1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2013 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "gdb_assert.h"
48 #include "osabi.h"
49 #include "tic6x-tdep.h"
50 #include "language.h"
51 #include "target-descriptions.h"
52
53 #include "features/tic6x-c64xp.c"
54 #include "features/tic6x-c64x.c"
55 #include "features/tic6x-c62x.c"
56
57 #define TIC6X_OPCODE_SIZE 4
58 #define TIC6X_FETCH_PACKET_SIZE 32
59
60 #define INST_S_BIT(INST) ((INST >> 1) & 1)
61 #define INST_X_BIT(INST) ((INST >> 12) & 1)
62
63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
65
66 struct tic6x_unwind_cache
67 {
68 /* The frame's base, optionally used by the high-level debug info. */
69 CORE_ADDR base;
70
71 /* The previous frame's inner most stack address. Used as this
72 frame ID's stack_addr. */
73 CORE_ADDR cfa;
74
75 /* The address of the first instruction in this function */
76 CORE_ADDR pc;
77
78 /* Which register holds the return address for the frame. */
79 int return_regnum;
80
81 /* The offset of register saved on stack. If register is not saved, the
82 corresponding element is -1. */
83 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
84 };
85
86
87 /* Name of TI C6x core registers. */
88 static const char *const tic6x_register_names[] =
89 {
90 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
91 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
92 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
93 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
94 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
95 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
96 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
97 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
98 "CSR", "PC", /* 32 33 */
99 };
100
101 /* This array maps the arguments to the register number which passes argument
102 in function call according to C6000 ELF ABI. */
103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
104
105 /* This is the implementation of gdbarch method register_name. */
106
107 static const char *
tic6x_register_name(struct gdbarch * gdbarch,int regno)108 tic6x_register_name (struct gdbarch *gdbarch, int regno)
109 {
110 if (regno < 0)
111 return NULL;
112
113 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
114 return tdesc_register_name (gdbarch, regno);
115 else if (regno >= ARRAY_SIZE (tic6x_register_names))
116 return "";
117 else
118 return tic6x_register_names[regno];
119 }
120
121 /* This is the implementation of gdbarch method register_type. */
122
123 static struct type *
tic6x_register_type(struct gdbarch * gdbarch,int regno)124 tic6x_register_type (struct gdbarch *gdbarch, int regno)
125 {
126
127 if (regno == TIC6X_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129 else
130 return builtin_type (gdbarch)->builtin_uint32;
131 }
132
133 static void
tic6x_setup_default(struct tic6x_unwind_cache * cache)134 tic6x_setup_default (struct tic6x_unwind_cache *cache)
135 {
136 int i;
137
138 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
139 cache->reg_saved[i] = -1;
140 }
141
142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
143 static int tic6x_register_number (int reg, int side, int crosspath);
144
145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
146 Bail out early if CURRENT_PC is reached. Returns the address of the first
147 instruction after the prologue. */
148
149 static CORE_ADDR
tic6x_analyze_prologue(struct gdbarch * gdbarch,const CORE_ADDR start_pc,const CORE_ADDR current_pc,struct tic6x_unwind_cache * cache,struct frame_info * this_frame)150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
151 const CORE_ADDR current_pc,
152 struct tic6x_unwind_cache *cache,
153 struct frame_info *this_frame)
154 {
155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
156 unsigned long inst;
157 unsigned int src_reg, base_reg, dst_reg;
158 int i;
159 CORE_ADDR pc = start_pc;
160 CORE_ADDR return_pc = start_pc;
161 int frame_base_offset_to_sp = 0;
162 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
163 int non_stw_insn_counter = 0;
164
165 if (start_pc >= current_pc)
166 return_pc = current_pc;
167
168 cache->base = 0;
169
170 /* The landmarks in prologue is one or two SUB instructions to SP.
171 Instructions on setting up dsbt are in the last part of prologue, if
172 needed. In maxim, prologue can be divided to three parts by two
173 `sub sp, xx, sp' insns. */
174
175 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
176 2nd one is optional. */
177 while (pc < current_pc)
178 {
179 int offset = 0;
180
181 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
182
183 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
184 || (inst & 0x0ffc) == 0x9c0)
185 {
186 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
187 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
188 INST_S_BIT (inst), 0);
189 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
190 INST_S_BIT (inst), 0);
191
192 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
193 {
194 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
195 offset. The constant offset is decoded in bit 13-17 in all
196 these three kinds of instructions. */
197 unsigned int ucst5 = (inst >> 13) & 0x1f;
198
199 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
200 frame_base_offset_to_sp += ucst5 << 2;
201 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
202 frame_base_offset_to_sp += ucst5 << 1;
203 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
204 frame_base_offset_to_sp += ucst5;
205 else
206 gdb_assert_not_reached ("unexpected instruction");
207
208 return_pc = pc + 4;
209 }
210 }
211 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
212 {
213 /* The y bit determines which file base is read from. */
214 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
215 (inst >> 7) & 1, 0);
216
217 if (base_reg == TIC6X_SP_REGNUM)
218 {
219 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
220 INST_S_BIT (inst), 0);
221
222 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
223
224 return_pc = pc + 4;
225 }
226 non_stw_insn_counter = 0;
227 }
228 else
229 {
230 non_stw_insn_counter++;
231 /* Following instruction sequence may be emitted in prologue:
232
233 <+0>: subah .D2 b15,28,b15
234 <+4>: or .L2X 0,a4,b0
235 <+8>: || stw .D2T2 b14,*+b15(56)
236 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
237 <+16>:|| stw .D2T1 a10,*+b15(48)
238 <+20>:stw .D2T2 b3,*+b15(52)
239 <+24>:stw .D2T1 a4,*+b15(40)
240
241 we should look forward for next instruction instead of breaking loop
242 here. So far, we allow almost two sequential non-stw instructions
243 in prologue. */
244 if (non_stw_insn_counter >= 2)
245 break;
246 }
247
248
249 pc += 4;
250 }
251 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
252 ldw .D2T2 *+b14(0),b14 */
253 inst = tic6x_fetch_instruction (gdbarch, pc);
254 /* The s bit determines which file dst will be loaded into, same effect as
255 other places. */
256 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
257 /* The y bit (bit 7), instead of s bit, determines which file base be
258 used. */
259 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
260
261 if ((inst & 0x164) == 0x64 /* ldw */
262 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
263 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
264 {
265 return_pc = pc + 4;
266 }
267
268 if (this_frame)
269 {
270 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
271
272 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
273 {
274 /* If the FP now holds an offset from the CFA then this is a frame
275 which uses the frame pointer. */
276
277 cache->cfa = get_frame_register_unsigned (this_frame,
278 TIC6X_FP_REGNUM);
279 }
280 else
281 {
282 /* FP doesn't hold an offset from the CFA. If SP still holds an
283 offset from the CFA then we might be in a function which omits
284 the frame pointer. */
285
286 cache->cfa = cache->base + frame_base_offset_to_sp;
287 }
288 }
289
290 /* Adjust all the saved registers such that they contain addresses
291 instead of offsets. */
292 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
293 if (cache->reg_saved[i] != -1)
294 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
295
296 return return_pc;
297 }
298
299 /* This is the implementation of gdbarch method skip_prologue. */
300
301 static CORE_ADDR
tic6x_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR start_pc)302 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
303 {
304 CORE_ADDR func_addr;
305 struct tic6x_unwind_cache cache;
306
307 /* See if we can determine the end of the prologue via the symbol table.
308 If so, then return either PC, or the PC after the prologue, whichever is
309 greater. */
310 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
311 {
312 CORE_ADDR post_prologue_pc
313 = skip_prologue_using_sal (gdbarch, func_addr);
314 if (post_prologue_pc != 0)
315 return max (start_pc, post_prologue_pc);
316 }
317
318 /* Can't determine prologue from the symbol table, need to examine
319 instructions. */
320 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
321 NULL);
322 }
323
324 /* This is the implementation of gdbarch method breakpiont_from_pc. */
325
326 static const unsigned char*
tic6x_breakpoint_from_pc(struct gdbarch * gdbarch,CORE_ADDR * bp_addr,int * bp_size)327 tic6x_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
328 int *bp_size)
329 {
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331
332 *bp_size = 4;
333
334 if (tdep == NULL || tdep->breakpoint == NULL)
335 {
336 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
337 return tic6x_bkpt_illegal_opcode_be;
338 else
339 return tic6x_bkpt_illegal_opcode_le;
340 }
341 else
342 return tdep->breakpoint;
343 }
344
345 /* This is the implementation of gdbarch method print_insn. */
346
347 static int
tic6x_print_insn(bfd_vma memaddr,disassemble_info * info)348 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
349 {
350 return print_insn_tic6x (memaddr, info);
351 }
352
353 static void
tic6x_dwarf2_frame_init_reg(struct gdbarch * gdbarch,int regnum,struct dwarf2_frame_state_reg * reg,struct frame_info * this_frame)354 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
355 struct dwarf2_frame_state_reg *reg,
356 struct frame_info *this_frame)
357 {
358 /* Mark the PC as the destination for the return address. */
359 if (regnum == gdbarch_pc_regnum (gdbarch))
360 reg->how = DWARF2_FRAME_REG_RA;
361
362 /* Mark the stack pointer as the call frame address. */
363 else if (regnum == gdbarch_sp_regnum (gdbarch))
364 reg->how = DWARF2_FRAME_REG_CFA;
365
366 /* The above was taken from the default init_reg in dwarf2-frame.c
367 while the below is c6x specific. */
368
369 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
370 callee-save. */
371 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
372 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
373 else
374 /* All other registers are caller-save. */
375 reg->how = DWARF2_FRAME_REG_UNDEFINED;
376 }
377
378 /* This is the implementation of gdbarch method unwind_pc. */
379
380 static CORE_ADDR
tic6x_unwind_pc(struct gdbarch * gdbarch,struct frame_info * next_frame)381 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
382 {
383 gdb_byte buf[8];
384
385 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
386 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
387 }
388
389 /* This is the implementation of gdbarch method unwind_sp. */
390
391 static CORE_ADDR
tic6x_unwind_sp(struct gdbarch * gdbarch,struct frame_info * this_frame)392 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
393 {
394 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
395 }
396
397
398 /* Frame base handling. */
399
400 static struct tic6x_unwind_cache*
tic6x_frame_unwind_cache(struct frame_info * this_frame,void ** this_prologue_cache)401 tic6x_frame_unwind_cache (struct frame_info *this_frame,
402 void **this_prologue_cache)
403 {
404 struct gdbarch *gdbarch = get_frame_arch (this_frame);
405 CORE_ADDR current_pc;
406 struct tic6x_unwind_cache *cache;
407
408 if (*this_prologue_cache)
409 return *this_prologue_cache;
410
411 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
412 (*this_prologue_cache) = cache;
413
414 cache->return_regnum = TIC6X_RA_REGNUM;
415
416 tic6x_setup_default (cache);
417
418 cache->pc = get_frame_func (this_frame);
419 current_pc = get_frame_pc (this_frame);
420
421 /* Prologue analysis does the rest... */
422 if (cache->pc != 0)
423 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
424
425 return cache;
426 }
427
428 static void
tic6x_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)429 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
430 struct frame_id *this_id)
431 {
432 struct tic6x_unwind_cache *cache =
433 tic6x_frame_unwind_cache (this_frame, this_cache);
434
435 /* This marks the outermost frame. */
436 if (cache->base == 0)
437 return;
438
439 (*this_id) = frame_id_build (cache->cfa, cache->pc);
440 }
441
442 static struct value *
tic6x_frame_prev_register(struct frame_info * this_frame,void ** this_cache,int regnum)443 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
444 int regnum)
445 {
446 struct tic6x_unwind_cache *cache =
447 tic6x_frame_unwind_cache (this_frame, this_cache);
448
449 gdb_assert (regnum >= 0);
450
451 /* The PC of the previous frame is stored in the RA register of
452 the current frame. Frob regnum so that we pull the value from
453 the correct place. */
454 if (regnum == TIC6X_PC_REGNUM)
455 regnum = cache->return_regnum;
456
457 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
458 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
459
460 /* If we've worked out where a register is stored then load it from
461 there. */
462 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
463 return frame_unwind_got_memory (this_frame, regnum,
464 cache->reg_saved[regnum]);
465
466 return frame_unwind_got_register (this_frame, regnum, regnum);
467 }
468
469 static CORE_ADDR
tic6x_frame_base_address(struct frame_info * this_frame,void ** this_cache)470 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
471 {
472 struct tic6x_unwind_cache *info
473 = tic6x_frame_unwind_cache (this_frame, this_cache);
474 return info->base;
475 }
476
477 static const struct frame_unwind tic6x_frame_unwind =
478 {
479 NORMAL_FRAME,
480 default_frame_unwind_stop_reason,
481 tic6x_frame_this_id,
482 tic6x_frame_prev_register,
483 NULL,
484 default_frame_sniffer
485 };
486
487 static const struct frame_base tic6x_frame_base =
488 {
489 &tic6x_frame_unwind,
490 tic6x_frame_base_address,
491 tic6x_frame_base_address,
492 tic6x_frame_base_address
493 };
494
495
496 static struct tic6x_unwind_cache *
tic6x_make_stub_cache(struct frame_info * this_frame)497 tic6x_make_stub_cache (struct frame_info *this_frame)
498 {
499 struct tic6x_unwind_cache *cache;
500
501 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
502
503 cache->return_regnum = TIC6X_RA_REGNUM;
504
505 tic6x_setup_default (cache);
506
507 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
508
509 return cache;
510 }
511
512 static void
tic6x_stub_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)513 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
514 struct frame_id *this_id)
515 {
516 struct tic6x_unwind_cache *cache;
517
518 if (*this_cache == NULL)
519 *this_cache = tic6x_make_stub_cache (this_frame);
520 cache = *this_cache;
521
522 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
523 }
524
525 static int
tic6x_stub_unwind_sniffer(const struct frame_unwind * self,struct frame_info * this_frame,void ** this_prologue_cache)526 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
527 struct frame_info *this_frame,
528 void **this_prologue_cache)
529 {
530 CORE_ADDR addr_in_block;
531
532 addr_in_block = get_frame_address_in_block (this_frame);
533 if (in_plt_section (addr_in_block, NULL))
534 return 1;
535
536 return 0;
537 }
538
539 static const struct frame_unwind tic6x_stub_unwind =
540 {
541 NORMAL_FRAME,
542 default_frame_unwind_stop_reason,
543 tic6x_stub_this_id,
544 tic6x_frame_prev_register,
545 NULL,
546 tic6x_stub_unwind_sniffer
547 };
548
549 /* Return the instruction on address PC. */
550
551 static unsigned long
tic6x_fetch_instruction(struct gdbarch * gdbarch,CORE_ADDR pc)552 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
553 {
554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
555 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
556 }
557
558 /* Compute the condition of INST if it is a conditional instruction. Always
559 return 1 if INST is not a conditional instruction. */
560
561 static int
tic6x_condition_true(struct frame_info * frame,unsigned long inst)562 tic6x_condition_true (struct frame_info *frame, unsigned long inst)
563 {
564 int register_number;
565 int register_value;
566 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
567
568 register_number = register_numbers[(inst >> 29) & 7];
569 if (register_number == -1)
570 return 1;
571
572 register_value = get_frame_register_signed (frame, register_number);
573 if ((inst & 0x10000000) != 0)
574 return register_value == 0;
575 return register_value != 0;
576 }
577
578 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
579 instruction. */
580
581 static int
tic6x_register_number(int reg,int side,int crosspath)582 tic6x_register_number (int reg, int side, int crosspath)
583 {
584 int r = (reg & 15) | ((crosspath ^ side) << 4);
585 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
586 r += 37;
587 return r;
588 }
589
590 static int
tic6x_extract_signed_field(int value,int low_bit,int bits)591 tic6x_extract_signed_field (int value, int low_bit, int bits)
592 {
593 int mask = (1 << bits) - 1;
594 int r = (value >> low_bit) & mask;
595 if ((r & (1 << (bits - 1))) != 0)
596 r -= mask + 1;
597 return r;
598 }
599
600 /* Determine where to set a single step breakpoint. */
601
602 static CORE_ADDR
tic6x_get_next_pc(struct frame_info * frame,CORE_ADDR pc)603 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
604 {
605 struct gdbarch *gdbarch = get_frame_arch (frame);
606 unsigned long inst;
607 int register_number;
608 int last = 0;
609
610 do
611 {
612 inst = tic6x_fetch_instruction (gdbarch, pc);
613
614 last = !(inst & 1);
615
616 if (inst == TIC6X_INST_SWE)
617 {
618 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
619
620 if (tdep->syscall_next_pc != NULL)
621 return tdep->syscall_next_pc (frame);
622 }
623
624 if (tic6x_condition_true (frame, inst))
625 {
626 if ((inst & 0x0000007c) == 0x00000010)
627 {
628 /* B with displacement */
629 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
630 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
631 break;
632 }
633 if ((inst & 0x0f83effc) == 0x00000360)
634 {
635 /* B with register */
636
637 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
638 INST_S_BIT (inst),
639 INST_X_BIT (inst));
640 pc = get_frame_register_unsigned (frame, register_number);
641 break;
642 }
643 if ((inst & 0x00001ffc) == 0x00001020)
644 {
645 /* BDEC */
646 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
647 INST_S_BIT (inst), 0);
648 if (get_frame_register_signed (frame, register_number) >= 0)
649 {
650 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
651 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
652 }
653 break;
654 }
655 if ((inst & 0x00001ffc) == 0x00000120)
656 {
657 /* BNOP with displacement */
658 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
659 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
660 break;
661 }
662 if ((inst & 0x0f830ffe) == 0x00800362)
663 {
664 /* BNOP with register */
665 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
666 1, INST_X_BIT (inst));
667 pc = get_frame_register_unsigned (frame, register_number);
668 break;
669 }
670 if ((inst & 0x00001ffc) == 0x00000020)
671 {
672 /* BPOS */
673 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
674 INST_S_BIT (inst), 0);
675 if (get_frame_register_signed (frame, register_number) >= 0)
676 {
677 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
678 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
679 }
680 break;
681 }
682 if ((inst & 0xf000007c) == 0x10000010)
683 {
684 /* CALLP */
685 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
686 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
687 break;
688 }
689 }
690 pc += TIC6X_OPCODE_SIZE;
691 }
692 while (!last);
693 return pc;
694 }
695
696 /* This is the implementation of gdbarch method software_single_step. */
697
698 static int
tic6x_software_single_step(struct frame_info * frame)699 tic6x_software_single_step (struct frame_info *frame)
700 {
701 struct gdbarch *gdbarch = get_frame_arch (frame);
702 struct address_space *aspace = get_frame_address_space (frame);
703 CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame));
704
705 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
706
707 return 1;
708 }
709
710 /* This is the implementation of gdbarch method frame_align. */
711
712 static CORE_ADDR
tic6x_frame_align(struct gdbarch * gdbarch,CORE_ADDR addr)713 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
714 {
715 return align_down (addr, 8);
716 }
717
718 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
719 value into VALBUF. */
720
721 static void
tic6x_extract_return_value(struct type * valtype,struct regcache * regcache,enum bfd_endian byte_order,gdb_byte * valbuf)722 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
723 enum bfd_endian byte_order, gdb_byte *valbuf)
724 {
725 int len = TYPE_LENGTH (valtype);
726
727 /* pointer types are returned in register A4,
728 up to 32-bit types in A4
729 up to 64-bit types in A5:A4 */
730 if (len <= 4)
731 {
732 /* In big-endian,
733 - one-byte structure or union occupies the LSB of single even register.
734 - for two-byte structure or union, the first byte occupies byte 1 of
735 register and the second byte occupies byte 0.
736 so, we read the contents in VAL from the LSBs of register. */
737 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
738 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
739 valbuf);
740 else
741 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
742 }
743 else if (len <= 8)
744 {
745 /* For a 5-8 byte structure or union in big-endian, the first byte
746 occupies byte 3 (the MSB) of the upper (odd) register and the
747 remaining bytes fill the decreasingly significant bytes. 5-7
748 byte structures or unions have padding in the LSBs of the
749 lower (even) register. */
750 if (byte_order == BFD_ENDIAN_BIG)
751 {
752 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
753 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
754 }
755 else
756 {
757 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
758 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
759 }
760 }
761 }
762
763 /* Write into appropriate registers a function return value
764 of type TYPE, given in virtual format. */
765
766 static void
tic6x_store_return_value(struct type * valtype,struct regcache * regcache,enum bfd_endian byte_order,const gdb_byte * valbuf)767 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
768 enum bfd_endian byte_order, const gdb_byte *valbuf)
769 {
770 int len = TYPE_LENGTH (valtype);
771
772 /* return values of up to 8 bytes are returned in A5:A4 */
773
774 if (len <= 4)
775 {
776 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
777 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
778 valbuf);
779 else
780 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
781 }
782 else if (len <= 8)
783 {
784 if (byte_order == BFD_ENDIAN_BIG)
785 {
786 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
787 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
788 }
789 else
790 {
791 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
792 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
793 }
794 }
795 }
796
797 /* This is the implementation of gdbarch method return_value. */
798
799 static enum return_value_convention
tic6x_return_value(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)800 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
801 struct type *type, struct regcache *regcache,
802 gdb_byte *readbuf, const gdb_byte *writebuf)
803 {
804 /* In C++, when function returns an object, even its size is small
805 enough, it stii has to be passed via reference, pointed by register
806 A3. */
807 if (current_language->la_language == language_cplus)
808 {
809 if (type != NULL)
810 {
811 CHECK_TYPEDEF (type);
812 if (language_pass_by_reference (type))
813 return RETURN_VALUE_STRUCT_CONVENTION;
814 }
815 }
816
817 if (TYPE_LENGTH (type) > 8)
818 return RETURN_VALUE_STRUCT_CONVENTION;
819
820 if (readbuf)
821 tic6x_extract_return_value (type, regcache,
822 gdbarch_byte_order (gdbarch), readbuf);
823 if (writebuf)
824 tic6x_store_return_value (type, regcache,
825 gdbarch_byte_order (gdbarch), writebuf);
826
827 return RETURN_VALUE_REGISTER_CONVENTION;
828 }
829
830 /* This is the implementation of gdbarch method dummy_id. */
831
832 static struct frame_id
tic6x_dummy_id(struct gdbarch * gdbarch,struct frame_info * this_frame)833 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
834 {
835 return frame_id_build
836 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
837 get_frame_pc (this_frame));
838 }
839
840 /* Get the alignment requirement of TYPE. */
841
842 static int
tic6x_arg_type_alignment(struct type * type)843 tic6x_arg_type_alignment (struct type *type)
844 {
845 int len = TYPE_LENGTH (check_typedef (type));
846 enum type_code typecode = TYPE_CODE (check_typedef (type));
847
848 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
849 {
850 /* The stack alignment of a structure (and union) passed by value is the
851 smallest power of two greater than or equal to its size.
852 This cannot exceed 8 bytes, which is the largest allowable size for
853 a structure passed by value. */
854
855 if (len <= 2)
856 return len;
857 else if (len <= 4)
858 return 4;
859 else if (len <= 8)
860 return 8;
861 else
862 gdb_assert_not_reached ("unexpected length of data");
863 }
864 else
865 {
866 if (len <= 4)
867 return 4;
868 else if (len == 8)
869 {
870 if (typecode == TYPE_CODE_COMPLEX)
871 return 4;
872 else
873 return 8;
874 }
875 else if (len == 16)
876 {
877 if (typecode == TYPE_CODE_COMPLEX)
878 return 8;
879 else
880 return 16;
881 }
882 else
883 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
884 len);
885 }
886 }
887
888 /* This is the implementation of gdbarch method push_dummy_call. */
889
890 static CORE_ADDR
tic6x_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)891 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
892 struct regcache *regcache, CORE_ADDR bp_addr,
893 int nargs, struct value **args, CORE_ADDR sp,
894 int struct_return, CORE_ADDR struct_addr)
895 {
896 int argreg = 0;
897 int argnum;
898 int stack_offset = 4;
899 int references_offset = 4;
900 CORE_ADDR func_addr = find_function_addr (function, NULL);
901 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
902 struct type *func_type = value_type (function);
903 /* The first arg passed on stack. Mostly the first 10 args are passed by
904 registers. */
905 int first_arg_on_stack = 10;
906
907 /* Set the return address register to point to the entry point of
908 the program, where a breakpoint lies in wait. */
909 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
910
911 /* The caller must pass an argument in A3 containing a destination address
912 for the returned value. The callee returns the object by copying it to
913 the address in A3. */
914 if (struct_return)
915 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
916
917 /* Determine the type of this function. */
918 func_type = check_typedef (func_type);
919 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
920 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
921
922 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
923 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
924
925 /* For a variadic C function, the last explicitly declared argument and all
926 remaining arguments are passed on the stack. */
927 if (TYPE_VARARGS (func_type))
928 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
929
930 /* Now make space on the stack for the args. */
931 for (argnum = 0; argnum < nargs; argnum++)
932 {
933 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
934 if (argnum >= 10 - argreg)
935 references_offset += len;
936 stack_offset += len;
937 }
938 sp -= stack_offset;
939 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
940 Stack Alignment. */
941 sp = align_down (sp, 8);
942 stack_offset = 4;
943
944 /* Now load as many as possible of the first arguments into
945 registers, and push the rest onto the stack. Loop through args
946 from first to last. */
947 for (argnum = 0; argnum < nargs; argnum++)
948 {
949 const gdb_byte *val;
950 struct value *arg = args[argnum];
951 struct type *arg_type = check_typedef (value_type (arg));
952 int len = TYPE_LENGTH (arg_type);
953 enum type_code typecode = TYPE_CODE (arg_type);
954
955 val = value_contents (arg);
956
957 /* Copy the argument to general registers or the stack in
958 register-sized pieces. */
959 if (argreg < first_arg_on_stack)
960 {
961 if (len <= 4)
962 {
963 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
964 {
965 /* In big-endian,
966 - one-byte structure or union occupies the LSB of single
967 even register.
968 - for two-byte structure or union, the first byte
969 occupies byte 1 of register and the second byte occupies
970 byte 0.
971 so, we write the contents in VAL to the lsp of
972 register. */
973 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
974 regcache_cooked_write_part (regcache, arg_regs[argreg],
975 4 - len, len, val);
976 else
977 regcache_cooked_write (regcache, arg_regs[argreg], val);
978 }
979 else
980 {
981 /* The argument is being passed by value in a single
982 register. */
983 CORE_ADDR regval = extract_unsigned_integer (val, len,
984 byte_order);
985
986 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
987 regval);
988 }
989 }
990 else
991 {
992 if (len <= 8)
993 {
994 if (typecode == TYPE_CODE_STRUCT
995 || typecode == TYPE_CODE_UNION)
996 {
997 /* For a 5-8 byte structure or union in big-endian, the
998 first byte occupies byte 3 (the MSB) of the upper (odd)
999 register and the remaining bytes fill the decreasingly
1000 significant bytes. 5-7 byte structures or unions have
1001 padding in the LSBs of the lower (even) register. */
1002 if (byte_order == BFD_ENDIAN_BIG)
1003 {
1004 regcache_cooked_write (regcache,
1005 arg_regs[argreg] + 1, val);
1006 regcache_cooked_write_part (regcache,
1007 arg_regs[argreg], 0,
1008 len - 4, val + 4);
1009 }
1010 else
1011 {
1012 regcache_cooked_write (regcache, arg_regs[argreg],
1013 val);
1014 regcache_cooked_write_part (regcache,
1015 arg_regs[argreg] + 1, 0,
1016 len - 4, val + 4);
1017 }
1018 }
1019 else
1020 {
1021 /* The argument is being passed by value in a pair of
1022 registers. */
1023 ULONGEST regval = extract_unsigned_integer (val, len,
1024 byte_order);
1025
1026 regcache_cooked_write_unsigned (regcache,
1027 arg_regs[argreg],
1028 regval);
1029 regcache_cooked_write_unsigned (regcache,
1030 arg_regs[argreg] + 1,
1031 regval >> 32);
1032 }
1033 }
1034 else
1035 {
1036 /* The argument is being passed by reference in a single
1037 register. */
1038 CORE_ADDR addr;
1039
1040 /* It is not necessary to adjust REFERENCES_OFFSET to
1041 8-byte aligned in some cases, in which 4-byte alignment
1042 is sufficient. For simplicity, we adjust
1043 REFERENCES_OFFSET to 8-byte aligned. */
1044 references_offset = align_up (references_offset, 8);
1045
1046 addr = sp + references_offset;
1047 write_memory (addr, val, len);
1048 references_offset += align_up (len, 4);
1049 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1050 addr);
1051 }
1052 }
1053 argreg++;
1054 }
1055 else
1056 {
1057 /* The argument is being passed on the stack. */
1058 CORE_ADDR addr;
1059
1060 /* There are six different cases of alignment, and these rules can
1061 be found in tic6x_arg_type_alignment:
1062
1063 1) 4-byte aligned if size is less than or equal to 4 byte, such
1064 as short, int, struct, union etc.
1065 2) 8-byte aligned if size is less than or equal to 8-byte, such
1066 as double, long long,
1067 3) 4-byte aligned if it is of type _Complex float, even its size
1068 is 8-byte.
1069 4) 8-byte aligned if it is of type _Complex double or _Complex
1070 long double, even its size is 16-byte. Because, the address of
1071 variable is passed as reference.
1072 5) struct and union larger than 8-byte are passed by reference, so
1073 it is 4-byte aligned.
1074 6) struct and union of size between 4 byte and 8 byte varies.
1075 alignment of struct variable is the alignment of its first field,
1076 while alignment of union variable is the max of all its fields'
1077 alignment. */
1078
1079 if (len <= 4)
1080 ; /* Default is 4-byte aligned. Nothing to be done. */
1081 else if (len <= 8)
1082 stack_offset = align_up (stack_offset,
1083 tic6x_arg_type_alignment (arg_type));
1084 else if (len == 16)
1085 {
1086 /* _Complex double or _Complex long double */
1087 if (typecode == TYPE_CODE_COMPLEX)
1088 {
1089 /* The argument is being passed by reference on stack. */
1090 CORE_ADDR addr;
1091 references_offset = align_up (references_offset, 8);
1092
1093 addr = sp + references_offset;
1094 /* Store variable on stack. */
1095 write_memory (addr, val, len);
1096
1097 references_offset += align_up (len, 4);
1098
1099 /* Pass the address of variable on stack as reference. */
1100 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1101 addr);
1102 len = 4;
1103
1104 }
1105 else
1106 internal_error (__FILE__, __LINE__,
1107 _("unexpected type %d of arg %d"),
1108 typecode, argnum);
1109 }
1110 else
1111 internal_error (__FILE__, __LINE__,
1112 _("unexpected length %d of arg %d"), len, argnum);
1113
1114 addr = sp + stack_offset;
1115 write_memory (addr, val, len);
1116 stack_offset += align_up (len, 4);
1117 }
1118 }
1119
1120 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1121
1122 /* Return adjusted stack pointer. */
1123 return sp;
1124 }
1125
1126 /* This is the implementation of gdbarch method in_function_epilogue_p. */
1127
1128 static int
tic6x_in_function_epilogue_p(struct gdbarch * gdbarch,CORE_ADDR pc)1129 tic6x_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1130 {
1131 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1132 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1133 if ((inst & 0x0f83effc) == 0x360)
1134 {
1135 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1136 INST_S_BIT (inst),
1137 INST_X_BIT (inst));
1138 if (src2 == TIC6X_RA_REGNUM)
1139 return 1;
1140 }
1141
1142 return 0;
1143 }
1144
1145 /* This is the implementation of gdbarch method get_longjmp_target. */
1146
1147 static int
tic6x_get_longjmp_target(struct frame_info * frame,CORE_ADDR * pc)1148 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1149 {
1150 struct gdbarch *gdbarch = get_frame_arch (frame);
1151 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1152 CORE_ADDR jb_addr;
1153 gdb_byte buf[4];
1154
1155 /* JMP_BUF is passed by reference in A4. */
1156 jb_addr = get_frame_register_unsigned (frame, 4);
1157
1158 /* JMP_BUF contains 13 elements of type int, and return address is stored
1159 in the last slot. */
1160 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1161 return 0;
1162
1163 *pc = extract_unsigned_integer (buf, 4, byte_order);
1164
1165 return 1;
1166 }
1167
1168 /* This is the implementation of gdbarch method
1169 return_in_first_hidden_param_p. */
1170
1171 static int
tic6x_return_in_first_hidden_param_p(struct gdbarch * gdbarch,struct type * type)1172 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1173 struct type *type)
1174 {
1175 return 0;
1176 }
1177
1178 static struct gdbarch *
tic6x_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)1179 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1180 {
1181 struct gdbarch *gdbarch;
1182 struct gdbarch_tdep *tdep;
1183 struct tdesc_arch_data *tdesc_data = NULL;
1184 const struct target_desc *tdesc = info.target_desc;
1185 int has_gp = 0;
1186
1187 /* Check any target description for validity. */
1188 if (tdesc_has_registers (tdesc))
1189 {
1190 const struct tdesc_feature *feature;
1191 int valid_p, i;
1192
1193 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1194
1195 if (feature == NULL)
1196 return NULL;
1197
1198 tdesc_data = tdesc_data_alloc ();
1199
1200 valid_p = 1;
1201 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1202 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1203 tic6x_register_names[i]);
1204
1205 /* CSR */
1206 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1207 tic6x_register_names[TIC6X_CSR_REGNUM]);
1208 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1209 tic6x_register_names[TIC6X_PC_REGNUM]);
1210
1211 if (!valid_p)
1212 {
1213 tdesc_data_cleanup (tdesc_data);
1214 return NULL;
1215 }
1216
1217 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1218 if (feature)
1219 {
1220 int j = 0;
1221 static const char *const gp[] =
1222 {
1223 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1224 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1225 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1226 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1227 };
1228
1229 has_gp = 1;
1230 valid_p = 1;
1231 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1232 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1233 gp[j]);
1234
1235 if (!valid_p)
1236 {
1237 tdesc_data_cleanup (tdesc_data);
1238 return NULL;
1239 }
1240 }
1241
1242 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1243 if (feature)
1244 {
1245 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1246 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1247 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1248
1249 if (!valid_p)
1250 {
1251 tdesc_data_cleanup (tdesc_data);
1252 return NULL;
1253 }
1254 }
1255
1256 }
1257
1258 /* Find a candidate among extant architectures. */
1259 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1260 arches != NULL;
1261 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1262 {
1263 tdep = gdbarch_tdep (arches->gdbarch);
1264
1265 if (has_gp != tdep->has_gp)
1266 continue;
1267
1268 if (tdep && tdep->breakpoint)
1269 return arches->gdbarch;
1270 }
1271
1272 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
1273
1274 tdep->has_gp = has_gp;
1275 gdbarch = gdbarch_alloc (&info, tdep);
1276
1277 /* Data type sizes. */
1278 set_gdbarch_ptr_bit (gdbarch, 32);
1279 set_gdbarch_addr_bit (gdbarch, 32);
1280 set_gdbarch_short_bit (gdbarch, 16);
1281 set_gdbarch_int_bit (gdbarch, 32);
1282 set_gdbarch_long_bit (gdbarch, 32);
1283 set_gdbarch_long_long_bit (gdbarch, 64);
1284 set_gdbarch_float_bit (gdbarch, 32);
1285 set_gdbarch_double_bit (gdbarch, 64);
1286
1287 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1288 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1289
1290 /* The register set. */
1291 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1292 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1293 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1294
1295 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1296 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1297
1298 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1299
1300 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1301 set_gdbarch_breakpoint_from_pc (gdbarch, tic6x_breakpoint_from_pc);
1302
1303 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1304 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1305
1306 /* Unwinding. */
1307 dwarf2_append_unwinders (gdbarch);
1308
1309 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1310 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1311
1312 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1313
1314 /* Single stepping. */
1315 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1316
1317 set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1318
1319 /* Call dummy code. */
1320 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1321
1322 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1323
1324 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1325
1326 /* Enable inferior call support. */
1327 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1328
1329 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1330
1331 set_gdbarch_in_function_epilogue_p (gdbarch, tic6x_in_function_epilogue_p);
1332
1333 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1334 tic6x_return_in_first_hidden_param_p);
1335
1336 /* Hook in ABI-specific overrides, if they have been registered. */
1337 gdbarch_init_osabi (info, gdbarch);
1338
1339 if (tdesc_data)
1340 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1341
1342 return gdbarch;
1343 }
1344
1345 /* -Wmissing-prototypes */
1346 extern initialize_file_ftype _initialize_tic6x_tdep;
1347
1348 void
_initialize_tic6x_tdep(void)1349 _initialize_tic6x_tdep (void)
1350 {
1351 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1352
1353 initialize_tdesc_tic6x_c64xp ();
1354 initialize_tdesc_tic6x_c64x ();
1355 initialize_tdesc_tic6x_c62x ();
1356 }
1357