1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2012 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #ifndef DOUBLE_CONVERSION_DOUBLE_H_
38 #define DOUBLE_CONVERSION_DOUBLE_H_
39 
40 // ICU PATCH: Customize header file paths for ICU.
41 
42 #include "double-conversion-diy-fp.h"
43 
44 // ICU PATCH: Wrap in ICU namespace
45 U_NAMESPACE_BEGIN
46 
47 namespace double_conversion {
48 
49 // We assume that doubles and uint64_t have the same endianness.
double_to_uint64(double d)50 static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
uint64_to_double(uint64_t d64)51 static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
float_to_uint32(float f)52 static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
uint32_to_float(uint32_t d32)53 static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
54 
55 // Helper functions for doubles.
56 class Double {
57  public:
58   static const uint64_t kSignMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000);
59   static const uint64_t kExponentMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
60   static const uint64_t kSignificandMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
61   static const uint64_t kHiddenBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000);
62   static const uint64_t kQuietNanBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00080000, 00000000);
63   static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
64   static const int kSignificandSize = 53;
65   static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
66   static const int kMaxExponent = 0x7FF - kExponentBias;
67 
Double()68   Double() : d64_(0) {}
Double(double d)69   explicit Double(double d) : d64_(double_to_uint64(d)) {}
Double(uint64_t d64)70   explicit Double(uint64_t d64) : d64_(d64) {}
Double(DiyFp diy_fp)71   explicit Double(DiyFp diy_fp)
72     : d64_(DiyFpToUint64(diy_fp)) {}
73 
74   // The value encoded by this Double must be greater or equal to +0.0.
75   // It must not be special (infinity, or NaN).
AsDiyFp()76   DiyFp AsDiyFp() const {
77     DOUBLE_CONVERSION_ASSERT(Sign() > 0);
78     DOUBLE_CONVERSION_ASSERT(!IsSpecial());
79     return DiyFp(Significand(), Exponent());
80   }
81 
82   // The value encoded by this Double must be strictly greater than 0.
AsNormalizedDiyFp()83   DiyFp AsNormalizedDiyFp() const {
84     DOUBLE_CONVERSION_ASSERT(value() > 0.0);
85     uint64_t f = Significand();
86     int e = Exponent();
87 
88     // The current double could be a denormal.
89     while ((f & kHiddenBit) == 0) {
90       f <<= 1;
91       e--;
92     }
93     // Do the final shifts in one go.
94     f <<= DiyFp::kSignificandSize - kSignificandSize;
95     e -= DiyFp::kSignificandSize - kSignificandSize;
96     return DiyFp(f, e);
97   }
98 
99   // Returns the double's bit as uint64.
AsUint64()100   uint64_t AsUint64() const {
101     return d64_;
102   }
103 
104   // Returns the next greater double. Returns +infinity on input +infinity.
NextDouble()105   double NextDouble() const {
106     if (d64_ == kInfinity) return Double(kInfinity).value();
107     if (Sign() < 0 && Significand() == 0) {
108       // -0.0
109       return 0.0;
110     }
111     if (Sign() < 0) {
112       return Double(d64_ - 1).value();
113     } else {
114       return Double(d64_ + 1).value();
115     }
116   }
117 
PreviousDouble()118   double PreviousDouble() const {
119     if (d64_ == (kInfinity | kSignMask)) return -Infinity();
120     if (Sign() < 0) {
121       return Double(d64_ + 1).value();
122     } else {
123       if (Significand() == 0) return -0.0;
124       return Double(d64_ - 1).value();
125     }
126   }
127 
Exponent()128   int Exponent() const {
129     if (IsDenormal()) return kDenormalExponent;
130 
131     uint64_t d64 = AsUint64();
132     int biased_e =
133         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
134     return biased_e - kExponentBias;
135   }
136 
Significand()137   uint64_t Significand() const {
138     uint64_t d64 = AsUint64();
139     uint64_t significand = d64 & kSignificandMask;
140     if (!IsDenormal()) {
141       return significand + kHiddenBit;
142     } else {
143       return significand;
144     }
145   }
146 
147   // Returns true if the double is a denormal.
IsDenormal()148   bool IsDenormal() const {
149     uint64_t d64 = AsUint64();
150     return (d64 & kExponentMask) == 0;
151   }
152 
153   // We consider denormals not to be special.
154   // Hence only Infinity and NaN are special.
IsSpecial()155   bool IsSpecial() const {
156     uint64_t d64 = AsUint64();
157     return (d64 & kExponentMask) == kExponentMask;
158   }
159 
IsNan()160   bool IsNan() const {
161     uint64_t d64 = AsUint64();
162     return ((d64 & kExponentMask) == kExponentMask) &&
163         ((d64 & kSignificandMask) != 0);
164   }
165 
IsQuietNan()166   bool IsQuietNan() const {
167     return IsNan() && ((AsUint64() & kQuietNanBit) != 0);
168   }
169 
IsSignalingNan()170   bool IsSignalingNan() const {
171     return IsNan() && ((AsUint64() & kQuietNanBit) == 0);
172   }
173 
174 
IsInfinite()175   bool IsInfinite() const {
176     uint64_t d64 = AsUint64();
177     return ((d64 & kExponentMask) == kExponentMask) &&
178         ((d64 & kSignificandMask) == 0);
179   }
180 
Sign()181   int Sign() const {
182     uint64_t d64 = AsUint64();
183     return (d64 & kSignMask) == 0? 1: -1;
184   }
185 
186   // Precondition: the value encoded by this Double must be greater or equal
187   // than +0.0.
UpperBoundary()188   DiyFp UpperBoundary() const {
189     DOUBLE_CONVERSION_ASSERT(Sign() > 0);
190     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
191   }
192 
193   // Computes the two boundaries of this.
194   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
195   // exponent as m_plus.
196   // Precondition: the value encoded by this Double must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)197   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
198     DOUBLE_CONVERSION_ASSERT(value() > 0.0);
199     DiyFp v = this->AsDiyFp();
200     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
201     DiyFp m_minus;
202     if (LowerBoundaryIsCloser()) {
203       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
204     } else {
205       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
206     }
207     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
208     m_minus.set_e(m_plus.e());
209     *out_m_plus = m_plus;
210     *out_m_minus = m_minus;
211   }
212 
LowerBoundaryIsCloser()213   bool LowerBoundaryIsCloser() const {
214     // The boundary is closer if the significand is of the form f == 2^p-1 then
215     // the lower boundary is closer.
216     // Think of v = 1000e10 and v- = 9999e9.
217     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
218     // at a distance of 1e8.
219     // The only exception is for the smallest normal: the largest denormal is
220     // at the same distance as its successor.
221     // Note: denormals have the same exponent as the smallest normals.
222     bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
223     return physical_significand_is_zero && (Exponent() != kDenormalExponent);
224   }
225 
value()226   double value() const { return uint64_to_double(d64_); }
227 
228   // Returns the significand size for a given order of magnitude.
229   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
230   // This function returns the number of significant binary digits v will have
231   // once it's encoded into a double. In almost all cases this is equal to
232   // kSignificandSize. The only exceptions are denormals. They start with
233   // leading zeroes and their effective significand-size is hence smaller.
SignificandSizeForOrderOfMagnitude(int order)234   static int SignificandSizeForOrderOfMagnitude(int order) {
235     if (order >= (kDenormalExponent + kSignificandSize)) {
236       return kSignificandSize;
237     }
238     if (order <= kDenormalExponent) return 0;
239     return order - kDenormalExponent;
240   }
241 
Infinity()242   static double Infinity() {
243     return Double(kInfinity).value();
244   }
245 
NaN()246   static double NaN() {
247     return Double(kNaN).value();
248   }
249 
250  private:
251   static const int kDenormalExponent = -kExponentBias + 1;
252   static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
253   static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000);
254 
255   const uint64_t d64_;
256 
DiyFpToUint64(DiyFp diy_fp)257   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
258     uint64_t significand = diy_fp.f();
259     int exponent = diy_fp.e();
260     while (significand > kHiddenBit + kSignificandMask) {
261       significand >>= 1;
262       exponent++;
263     }
264     if (exponent >= kMaxExponent) {
265       return kInfinity;
266     }
267     if (exponent < kDenormalExponent) {
268       return 0;
269     }
270     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
271       significand <<= 1;
272       exponent--;
273     }
274     uint64_t biased_exponent;
275     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
276       biased_exponent = 0;
277     } else {
278       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
279     }
280     return (significand & kSignificandMask) |
281         (biased_exponent << kPhysicalSignificandSize);
282   }
283 
284   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Double);
285 };
286 
287 class Single {
288  public:
289   static const uint32_t kSignMask = 0x80000000;
290   static const uint32_t kExponentMask = 0x7F800000;
291   static const uint32_t kSignificandMask = 0x007FFFFF;
292   static const uint32_t kHiddenBit = 0x00800000;
293   static const uint32_t kQuietNanBit = 0x00400000;
294   static const int kPhysicalSignificandSize = 23;  // Excludes the hidden bit.
295   static const int kSignificandSize = 24;
296 
Single()297   Single() : d32_(0) {}
Single(float f)298   explicit Single(float f) : d32_(float_to_uint32(f)) {}
Single(uint32_t d32)299   explicit Single(uint32_t d32) : d32_(d32) {}
300 
301   // The value encoded by this Single must be greater or equal to +0.0.
302   // It must not be special (infinity, or NaN).
AsDiyFp()303   DiyFp AsDiyFp() const {
304     DOUBLE_CONVERSION_ASSERT(Sign() > 0);
305     DOUBLE_CONVERSION_ASSERT(!IsSpecial());
306     return DiyFp(Significand(), Exponent());
307   }
308 
309   // Returns the single's bit as uint64.
AsUint32()310   uint32_t AsUint32() const {
311     return d32_;
312   }
313 
Exponent()314   int Exponent() const {
315     if (IsDenormal()) return kDenormalExponent;
316 
317     uint32_t d32 = AsUint32();
318     int biased_e =
319         static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
320     return biased_e - kExponentBias;
321   }
322 
Significand()323   uint32_t Significand() const {
324     uint32_t d32 = AsUint32();
325     uint32_t significand = d32 & kSignificandMask;
326     if (!IsDenormal()) {
327       return significand + kHiddenBit;
328     } else {
329       return significand;
330     }
331   }
332 
333   // Returns true if the single is a denormal.
IsDenormal()334   bool IsDenormal() const {
335     uint32_t d32 = AsUint32();
336     return (d32 & kExponentMask) == 0;
337   }
338 
339   // We consider denormals not to be special.
340   // Hence only Infinity and NaN are special.
IsSpecial()341   bool IsSpecial() const {
342     uint32_t d32 = AsUint32();
343     return (d32 & kExponentMask) == kExponentMask;
344   }
345 
IsNan()346   bool IsNan() const {
347     uint32_t d32 = AsUint32();
348     return ((d32 & kExponentMask) == kExponentMask) &&
349         ((d32 & kSignificandMask) != 0);
350   }
351 
IsQuietNan()352   bool IsQuietNan() const {
353     return IsNan() && ((AsUint32() & kQuietNanBit) != 0);
354   }
355 
IsSignalingNan()356   bool IsSignalingNan() const {
357     return IsNan() && ((AsUint32() & kQuietNanBit) == 0);
358   }
359 
360 
IsInfinite()361   bool IsInfinite() const {
362     uint32_t d32 = AsUint32();
363     return ((d32 & kExponentMask) == kExponentMask) &&
364         ((d32 & kSignificandMask) == 0);
365   }
366 
Sign()367   int Sign() const {
368     uint32_t d32 = AsUint32();
369     return (d32 & kSignMask) == 0? 1: -1;
370   }
371 
372   // Computes the two boundaries of this.
373   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
374   // exponent as m_plus.
375   // Precondition: the value encoded by this Single must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)376   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
377     DOUBLE_CONVERSION_ASSERT(value() > 0.0);
378     DiyFp v = this->AsDiyFp();
379     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
380     DiyFp m_minus;
381     if (LowerBoundaryIsCloser()) {
382       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
383     } else {
384       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
385     }
386     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
387     m_minus.set_e(m_plus.e());
388     *out_m_plus = m_plus;
389     *out_m_minus = m_minus;
390   }
391 
392   // Precondition: the value encoded by this Single must be greater or equal
393   // than +0.0.
UpperBoundary()394   DiyFp UpperBoundary() const {
395     DOUBLE_CONVERSION_ASSERT(Sign() > 0);
396     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
397   }
398 
LowerBoundaryIsCloser()399   bool LowerBoundaryIsCloser() const {
400     // The boundary is closer if the significand is of the form f == 2^p-1 then
401     // the lower boundary is closer.
402     // Think of v = 1000e10 and v- = 9999e9.
403     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
404     // at a distance of 1e8.
405     // The only exception is for the smallest normal: the largest denormal is
406     // at the same distance as its successor.
407     // Note: denormals have the same exponent as the smallest normals.
408     bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
409     return physical_significand_is_zero && (Exponent() != kDenormalExponent);
410   }
411 
value()412   float value() const { return uint32_to_float(d32_); }
413 
Infinity()414   static float Infinity() {
415     return Single(kInfinity).value();
416   }
417 
NaN()418   static float NaN() {
419     return Single(kNaN).value();
420   }
421 
422  private:
423   static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
424   static const int kDenormalExponent = -kExponentBias + 1;
425   static const int kMaxExponent = 0xFF - kExponentBias;
426   static const uint32_t kInfinity = 0x7F800000;
427   static const uint32_t kNaN = 0x7FC00000;
428 
429   const uint32_t d32_;
430 
431   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Single);
432 };
433 
434 }  // namespace double_conversion
435 
436 // ICU PATCH: Close ICU namespace
437 U_NAMESPACE_END
438 
439 #endif  // DOUBLE_CONVERSION_DOUBLE_H_
440 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
441