1 /*
2  * Copyright (C) 1995-2011 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19 
20 /**
21  * @file
22  * @brief       Preference Guided Register Assignment
23  * @author      Matthias Braun
24  * @date        14.2.2009
25  *
26  * The idea is to allocate registers in 2 passes:
27  * 1. A first pass to determine "preferred" registers for live-ranges. This
28  *    calculates for each register and each live-range a value indicating
29  *    the usefulness. (You can roughly think of the value as the negative
30  *    costs needed for copies when the value is in the specific registers...)
31  *
32  * 2. Walk blocks and assigns registers in a greedy fashion. Preferring
33  *    registers with high preferences. When register constraints are not met,
34  *    add copies and split live-ranges.
35  *
36  * TODO:
37  *  - make use of free registers in the permute_values code
38  */
39 #include "config.h"
40 
41 #include <float.h>
42 #include <stdbool.h>
43 #include <math.h>
44 #include "lpp.h"
45 
46 #include "error.h"
47 #include "execfreq.h"
48 #include "ircons.h"
49 #include "irdom.h"
50 #include "iredges_t.h"
51 #include "irgraph_t.h"
52 #include "irgwalk.h"
53 #include "irnode_t.h"
54 #include "irprintf.h"
55 #include "irdump.h"
56 #include "irtools.h"
57 #include "util.h"
58 #include "obst.h"
59 #include "raw_bitset.h"
60 #include "unionfind.h"
61 #include "pdeq.h"
62 #include "hungarian.h"
63 
64 #include "beabi.h"
65 #include "bechordal_t.h"
66 #include "be.h"
67 #include "beirg.h"
68 #include "belive_t.h"
69 #include "bemodule.h"
70 #include "benode.h"
71 #include "bera.h"
72 #include "besched.h"
73 #include "bespill.h"
74 #include "bespillutil.h"
75 #include "beverify.h"
76 #include "beutil.h"
77 #include "bestack.h"
78 
79 #define USE_FACTOR                     1.0f
80 #define DEF_FACTOR                     1.0f
81 #define NEIGHBOR_FACTOR                0.2f
82 #define AFF_SHOULD_BE_SAME             0.5f
83 #define AFF_PHI                        1.0f
84 #define SPLIT_DELTA                    1.0f
85 #define MAX_OPTIMISTIC_SPLIT_RECURSION 0
86 
87 DEBUG_ONLY(static firm_dbg_module_t *dbg = NULL;)
88 
89 static struct obstack               obst;
90 static ir_graph                    *irg;
91 static const arch_register_class_t *cls;
92 static be_lv_t                     *lv;
93 static unsigned                     n_regs;
94 static unsigned                    *normal_regs;
95 static int                         *congruence_classes;
96 static ir_node                    **block_order;
97 static size_t                       n_block_order;
98 
99 /** currently active assignments (while processing a basic block)
100  * maps registers to values(their current copies) */
101 static ir_node **assignments;
102 
103 /**
104  * allocation information: last_uses, register preferences
105  * the information is per firm-node.
106  */
107 struct allocation_info_t {
108 	unsigned  last_uses[2];   /**< bitset indicating last uses (input pos) */
109 	ir_node  *current_value;  /**< copy of the value that should be used */
110 	ir_node  *original_value; /**< for copies point to original value */
111 	float     prefs[];        /**< register preferences */
112 };
113 typedef struct allocation_info_t allocation_info_t;
114 
115 /** helper datastructure used when sorting register preferences */
116 struct reg_pref_t {
117 	unsigned num;
118 	float    pref;
119 };
120 typedef struct reg_pref_t reg_pref_t;
121 
122 /** per basic-block information */
123 struct block_info_t {
124 	bool     processed;       /**< indicate whether block is processed */
125 	ir_node *assignments[];   /**< register assignments at end of block */
126 };
127 typedef struct block_info_t block_info_t;
128 
129 /**
130  * Get the allocation info for a node.
131  * The info is allocated on the first visit of a node.
132  */
get_allocation_info(ir_node * node)133 static allocation_info_t *get_allocation_info(ir_node *node)
134 {
135 	allocation_info_t *info = (allocation_info_t*)get_irn_link(node);
136 	if (info == NULL) {
137 		info = OALLOCFZ(&obst, allocation_info_t, prefs, n_regs);
138 		info->current_value  = node;
139 		info->original_value = node;
140 		set_irn_link(node, info);
141 	}
142 
143 	return info;
144 }
145 
try_get_allocation_info(const ir_node * node)146 static allocation_info_t *try_get_allocation_info(const ir_node *node)
147 {
148 	return (allocation_info_t*) get_irn_link(node);
149 }
150 
151 /**
152  * Get allocation information for a basic block
153  */
get_block_info(ir_node * block)154 static block_info_t *get_block_info(ir_node *block)
155 {
156 	block_info_t *info = (block_info_t*)get_irn_link(block);
157 
158 	assert(is_Block(block));
159 	if (info == NULL) {
160 		info = OALLOCFZ(&obst, block_info_t, assignments, n_regs);
161 		set_irn_link(block, info);
162 	}
163 
164 	return info;
165 }
166 
167 /**
168  * Link the allocation info of a node to a copy.
169  * Afterwards, both nodes uses the same allocation info.
170  * Copy must not have an allocation info assigned yet.
171  *
172  * @param copy   the node that gets the allocation info assigned
173  * @param value  the original node
174  */
mark_as_copy_of(ir_node * copy,ir_node * value)175 static void mark_as_copy_of(ir_node *copy, ir_node *value)
176 {
177 	allocation_info_t *info      = get_allocation_info(value);
178 	allocation_info_t *copy_info = get_allocation_info(copy);
179 
180 	/* find original value */
181 	ir_node *original = info->original_value;
182 	if (original != value) {
183 		info = get_allocation_info(original);
184 	}
185 
186 	assert(info->original_value == original);
187 	info->current_value = copy;
188 
189 	/* the copy should not be linked to something else yet */
190 	assert(copy_info->original_value == copy);
191 	copy_info->original_value = original;
192 
193 	/* copy over allocation preferences */
194 	memcpy(copy_info->prefs, info->prefs, n_regs * sizeof(copy_info->prefs[0]));
195 }
196 
197 /**
198  * Calculate the penalties for every register on a node and its live neighbors.
199  *
200  * @param live_nodes  the set of live nodes at the current position, may be NULL
201  * @param penalty     the penalty to subtract from
202  * @param limited     a raw bitset containing the limited set for the node
203  * @param node        the node
204  */
give_penalties_for_limits(const ir_nodeset_t * live_nodes,float penalty,const unsigned * limited,ir_node * node)205 static void give_penalties_for_limits(const ir_nodeset_t *live_nodes,
206                                       float penalty, const unsigned* limited,
207                                       ir_node *node)
208 {
209 	allocation_info_t *info = get_allocation_info(node);
210 
211 	/* give penalty for all forbidden regs */
212 	for (unsigned r = 0; r < n_regs; ++r) {
213 		if (rbitset_is_set(limited, r))
214 			continue;
215 
216 		info->prefs[r] -= penalty;
217 	}
218 
219 	/* all other live values should get a penalty for allowed regs */
220 	if (live_nodes == NULL)
221 		return;
222 
223 	penalty   *= NEIGHBOR_FACTOR;
224 	size_t n_allowed = rbitset_popcount(limited, n_regs);
225 	if (n_allowed > 1) {
226 		/* only create a very weak penalty if multiple regs are allowed */
227 		penalty = (penalty * 0.8f) / n_allowed;
228 	}
229 	foreach_ir_nodeset(live_nodes, neighbor, iter) {
230 		allocation_info_t *neighbor_info;
231 
232 		/* TODO: if op is used on multiple inputs we might not do a
233 		 * continue here */
234 		if (neighbor == node)
235 			continue;
236 
237 		neighbor_info = get_allocation_info(neighbor);
238 		for (unsigned r = 0; r < n_regs; ++r) {
239 			if (!rbitset_is_set(limited, r))
240 				continue;
241 
242 			neighbor_info->prefs[r] -= penalty;
243 		}
244 	}
245 }
246 
247 /**
248  * Calculate the preferences of a definition for the current register class.
249  * If the definition uses a limited set of registers, reduce the preferences
250  * for the limited register on the node and its neighbors.
251  *
252  * @param live_nodes  the set of live nodes at the current node
253  * @param weight      the weight
254  * @param node        the current node
255  */
check_defs(const ir_nodeset_t * live_nodes,float weight,ir_node * node)256 static void check_defs(const ir_nodeset_t *live_nodes, float weight,
257                        ir_node *node)
258 {
259 	const arch_register_req_t *req = arch_get_irn_register_req(node);
260 	if (req->type & arch_register_req_type_limited) {
261 		const unsigned *limited = req->limited;
262 		float           penalty = weight * DEF_FACTOR;
263 		give_penalties_for_limits(live_nodes, penalty, limited, node);
264 	}
265 
266 	if (req->type & arch_register_req_type_should_be_same) {
267 		ir_node           *insn  = skip_Proj(node);
268 		allocation_info_t *info  = get_allocation_info(node);
269 		int                arity = get_irn_arity(insn);
270 
271 		float factor = 1.0f / rbitset_popcount(&req->other_same, arity);
272 		for (int i = 0; i < arity; ++i) {
273 			if (!rbitset_is_set(&req->other_same, i))
274 				continue;
275 
276 			ir_node *op = get_irn_n(insn, i);
277 
278 			/* if we the value at the should_be_same input doesn't die at the
279 			 * node, then it is no use to propagate the constraints (since a
280 			 * copy will emerge anyway) */
281 			if (ir_nodeset_contains(live_nodes, op))
282 				continue;
283 
284 			allocation_info_t *op_info = get_allocation_info(op);
285 			for (unsigned r = 0; r < n_regs; ++r) {
286 				op_info->prefs[r] += info->prefs[r] * factor;
287 			}
288 		}
289 	}
290 }
291 
292 /**
293  * Walker: Runs an a block calculates the preferences for any
294  * node and every register from the considered register class.
295  */
analyze_block(ir_node * block,void * data)296 static void analyze_block(ir_node *block, void *data)
297 {
298 	float        weight = (float)get_block_execfreq(block);
299 	ir_nodeset_t live_nodes;
300 	(void) data;
301 
302 	ir_nodeset_init(&live_nodes);
303 	be_liveness_end_of_block(lv, cls, block, &live_nodes);
304 
305 	sched_foreach_reverse(block, node) {
306 		if (is_Phi(node))
307 			break;
308 
309 		be_foreach_definition(node, cls, value,
310 			check_defs(&live_nodes, weight, value);
311 		);
312 
313 		/* mark last uses */
314 		int arity = get_irn_arity(node);
315 
316 		/* the allocation info node currently only uses 1 unsigned value
317 		   to mark last used inputs. So we will fail for a node with more than
318 		   32 inputs. */
319 		allocation_info_t *info = get_allocation_info(node);
320 		if (arity >= (int) sizeof(info->last_uses) * 8) {
321 			panic("Node with more than %d inputs not supported yet",
322 					(int) sizeof(info->last_uses) * 8);
323 		}
324 
325 		for (int i = 0; i < arity; ++i) {
326 			ir_node                   *op  = get_irn_n(node, i);
327 			const arch_register_req_t *req = arch_get_irn_register_req(op);
328 			if (req->cls != cls)
329 				continue;
330 
331 			/* last usage of a value? */
332 			if (!ir_nodeset_contains(&live_nodes, op)) {
333 				rbitset_set(info->last_uses, i);
334 			}
335 		}
336 
337 		be_liveness_transfer(cls, node, &live_nodes);
338 
339 		/* update weights based on usage constraints */
340 		for (int i = 0; i < arity; ++i) {
341 			ir_node *op = get_irn_n(node, i);
342 			if (!arch_irn_consider_in_reg_alloc(cls, op))
343 				continue;
344 
345 			const arch_register_req_t *req
346 				= arch_get_irn_register_req_in(node, i);
347 			if (!(req->type & arch_register_req_type_limited))
348 				continue;
349 
350 			const unsigned *limited = req->limited;
351 			give_penalties_for_limits(&live_nodes, weight * USE_FACTOR,
352 									  limited, op);
353 		}
354 	}
355 
356 	ir_nodeset_destroy(&live_nodes);
357 }
358 
congruence_def(ir_nodeset_t * live_nodes,const ir_node * node)359 static void congruence_def(ir_nodeset_t *live_nodes, const ir_node *node)
360 {
361 	const arch_register_req_t *req = arch_get_irn_register_req(node);
362 
363 	/* should be same constraint? */
364 	if (req->type & arch_register_req_type_should_be_same) {
365 		const ir_node *insn     = skip_Proj_const(node);
366 		int            arity    = get_irn_arity(insn);
367 		unsigned       node_idx = get_irn_idx(node);
368 		node_idx = uf_find(congruence_classes, node_idx);
369 
370 		for (int i = 0; i < arity; ++i) {
371 			if (!rbitset_is_set(&req->other_same, i))
372 				continue;
373 
374 			ir_node *op     = get_irn_n(insn, i);
375 			int      op_idx = get_irn_idx(op);
376 			op_idx = uf_find(congruence_classes, op_idx);
377 
378 			/* do we interfere with the value */
379 			bool interferes = false;
380 			foreach_ir_nodeset(live_nodes, live, iter) {
381 				int lv_idx = get_irn_idx(live);
382 				lv_idx     = uf_find(congruence_classes, lv_idx);
383 				if (lv_idx == op_idx) {
384 					interferes = true;
385 					break;
386 				}
387 			}
388 			/* don't put in same affinity class if we interfere */
389 			if (interferes)
390 				continue;
391 
392 			uf_union(congruence_classes, node_idx, op_idx);
393 			DB((dbg, LEVEL_3, "Merge %+F and %+F congruence classes\n",
394 			    node, op));
395 			/* one should_be_same is enough... */
396 			break;
397 		}
398 	}
399 }
400 
create_congruence_class(ir_node * block,void * data)401 static void create_congruence_class(ir_node *block, void *data)
402 {
403 	ir_nodeset_t live_nodes;
404 
405 	(void) data;
406 	ir_nodeset_init(&live_nodes);
407 	be_liveness_end_of_block(lv, cls, block, &live_nodes);
408 
409 	/* check should be same constraints */
410 	ir_node *last_phi = NULL;
411 	sched_foreach_reverse(block, node) {
412 		if (is_Phi(node)) {
413 			last_phi = node;
414 			break;
415 		}
416 
417 		be_foreach_definition(node, cls, value,
418 			congruence_def(&live_nodes, value);
419 		);
420 		be_liveness_transfer(cls, node, &live_nodes);
421 	}
422 	if (!last_phi) {
423 		ir_nodeset_destroy(&live_nodes);
424 		return;
425 	}
426 
427 	/* check phi congruence classes */
428 	sched_foreach_reverse_from(last_phi, phi) {
429 		assert(is_Phi(phi));
430 
431 		if (!arch_irn_consider_in_reg_alloc(cls, phi))
432 			continue;
433 
434 		int node_idx = get_irn_idx(phi);
435 		node_idx = uf_find(congruence_classes, node_idx);
436 
437 		int arity = get_irn_arity(phi);
438 		for (int i = 0; i < arity; ++i) {
439 			ir_node *op     = get_Phi_pred(phi, i);
440 			int      op_idx = get_irn_idx(op);
441 			op_idx = uf_find(congruence_classes, op_idx);
442 
443 			/* do we interfere with the value */
444 			bool interferes = false;
445 			foreach_ir_nodeset(&live_nodes, live, iter) {
446 				int lv_idx = get_irn_idx(live);
447 				lv_idx     = uf_find(congruence_classes, lv_idx);
448 				if (lv_idx == op_idx) {
449 					interferes = true;
450 					break;
451 				}
452 			}
453 			/* don't put in same affinity class if we interfere */
454 			if (interferes)
455 				continue;
456 			/* any other phi has the same input? */
457 			sched_foreach(block, phi) {
458 				ir_node *oop;
459 				int      oop_idx;
460 				if (!is_Phi(phi))
461 					break;
462 				if (!arch_irn_consider_in_reg_alloc(cls, phi))
463 					continue;
464 				oop = get_Phi_pred(phi, i);
465 				if (oop == op)
466 					continue;
467 				oop_idx = get_irn_idx(oop);
468 				oop_idx = uf_find(congruence_classes, oop_idx);
469 				if (oop_idx == op_idx) {
470 					interferes = true;
471 					break;
472 				}
473 			}
474 			if (interferes)
475 				continue;
476 
477 			/* merge the 2 congruence classes and sum up their preferences */
478 			int old_node_idx = node_idx;
479 			node_idx = uf_union(congruence_classes, node_idx, op_idx);
480 			DB((dbg, LEVEL_3, "Merge %+F and %+F congruence classes\n",
481 			    phi, op));
482 
483 			old_node_idx = node_idx == old_node_idx ? op_idx : old_node_idx;
484 			allocation_info_t *head_info
485 				= get_allocation_info(get_idx_irn(irg, node_idx));
486 			allocation_info_t *other_info
487 				= get_allocation_info(get_idx_irn(irg, old_node_idx));
488 			for (unsigned r = 0; r < n_regs; ++r) {
489 				head_info->prefs[r] += other_info->prefs[r];
490 			}
491 		}
492 	}
493 	ir_nodeset_destroy(&live_nodes);
494 }
495 
set_congruence_prefs(ir_node * node,void * data)496 static void set_congruence_prefs(ir_node *node, void *data)
497 {
498 	(void) data;
499 	unsigned node_idx = get_irn_idx(node);
500 	unsigned node_set = uf_find(congruence_classes, node_idx);
501 
502 	/* head of congruence class or not in any class */
503 	if (node_set == node_idx)
504 		return;
505 
506 	if (!arch_irn_consider_in_reg_alloc(cls, node))
507 		return;
508 
509 	ir_node *head = get_idx_irn(irg, node_set);
510 	allocation_info_t *head_info = get_allocation_info(head);
511 	allocation_info_t *info      = get_allocation_info(node);
512 
513 	memcpy(info->prefs, head_info->prefs, n_regs * sizeof(info->prefs[0]));
514 }
515 
combine_congruence_classes(void)516 static void combine_congruence_classes(void)
517 {
518 	size_t n = get_irg_last_idx(irg);
519 	congruence_classes = XMALLOCN(int, n);
520 	uf_init(congruence_classes, n);
521 
522 	/* create congruence classes */
523 	irg_block_walk_graph(irg, create_congruence_class, NULL, NULL);
524 	/* merge preferences */
525 	irg_walk_graph(irg, set_congruence_prefs, NULL, NULL);
526 	free(congruence_classes);
527 }
528 
529 
530 
531 /**
532  * Assign register reg to the given node.
533  *
534  * @param node  the node
535  * @param reg   the register
536  */
use_reg(ir_node * node,const arch_register_t * reg,unsigned width)537 static void use_reg(ir_node *node, const arch_register_t *reg, unsigned width)
538 {
539 	unsigned r = reg->index;
540 	for (unsigned r0 = r; r0 < r + width; ++r0)
541 		assignments[r0] = node;
542 	arch_set_irn_register(node, reg);
543 }
544 
free_reg_of_value(ir_node * node)545 static void free_reg_of_value(ir_node *node)
546 {
547 	if (!arch_irn_consider_in_reg_alloc(cls, node))
548 		return;
549 
550 	const arch_register_t     *reg = arch_get_irn_register(node);
551 	const arch_register_req_t *req = arch_get_irn_register_req(node);
552 	unsigned                   r   = reg->index;
553 	/* assignment->value may be NULL if a value is used at 2 inputs
554 	 * so it gets freed twice. */
555 	for (unsigned r0 = r; r0 < r + req->width; ++r0) {
556 		assert(assignments[r0] == node || assignments[r0] == NULL);
557 		assignments[r0] = NULL;
558 	}
559 }
560 
561 /**
562  * Compare two register preferences in decreasing order.
563  */
compare_reg_pref(const void * e1,const void * e2)564 static int compare_reg_pref(const void *e1, const void *e2)
565 {
566 	const reg_pref_t *rp1 = (const reg_pref_t*) e1;
567 	const reg_pref_t *rp2 = (const reg_pref_t*) e2;
568 	if (rp1->pref < rp2->pref)
569 		return 1;
570 	if (rp1->pref > rp2->pref)
571 		return -1;
572 	return 0;
573 }
574 
fill_sort_candidates(reg_pref_t * regprefs,const allocation_info_t * info)575 static void fill_sort_candidates(reg_pref_t *regprefs,
576                                  const allocation_info_t *info)
577 {
578 	for (unsigned r = 0; r < n_regs; ++r) {
579 		float pref = info->prefs[r];
580 		regprefs[r].num  = r;
581 		regprefs[r].pref = pref;
582 	}
583 	/* TODO: use a stable sort here to avoid unnecessary register jumping */
584 	qsort(regprefs, n_regs, sizeof(regprefs[0]), compare_reg_pref);
585 }
586 
try_optimistic_split(ir_node * to_split,ir_node * before,float pref,float pref_delta,unsigned * forbidden_regs,int recursion)587 static bool try_optimistic_split(ir_node *to_split, ir_node *before,
588                                  float pref, float pref_delta,
589                                  unsigned *forbidden_regs, int recursion)
590 {
591 	(void) pref;
592 	unsigned           r = 0;
593 	allocation_info_t *info = get_allocation_info(to_split);
594 	float              delta = 0;
595 
596 	/* stupid hack: don't optimisticallt split don't spill nodes...
597 	 * (so we don't split away the values produced because of
598 	 *  must_be_different constraints) */
599 	ir_node *original_insn = skip_Proj(info->original_value);
600 	if (arch_get_irn_flags(original_insn) & arch_irn_flags_dont_spill)
601 		return false;
602 
603 	const arch_register_t *from_reg        = arch_get_irn_register(to_split);
604 	unsigned               from_r          = from_reg->index;
605 	ir_node               *block           = get_nodes_block(before);
606 	float split_threshold = (float)get_block_execfreq(block) * SPLIT_DELTA;
607 
608 	if (pref_delta < split_threshold*0.5)
609 		return false;
610 
611 	/* find the best free position where we could move to */
612 	reg_pref_t *prefs = ALLOCAN(reg_pref_t, n_regs);
613 	fill_sort_candidates(prefs, info);
614 	unsigned i;
615 	for (i = 0; i < n_regs; ++i) {
616 		/* we need a normal register which is not an output register
617 		   an different from the current register of to_split */
618 		r = prefs[i].num;
619 		if (!rbitset_is_set(normal_regs, r))
620 			continue;
621 		if (rbitset_is_set(forbidden_regs, r))
622 			continue;
623 		if (r == from_r)
624 			continue;
625 
626 		/* is the split worth it? */
627 		delta = pref_delta + prefs[i].pref;
628 		if (delta < split_threshold) {
629 			DB((dbg, LEVEL_3, "Not doing optimistical split of %+F (depth %d), win %f too low\n",
630 				to_split, recursion, delta));
631 			return false;
632 		}
633 
634 		/* if the register is free then we can do the split */
635 		if (assignments[r] == NULL)
636 			break;
637 
638 		/* otherwise we might try recursively calling optimistic_split */
639 		if (recursion+1 > MAX_OPTIMISTIC_SPLIT_RECURSION)
640 			continue;
641 
642 		float apref        = prefs[i].pref;
643 		float apref_delta  = i+1 < n_regs ? apref - prefs[i+1].pref : 0;
644 		apref_delta += pref_delta - split_threshold;
645 
646 		/* our source register isn't a useful destination for recursive
647 		   splits */
648 		bool old_source_state = rbitset_is_set(forbidden_regs, from_r);
649 		rbitset_set(forbidden_regs, from_r);
650 		/* try recursive split */
651 		bool res = try_optimistic_split(assignments[r], before, apref,
652 		                              apref_delta, forbidden_regs, recursion+1);
653 		/* restore our destination */
654 		if (old_source_state) {
655 			rbitset_set(forbidden_regs, from_r);
656 		} else {
657 			rbitset_clear(forbidden_regs, from_r);
658 		}
659 
660 		if (res)
661 			break;
662 	}
663 	if (i >= n_regs)
664 		return false;
665 
666 	const arch_register_t *reg   = arch_register_for_index(cls, r);
667 	ir_node               *copy  = be_new_Copy(block, to_split);
668 	unsigned               width = 1;
669 	mark_as_copy_of(copy, to_split);
670 	/* hacky, but correct here */
671 	if (assignments[from_reg->index] == to_split)
672 		free_reg_of_value(to_split);
673 	use_reg(copy, reg, width);
674 	sched_add_before(before, copy);
675 
676 	DB((dbg, LEVEL_3,
677 	    "Optimistic live-range split %+F move %+F(%s) -> %s before %+F (win %f, depth %d)\n",
678 	    copy, to_split, from_reg->name, reg->name, before, delta, recursion));
679 	return true;
680 }
681 
682 /**
683  * Determine and assign a register for node @p node
684  */
assign_reg(const ir_node * block,ir_node * node,unsigned * forbidden_regs)685 static void assign_reg(const ir_node *block, ir_node *node,
686                        unsigned *forbidden_regs)
687 {
688 	assert(!is_Phi(node));
689 	/* preassigned register? */
690 	const arch_register_t     *final_reg = arch_get_irn_register(node);
691 	const arch_register_req_t *req       = arch_get_irn_register_req(node);
692 	unsigned                   width     = req->width;
693 	if (final_reg != NULL) {
694 		DB((dbg, LEVEL_2, "Preassignment %+F -> %s\n", node, final_reg->name));
695 		use_reg(node, final_reg, width);
696 		return;
697 	}
698 
699 	/* ignore reqs must be preassigned */
700 	assert (! (req->type & arch_register_req_type_ignore));
701 
702 	/* give should_be_same boni */
703 	allocation_info_t *info    = get_allocation_info(node);
704 	ir_node           *in_node = skip_Proj(node);
705 	if (req->type & arch_register_req_type_should_be_same) {
706 		float weight = (float)get_block_execfreq(block);
707 		int   arity  = get_irn_arity(in_node);
708 
709 		assert(arity <= (int) sizeof(req->other_same) * 8);
710 		for (int i = 0; i < arity; ++i) {
711 			if (!rbitset_is_set(&req->other_same, i))
712 				continue;
713 
714 			ir_node               *in        = get_irn_n(in_node, i);
715 			const arch_register_t *reg       = arch_get_irn_register(in);
716 			unsigned               reg_index = reg->index;
717 
718 			/* if the value didn't die here then we should not propagate the
719 			 * should_be_same info */
720 			if (assignments[reg_index] == in)
721 				continue;
722 
723 			info->prefs[reg_index] += weight * AFF_SHOULD_BE_SAME;
724 		}
725 	}
726 
727 	/* create list of register candidates and sort by their preference */
728 	DB((dbg, LEVEL_2, "Candidates for %+F:", node));
729 	reg_pref_t *reg_prefs = ALLOCAN(reg_pref_t, n_regs);
730 	fill_sort_candidates(reg_prefs, info);
731 	for (unsigned r = 0; r < n_regs; ++r) {
732 		unsigned num = reg_prefs[r].num;
733 		if (!rbitset_is_set(normal_regs, num))
734 			continue;
735 		const arch_register_t *reg = arch_register_for_index(cls, num);
736 		DB((dbg, LEVEL_2, " %s(%f)", reg->name, reg_prefs[r].pref));
737 	}
738 	DB((dbg, LEVEL_2, "\n"));
739 
740 	const unsigned *allowed_regs = normal_regs;
741 	if (req->type & arch_register_req_type_limited) {
742 		allowed_regs = req->limited;
743 	}
744 
745 	unsigned final_reg_index = 0;
746 	unsigned r;
747 	for (r = 0; r < n_regs; ++r) {
748 		final_reg_index = reg_prefs[r].num;
749 		if (!rbitset_is_set(allowed_regs, final_reg_index))
750 			continue;
751 		/* alignment constraint? */
752 		if (width > 1) {
753 			if ((req->type & arch_register_req_type_aligned)
754 				&& (final_reg_index % width) != 0)
755 				continue;
756 			bool fine = true;
757 			for (unsigned r0 = r+1; r0 < r+width; ++r0) {
758 				if (assignments[r0] != NULL)
759 					fine = false;
760 			}
761 			/* TODO: attempt optimistic split here */
762 			if (!fine)
763 				continue;
764 		}
765 
766 		if (assignments[final_reg_index] == NULL)
767 			break;
768 		float    pref   = reg_prefs[r].pref;
769 		float    delta  = r+1 < n_regs ? pref - reg_prefs[r+1].pref : 0;
770 		ir_node *before = skip_Proj(node);
771 		bool     res
772 			= try_optimistic_split(assignments[final_reg_index], before, pref,
773 			                       delta, forbidden_regs, 0);
774 		if (res)
775 			break;
776 	}
777 	if (r >= n_regs) {
778 		/* the common reason to hit this panic is when 1 of your nodes is not
779 		 * register pressure faithful */
780 		panic("No register left for %+F\n", node);
781 	}
782 
783 	final_reg = arch_register_for_index(cls, final_reg_index);
784 	DB((dbg, LEVEL_2, "Assign %+F -> %s\n", node, final_reg->name));
785 	use_reg(node, final_reg, width);
786 }
787 
788 /**
789  * Add an permutation in front of a node and change the assignments
790  * due to this permutation.
791  *
792  * To understand this imagine a permutation like this:
793  *
794  * 1 -> 2
795  * 2 -> 3
796  * 3 -> 1, 5
797  * 4 -> 6
798  * 5
799  * 6
800  * 7 -> 7
801  *
802  * First we count how many destinations a single value has. At the same time
803  * we can be sure that each destination register has at most 1 source register
804  * (it can have 0 which means we don't care what value is in it).
805  * We ignore all fulfilled permuations (like 7->7)
806  * In a first pass we create as much copy instructions as possible as they
807  * are generally cheaper than exchanges. We do this by counting into how many
808  * destinations a register has to be copied (in the example it's 2 for register
809  * 3, or 1 for the registers 1,2,4 and 7).
810  * We can then create a copy into every destination register when the usecount
811  * of that register is 0 (= noone else needs the value in the register).
812  *
813  * After this step we should only have cycles left. We implement a cyclic
814  * permutation of n registers with n-1 transpositions.
815  *
816  * @param live_nodes   the set of live nodes, updated due to live range split
817  * @param before       the node before we add the permutation
818  * @param permutation  the permutation array indices are the destination
819  *                     registers, the values in the array are the source
820  *                     registers.
821  */
permute_values(ir_nodeset_t * live_nodes,ir_node * before,unsigned * permutation)822 static void permute_values(ir_nodeset_t *live_nodes, ir_node *before,
823                            unsigned *permutation)
824 {
825 	unsigned *n_used = ALLOCANZ(unsigned, n_regs);
826 
827 	/* determine how often each source register needs to be read */
828 	for (unsigned r = 0; r < n_regs; ++r) {
829 		unsigned  old_reg = permutation[r];
830 		ir_node  *value;
831 
832 		value = assignments[old_reg];
833 		if (value == NULL) {
834 			/* nothing to do here, reg is not live. Mark it as fixpoint
835 			 * so we ignore it in the next steps */
836 			permutation[r] = r;
837 			continue;
838 		}
839 
840 		++n_used[old_reg];
841 	}
842 
843 	ir_node *block = get_nodes_block(before);
844 
845 	/* step1: create copies where immediately possible */
846 	for (unsigned r = 0; r < n_regs; /* empty */) {
847 		unsigned old_r = permutation[r];
848 
849 		/* - no need to do anything for fixed points.
850 		   - we can't copy if the value in the dest reg is still needed */
851 		if (old_r == r || n_used[r] > 0) {
852 			++r;
853 			continue;
854 		}
855 
856 		/* create a copy */
857 		ir_node *src  = assignments[old_r];
858 		ir_node *copy = be_new_Copy(block, src);
859 		sched_add_before(before, copy);
860 		const arch_register_t *reg = arch_register_for_index(cls, r);
861 		DB((dbg, LEVEL_2, "Copy %+F (from %+F, before %+F) -> %s\n",
862 		    copy, src, before, reg->name));
863 		mark_as_copy_of(copy, src);
864 		unsigned width = 1; /* TODO */
865 		use_reg(copy, reg, width);
866 
867 		if (live_nodes != NULL) {
868 			ir_nodeset_insert(live_nodes, copy);
869 		}
870 
871 		/* old register has 1 user less, permutation is resolved */
872 		assert(arch_get_irn_register(src)->index == old_r);
873 		permutation[r] = r;
874 
875 		assert(n_used[old_r] > 0);
876 		--n_used[old_r];
877 		if (n_used[old_r] == 0) {
878 			if (live_nodes != NULL) {
879 				ir_nodeset_remove(live_nodes, src);
880 			}
881 			free_reg_of_value(src);
882 		}
883 
884 		/* advance or jump back (if this copy enabled another copy) */
885 		if (old_r < r && n_used[old_r] == 0) {
886 			r = old_r;
887 		} else {
888 			++r;
889 		}
890 	}
891 
892 	/* at this point we only have "cycles" left which we have to resolve with
893 	 * perm instructions
894 	 * TODO: if we have free registers left, then we should really use copy
895 	 * instructions for any cycle longer than 2 registers...
896 	 * (this is probably architecture dependent, there might be archs where
897 	 *  copies are preferable even for 2-cycles) */
898 
899 	/* create perms with the rest */
900 	for (unsigned r = 0; r < n_regs; /* empty */) {
901 		unsigned old_r = permutation[r];
902 
903 		if (old_r == r) {
904 			++r;
905 			continue;
906 		}
907 
908 		/* we shouldn't have copies from 1 value to multiple destinations left*/
909 		assert(n_used[old_r] == 1);
910 
911 		/* exchange old_r and r2; after that old_r is a fixed point */
912 		unsigned r2 = permutation[old_r];
913 
914 		ir_node *in[2] = { assignments[r2], assignments[old_r] };
915 		ir_node *perm = be_new_Perm(cls, block, 2, in);
916 		sched_add_before(before, perm);
917 		DB((dbg, LEVEL_2, "Perm %+F (perm %+F,%+F, before %+F)\n",
918 		    perm, in[0], in[1], before));
919 
920 		unsigned width = 1; /* TODO */
921 
922 		ir_node *proj0 = new_r_Proj(perm, get_irn_mode(in[0]), 0);
923 		mark_as_copy_of(proj0, in[0]);
924 		const arch_register_t *reg0 = arch_register_for_index(cls, old_r);
925 		use_reg(proj0, reg0, width);
926 
927 		ir_node *proj1 = new_r_Proj(perm, get_irn_mode(in[1]), 1);
928 		mark_as_copy_of(proj1, in[1]);
929 		const arch_register_t *reg1 = arch_register_for_index(cls, r2);
930 		use_reg(proj1, reg1, width);
931 
932 		/* 1 value is now in the correct register */
933 		permutation[old_r] = old_r;
934 		/* the source of r changed to r2 */
935 		permutation[r] = r2;
936 
937 		/* if we have reached a fixpoint update data structures */
938 		if (live_nodes != NULL) {
939 			ir_nodeset_remove(live_nodes, in[0]);
940 			ir_nodeset_remove(live_nodes, in[1]);
941 			ir_nodeset_remove(live_nodes, proj0);
942 			ir_nodeset_insert(live_nodes, proj1);
943 		}
944 	}
945 
946 #ifndef NDEBUG
947 	/* now we should only have fixpoints left */
948 	for (unsigned r = 0; r < n_regs; ++r) {
949 		assert(permutation[r] == r);
950 	}
951 #endif
952 }
953 
954 /**
955  * Free regs for values last used.
956  *
957  * @param live_nodes   set of live nodes, will be updated
958  * @param node         the node to consider
959  */
free_last_uses(ir_nodeset_t * live_nodes,ir_node * node)960 static void free_last_uses(ir_nodeset_t *live_nodes, ir_node *node)
961 {
962 	allocation_info_t *info      = get_allocation_info(node);
963 	const unsigned    *last_uses = info->last_uses;
964 	int                arity     = get_irn_arity(node);
965 
966 	for (int i = 0; i < arity; ++i) {
967 		/* check if one operand is the last use */
968 		if (!rbitset_is_set(last_uses, i))
969 			continue;
970 
971 		ir_node *op = get_irn_n(node, i);
972 		free_reg_of_value(op);
973 		ir_nodeset_remove(live_nodes, op);
974 	}
975 }
976 
977 /**
978  * change inputs of a node to the current value (copies/perms)
979  */
rewire_inputs(ir_node * node)980 static void rewire_inputs(ir_node *node)
981 {
982 	int arity = get_irn_arity(node);
983 	for (int i = 0; i < arity; ++i) {
984 		ir_node           *op = get_irn_n(node, i);
985 		allocation_info_t *info = try_get_allocation_info(op);
986 
987 		if (info == NULL)
988 			continue;
989 
990 		info = get_allocation_info(info->original_value);
991 		if (info->current_value != op) {
992 			set_irn_n(node, i, info->current_value);
993 		}
994 	}
995 }
996 
997 /**
998  * Create a bitset of registers occupied with value living through an
999  * instruction
1000  */
determine_live_through_regs(unsigned * bitset,ir_node * node)1001 static void determine_live_through_regs(unsigned *bitset, ir_node *node)
1002 {
1003 	const allocation_info_t *info = get_allocation_info(node);
1004 
1005 	/* mark all used registers as potentially live-through */
1006 	for (unsigned r = 0; r < n_regs; ++r) {
1007 		if (assignments[r] == NULL)
1008 			continue;
1009 		if (!rbitset_is_set(normal_regs, r))
1010 			continue;
1011 
1012 		rbitset_set(bitset, r);
1013 	}
1014 
1015 	/* remove registers of value dying at the instruction */
1016 	int arity = get_irn_arity(node);
1017 	for (int i = 0; i < arity; ++i) {
1018 		if (!rbitset_is_set(info->last_uses, i))
1019 			continue;
1020 
1021 		ir_node               *op  = get_irn_n(node, i);
1022 		const arch_register_t *reg = arch_get_irn_register(op);
1023 		rbitset_clear(bitset, reg->index);
1024 	}
1025 }
1026 
solve_lpp(ir_nodeset_t * live_nodes,ir_node * node,unsigned * forbidden_regs,unsigned * live_through_regs)1027 static void solve_lpp(ir_nodeset_t *live_nodes, ir_node *node,
1028                       unsigned *forbidden_regs, unsigned *live_through_regs)
1029 {
1030 	unsigned *forbidden_edges = rbitset_malloc(n_regs * n_regs);
1031 	int      *lpp_vars        = XMALLOCNZ(int, n_regs*n_regs);
1032 
1033 	lpp_t *lpp = lpp_new("prefalloc", lpp_minimize);
1034 	//lpp_set_time_limit(lpp, 20);
1035 	lpp_set_log(lpp, stdout);
1036 
1037 	/** mark some edges as forbidden */
1038 	int arity = get_irn_arity(node);
1039 	for (int i = 0; i < arity; ++i) {
1040 		ir_node *op = get_irn_n(node, i);
1041 		if (!arch_irn_consider_in_reg_alloc(cls, op))
1042 			continue;
1043 
1044 		const arch_register_req_t *req = arch_get_irn_register_req_in(node, i);
1045 		if (!(req->type & arch_register_req_type_limited))
1046 			continue;
1047 
1048 		const unsigned        *limited     = req->limited;
1049 		const arch_register_t *reg         = arch_get_irn_register(op);
1050 		unsigned               current_reg = reg->index;
1051 		for (unsigned r = 0; r < n_regs; ++r) {
1052 			if (rbitset_is_set(limited, r))
1053 				continue;
1054 
1055 			rbitset_set(forbidden_edges, current_reg*n_regs + r);
1056 		}
1057 	}
1058 
1059 	/* add all combinations, except for not allowed ones */
1060 	for (unsigned l = 0; l < n_regs; ++l) {
1061 		if (!rbitset_is_set(normal_regs, l)) {
1062 			char name[15];
1063 			snprintf(name, sizeof(name), "%u_to_%u", l, l);
1064 			lpp_vars[l*n_regs+l] = lpp_add_var(lpp, name, lpp_binary, 1);
1065 			continue;
1066 		}
1067 
1068 		for (unsigned r = 0; r < n_regs; ++r) {
1069 			if (!rbitset_is_set(normal_regs, r))
1070 				continue;
1071 			if (rbitset_is_set(forbidden_edges, l*n_regs + r))
1072 				continue;
1073 			/* livethrough values may not use constrained output registers */
1074 			if (rbitset_is_set(live_through_regs, l)
1075 			    && rbitset_is_set(forbidden_regs, r))
1076 				continue;
1077 
1078 			char name[15];
1079 			snprintf(name, sizeof(name), "%u_to_%u", l, r);
1080 
1081 			double costs = l==r ? 9 : 8;
1082 			lpp_vars[l*n_regs+r]
1083 				= lpp_add_var(lpp, name, lpp_binary, costs);
1084 			assert(lpp_vars[l*n_regs+r] > 0);
1085 		}
1086 	}
1087 	/* add constraints */
1088 	for (unsigned l = 0; l < n_regs; ++l) {
1089 		/* only 1 destination per register */
1090 		int constraint = -1;
1091 		for (unsigned r = 0; r < n_regs; ++r) {
1092 			int var = lpp_vars[l*n_regs+r];
1093 			if (var == 0)
1094 				continue;
1095 			if (constraint < 0) {
1096 				char name[64];
1097 				snprintf(name, sizeof(name), "%u_to_dest", l);
1098 				constraint = lpp_add_cst(lpp, name, lpp_equal, 1);
1099 			}
1100 			lpp_set_factor_fast(lpp, constraint, var, 1);
1101 		}
1102 		/* each destination used by at most 1 value */
1103 		constraint = -1;
1104 		for (unsigned r = 0; r < n_regs; ++r) {
1105 			int var = lpp_vars[r*n_regs+l];
1106 			if (var == 0)
1107 				continue;
1108 			if (constraint < 0) {
1109 				char name[64];
1110 				snprintf(name, sizeof(name), "one_to_%u", l);
1111 				constraint = lpp_add_cst(lpp, name, lpp_less_equal, 1);
1112 			}
1113 			lpp_set_factor_fast(lpp, constraint, var, 1);
1114 		}
1115 	}
1116 
1117 	lpp_dump_plain(lpp, fopen("lppdump.txt", "w"));
1118 
1119 	/* solve lpp */
1120 	lpp_solve(lpp, be_options.ilp_server, be_options.ilp_solver);
1121 	if (!lpp_is_sol_valid(lpp))
1122 		panic("ilp solution not valid!");
1123 
1124 	unsigned *assignment = ALLOCAN(unsigned, n_regs);
1125 	for (unsigned l = 0; l < n_regs; ++l) {
1126 		unsigned dest_reg = (unsigned)-1;
1127 		for (unsigned r = 0; r < n_regs; ++r) {
1128 			int var = lpp_vars[l*n_regs+r];
1129 			if (var == 0)
1130 				continue;
1131 			double val = lpp_get_var_sol(lpp, var);
1132 			if (val == 1) {
1133 				assert(dest_reg == (unsigned)-1);
1134 				dest_reg = r;
1135 			}
1136 		}
1137 		assert(dest_reg != (unsigned)-1);
1138 		assignment[dest_reg] = l;
1139 	}
1140 
1141 	fprintf(stderr, "Assignment: ");
1142 	for (unsigned l = 0; l < n_regs; ++l) {
1143 		fprintf(stderr, "%u ", assignment[l]);
1144 	}
1145 	fprintf(stderr, "\n");
1146 	fflush(stdout);
1147 	permute_values(live_nodes, node, assignment);
1148 	lpp_free(lpp);
1149 }
1150 
is_aligned(unsigned num,unsigned alignment)1151 static bool is_aligned(unsigned num, unsigned alignment)
1152 {
1153 	unsigned mask = alignment-1;
1154 	assert(is_po2(alignment));
1155 	return (num&mask) == 0;
1156 }
1157 
1158 /**
1159  * Enforce constraints at a node by live range splits.
1160  *
1161  * @param  live_nodes  the set of live nodes, might be changed
1162  * @param  node        the current node
1163  */
enforce_constraints(ir_nodeset_t * live_nodes,ir_node * node,unsigned * forbidden_regs)1164 static void enforce_constraints(ir_nodeset_t *live_nodes, ir_node *node,
1165                                 unsigned *forbidden_regs)
1166 {
1167 	/* see if any use constraints are not met and whether double-width
1168 	 * values are involved */
1169 	bool double_width = false;
1170 	bool good = true;
1171 	int  arity = get_irn_arity(node);
1172 	for (int i = 0; i < arity; ++i) {
1173 		ir_node *op = get_irn_n(node, i);
1174 		if (!arch_irn_consider_in_reg_alloc(cls, op))
1175 			continue;
1176 
1177 		/* are there any limitations for the i'th operand? */
1178 		const arch_register_req_t *req = arch_get_irn_register_req_in(node, i);
1179 		if (req->width > 1)
1180 			double_width = true;
1181 		const arch_register_t *reg       = arch_get_irn_register(op);
1182 		unsigned               reg_index = reg->index;
1183 		if (req->type & arch_register_req_type_aligned) {
1184 			if (!is_aligned(reg_index, req->width)) {
1185 				good = false;
1186 				continue;
1187 			}
1188 		}
1189 		if (!(req->type & arch_register_req_type_limited))
1190 			continue;
1191 
1192 		const unsigned *limited = req->limited;
1193 		if (!rbitset_is_set(limited, reg_index)) {
1194 			/* found an assignment outside the limited set */
1195 			good = false;
1196 			continue;
1197 		}
1198 	}
1199 
1200 	/* is any of the live-throughs using a constrained output register? */
1201 	unsigned *live_through_regs = NULL;
1202 	be_foreach_definition(node, cls, value,
1203 		(void)value;
1204 		if (req_->width > 1)
1205 			double_width = true;
1206 		if (! (req_->type & arch_register_req_type_limited))
1207 			continue;
1208 		if (live_through_regs == NULL) {
1209 			rbitset_alloca(live_through_regs, n_regs);
1210 			determine_live_through_regs(live_through_regs, node);
1211 		}
1212 		rbitset_or(forbidden_regs, req_->limited, n_regs);
1213 		if (rbitsets_have_common(req_->limited, live_through_regs, n_regs))
1214 			good = false;
1215 	);
1216 
1217 	if (good)
1218 		return;
1219 
1220 	/* create these arrays if we haven't yet */
1221 	if (live_through_regs == NULL) {
1222 		rbitset_alloca(live_through_regs, n_regs);
1223 	}
1224 
1225 	if (double_width) {
1226 		/* only the ILP variant can solve this yet */
1227 		solve_lpp(live_nodes, node, forbidden_regs, live_through_regs);
1228 		return;
1229 	}
1230 
1231 	/* at this point we have to construct a bipartite matching problem to see
1232 	 * which values should go to which registers
1233 	 * Note: We're building the matrix in "reverse" - source registers are
1234 	 *       right, destinations left because this will produce the solution
1235 	 *       in the format required for permute_values.
1236 	 */
1237 	hungarian_problem_t *bp
1238 		= hungarian_new(n_regs, n_regs, HUNGARIAN_MATCH_PERFECT);
1239 
1240 	/* add all combinations, then remove not allowed ones */
1241 	for (unsigned l = 0; l < n_regs; ++l) {
1242 		if (!rbitset_is_set(normal_regs, l)) {
1243 			hungarian_add(bp, l, l, 1);
1244 			continue;
1245 		}
1246 
1247 		for (unsigned r = 0; r < n_regs; ++r) {
1248 			if (!rbitset_is_set(normal_regs, r))
1249 				continue;
1250 			/* livethrough values may not use constrainted output registers */
1251 			if (rbitset_is_set(live_through_regs, l)
1252 					&& rbitset_is_set(forbidden_regs, r))
1253 				continue;
1254 
1255 			hungarian_add(bp, r, l, l == r ? 9 : 8);
1256 		}
1257 	}
1258 
1259 	for (int i = 0; i < arity; ++i) {
1260 		ir_node *op = get_irn_n(node, i);
1261 		if (!arch_irn_consider_in_reg_alloc(cls, op))
1262 			continue;
1263 
1264 		const arch_register_req_t *req = arch_get_irn_register_req_in(node, i);
1265 		if (!(req->type & arch_register_req_type_limited))
1266 			continue;
1267 
1268 		const unsigned        *limited     = req->limited;
1269 		const arch_register_t *reg         = arch_get_irn_register(op);
1270 		unsigned               current_reg = reg->index;
1271 		for (unsigned r = 0; r < n_regs; ++r) {
1272 			if (rbitset_is_set(limited, r))
1273 				continue;
1274 			hungarian_remove(bp, r, current_reg);
1275 		}
1276 	}
1277 
1278 	//hungarian_print_cost_matrix(bp, 1);
1279 	hungarian_prepare_cost_matrix(bp, HUNGARIAN_MODE_MAXIMIZE_UTIL);
1280 
1281 	unsigned *assignment = ALLOCAN(unsigned, n_regs);
1282 	int res = hungarian_solve(bp, assignment, NULL, 0);
1283 	assert(res == 0);
1284 
1285 #if 0
1286 	fprintf(stderr, "Swap result:");
1287 	for (i = 0; i < (int) n_regs; ++i) {
1288 		fprintf(stderr, " %d", assignment[i]);
1289 	}
1290 	fprintf(stderr, "\n");
1291 #endif
1292 
1293 	hungarian_free(bp);
1294 
1295 	permute_values(live_nodes, node, assignment);
1296 }
1297 
1298 /** test whether a node @p n is a copy of the value of node @p of */
is_copy_of(ir_node * value,ir_node * test_value)1299 static bool is_copy_of(ir_node *value, ir_node *test_value)
1300 {
1301 	if (value == test_value)
1302 		return true;
1303 
1304 	allocation_info_t *info      = get_allocation_info(value);
1305 	allocation_info_t *test_info = get_allocation_info(test_value);
1306 	return test_info->original_value == info->original_value;
1307 }
1308 
1309 /**
1310  * find a value in the end-assignment of a basic block
1311  * @returns the index into the assignment array if found
1312  *          -1 if not found
1313  */
find_value_in_block_info(block_info_t * info,ir_node * value)1314 static int find_value_in_block_info(block_info_t *info, ir_node *value)
1315 {
1316 	ir_node  **end_assignments = info->assignments;
1317 	for (unsigned r = 0; r < n_regs; ++r) {
1318 		ir_node *a_value = end_assignments[r];
1319 
1320 		if (a_value == NULL)
1321 			continue;
1322 		if (is_copy_of(a_value, value))
1323 			return (int) r;
1324 	}
1325 
1326 	return -1;
1327 }
1328 
1329 /**
1330  * Create the necessary permutations at the end of a basic block to fullfill
1331  * the register assignment for phi-nodes in the next block
1332  */
add_phi_permutations(ir_node * block,int p)1333 static void add_phi_permutations(ir_node *block, int p)
1334 {
1335 	ir_node      *pred      = get_Block_cfgpred_block(block, p);
1336 	block_info_t *pred_info = get_block_info(pred);
1337 
1338 	/* predecessor not processed yet? nothing to do */
1339 	if (!pred_info->processed)
1340 		return;
1341 
1342 	unsigned *permutation = ALLOCAN(unsigned, n_regs);
1343 	for (unsigned r = 0; r < n_regs; ++r) {
1344 		permutation[r] = r;
1345 	}
1346 
1347 	/* check phi nodes */
1348 	bool     need_permutation = false;
1349 	ir_node *phi              = sched_first(block);
1350 	for ( ; is_Phi(phi); phi = sched_next(phi)) {
1351 		if (!arch_irn_consider_in_reg_alloc(cls, phi))
1352 			continue;
1353 
1354 		ir_node *phi_pred = get_Phi_pred(phi, p);
1355 		int      a        = find_value_in_block_info(pred_info, phi_pred);
1356 		assert(a >= 0);
1357 
1358 		const arch_register_t *reg  = arch_get_irn_register(phi);
1359 		int                    regn = reg->index;
1360 		/* same register? nothing to do */
1361 		if (regn == a)
1362 			continue;
1363 
1364 		ir_node               *op     = pred_info->assignments[a];
1365 		const arch_register_t *op_reg = arch_get_irn_register(op);
1366 		/* virtual or joker registers are ok too */
1367 		if ((op_reg->type & arch_register_type_joker)
1368 				|| (op_reg->type & arch_register_type_virtual))
1369 			continue;
1370 
1371 		permutation[regn] = a;
1372 		need_permutation  = true;
1373 	}
1374 
1375 	if (need_permutation) {
1376 		/* permute values at end of predecessor */
1377 		ir_node **old_assignments = assignments;
1378 		assignments     = pred_info->assignments;
1379 		permute_values(NULL, be_get_end_of_block_insertion_point(pred),
1380 		               permutation);
1381 		assignments = old_assignments;
1382 	}
1383 
1384 	/* change phi nodes to use the copied values */
1385 	phi = sched_first(block);
1386 	for ( ; is_Phi(phi); phi = sched_next(phi)) {
1387 		if (!arch_irn_consider_in_reg_alloc(cls, phi))
1388 			continue;
1389 
1390 		/* we have permuted all values into the correct registers so we can
1391 		   simply query which value occupies the phis register in the
1392 		   predecessor */
1393 		int      a  = arch_get_irn_register(phi)->index;
1394 		ir_node *op = pred_info->assignments[a];
1395 		set_Phi_pred(phi, p, op);
1396 	}
1397 }
1398 
1399 /**
1400  * Set preferences for a phis register based on the registers used on the
1401  * phi inputs.
1402  */
adapt_phi_prefs(ir_node * phi)1403 static void adapt_phi_prefs(ir_node *phi)
1404 {
1405 	ir_node           *block = get_nodes_block(phi);
1406 	allocation_info_t *info  = get_allocation_info(phi);
1407 
1408 	int arity = get_irn_arity(phi);
1409 	for (int i = 0; i < arity; ++i) {
1410 		ir_node               *op  = get_irn_n(phi, i);
1411 		const arch_register_t *reg = arch_get_irn_register(op);
1412 
1413 		if (reg == NULL)
1414 			continue;
1415 		/* we only give the bonus if the predecessor already has registers
1416 		 * assigned, otherwise we only see a dummy value
1417 		 * and any conclusions about its register are useless */
1418 		ir_node      *pred_block      = get_Block_cfgpred_block(block, i);
1419 		block_info_t *pred_block_info = get_block_info(pred_block);
1420 		if (!pred_block_info->processed)
1421 			continue;
1422 
1423 		/* give bonus for already assigned register */
1424 		float weight = (float)get_block_execfreq(pred_block);
1425 		info->prefs[reg->index] += weight * AFF_PHI;
1426 	}
1427 }
1428 
1429 /**
1430  * After a phi has been assigned a register propagate preference inputs
1431  * to the phi inputs.
1432  */
propagate_phi_register(ir_node * phi,unsigned assigned_r)1433 static void propagate_phi_register(ir_node *phi, unsigned assigned_r)
1434 {
1435 	ir_node *block = get_nodes_block(phi);
1436 
1437 	int arity = get_irn_arity(phi);
1438 	for (int i = 0; i < arity; ++i) {
1439 		ir_node           *op         = get_Phi_pred(phi, i);
1440 		allocation_info_t *info       = get_allocation_info(op);
1441 		ir_node           *pred_block = get_Block_cfgpred_block(block, i);
1442 		float              weight
1443 			= (float)get_block_execfreq(pred_block) * AFF_PHI;
1444 
1445 		if (info->prefs[assigned_r] >= weight)
1446 			continue;
1447 
1448 		/* promote the prefered register */
1449 		for (unsigned r = 0; r < n_regs; ++r) {
1450 			if (info->prefs[r] > -weight) {
1451 				info->prefs[r] = -weight;
1452 			}
1453 		}
1454 		info->prefs[assigned_r] = weight;
1455 
1456 		if (is_Phi(op))
1457 			propagate_phi_register(op, assigned_r);
1458 	}
1459 }
1460 
assign_phi_registers(ir_node * block)1461 static void assign_phi_registers(ir_node *block)
1462 {
1463 	/* count phi nodes */
1464 	int n_phis = 0;
1465 	sched_foreach(block, node) {
1466 		if (!is_Phi(node))
1467 			break;
1468 		if (!arch_irn_consider_in_reg_alloc(cls, node))
1469 			continue;
1470 		++n_phis;
1471 	}
1472 
1473 	if (n_phis == 0)
1474 		return;
1475 
1476 	/* build a bipartite matching problem for all phi nodes */
1477 	hungarian_problem_t *bp
1478 		= hungarian_new(n_phis, n_regs, HUNGARIAN_MATCH_PERFECT);
1479 	int n = 0;
1480 	sched_foreach(block, node) {
1481 		if (!is_Phi(node))
1482 			break;
1483 		if (!arch_irn_consider_in_reg_alloc(cls, node))
1484 			continue;
1485 
1486 		/* give boni for predecessor colorings */
1487 		adapt_phi_prefs(node);
1488 		/* add stuff to bipartite problem */
1489 		allocation_info_t *info = get_allocation_info(node);
1490 		DB((dbg, LEVEL_3, "Prefs for %+F: ", node));
1491 		for (unsigned r = 0; r < n_regs; ++r) {
1492 			if (!rbitset_is_set(normal_regs, r))
1493 				continue;
1494 
1495 			float costs = info->prefs[r];
1496 			costs = costs < 0 ? -logf(-costs+1) : logf(costs+1);
1497 			costs *= 100;
1498 			costs += 10000;
1499 			hungarian_add(bp, n, r, (int)costs);
1500 			DB((dbg, LEVEL_3, " %s(%f)", arch_register_for_index(cls, r)->name,
1501 						info->prefs[r]));
1502 		}
1503 		DB((dbg, LEVEL_3, "\n"));
1504 		++n;
1505 	}
1506 
1507 	//hungarian_print_cost_matrix(bp, 7);
1508 	hungarian_prepare_cost_matrix(bp, HUNGARIAN_MODE_MAXIMIZE_UTIL);
1509 
1510 	unsigned *assignment = ALLOCAN(unsigned, n_regs);
1511 	int       res        = hungarian_solve(bp, assignment, NULL, 0);
1512 	assert(res == 0);
1513 
1514 	/* apply results */
1515 	n = 0;
1516 	sched_foreach(block, node) {
1517 		if (!is_Phi(node))
1518 			break;
1519 		if (!arch_irn_consider_in_reg_alloc(cls, node))
1520 			continue;
1521 		const arch_register_req_t *req
1522 			= arch_get_irn_register_req(node);
1523 
1524 		unsigned r = assignment[n++];
1525 		assert(rbitset_is_set(normal_regs, r));
1526 		const arch_register_t *reg = arch_register_for_index(cls, r);
1527 		DB((dbg, LEVEL_2, "Assign %+F -> %s\n", node, reg->name));
1528 		use_reg(node, reg, req->width);
1529 
1530 		/* adapt preferences for phi inputs */
1531 		propagate_phi_register(node, r);
1532 	}
1533 }
1534 
allocate_reg_req(ir_graph * irg)1535 static arch_register_req_t *allocate_reg_req(ir_graph *irg)
1536 {
1537 	struct obstack *obst = be_get_be_obst(irg);
1538 	arch_register_req_t *req = OALLOCZ(obst, arch_register_req_t);
1539 	return req;
1540 }
1541 
1542 /**
1543  * Walker: assign registers to all nodes of a block that
1544  * need registers from the currently considered register class.
1545  */
allocate_coalesce_block(ir_node * block,void * data)1546 static void allocate_coalesce_block(ir_node *block, void *data)
1547 {
1548 	(void) data;
1549 	DB((dbg, LEVEL_2, "* Block %+F\n", block));
1550 
1551 	/* clear assignments */
1552 	block_info_t *block_info  = get_block_info(block);
1553 	assignments = block_info->assignments;
1554 
1555 	ir_nodeset_t live_nodes;
1556 	ir_nodeset_init(&live_nodes);
1557 
1558 	/* gather regalloc infos of predecessor blocks */
1559 	int            n_preds          = get_Block_n_cfgpreds(block);
1560 	block_info_t **pred_block_infos = ALLOCAN(block_info_t*, n_preds);
1561 	for (int i = 0; i < n_preds; ++i) {
1562 		ir_node      *pred      = get_Block_cfgpred_block(block, i);
1563 		block_info_t *pred_info = get_block_info(pred);
1564 		pred_block_infos[i]     = pred_info;
1565 	}
1566 
1567 	ir_node **phi_ins = ALLOCAN(ir_node*, n_preds);
1568 
1569 	/* collect live-in nodes and preassigned values */
1570 	be_lv_foreach(lv, block, be_lv_state_in, node) {
1571 		const arch_register_req_t *req = arch_get_irn_register_req(node);
1572 		if (req->cls != cls)
1573 			continue;
1574 
1575 		if (req->type & arch_register_req_type_ignore) {
1576 			allocation_info_t *info = get_allocation_info(node);
1577 			info->current_value = node;
1578 
1579 			const arch_register_t *reg = arch_get_irn_register(node);
1580 			assert(reg != NULL); /* ignore values must be preassigned */
1581 			use_reg(node, reg, req->width);
1582 			continue;
1583 		}
1584 
1585 		/* check all predecessors for this value, if it is not everywhere the
1586 		   same or unknown then we have to construct a phi
1587 		   (we collect the potential phi inputs here) */
1588 		bool need_phi = false;
1589 		for (int p = 0; p < n_preds; ++p) {
1590 			block_info_t *pred_info = pred_block_infos[p];
1591 
1592 			if (!pred_info->processed) {
1593 				/* use node for now, it will get fixed later */
1594 				phi_ins[p] = node;
1595 				need_phi   = true;
1596 			} else {
1597 				int a = find_value_in_block_info(pred_info, node);
1598 
1599 				/* must live out of predecessor */
1600 				assert(a >= 0);
1601 				phi_ins[p] = pred_info->assignments[a];
1602 				/* different value from last time? then we need a phi */
1603 				if (p > 0 && phi_ins[p-1] != phi_ins[p]) {
1604 					need_phi = true;
1605 				}
1606 			}
1607 		}
1608 
1609 		if (need_phi) {
1610 			ir_mode *mode = get_irn_mode(node);
1611 			const arch_register_req_t *phi_req = cls->class_req;
1612 			if (req->width > 1) {
1613 				arch_register_req_t *new_req = allocate_reg_req(irg);
1614 				new_req->cls   = cls;
1615 				new_req->type  = req->type & arch_register_req_type_aligned;
1616 				new_req->width = req->width;
1617 				phi_req = new_req;
1618 			}
1619 			ir_node *phi  = be_new_Phi(block, n_preds, phi_ins, mode,
1620 			                           phi_req);
1621 
1622 			DB((dbg, LEVEL_3, "Create Phi %+F (for %+F) -", phi, node));
1623 #ifdef DEBUG_libfirm
1624 			for (int pi = 0; pi < n_preds; ++pi) {
1625 				DB((dbg, LEVEL_3, " %+F", phi_ins[pi]));
1626 			}
1627 			DB((dbg, LEVEL_3, "\n"));
1628 #endif
1629 			mark_as_copy_of(phi, node);
1630 			sched_add_after(block, phi);
1631 
1632 			node = phi;
1633 		} else {
1634 			allocation_info_t *info = get_allocation_info(node);
1635 			info->current_value = phi_ins[0];
1636 
1637 			/* Grab 1 of the inputs we constructed (might not be the same as
1638 			 * "node" as we could see the same copy of the value in all
1639 			 * predecessors */
1640 			node = phi_ins[0];
1641 		}
1642 
1643 		/* if the node already has a register assigned use it */
1644 		const arch_register_t *reg = arch_get_irn_register(node);
1645 		if (reg != NULL) {
1646 			use_reg(node, reg, req->width);
1647 		}
1648 
1649 		/* remember that this node is live at the beginning of the block */
1650 		ir_nodeset_insert(&live_nodes, node);
1651 	}
1652 
1653 	unsigned *forbidden_regs; /**< collects registers which must
1654 	                               not be used for optimistic splits */
1655 	rbitset_alloca(forbidden_regs, n_regs);
1656 
1657 	/* handle phis... */
1658 	assign_phi_registers(block);
1659 
1660 	/* all live-ins must have a register */
1661 #ifndef NDEBUG
1662 	foreach_ir_nodeset(&live_nodes, node, iter) {
1663 		const arch_register_t *reg = arch_get_irn_register(node);
1664 		assert(reg != NULL);
1665 	}
1666 #endif
1667 
1668 	/* assign instructions in the block */
1669 	sched_foreach(block, node) {
1670 		/* phis are already assigned */
1671 		if (is_Phi(node))
1672 			continue;
1673 
1674 		rewire_inputs(node);
1675 
1676 		/* enforce use constraints */
1677 		rbitset_clear_all(forbidden_regs, n_regs);
1678 		enforce_constraints(&live_nodes, node, forbidden_regs);
1679 
1680 		rewire_inputs(node);
1681 
1682 		/* we may not use registers used for inputs for optimistic splits */
1683 		int arity = get_irn_arity(node);
1684 		for (int i = 0; i < arity; ++i) {
1685 			ir_node *op = get_irn_n(node, i);
1686 			if (!arch_irn_consider_in_reg_alloc(cls, op))
1687 				continue;
1688 
1689 			const arch_register_t *reg = arch_get_irn_register(op);
1690 			rbitset_set(forbidden_regs, reg->index);
1691 		}
1692 
1693 		/* free registers of values last used at this instruction */
1694 		free_last_uses(&live_nodes, node);
1695 
1696 		/* assign output registers */
1697 		be_foreach_definition_(node, cls, value,
1698 			assign_reg(block, value, forbidden_regs);
1699 		);
1700 	}
1701 
1702 	ir_nodeset_destroy(&live_nodes);
1703 	assignments = NULL;
1704 
1705 	block_info->processed = true;
1706 
1707 	/* permute values at end of predecessor blocks in case of phi-nodes */
1708 	if (n_preds > 1) {
1709 		for (int p = 0; p < n_preds; ++p) {
1710 			add_phi_permutations(block, p);
1711 		}
1712 	}
1713 
1714 	/* if we have exactly 1 successor then we might be able to produce phi
1715 	   copies now */
1716 	if (get_irn_n_edges_kind(block, EDGE_KIND_BLOCK) == 1) {
1717 		const ir_edge_t *edge
1718 			= get_irn_out_edge_first_kind(block, EDGE_KIND_BLOCK);
1719 		ir_node      *succ      = get_edge_src_irn(edge);
1720 		int           p         = get_edge_src_pos(edge);
1721 		block_info_t *succ_info = get_block_info(succ);
1722 
1723 		if (succ_info->processed) {
1724 			add_phi_permutations(succ, p);
1725 		}
1726 	}
1727 }
1728 
1729 typedef struct block_costs_t block_costs_t;
1730 struct block_costs_t {
1731 	float costs;   /**< costs of the block */
1732 	int   dfs_num; /**< depth first search number (to detect backedges) */
1733 };
1734 
cmp_block_costs(const void * d1,const void * d2)1735 static int cmp_block_costs(const void *d1, const void *d2)
1736 {
1737 	const ir_node       * const *block1 = (const ir_node**)d1;
1738 	const ir_node       * const *block2 = (const ir_node**)d2;
1739 	const block_costs_t *info1  = (const block_costs_t*)get_irn_link(*block1);
1740 	const block_costs_t *info2  = (const block_costs_t*)get_irn_link(*block2);
1741 	return QSORT_CMP(info2->costs, info1->costs);
1742 }
1743 
determine_block_order(void)1744 static void determine_block_order(void)
1745 {
1746 	ir_node **blocklist = be_get_cfgpostorder(irg);
1747 	size_t    n_blocks  = ARR_LEN(blocklist);
1748 	int       dfs_num   = 0;
1749 	pdeq     *worklist  = new_pdeq();
1750 	ir_node **order     = XMALLOCN(ir_node*, n_blocks);
1751 	size_t    order_p   = 0;
1752 
1753 	/* clear block links... */
1754 	for (size_t p = 0; p < n_blocks; ++p) {
1755 		ir_node *block = blocklist[p];
1756 		set_irn_link(block, NULL);
1757 	}
1758 
1759 	/* walk blocks in reverse postorder, the costs for each block are the
1760 	 * sum of the costs of its predecessors (excluding the costs on backedges
1761 	 * which we can't determine) */
1762 	for (size_t p = n_blocks; p > 0;) {
1763 		block_costs_t *cost_info;
1764 		ir_node *block = blocklist[--p];
1765 
1766 		float execfreq   = (float)get_block_execfreq(block);
1767 		float costs      = execfreq;
1768 		int   n_cfgpreds = get_Block_n_cfgpreds(block);
1769 		for (int p2 = 0; p2 < n_cfgpreds; ++p2) {
1770 			ir_node       *pred_block = get_Block_cfgpred_block(block, p2);
1771 			block_costs_t *pred_costs = (block_costs_t*)get_irn_link(pred_block);
1772 			/* we don't have any info for backedges */
1773 			if (pred_costs == NULL)
1774 				continue;
1775 			costs += pred_costs->costs;
1776 		}
1777 
1778 		cost_info          = OALLOCZ(&obst, block_costs_t);
1779 		cost_info->costs   = costs;
1780 		cost_info->dfs_num = dfs_num++;
1781 		set_irn_link(block, cost_info);
1782 	}
1783 
1784 	/* sort array by block costs */
1785 	qsort(blocklist, n_blocks, sizeof(blocklist[0]), cmp_block_costs);
1786 
1787 	ir_reserve_resources(irg, IR_RESOURCE_BLOCK_VISITED);
1788 	inc_irg_block_visited(irg);
1789 
1790 	for (size_t p = 0; p < n_blocks; ++p) {
1791 		ir_node *block = blocklist[p];
1792 		if (Block_block_visited(block))
1793 			continue;
1794 
1795 		/* continually add predecessors with highest costs to worklist
1796 		 * (without using backedges) */
1797 		do {
1798 			block_costs_t *info       = (block_costs_t*)get_irn_link(block);
1799 			ir_node       *best_pred  = NULL;
1800 			float          best_costs = -1;
1801 			int            n_cfgpred  = get_Block_n_cfgpreds(block);
1802 
1803 			pdeq_putr(worklist, block);
1804 			mark_Block_block_visited(block);
1805 			for (int i = 0; i < n_cfgpred; ++i) {
1806 				ir_node       *pred_block = get_Block_cfgpred_block(block, i);
1807 				block_costs_t *pred_info  = (block_costs_t*)get_irn_link(pred_block);
1808 
1809 				/* ignore backedges */
1810 				if (pred_info->dfs_num > info->dfs_num)
1811 					continue;
1812 
1813 				if (info->costs > best_costs) {
1814 					best_costs = info->costs;
1815 					best_pred  = pred_block;
1816 				}
1817 			}
1818 			block = best_pred;
1819 		} while (block != NULL && !Block_block_visited(block));
1820 
1821 		/* now put all nodes in the worklist in our final order */
1822 		while (!pdeq_empty(worklist)) {
1823 			ir_node *pblock = (ir_node*)pdeq_getr(worklist);
1824 			assert(order_p < n_blocks);
1825 			order[order_p++] = pblock;
1826 		}
1827 	}
1828 	assert(order_p == n_blocks);
1829 	del_pdeq(worklist);
1830 
1831 	ir_free_resources(irg, IR_RESOURCE_BLOCK_VISITED);
1832 
1833 	DEL_ARR_F(blocklist);
1834 
1835 	obstack_free(&obst, NULL);
1836 	obstack_init(&obst);
1837 
1838 	block_order   = order;
1839 	n_block_order = n_blocks;
1840 }
1841 
free_block_order(void)1842 static void free_block_order(void)
1843 {
1844 	xfree(block_order);
1845 }
1846 
1847 /**
1848  * Run the register allocator for the current register class.
1849  */
be_pref_alloc_cls(void)1850 static void be_pref_alloc_cls(void)
1851 {
1852 	be_assure_live_sets(irg);
1853 	lv = be_get_irg_liveness(irg);
1854 
1855 	ir_reserve_resources(irg, IR_RESOURCE_IRN_LINK);
1856 
1857 	DB((dbg, LEVEL_2, "=== Allocating registers of %s ===\n", cls->name));
1858 
1859 	be_clear_links(irg);
1860 
1861 	irg_block_walk_graph(irg, NULL, analyze_block, NULL);
1862 	combine_congruence_classes();
1863 
1864 	for (size_t i = 0; i < n_block_order; ++i) {
1865 		ir_node *block = block_order[i];
1866 		allocate_coalesce_block(block, NULL);
1867 	}
1868 
1869 	ir_free_resources(irg, IR_RESOURCE_IRN_LINK);
1870 }
1871 
dump(int mask,ir_graph * irg,const char * suffix)1872 static void dump(int mask, ir_graph *irg, const char *suffix)
1873 {
1874 	if (be_options.dump_flags & mask)
1875 		dump_ir_graph(irg, suffix);
1876 }
1877 
1878 /**
1879  * Run the spiller on the current graph.
1880  */
spill(void)1881 static void spill(void)
1882 {
1883 	/* make sure all nodes show their real register pressure */
1884 	be_timer_push(T_RA_CONSTR);
1885 	be_pre_spill_prepare_constr(irg, cls);
1886 	be_timer_pop(T_RA_CONSTR);
1887 
1888 	dump(DUMP_RA, irg, "spillprepare");
1889 
1890 	/* spill */
1891 	be_timer_push(T_RA_SPILL);
1892 	be_do_spill(irg, cls);
1893 	be_timer_pop(T_RA_SPILL);
1894 
1895 	be_timer_push(T_RA_SPILL_APPLY);
1896 	check_for_memory_operands(irg);
1897 	be_timer_pop(T_RA_SPILL_APPLY);
1898 
1899 	dump(DUMP_RA, irg, "spill");
1900 }
1901 
1902 /**
1903  * The pref register allocator for a whole procedure.
1904  */
be_pref_alloc(ir_graph * new_irg)1905 static void be_pref_alloc(ir_graph *new_irg)
1906 {
1907 	obstack_init(&obst);
1908 
1909 	irg = new_irg;
1910 
1911 	/* determine a good coloring order */
1912 	determine_block_order();
1913 
1914 	const arch_env_t *arch_env = be_get_irg_arch_env(new_irg);
1915 	int               n_cls    = arch_env->n_register_classes;
1916 	for (int c = 0; c < n_cls; ++c) {
1917 		cls = &arch_env->register_classes[c];
1918 		if (arch_register_class_flags(cls) & arch_register_class_flag_manual_ra)
1919 			continue;
1920 
1921 		stat_ev_ctx_push_str("regcls", cls->name);
1922 
1923 		n_regs      = arch_register_class_n_regs(cls);
1924 		normal_regs = rbitset_malloc(n_regs);
1925 		be_set_allocatable_regs(irg, cls, normal_regs);
1926 
1927 		spill();
1928 
1929 		/* verify schedule and register pressure */
1930 		be_timer_push(T_VERIFY);
1931 		if (be_options.verify_option == BE_VERIFY_WARN) {
1932 			be_verify_schedule(irg);
1933 			be_verify_register_pressure(irg, cls);
1934 		} else if (be_options.verify_option == BE_VERIFY_ASSERT) {
1935 			assert(be_verify_schedule(irg) && "Schedule verification failed");
1936 			assert(be_verify_register_pressure(irg, cls)
1937 				&& "Register pressure verification failed");
1938 		}
1939 		be_timer_pop(T_VERIFY);
1940 
1941 		be_timer_push(T_RA_COLOR);
1942 		be_pref_alloc_cls();
1943 		be_timer_pop(T_RA_COLOR);
1944 
1945 		/* we most probably constructed new Phis so liveness info is invalid
1946 		 * now */
1947 		be_invalidate_live_sets(irg);
1948 		free(normal_regs);
1949 
1950 		stat_ev_ctx_pop("regcls");
1951 	}
1952 
1953 	free_block_order();
1954 
1955 	be_timer_push(T_RA_SPILL_APPLY);
1956 	be_abi_fix_stack_nodes(irg);
1957 	be_timer_pop(T_RA_SPILL_APPLY);
1958 
1959 	be_timer_push(T_VERIFY);
1960 	if (be_options.verify_option == BE_VERIFY_WARN) {
1961 		be_verify_register_allocation(irg);
1962 	} else if (be_options.verify_option == BE_VERIFY_ASSERT) {
1963 		assert(be_verify_register_allocation(irg)
1964 		       && "Register allocation invalid");
1965 	}
1966 	be_timer_pop(T_VERIFY);
1967 
1968 	obstack_free(&obst, NULL);
1969 }
1970 
BE_REGISTER_MODULE_CONSTRUCTOR(be_init_pref_alloc)1971 BE_REGISTER_MODULE_CONSTRUCTOR(be_init_pref_alloc)
1972 void be_init_pref_alloc(void)
1973 {
1974 	static be_ra_t be_ra_pref = { be_pref_alloc };
1975 	be_register_allocator("pref", &be_ra_pref);
1976 	FIRM_DBG_REGISTER(dbg, "firm.be.prefalloc");
1977 }
1978