1 /*
2 * Copyright (c) 2015-2017, Intel Corporation
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * * Redistributions of source code must retain the above copyright notice,
8 * this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of Intel Corporation nor the names of its contributors
13 * may be used to endorse or promote products derived from this software
14 * without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /**
30 * \file
31 * \brief Build code for DFA minimization.
32 */
33
34 /**
35 * /Summary of the Hopcroft minimisation algorithm/
36 *
37 * partition := {F, Q \ F};
38 * work_queue := {F};
39 * while (work_queue is not empty) do
40 * choose and remove a set A from work_queue
41 * for each c in . do
42 * let X be the set of states for which a transition on c
43 * leads to a state in A
44 * for each set Y in partition for which X . Y is nonempty and
45 * Y \ X is nonempty do
46 * replace Y in partition by the two sets X . Y and Y \ X
47 * if Y is in work_queue
48 * replace Y in work_queue by the same two sets
49 * else
50 * if |X . Y| <= |Y \ X|
51 * add X . Y to work_queue
52 * else
53 * add Y \ X to work_queue
54 * end;
55 * end;
56 * end;
57 */
58
59 #include "dfa_min.h"
60
61 #include "grey.h"
62 #include "mcclellancompile_util.h"
63 #include "rdfa.h"
64 #include "ue2common.h"
65 #include "util/container.h"
66 #include "util/flat_containers.h"
67 #include "util/noncopyable.h"
68 #include "util/partitioned_set.h"
69
70 #include <algorithm>
71 #include <functional>
72 #include <iterator>
73 #include <map>
74 #include <queue>
75 #include <set>
76 #include <vector>
77
78 using namespace std;
79
80 namespace ue2 {
81
82 namespace {
83
84 struct hopcroft_state_info {
hopcroft_state_infoue2::__anone072aabd0111::hopcroft_state_info85 explicit hopcroft_state_info(size_t alpha_size) : prev(alpha_size) {}
86
87 /** \brief Mapping from symbol to a list of predecessors that transition to
88 * this state on that symbol. */
89 vector<vector<dstate_id_t>> prev;
90 };
91
92 struct HopcroftInfo : noncopyable {
93 size_t alpha_size; //!< Size of DFA alphabet.
94 queue<size_t> work_queue; //!< Hopcroft work queue of partition indices.
95 partitioned_set<dstate_id_t> partition; //!< Partition set of DFA states.
96 vector<hopcroft_state_info> states; //!< Pre-calculated state info (preds)
97
98 explicit HopcroftInfo(const raw_dfa &rdfa);
99 };
100
101 } // namespace
102
103 /**
104 * \brief Create an initial partitioning and work_queue.
105 *
106 * Initial partition contains {accepting states..., Non-accepting states}
107 * Initial work_queue contains accepting state subsets
108 *
109 * The initial partitioning needs to distinguish between the different
110 * reporting behaviours (unlike standard Hopcroft) --> more than one subset
111 * possible for the accepting states.
112 *
113 * Look for accepting states in both reports and reports_eod.
114 * Creates a map with a key(reports, reports_eod) and an id.
115 * Reports of each state are searched against the map and
116 * added to the corresponding id -> partition[id] and work_queue[id].
117 * Non Accept states are added to partition[id+1].
118 */
119 static
create_map(const raw_dfa & rdfa,queue<size_t> & work_queue)120 vector<size_t> create_map(const raw_dfa &rdfa, queue<size_t> &work_queue) {
121 using ReportKey = pair<flat_set<ReportID>, flat_set<ReportID>>;
122 map<ReportKey, size_t> subset_map;
123 vector<size_t> state_to_subset(rdfa.states.size(), INVALID_SUBSET);
124
125 for (size_t i = 0; i < rdfa.states.size(); i++) {
126 const auto &ds = rdfa.states[i];
127 if (!ds.reports.empty() || !ds.reports_eod.empty()) {
128 ReportKey key(ds.reports, ds.reports_eod);
129 if (contains(subset_map, key)) {
130 state_to_subset[i] = subset_map[key];
131 } else {
132 size_t sub = subset_map.size();
133 subset_map.emplace(std::move(key), sub);
134 state_to_subset[i] = sub;
135 work_queue.push(sub);
136 }
137 }
138 }
139
140 /* Give non-accept states their own subset. */
141 size_t non_accept_sub = subset_map.size();
142 replace(state_to_subset.begin(), state_to_subset.end(), INVALID_SUBSET,
143 non_accept_sub);
144
145 return state_to_subset;
146 }
147
HopcroftInfo(const raw_dfa & rdfa)148 HopcroftInfo::HopcroftInfo(const raw_dfa &rdfa)
149 : alpha_size(rdfa.alpha_size), partition(create_map(rdfa, work_queue)),
150 states(rdfa.states.size(), hopcroft_state_info(alpha_size)) {
151 /* Construct predecessor lists for each state, indexed by symbol. */
152 for (size_t i = 0; i < states.size(); i++) { // i is the previous state
153 for (size_t sym = 0; sym < alpha_size; sym++) {
154 dstate_id_t present_state = rdfa.states[i].next[sym];
155 states[present_state].prev[sym].push_back(i);
156 }
157 }
158 }
159
160 /**
161 * For a split set X, each subset S (given by part_index) in the partition, two
162 * sets are created: v_inter (X intersection S) and v_sub (S - X).
163 *
164 * For each subset S in the partition that could be split (v_inter is nonempty
165 * and v_sub is nonempty):
166 * - replace S in partition by the two sets v_inter and v_sub.
167 * - if S is in work_queue:
168 * - replace S in work_queue by the two subsets.
169 * - else:
170 * - replace S in work_queue by the smaller of the two sets.
171 */
172 static
split_and_replace_set(const size_t part_index,HopcroftInfo & info,const flat_set<dstate_id_t> & splitter)173 void split_and_replace_set(const size_t part_index, HopcroftInfo &info,
174 const flat_set<dstate_id_t> &splitter) {
175 /* singleton sets cannot be split */
176 if (info.partition[part_index].size() == 1) {
177 return;
178 }
179
180 size_t small_index = info.partition.split(part_index, splitter);
181
182 if (small_index == INVALID_SUBSET) {
183 /* the set could not be split */
184 return;
185 }
186
187 /* larger subset remains at the input subset index, if the input subset was
188 * already in the work queue then the larger subset will remain there. */
189
190 info.work_queue.push(small_index);
191 }
192
193 /**
194 * \brief Core of the Hopcroft minimisation algorithm.
195 */
196 static
dfa_min(HopcroftInfo & info)197 void dfa_min(HopcroftInfo &info) {
198 flat_set<dstate_id_t> curr, sym_preds;
199 vector<size_t> cand_subsets;
200
201 while (!info.work_queue.empty()) {
202 /* Choose and remove a set of states (curr, or A in the description
203 * above) from the work queue. Note that we copy the set because the
204 * partition may be split by the loop below. */
205 curr.clear();
206 insert(&curr, info.partition[info.work_queue.front()]);
207 info.work_queue.pop();
208
209 for (size_t sym = 0; sym < info.alpha_size; sym++) {
210 /* Find the set of states sym_preds for which a transition on the
211 * given symbol leads to a state in curr. */
212 sym_preds.clear();
213 for (dstate_id_t s : curr) {
214 insert(&sym_preds, info.states[s].prev[sym]);
215 }
216
217 if (sym_preds.empty()) {
218 continue;
219 }
220
221 /* we only need to consider subsets with at least one member in
222 * sym_preds for splitting */
223 cand_subsets.clear();
224 info.partition.find_overlapping(sym_preds, &cand_subsets);
225
226 for (size_t sub : cand_subsets) {
227 split_and_replace_set(sub, info, sym_preds);
228 }
229 }
230 }
231 }
232
233 /**
234 * \brief Build the new DFA state table.
235 */
236 static
mapping_new_states(const HopcroftInfo & info,vector<dstate_id_t> & old_to_new,raw_dfa & rdfa)237 void mapping_new_states(const HopcroftInfo &info,
238 vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
239 const size_t num_partitions = info.partition.size();
240
241 // Mapping from equiv class's first state to equiv class index.
242 map<dstate_id_t, size_t> ordering;
243
244 // New state id for each equiv class.
245 vector<dstate_id_t> eq_state(num_partitions);
246
247 for (size_t i = 0; i < num_partitions; i++) {
248 ordering[*info.partition[i].begin()] = i;
249 }
250
251 dstate_id_t new_id = 0;
252 for (const auto &m : ordering) {
253 eq_state[m.second] = new_id++;
254 }
255
256 for (size_t t = 0; t < info.partition.size(); t++) {
257 for (dstate_id_t id : info.partition[t]) {
258 old_to_new[id] = eq_state[t];
259 }
260 }
261
262 vector<dstate> new_states;
263 new_states.reserve(num_partitions);
264
265 for (const auto &m : ordering) {
266 new_states.push_back(rdfa.states[m.first]);
267 }
268 rdfa.states = std::move(new_states);
269 }
270
271 static
renumber_new_states(const HopcroftInfo & info,const vector<dstate_id_t> & old_to_new,raw_dfa & rdfa)272 void renumber_new_states(const HopcroftInfo &info,
273 const vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
274 for (size_t i = 0; i < info.partition.size(); i++) {
275 for (size_t sym = 0; sym < info.alpha_size; sym++) {
276 dstate_id_t output = rdfa.states[i].next[sym];
277 rdfa.states[i].next[sym] = old_to_new[output];
278 }
279 dstate_id_t dad = rdfa.states[i].daddy;
280 rdfa.states[i].daddy = old_to_new[dad];
281 }
282
283 rdfa.start_floating = old_to_new[rdfa.start_floating];
284 rdfa.start_anchored = old_to_new[rdfa.start_anchored];
285 }
286
287 static
new_dfa(raw_dfa & rdfa,const HopcroftInfo & info)288 void new_dfa(raw_dfa &rdfa, const HopcroftInfo &info) {
289 if (info.partition.size() == info.states.size()) {
290 return;
291 }
292
293 vector<dstate_id_t> old_to_new(info.states.size());
294 mapping_new_states(info, old_to_new, rdfa);
295 renumber_new_states(info, old_to_new, rdfa);
296 }
297
minimize_hopcroft(raw_dfa & rdfa,const Grey & grey)298 void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) {
299 if (!grey.minimizeDFA) {
300 return;
301 }
302
303 if (is_dead(rdfa)) {
304 DEBUG_PRINTF("dfa is empty\n");
305 }
306
307 UNUSED const size_t states_before = rdfa.states.size();
308
309 HopcroftInfo info(rdfa);
310
311 dfa_min(info);
312 new_dfa(rdfa, info);
313
314 DEBUG_PRINTF("reduced from %zu to %zu states\n", states_before,
315 rdfa.states.size());
316 }
317
318 } // namespace ue2
319