 8)
818     return RETURN_VALUE_STRUCT_CONVENTION;
819 
820   if (readbuf)
821     tic6x_extract_return_value (type, regcache,
822 				gdbarch_byte_order (gdbarch), readbuf);
823   if (writebuf)
824     tic6x_store_return_value (type, regcache,
825 			      gdbarch_byte_order (gdbarch), writebuf);
826 
827   return RETURN_VALUE_REGISTER_CONVENTION;
828 }
829 
830 /* This is the implementation of gdbarch method dummy_id.  */
831 
832 static struct frame_id
tic6x_dummy_id(struct gdbarch * gdbarch,struct frame_info * this_frame)833 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
834 {
835   return frame_id_build
836     (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
837      get_frame_pc (this_frame));
838 }
839 
840 /* Get the alignment requirement of TYPE.  */
841 
842 static int
tic6x_arg_type_alignment(struct type * type)843 tic6x_arg_type_alignment (struct type *type)
844 {
845   int len = TYPE_LENGTH (check_typedef (type));
846   enum type_code typecode = TYPE_CODE (check_typedef (type));
847 
848   if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
849     {
850       /* The stack alignment of a structure (and union) passed by value is the
851 	 smallest power of two greater than or equal to its size.
852 	 This cannot exceed 8 bytes, which is the largest allowable size for
853 	 a structure passed by value.  */
854 
855       if (len <= 2)
856 	return len;
857       else if (len <= 4)
858 	return 4;
859       else if (len <= 8)
860 	return 8;
861       else
862 	gdb_assert_not_reached ("unexpected length of data");
863     }
864   else
865     {
866       if (len <= 4)
867 	return 4;
868       else if (len == 8)
869 	{
870 	  if (typecode == TYPE_CODE_COMPLEX)
871 	    return 4;
872 	  else
873 	    return 8;
874 	}
875       else if (len == 16)
876 	{
877 	  if (typecode == TYPE_CODE_COMPLEX)
878 	    return 8;
879 	  else
880 	    return 16;
881 	}
882       else
883 	internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
884 			len);
885     }
886 }
887 
888 /* This is the implementation of gdbarch method push_dummy_call.  */
889 
890 static CORE_ADDR
tic6x_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)891 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
892 		       struct regcache *regcache, CORE_ADDR bp_addr,
893 		       int nargs, struct value **args, CORE_ADDR sp,
894 		       int struct_return, CORE_ADDR struct_addr)
895 {
896   int argreg = 0;
897   int argnum;
898   int stack_offset = 4;
899   int references_offset = 4;
900   CORE_ADDR func_addr = find_function_addr (function, NULL);
901   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
902   struct type *func_type = value_type (function);
903   /* The first arg passed on stack.  Mostly the first 10 args are passed by
904      registers.  */
905   int first_arg_on_stack = 10;
906 
907   /* Set the return address register to point to the entry point of
908      the program, where a breakpoint lies in wait.  */
909   regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
910 
911   /* The caller must pass an argument in A3 containing a destination address
912      for the returned value.  The callee returns the object by copying it to
913      the address in A3.  */
914   if (struct_return)
915     regcache_cooked_write_unsigned (regcache, 3, struct_addr);
916 
917   /* Determine the type of this function.  */
918   func_type = check_typedef (func_type);
919   if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
920     func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
921 
922   gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
923 	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
924 
925   /* For a variadic C function, the last explicitly declared argument and all
926      remaining arguments are passed on the stack.  */
927   if (TYPE_VARARGS (func_type))
928     first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
929 
930   /* Now make space on the stack for the args.  */
931   for (argnum = 0; argnum < nargs; argnum++)
932     {
933       int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
934       if (argnum >= 10 - argreg)
935 	references_offset += len;
936       stack_offset += len;
937     }
938   sp -= stack_offset;
939   /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
940      Stack Alignment.  */
941   sp = align_down (sp, 8);
942   stack_offset = 4;
943 
944   /* Now load as many as possible of the first arguments into
945      registers, and push the rest onto the stack.  Loop through args
946      from first to last.  */
947   for (argnum = 0; argnum < nargs; argnum++)
948     {
949       const gdb_byte *val;
950       struct value *arg = args[argnum];
951       struct type *arg_type = check_typedef (value_type (arg));
952       int len = TYPE_LENGTH (arg_type);
953       enum type_code typecode = TYPE_CODE (arg_type);
954 
955       val = value_contents (arg);
956 
957       /* Copy the argument to general registers or the stack in
958          register-sized pieces.  */
959       if (argreg < first_arg_on_stack)
960 	{
961 	  if (len <= 4)
962 	    {
963 	      if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
964 		{
965 		  /* In big-endian,
966 		     - one-byte structure or union occupies the LSB of single
967 		     even register.
968 		     - for two-byte structure or union, the first byte
969 		     occupies byte 1 of register and the second byte occupies
970 		     byte 0.
971 		     so, we write the contents in VAL to the lsp of
972 		     register.  */
973 		  if (len < 3 && byte_order == BFD_ENDIAN_BIG)
974 		    regcache_cooked_write_part (regcache, arg_regs[argreg],
975 						4 - len, len, val);
976 		  else
977 		    regcache_cooked_write (regcache, arg_regs[argreg], val);
978 		}
979 	      else
980 		{
981 		  /* The argument is being passed by value in a single
982 		     register.  */
983 		  CORE_ADDR regval = extract_unsigned_integer (val, len,
984 							       byte_order);
985 
986 		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
987 						  regval);
988 		}
989 	    }
990 	  else
991 	    {
992 	      if (len <= 8)
993 		{
994 		  if (typecode == TYPE_CODE_STRUCT
995 		      || typecode == TYPE_CODE_UNION)
996 		    {
997 		      /* For a 5-8 byte structure or union in big-endian, the
998 		         first byte occupies byte 3 (the MSB) of the upper (odd)
999 		         register and the remaining bytes fill the decreasingly
1000 		         significant bytes.  5-7 byte structures or unions have
1001 		         padding in the LSBs of the lower (even) register.  */
1002 		      if (byte_order == BFD_ENDIAN_BIG)
1003 			{
1004 			  regcache_cooked_write (regcache,
1005 						 arg_regs[argreg] + 1, val);
1006 			  regcache_cooked_write_part (regcache,
1007 						      arg_regs[argreg], 0,
1008 						      len - 4, val + 4);
1009 			}
1010 		      else
1011 			{
1012 			  regcache_cooked_write (regcache, arg_regs[argreg],
1013 						 val);
1014 			  regcache_cooked_write_part (regcache,
1015 						      arg_regs[argreg] + 1, 0,
1016 						      len - 4, val + 4);
1017 			}
1018 		    }
1019 		  else
1020 		    {
1021 		      /* The argument is being passed by value in a pair of
1022 		         registers.  */
1023 		      ULONGEST regval = extract_unsigned_integer (val, len,
1024 								  byte_order);
1025 
1026 		      regcache_cooked_write_unsigned (regcache,
1027 						      arg_regs[argreg],
1028 						      regval);
1029 		      regcache_cooked_write_unsigned (regcache,
1030 						      arg_regs[argreg] + 1,
1031 						      regval >> 32);
1032 		    }
1033 		}
1034 	      else
1035 		{
1036 		  /* The argument is being passed by reference in a single
1037 		     register.  */
1038 		  CORE_ADDR addr;
1039 
1040 		  /* It is not necessary to adjust REFERENCES_OFFSET to
1041 		     8-byte aligned in some cases, in which 4-byte alignment
1042 		     is sufficient.  For simplicity, we adjust
1043 		     REFERENCES_OFFSET to 8-byte aligned.  */
1044 		  references_offset = align_up (references_offset, 8);
1045 
1046 		  addr = sp + references_offset;
1047 		  write_memory (addr, val, len);
1048 		  references_offset += align_up (len, 4);
1049 		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1050 						  addr);
1051 		}
1052 	    }
1053 	  argreg++;
1054 	}
1055       else
1056 	{
1057 	  /* The argument is being passed on the stack.  */
1058 	  CORE_ADDR addr;
1059 
1060 	  /* There are six different cases of alignment, and these rules can
1061 	     be found in tic6x_arg_type_alignment:
1062 
1063 	     1) 4-byte aligned if size is less than or equal to 4 byte, such
1064 	     as short, int, struct, union etc.
1065 	     2) 8-byte aligned if size is less than or equal to 8-byte, such
1066 	     as double, long long,
1067 	     3) 4-byte aligned if it is of type _Complex float, even its size
1068 	     is 8-byte.
1069 	     4) 8-byte aligned if it is of type _Complex double or _Complex
1070 	     long double, even its size is 16-byte.  Because, the address of
1071 	     variable is passed as reference.
1072 	     5) struct and union larger than 8-byte are passed by reference, so
1073 	     it is 4-byte aligned.
1074 	     6) struct and union of size between 4 byte and 8 byte varies.
1075 	     alignment of struct variable is the alignment of its first field,
1076 	     while alignment of union variable is the max of all its fields'
1077 	     alignment.  */
1078 
1079 	  if (len <= 4)
1080 	    ; /* Default is 4-byte aligned.  Nothing to be done.  */
1081 	  else if (len <= 8)
1082 	    stack_offset = align_up (stack_offset,
1083 				     tic6x_arg_type_alignment (arg_type));
1084 	  else if (len == 16)
1085 	    {
1086 	      /* _Complex double or _Complex long double */
1087 	      if (typecode == TYPE_CODE_COMPLEX)
1088 		{
1089 		  /* The argument is being passed by reference on stack.  */
1090 		  CORE_ADDR addr;
1091 		  references_offset = align_up (references_offset, 8);
1092 
1093 		  addr = sp + references_offset;
1094 		  /* Store variable on stack.  */
1095 		  write_memory (addr, val, len);
1096 
1097 		  references_offset += align_up (len, 4);
1098 
1099 		  /* Pass the address of variable on stack as reference.  */
1100 		  store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1101 					  addr);
1102 		  len = 4;
1103 
1104 		}
1105 	      else
1106 		internal_error (__FILE__, __LINE__,
1107 				_("unexpected type %d of arg %d"),
1108 				typecode, argnum);
1109 	    }
1110 	  else
1111 	    internal_error (__FILE__, __LINE__,
1112 			    _("unexpected length %d of arg %d"), len, argnum);
1113 
1114 	  addr = sp + stack_offset;
1115 	  write_memory (addr, val, len);
1116 	  stack_offset += align_up (len, 4);
1117 	}
1118     }
1119 
1120   regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1121 
1122   /* Return adjusted stack pointer.  */
1123   return sp;
1124 }
1125 
1126 /* This is the implementation of gdbarch method in_function_epilogue_p.  */
1127 
1128 static int
tic6x_in_function_epilogue_p(struct gdbarch * gdbarch,CORE_ADDR pc)1129 tic6x_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1130 {
1131   unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1132   /* Normally, the epilogue is composed by instruction `b .S2 b3'.  */
1133   if ((inst & 0x0f83effc) == 0x360)
1134     {
1135       unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1136 						 INST_S_BIT (inst),
1137 						 INST_X_BIT (inst));
1138       if (src2 == TIC6X_RA_REGNUM)
1139 	return 1;
1140     }
1141 
1142   return 0;
1143 }
1144 
1145 /* This is the implementation of gdbarch method get_longjmp_target.  */
1146 
1147 static int
tic6x_get_longjmp_target(struct frame_info * frame,CORE_ADDR * pc)1148 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1149 {
1150   struct gdbarch *gdbarch = get_frame_arch (frame);
1151   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1152   CORE_ADDR jb_addr;
1153   gdb_byte buf[4];
1154 
1155   /* JMP_BUF is passed by reference in A4.  */
1156   jb_addr = get_frame_register_unsigned (frame, 4);
1157 
1158   /* JMP_BUF contains 13 elements of type int, and return address is stored
1159      in the last slot.  */
1160   if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1161     return 0;
1162 
1163   *pc = extract_unsigned_integer (buf, 4, byte_order);
1164 
1165   return 1;
1166 }
1167 
1168 /* This is the implementation of gdbarch method
1169    return_in_first_hidden_param_p.  */
1170 
1171 static int
tic6x_return_in_first_hidden_param_p(struct gdbarch * gdbarch,struct type * type)1172 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1173 				      struct type *type)
1174 {
1175   return 0;
1176 }
1177 
1178 static struct gdbarch *
tic6x_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)1179 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1180 {
1181   struct gdbarch *gdbarch;
1182   struct gdbarch_tdep *tdep;
1183   struct tdesc_arch_data *tdesc_data = NULL;
1184   const struct target_desc *tdesc = info.target_desc;
1185   int has_gp = 0;
1186 
1187   /* Check any target description for validity.  */
1188   if (tdesc_has_registers (tdesc))
1189     {
1190       const struct tdesc_feature *feature;
1191       int valid_p, i;
1192 
1193       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1194 
1195       if (feature == NULL)
1196 	return NULL;
1197 
1198       tdesc_data = tdesc_data_alloc ();
1199 
1200       valid_p = 1;
1201       for (i = 0; i < 32; i++)	/* A0 - A15, B0 - B15 */
1202 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1203 					    tic6x_register_names[i]);
1204 
1205       /* CSR */
1206       valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1207 					  tic6x_register_names[TIC6X_CSR_REGNUM]);
1208       valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1209 					  tic6x_register_names[TIC6X_PC_REGNUM]);
1210 
1211       if (!valid_p)
1212 	{
1213 	  tdesc_data_cleanup (tdesc_data);
1214 	  return NULL;
1215 	}
1216 
1217       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1218       if (feature)
1219 	{
1220 	  int j = 0;
1221 	  static const char *const gp[] =
1222 	    {
1223 	      "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1224 	      "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1225 	      "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1226 	      "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1227 	    };
1228 
1229 	  has_gp = 1;
1230 	  valid_p = 1;
1231 	  for (j = 0; j < 32; j++)	/* A16 - A31, B16 - B31 */
1232 	    valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1233 						gp[j]);
1234 
1235 	  if (!valid_p)
1236 	    {
1237 	      tdesc_data_cleanup (tdesc_data);
1238 	      return NULL;
1239 	    }
1240 	}
1241 
1242       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1243       if (feature)
1244 	{
1245 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1246 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1247 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1248 
1249 	  if (!valid_p)
1250 	    {
1251 	      tdesc_data_cleanup (tdesc_data);
1252 	      return NULL;
1253 	    }
1254 	}
1255 
1256     }
1257 
1258   /* Find a candidate among extant architectures.  */
1259   for (arches = gdbarch_list_lookup_by_info (arches, &info);
1260        arches != NULL;
1261        arches = gdbarch_list_lookup_by_info (arches->next, &info))
1262     {
1263       tdep = gdbarch_tdep (arches->gdbarch);
1264 
1265       if (has_gp != tdep->has_gp)
1266 	continue;
1267 
1268       if (tdep && tdep->breakpoint)
1269 	return arches->gdbarch;
1270     }
1271 
1272   tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
1273 
1274   tdep->has_gp = has_gp;
1275   gdbarch = gdbarch_alloc (&info, tdep);
1276 
1277   /* Data type sizes.  */
1278   set_gdbarch_ptr_bit (gdbarch, 32);
1279   set_gdbarch_addr_bit (gdbarch, 32);
1280   set_gdbarch_short_bit (gdbarch, 16);
1281   set_gdbarch_int_bit (gdbarch, 32);
1282   set_gdbarch_long_bit (gdbarch, 32);
1283   set_gdbarch_long_long_bit (gdbarch, 64);
1284   set_gdbarch_float_bit (gdbarch, 32);
1285   set_gdbarch_double_bit (gdbarch, 64);
1286 
1287   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1288   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1289 
1290   /* The register set.  */
1291   set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1292   set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1293   set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1294 
1295   set_gdbarch_register_name (gdbarch, tic6x_register_name);
1296   set_gdbarch_register_type (gdbarch, tic6x_register_type);
1297 
1298   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1299 
1300   set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1301   set_gdbarch_breakpoint_from_pc (gdbarch, tic6x_breakpoint_from_pc);
1302 
1303   set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1304   set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1305 
1306   /* Unwinding.  */
1307   dwarf2_append_unwinders (gdbarch);
1308 
1309   frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1310   frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1311 
1312   dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1313 
1314   /* Single stepping.  */
1315   set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1316 
1317   set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1318 
1319   /* Call dummy code.  */
1320   set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1321 
1322   set_gdbarch_return_value (gdbarch, tic6x_return_value);
1323 
1324   set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1325 
1326   /* Enable inferior call support.  */
1327   set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1328 
1329   set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1330 
1331   set_gdbarch_in_function_epilogue_p (gdbarch, tic6x_in_function_epilogue_p);
1332 
1333   set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1334 					      tic6x_return_in_first_hidden_param_p);
1335 
1336   /* Hook in ABI-specific overrides, if they have been registered.  */
1337   gdbarch_init_osabi (info, gdbarch);
1338 
1339   if (tdesc_data)
1340     tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1341 
1342   return gdbarch;
1343 }
1344 
1345 /* -Wmissing-prototypes */
1346 extern initialize_file_ftype _initialize_tic6x_tdep;
1347 
1348 void
_initialize_tic6x_tdep(void)1349 _initialize_tic6x_tdep (void)
1350 {
1351   register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1352 
1353   initialize_tdesc_tic6x_c64xp ();
1354   initialize_tdesc_tic6x_c64x ();
1355   initialize_tdesc_tic6x_c62x ();
1356 }
1357