1 // Copyright 2014-2016 bluss and ndarray developers.
2 //
3 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
6 // option. This file may not be copied, modified, or distributed
7 // except according to those terms.
8 #![cfg(feature = "std")]
9 use num_traits::Float;
10 
11 /// An iterator of a sequence of geometrically spaced floats.
12 ///
13 /// Iterator element type is `F`.
14 pub struct Geomspace<F> {
15     sign: F,
16     start: F,
17     step: F,
18     index: usize,
19     len: usize,
20 }
21 
22 impl<F> Iterator for Geomspace<F>
23 where
24     F: Float,
25 {
26     type Item = F;
27 
28     #[inline]
next(&mut self) -> Option<F>29     fn next(&mut self) -> Option<F> {
30         if self.index >= self.len {
31             None
32         } else {
33             // Calculate the value just like numpy.linspace does
34             let i = self.index;
35             self.index += 1;
36             let exponent = self.start + self.step * F::from(i).unwrap();
37             Some(self.sign * exponent.exp())
38         }
39     }
40 
41     #[inline]
size_hint(&self) -> (usize, Option<usize>)42     fn size_hint(&self) -> (usize, Option<usize>) {
43         let n = self.len - self.index;
44         (n, Some(n))
45     }
46 }
47 
48 impl<F> DoubleEndedIterator for Geomspace<F>
49 where
50     F: Float,
51 {
52     #[inline]
next_back(&mut self) -> Option<F>53     fn next_back(&mut self) -> Option<F> {
54         if self.index >= self.len {
55             None
56         } else {
57             // Calculate the value just like numpy.linspace does
58             self.len -= 1;
59             let i = self.len;
60             let exponent = self.start + self.step * F::from(i).unwrap();
61             Some(self.sign * exponent.exp())
62         }
63     }
64 }
65 
66 impl<F> ExactSizeIterator for Geomspace<F> where Geomspace<F>: Iterator {}
67 
68 /// An iterator of a sequence of geometrically spaced values.
69 ///
70 /// The `Geomspace` has `n` geometrically spaced elements from `start` to `end`
71 /// (inclusive).
72 ///
73 /// The iterator element type is `F`, where `F` must implement `Float`, e.g.
74 /// `f32` or `f64`.
75 ///
76 /// Returns `None` if `start` and `end` have different signs or if either one
77 /// is zero. Conceptually, this means that in order to obtain a `Some` result,
78 /// `end / start` must be positive.
79 ///
80 /// **Panics** if converting `n - 1` to type `F` fails.
81 #[inline]
geomspace<F>(a: F, b: F, n: usize) -> Option<Geomspace<F>> where F: Float,82 pub fn geomspace<F>(a: F, b: F, n: usize) -> Option<Geomspace<F>>
83 where
84     F: Float,
85 {
86     if a == F::zero() || b == F::zero() || a.is_sign_negative() != b.is_sign_negative() {
87         return None;
88     }
89     let log_a = a.abs().ln();
90     let log_b = b.abs().ln();
91     let step = if n > 1 {
92         let num_steps = F::from(n - 1).expect("Converting number of steps to `A` must not fail.");
93         (log_b - log_a) / num_steps
94     } else {
95         F::zero()
96     };
97     Some(Geomspace {
98         sign: a.signum(),
99         start: log_a,
100         step,
101         index: 0,
102         len: n,
103     })
104 }
105 
106 #[cfg(test)]
107 mod tests {
108     use super::geomspace;
109 
110     #[test]
111     #[cfg(feature = "approx")]
valid()112     fn valid() {
113         use crate::{arr1, Array1};
114         use approx::assert_abs_diff_eq;
115 
116         let array: Array1<_> = geomspace(1e0, 1e3, 4).unwrap().collect();
117         assert_abs_diff_eq!(array, arr1(&[1e0, 1e1, 1e2, 1e3]), epsilon = 1e-12);
118 
119         let array: Array1<_> = geomspace(1e3, 1e0, 4).unwrap().collect();
120         assert_abs_diff_eq!(array, arr1(&[1e3, 1e2, 1e1, 1e0]), epsilon = 1e-12);
121 
122         let array: Array1<_> = geomspace(-1e3, -1e0, 4).unwrap().collect();
123         assert_abs_diff_eq!(array, arr1(&[-1e3, -1e2, -1e1, -1e0]), epsilon = 1e-12);
124 
125         let array: Array1<_> = geomspace(-1e0, -1e3, 4).unwrap().collect();
126         assert_abs_diff_eq!(array, arr1(&[-1e0, -1e1, -1e2, -1e3]), epsilon = 1e-12);
127     }
128 
129     #[test]
iter_forward()130     fn iter_forward() {
131         let mut iter = geomspace(1.0f64, 1e3, 4).unwrap();
132 
133         assert!(iter.size_hint() == (4, Some(4)));
134 
135         assert!((iter.next().unwrap() - 1e0).abs() < 1e-5);
136         assert!((iter.next().unwrap() - 1e1).abs() < 1e-5);
137         assert!((iter.next().unwrap() - 1e2).abs() < 1e-5);
138         assert!((iter.next().unwrap() - 1e3).abs() < 1e-5);
139         assert!(iter.next().is_none());
140 
141         assert!(iter.size_hint() == (0, Some(0)));
142     }
143 
144     #[test]
iter_backward()145     fn iter_backward() {
146         let mut iter = geomspace(1.0f64, 1e3, 4).unwrap();
147 
148         assert!(iter.size_hint() == (4, Some(4)));
149 
150         assert!((iter.next_back().unwrap() - 1e3).abs() < 1e-5);
151         assert!((iter.next_back().unwrap() - 1e2).abs() < 1e-5);
152         assert!((iter.next_back().unwrap() - 1e1).abs() < 1e-5);
153         assert!((iter.next_back().unwrap() - 1e0).abs() < 1e-5);
154         assert!(iter.next_back().is_none());
155 
156         assert!(iter.size_hint() == (0, Some(0)));
157     }
158 
159     #[test]
zero_lower()160     fn zero_lower() {
161         assert!(geomspace(0.0, 1.0, 4).is_none());
162     }
163 
164     #[test]
zero_upper()165     fn zero_upper() {
166         assert!(geomspace(1.0, 0.0, 4).is_none());
167     }
168 
169     #[test]
zero_included()170     fn zero_included() {
171         assert!(geomspace(-1.0, 1.0, 4).is_none());
172     }
173 }
174