1 /* obstack.h - object stack macros
2    Copyright (C) 1988-1994,1996-1999,2003,2004,2005,2009
3 	Free Software Foundation, Inc.
4    This file is part of the GNU C Library.
5 
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10 
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15 
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library; if not, see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* Summary:
21 
22 All the apparent functions defined here are macros. The idea
23 is that you would use these pre-tested macros to solve a
24 very specific set of problems, and they would run fast.
25 Caution: no side-effects in arguments please!! They may be
26 evaluated MANY times!!
27 
28 These macros operate a stack of objects.  Each object starts life
29 small, and may grow to maturity.  (Consider building a word syllable
30 by syllable.)  An object can move while it is growing.  Once it has
31 been "finished" it never changes address again.  So the "top of the
32 stack" is typically an immature growing object, while the rest of the
33 stack is of mature, fixed size and fixed address objects.
34 
35 These routines grab large chunks of memory, using a function you
36 supply, called `obstack_chunk_alloc'.  On occasion, they free chunks,
37 by calling `obstack_chunk_free'.  You must define them and declare
38 them before using any obstack macros.
39 
40 Each independent stack is represented by a `struct obstack'.
41 Each of the obstack macros expects a pointer to such a structure
42 as the first argument.
43 
44 One motivation for this package is the problem of growing char strings
45 in symbol tables.  Unless you are "fascist pig with a read-only mind"
46 --Gosper's immortal quote from HAKMEM item 154, out of context--you
47 would not like to put any arbitrary upper limit on the length of your
48 symbols.
49 
50 In practice this often means you will build many short symbols and a
51 few long symbols.  At the time you are reading a symbol you don't know
52 how long it is.  One traditional method is to read a symbol into a
53 buffer, realloc()ating the buffer every time you try to read a symbol
54 that is longer than the buffer.  This is beaut, but you still will
55 want to copy the symbol from the buffer to a more permanent
56 symbol-table entry say about half the time.
57 
58 With obstacks, you can work differently.  Use one obstack for all symbol
59 names.  As you read a symbol, grow the name in the obstack gradually.
60 When the name is complete, finalize it.  Then, if the symbol exists already,
61 free the newly read name.
62 
63 The way we do this is to take a large chunk, allocating memory from
64 low addresses.  When you want to build a symbol in the chunk you just
65 add chars above the current "high water mark" in the chunk.  When you
66 have finished adding chars, because you got to the end of the symbol,
67 you know how long the chars are, and you can create a new object.
68 Mostly the chars will not burst over the highest address of the chunk,
69 because you would typically expect a chunk to be (say) 100 times as
70 long as an average object.
71 
72 In case that isn't clear, when we have enough chars to make up
73 the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
74 so we just point to it where it lies.  No moving of chars is
75 needed and this is the second win: potentially long strings need
76 never be explicitly shuffled. Once an object is formed, it does not
77 change its address during its lifetime.
78 
79 When the chars burst over a chunk boundary, we allocate a larger
80 chunk, and then copy the partly formed object from the end of the old
81 chunk to the beginning of the new larger chunk.  We then carry on
82 accrediting characters to the end of the object as we normally would.
83 
84 A special macro is provided to add a single char at a time to a
85 growing object.  This allows the use of register variables, which
86 break the ordinary 'growth' macro.
87 
88 Summary:
89 	We allocate large chunks.
90 	We carve out one object at a time from the current chunk.
91 	Once carved, an object never moves.
92 	We are free to append data of any size to the currently
93 	  growing object.
94 	Exactly one object is growing in an obstack at any one time.
95 	You can run one obstack per control block.
96 	You may have as many control blocks as you dare.
97 	Because of the way we do it, you can `unwind' an obstack
98 	  back to a previous state. (You may remove objects much
99 	  as you would with a stack.)
100 */
101 
102 
103 /* Don't do the contents of this file more than once.  */
104 
105 #ifndef _OBSTACK_H
106 #define _OBSTACK_H 1
107 
108 #ifdef __cplusplus
109 extern "C" {
110 #endif
111 
112 /* We need the type of a pointer subtraction.  If __PTRDIFF_TYPE__ is
113    defined, as with GNU C, use that; that way we don't pollute the
114    namespace with <stddef.h>'s symbols.  Otherwise, include <stddef.h>
115    and use ptrdiff_t.  */
116 
117 #ifdef __PTRDIFF_TYPE__
118 # define PTR_INT_TYPE __PTRDIFF_TYPE__
119 #else
120 # include <stddef.h>
121 # define PTR_INT_TYPE ptrdiff_t
122 #endif
123 
124 /* If B is the base of an object addressed by P, return the result of
125    aligning P to the next multiple of A + 1.  B and P must be of type
126    char *.  A + 1 must be a power of 2.  */
127 
128 #define __BPTR_ALIGN(B, P, A) ((B) + (((P) - (B) + (A)) & ~(A)))
129 
130 /* Similar to _BPTR_ALIGN (B, P, A), except optimize the common case
131    where pointers can be converted to integers, aligned as integers,
132    and converted back again.  If PTR_INT_TYPE is narrower than a
133    pointer (e.g., the AS/400), play it safe and compute the alignment
134    relative to B.  Otherwise, use the faster strategy of computing the
135    alignment relative to 0.  */
136 
137 #define __PTR_ALIGN(B, P, A)						    \
138   (sizeof (PTR_INT_TYPE) < sizeof(void *) ?                                 \
139    __BPTR_ALIGN((B), (P), (A)) :                                            \
140    (void *)__BPTR_ALIGN((PTR_INT_TYPE)(void *)0, (PTR_INT_TYPE)(P), (A))            \
141   )
142 
143 #include <string.h>
144 
145 struct _obstack_chunk		/* Lives at front of each chunk. */
146 {
147   char  *limit;			/* 1 past end of this chunk */
148   struct _obstack_chunk *prev;	/* address of prior chunk or NULL */
149   char	contents[4];		/* objects begin here */
150 };
151 
152 struct obstack		/* control current object in current chunk */
153 {
154   long	chunk_size;		/* preferred size to allocate chunks in */
155   struct _obstack_chunk *chunk;	/* address of current struct obstack_chunk */
156   char	*object_base;		/* address of object we are building */
157   char	*next_free;		/* where to add next char to current object */
158   char	*chunk_limit;		/* address of char after current chunk */
159   union
160   {
161     PTR_INT_TYPE tempint;
162     void *tempptr;
163   } temp;			/* Temporary for some macros.  */
164   int   alignment_mask;		/* Mask of alignment for each object. */
165   /* These prototypes vary based on `use_extra_arg'. */
166   union {
167     void *(*plain) (long);
168     struct _obstack_chunk *(*extra) (void *, long);
169   } chunkfun;
170   union {
171     void (*plain) (void *);
172     void (*extra) (void *, struct _obstack_chunk *);
173   } freefun;
174   void *extra_arg;		/* first arg for chunk alloc/dealloc funcs */
175   unsigned use_extra_arg:1;	/* chunk alloc/dealloc funcs take extra arg */
176   unsigned maybe_empty_object:1;/* There is a possibility that the current
177 				   chunk contains a zero-length object.  This
178 				   prevents freeing the chunk if we allocate
179 				   a bigger chunk to replace it. */
180   unsigned alloc_failed:1;	/* No longer used, as we now call the failed
181 				   handler on error, but retained for binary
182 				   compatibility.  */
183 };
184 
185 /* Declare the external functions we use; they are in obstack.c.  */
186 
187 extern void _obstack_newchunk (struct obstack *, int);
188 extern int _obstack_begin (struct obstack *, int, int,
189 			    void *(*) (long), void (*) (void *));
190 extern int _obstack_begin_1 (struct obstack *, int, int,
191 			     void *(*) (void *, long),
192 			     void (*) (void *, void *), void *);
193 extern int _obstack_memory_used (struct obstack *);
194 
195 void obstack_free (struct obstack *, void *);
196 
197 
198 /* Error handler called when `obstack_chunk_alloc' failed to allocate
199    more memory.  This can be set to a user defined function which
200    should either abort gracefully or use longjump - but shouldn't
201    return.  The default action is to print a message and abort.  */
202 extern void (*obstack_alloc_failed_handler) (void);
203 
204 /* Pointer to beginning of object being allocated or to be allocated next.
205    Note that this might not be the final address of the object
206    because a new chunk might be needed to hold the final size.  */
207 
208 #define obstack_base(h) ((void *) (h)->object_base)
209 
210 /* Size for allocating ordinary chunks.  */
211 
212 #define obstack_chunk_size(h) ((h)->chunk_size)
213 
214 /* Pointer to next byte not yet allocated in current chunk.  */
215 
216 #define obstack_next_free(h)	((h)->next_free)
217 
218 /* Mask specifying low bits that should be clear in address of an object.  */
219 
220 #define obstack_alignment_mask(h) ((h)->alignment_mask)
221 
222 /* To prevent prototype warnings provide complete argument list.  */
223 #define obstack_init(h)						\
224   _obstack_begin ((h), 0, 0,					\
225 		  (void *(*) (long)) obstack_chunk_alloc,	\
226 		  (void (*) (void *)) obstack_chunk_free)
227 
228 #define obstack_begin(h, size)					\
229   _obstack_begin ((h), (size), 0,				\
230 		  (void *(*) (long)) obstack_chunk_alloc,	\
231 		  (void (*) (void *)) obstack_chunk_free)
232 
233 #define obstack_specify_allocation(h, size, alignment, chunkfun, freefun)  \
234   _obstack_begin ((h), (size), (alignment),				   \
235 		  (void *(*) (long)) (chunkfun),			   \
236 		  (void (*) (void *)) (freefun))
237 
238 #define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
239   _obstack_begin_1 ((h), (size), (alignment),				\
240 		    (void *(*) (void *, long)) (chunkfun),		\
241 		    (void (*) (void *, void *)) (freefun), (arg))
242 
243 #define obstack_chunkfun(h, newchunkfun) \
244   ((h)->chunkfun.extra = (struct _obstack_chunk *(*)(void *, long)) (newchunkfun))
245 
246 #define obstack_freefun(h, newfreefun) \
247   ((h)->freefun.extra = (void (*)(void *, struct _obstack_chunk *)) (newfreefun))
248 
249 #define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = (achar))
250 
251 #define obstack_blank_fast(h,n) ((h)->next_free += (n))
252 
253 #define obstack_memory_used(h) _obstack_memory_used (h)
254 
255 #if defined __GNUC__ && defined __STDC__ && __STDC__
256 /* NextStep 2.0 cc is really gcc 1.93 but it defines __GNUC__ = 2 and
257    does not implement __extension__.  But that compiler doesn't define
258    __GNUC_MINOR__.  */
259 # if __GNUC__ < 2 || (__NeXT__ && !__GNUC_MINOR__)
260 #  define __extension__
261 # endif
262 
263 /* For GNU C, if not -traditional,
264    we can define these macros to compute all args only once
265    without using a global variable.
266    Also, we can avoid using the `temp' slot, to make faster code.  */
267 
268 # define obstack_object_size(OBSTACK)					\
269   __extension__								\
270   ({ struct obstack const *__o = (OBSTACK);				\
271      (unsigned) (__o->next_free - __o->object_base); })
272 
273 # define obstack_room(OBSTACK)						\
274   __extension__								\
275   ({ struct obstack const *__o = (OBSTACK);				\
276      (unsigned) (__o->chunk_limit - __o->next_free); })
277 
278 # define obstack_make_room(OBSTACK,length)				\
279 __extension__								\
280 ({ struct obstack *__o = (OBSTACK);					\
281    int __len = (length);						\
282    if (__o->chunk_limit - __o->next_free < __len)			\
283      _obstack_newchunk (__o, __len);					\
284    (void) 0; })
285 
286 # define obstack_empty_p(OBSTACK)					\
287   __extension__								\
288   ({ struct obstack const *__o = (OBSTACK);				\
289      (__o->chunk->prev == 0						\
290       && __o->next_free == __PTR_ALIGN ((char *) __o->chunk,		\
291 					__o->chunk->contents,		\
292 					__o->alignment_mask)); })
293 
294 # define obstack_grow(OBSTACK,where,length)				\
295 __extension__								\
296 ({ struct obstack *__o = (OBSTACK);					\
297    int __len = (length);						\
298    if (__o->next_free + __len > __o->chunk_limit)			\
299      _obstack_newchunk (__o, __len);					\
300    memcpy (__o->next_free, where, __len);				\
301    __o->next_free += __len;						\
302    (void) 0; })
303 
304 # define obstack_grow0(OBSTACK,where,length)				\
305 __extension__								\
306 ({ struct obstack *__o = (OBSTACK);					\
307    int __len = (length);						\
308    if (__o->next_free + __len + 1 > __o->chunk_limit)			\
309      _obstack_newchunk (__o, __len + 1);				\
310    memcpy (__o->next_free, where, __len);				\
311    __o->next_free += __len;						\
312    *(__o->next_free)++ = 0;						\
313    (void) 0; })
314 
315 # define obstack_1grow(OBSTACK,datum)					\
316 __extension__								\
317 ({ struct obstack *__o = (OBSTACK);					\
318    if (__o->next_free + 1 > __o->chunk_limit)				\
319      _obstack_newchunk (__o, 1);					\
320    obstack_1grow_fast (__o, datum);					\
321    (void) 0; })
322 
323 /* These assume that the obstack alignment is good enough for pointers
324    or ints, and that the data added so far to the current object
325    shares that much alignment.  */
326 
327 # define obstack_ptr_grow(OBSTACK,datum)				\
328 __extension__								\
329 ({ struct obstack *__o = (OBSTACK);					\
330    if (__o->next_free + sizeof (void *) > __o->chunk_limit)		\
331      _obstack_newchunk (__o, sizeof (void *));				\
332    obstack_ptr_grow_fast (__o, datum); })				\
333 
334 # define obstack_int_grow(OBSTACK,datum)				\
335 __extension__								\
336 ({ struct obstack *__o = (OBSTACK);					\
337    if (__o->next_free + sizeof (int) > __o->chunk_limit)		\
338      _obstack_newchunk (__o, sizeof (int));				\
339    obstack_int_grow_fast (__o, datum); })
340 
341 # define obstack_ptr_grow_fast(OBSTACK,aptr)				\
342 __extension__								\
343 ({ struct obstack *__o1 = (OBSTACK);					\
344    *(const void **) __o1->next_free = (aptr);				\
345    __o1->next_free += sizeof (const void *);				\
346    (void) 0; })
347 
348 # define obstack_int_grow_fast(OBSTACK,aint)				\
349 __extension__								\
350 ({ struct obstack *__o1 = (OBSTACK);					\
351    *(int *) __o1->next_free = (aint);					\
352    __o1->next_free += sizeof (int);					\
353    (void) 0; })
354 
355 # define obstack_blank(OBSTACK,length)					\
356 __extension__								\
357 ({ struct obstack *__o = (OBSTACK);					\
358    int __len = (length);						\
359    if (__o->chunk_limit - __o->next_free < __len)			\
360      _obstack_newchunk (__o, __len);					\
361    obstack_blank_fast (__o, __len);					\
362    (void) 0; })
363 
364 # define obstack_alloc(OBSTACK,length)					\
365 __extension__								\
366 ({ struct obstack *__h = (OBSTACK);					\
367    obstack_blank (__h, (length));					\
368    obstack_finish (__h); })
369 
370 # define obstack_copy(OBSTACK,where,length)				\
371 __extension__								\
372 ({ struct obstack *__h = (OBSTACK);					\
373    obstack_grow (__h, (where), (length));				\
374    obstack_finish (__h); })
375 
376 # define obstack_copy0(OBSTACK,where,length)				\
377 __extension__								\
378 ({ struct obstack *__h = (OBSTACK);					\
379    obstack_grow0 (__h, (where), (length));				\
380    obstack_finish (__h); })
381 
382 /* The local variable is named __o1 to avoid a name conflict
383    when obstack_blank is called.  */
384 # define obstack_finish(OBSTACK)					\
385 __extension__								\
386 ({ struct obstack *__o1 = (OBSTACK);					\
387    void *__value = (void *) __o1->object_base;				\
388    if (__o1->next_free == __value)					\
389      __o1->maybe_empty_object = 1;					\
390    __o1->next_free							\
391      = __PTR_ALIGN (__o1->object_base, __o1->next_free,			\
392 		    __o1->alignment_mask);				\
393    if (__o1->next_free - (char *)__o1->chunk				\
394        > __o1->chunk_limit - (char *)__o1->chunk)			\
395      __o1->next_free = __o1->chunk_limit;				\
396    __o1->object_base = __o1->next_free;					\
397    __value; })
398 
399 # define obstack_free(OBSTACK, OBJ)					\
400 __extension__								\
401 ({ struct obstack *__o = (OBSTACK);					\
402    void *__obj = (OBJ);							\
403    if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit)  \
404      __o->next_free = __o->object_base = (char *)__obj;			\
405    else (obstack_free) (__o, __obj); })
406 
407 #else /* not __GNUC__ or not __STDC__ */
408 
409 # define obstack_object_size(h) \
410  (unsigned) ((h)->next_free - (h)->object_base)
411 
412 # define obstack_room(h)		\
413  (unsigned) ((h)->chunk_limit - (h)->next_free)
414 
415 # define obstack_empty_p(h) \
416  ((h)->chunk->prev == 0							\
417   && (h)->next_free == __PTR_ALIGN ((char *) (h)->chunk,		\
418 				    (h)->chunk->contents,		\
419 				    (h)->alignment_mask))
420 
421 /* Note that the call to _obstack_newchunk is enclosed in (..., 0)
422    so that we can avoid having void expressions
423    in the arms of the conditional expression.
424    Casting the third operand to void was tried before,
425    but some compilers won't accept it.  */
426 
427 # define obstack_make_room(h,length)					\
428 ( (h)->temp.tempint = (length),						\
429   (((h)->next_free + (h)->temp.tempint > (h)->chunk_limit)		\
430    ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0))
431 
432 # define obstack_grow(h,where,length)					\
433 ( (h)->temp.tempint = (length),						\
434   (((h)->next_free + (h)->temp.tempint > (h)->chunk_limit)		\
435    ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0),		\
436   memcpy ((h)->next_free, where, (h)->temp.tempint),			\
437   (h)->next_free += (h)->temp.tempint)
438 
439 # define obstack_grow0(h,where,length)					\
440 ( (h)->temp.tempint = (length),						\
441   (((h)->next_free + (h)->temp.tempint + 1 > (h)->chunk_limit)		\
442    ? (_obstack_newchunk ((h), (h)->temp.tempint + 1), 0) : 0),		\
443   memcpy ((h)->next_free, where, (h)->temp.tempint),			\
444   (h)->next_free += (h)->temp.tempint,					\
445   *((h)->next_free)++ = 0)
446 
447 # define obstack_1grow(h,datum)						\
448 ( (((h)->next_free + 1 > (h)->chunk_limit)				\
449    ? (_obstack_newchunk ((h), 1), 0) : 0),				\
450   obstack_1grow_fast (h, datum))
451 
452 # define obstack_ptr_grow(h,datum)					\
453 ( (((h)->next_free + sizeof (char *) > (h)->chunk_limit)		\
454    ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0),		\
455   obstack_ptr_grow_fast (h, datum))
456 
457 # define obstack_int_grow(h,datum)					\
458 ( (((h)->next_free + sizeof (int) > (h)->chunk_limit)			\
459    ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0),			\
460   obstack_int_grow_fast (h, datum))
461 
462 # define obstack_ptr_grow_fast(h,aptr)					\
463   (((const void **) ((h)->next_free += sizeof (void *)))[-1] = (aptr))
464 
465 # define obstack_int_grow_fast(h,aint)					\
466   (((int *) ((h)->next_free += sizeof (int)))[-1] = (aint))
467 
468 # define obstack_blank(h,length)					\
469 ( (h)->temp.tempint = (length),						\
470   (((h)->chunk_limit - (h)->next_free < (h)->temp.tempint)		\
471    ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0),		\
472   obstack_blank_fast (h, (h)->temp.tempint))
473 
474 # define obstack_alloc(h,length)					\
475  (obstack_blank ((h), (length)), obstack_finish ((h)))
476 
477 # define obstack_copy(h,where,length)					\
478  (obstack_grow ((h), (where), (length)), obstack_finish ((h)))
479 
480 # define obstack_copy0(h,where,length)					\
481  (obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
482 
483 # define obstack_finish(h)						\
484 ( ((h)->next_free == (h)->object_base					\
485    ? (((h)->maybe_empty_object = 1), 0)					\
486    : 0),								\
487   (h)->temp.tempptr = (h)->object_base,					\
488   (h)->next_free							\
489     = __PTR_ALIGN ((h)->object_base, (h)->next_free,			\
490 		   (h)->alignment_mask),				\
491   (((h)->next_free - (char *) (h)->chunk				\
492     > (h)->chunk_limit - (char *) (h)->chunk)				\
493    ? ((h)->next_free = (h)->chunk_limit) : 0),				\
494   (h)->object_base = (h)->next_free,					\
495   (h)->temp.tempptr)
496 
497 # define obstack_free(h,obj)						\
498 ( (h)->temp.tempint = (char *) (obj) - (char *) (h)->chunk,		\
499   ((((h)->temp.tempint > 0						\
500     && (h)->temp.tempint < (h)->chunk_limit - (char *) (h)->chunk))	\
501    ? (ptrdiff_t) ((h)->next_free = (h)->object_base				\
502 	    = (h)->temp.tempint + (char *) (h)->chunk)			\
503    : (((obstack_free) ((h), (h)->temp.tempint + (char *) (h)->chunk), 0), 0)))
504 
505 #endif /* not __GNUC__ or not __STDC__ */
506 
507 #ifdef __cplusplus
508 }	/* C++ */
509 #endif
510 
511 #endif /* obstack.h */
512