1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Synthetic sections represent chunks of linker-created data. If you
10 // need to create a chunk of data that to be included in some section
11 // in the result, you probably want to create that as a synthetic section.
12 //
13 // Synthetic sections are designed as input sections as opposed to
14 // output sections because we want to allow them to be manipulated
15 // using linker scripts just like other input sections from regular
16 // files.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21 #define LLD_ELF_SYNTHETIC_SECTIONS_H
22 
23 #include "DWARF.h"
24 #include "EhFrame.h"
25 #include "InputSection.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/MC/StringTableBuilder.h"
28 #include "llvm/Support/Endian.h"
29 #include <functional>
30 
31 namespace lld {
32 namespace elf {
33 class Defined;
34 struct PhdrEntry;
35 class SymbolTableBaseSection;
36 class VersionNeedBaseSection;
37 
38 class SyntheticSection : public InputSection {
39 public:
SyntheticSection(uint64_t flags,uint32_t type,uint32_t alignment,StringRef name)40   SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment,
41                    StringRef name)
42       : InputSection(nullptr, flags, type, alignment, {}, name,
43                      InputSectionBase::Synthetic) {
44     markLive();
45   }
46 
47   virtual ~SyntheticSection() = default;
48   virtual void writeTo(uint8_t *buf) = 0;
49   virtual size_t getSize() const = 0;
finalizeContents()50   virtual void finalizeContents() {}
51   // If the section has the SHF_ALLOC flag and the size may be changed if
52   // thunks are added, update the section size.
updateAllocSize()53   virtual bool updateAllocSize() { return false; }
isNeeded()54   virtual bool isNeeded() const { return true; }
55 
classof(const SectionBase * d)56   static bool classof(const SectionBase *d) {
57     return d->kind() == InputSectionBase::Synthetic;
58   }
59 };
60 
61 struct CieRecord {
62   EhSectionPiece *cie = nullptr;
63   std::vector<EhSectionPiece *> fdes;
64 };
65 
66 // Section for .eh_frame.
67 class EhFrameSection final : public SyntheticSection {
68 public:
69   EhFrameSection();
70   void writeTo(uint8_t *buf) override;
71   void finalizeContents() override;
isNeeded()72   bool isNeeded() const override { return !sections.empty(); }
getSize()73   size_t getSize() const override { return size; }
74 
classof(const SectionBase * d)75   static bool classof(const SectionBase *d) {
76     return SyntheticSection::classof(d) && d->name == ".eh_frame";
77   }
78 
79   void addSection(EhInputSection *sec);
80 
81   std::vector<EhInputSection *> sections;
82   size_t numFdes = 0;
83 
84   struct FdeData {
85     uint32_t pcRel;
86     uint32_t fdeVARel;
87   };
88 
89   std::vector<FdeData> getFdeData() const;
getCieRecords()90   ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
91 
92 private:
93   // This is used only when parsing EhInputSection. We keep it here to avoid
94   // allocating one for each EhInputSection.
95   llvm::DenseMap<size_t, CieRecord *> offsetToCie;
96 
97   uint64_t size = 0;
98 
99   template <class ELFT, class RelTy>
100   void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
101   template <class ELFT>
102   void addSectionAux(EhInputSection *s);
103 
104   template <class ELFT, class RelTy>
105   CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
106 
107   template <class ELFT, class RelTy>
108   bool isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
109 
110   uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
111 
112   std::vector<CieRecord *> cieRecords;
113 
114   // CIE records are uniquified by their contents and personality functions.
115   llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
116 };
117 
118 class GotSection : public SyntheticSection {
119 public:
120   GotSection();
getSize()121   size_t getSize() const override { return size; }
122   void finalizeContents() override;
123   bool isNeeded() const override;
124   void writeTo(uint8_t *buf) override;
125 
126   void addEntry(Symbol &sym);
127   bool addDynTlsEntry(Symbol &sym);
128   bool addTlsIndex();
129   uint64_t getGlobalDynAddr(const Symbol &b) const;
130   uint64_t getGlobalDynOffset(const Symbol &b) const;
131 
getTlsIndexVA()132   uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
getTlsIndexOff()133   uint32_t getTlsIndexOff() const { return tlsIndexOff; }
134 
135   // Flag to force GOT to be in output if we have relocations
136   // that relies on its address.
137   bool hasGotOffRel = false;
138 
139 protected:
140   size_t numEntries = 0;
141   uint32_t tlsIndexOff = -1;
142   uint64_t size = 0;
143 };
144 
145 // .note.GNU-stack section.
146 class GnuStackSection : public SyntheticSection {
147 public:
GnuStackSection()148   GnuStackSection()
149       : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
writeTo(uint8_t * buf)150   void writeTo(uint8_t *buf) override {}
getSize()151   size_t getSize() const override { return 0; }
152 };
153 
154 class GnuPropertySection : public SyntheticSection {
155 public:
156   GnuPropertySection();
157   void writeTo(uint8_t *buf) override;
158   size_t getSize() const override;
159 };
160 
161 // .note.gnu.build-id section.
162 class BuildIdSection : public SyntheticSection {
163   // First 16 bytes are a header.
164   static const unsigned headerSize = 16;
165 
166 public:
167   const size_t hashSize;
168   BuildIdSection();
169   void writeTo(uint8_t *buf) override;
getSize()170   size_t getSize() const override { return headerSize + hashSize; }
171   void writeBuildId(llvm::ArrayRef<uint8_t> buf);
172 
173 private:
174   uint8_t *hashBuf;
175 };
176 
177 // BssSection is used to reserve space for copy relocations and common symbols.
178 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
179 // that are used for writable symbols, read-only symbols and common symbols,
180 // respectively.
181 class BssSection final : public SyntheticSection {
182 public:
183   BssSection(StringRef name, uint64_t size, uint32_t alignment);
writeTo(uint8_t *)184   void writeTo(uint8_t *) override {
185     llvm_unreachable("unexpected writeTo() call for SHT_NOBITS section");
186   }
isNeeded()187   bool isNeeded() const override { return size != 0; }
getSize()188   size_t getSize() const override { return size; }
189 
classof(const SectionBase * s)190   static bool classof(const SectionBase *s) { return s->bss; }
191   uint64_t size;
192 };
193 
194 class MipsGotSection final : public SyntheticSection {
195 public:
196   MipsGotSection();
197   void writeTo(uint8_t *buf) override;
getSize()198   size_t getSize() const override { return size; }
199   bool updateAllocSize() override;
200   void finalizeContents() override;
201   bool isNeeded() const override;
202 
203   // Join separate GOTs built for each input file to generate
204   // primary and optional multiple secondary GOTs.
205   void build();
206 
207   void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
208   void addDynTlsEntry(InputFile &file, Symbol &sym);
209   void addTlsIndex(InputFile &file);
210 
211   uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
212                               int64_t addend) const;
213   uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
214                              int64_t addend) const;
215   uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
216   uint64_t getTlsIndexOffset(const InputFile *f) const;
217 
218   // Returns the symbol which corresponds to the first entry of the global part
219   // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
220   // table properties.
221   // Returns nullptr if the global part is empty.
222   const Symbol *getFirstGlobalEntry() const;
223 
224   // Returns the number of entries in the local part of GOT including
225   // the number of reserved entries.
226   unsigned getLocalEntriesNum() const;
227 
228   // Return _gp value for primary GOT (nullptr) or particular input file.
229   uint64_t getGp(const InputFile *f = nullptr) const;
230 
231 private:
232   // MIPS GOT consists of three parts: local, global and tls. Each part
233   // contains different types of entries. Here is a layout of GOT:
234   // - Header entries                |
235   // - Page entries                  |   Local part
236   // - Local entries (16-bit access) |
237   // - Local entries (32-bit access) |
238   // - Normal global entries         ||  Global part
239   // - Reloc-only global entries     ||
240   // - TLS entries                   ||| TLS part
241   //
242   // Header:
243   //   Two entries hold predefined value 0x0 and 0x80000000.
244   // Page entries:
245   //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
246   //   relocation against local symbols. They are initialized by higher 16-bit
247   //   of the corresponding symbol's value. So each 64kb of address space
248   //   requires a single GOT entry.
249   // Local entries (16-bit access):
250   //   These entries created by GOT relocations against global non-preemptible
251   //   symbols so dynamic linker is not necessary to resolve the symbol's
252   //   values. "16-bit access" means that corresponding relocations address
253   //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
254   //   GOT entry.
255   // Local entries (32-bit access):
256   //   These entries are the same as above but created by relocations which
257   //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
258   // Normal global entries:
259   //   These entries created by GOT relocations against preemptible global
260   //   symbols. They need to be initialized by dynamic linker and they ordered
261   //   exactly as the corresponding entries in the dynamic symbols table.
262   // Reloc-only global entries:
263   //   These entries created for symbols that are referenced by dynamic
264   //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
265   //   addressing, but MIPS ABI requires that these entries be present in GOT.
266   // TLS entries:
267   //   Entries created by TLS relocations.
268   //
269   // If the sum of local, global and tls entries is less than 64K only single
270   // got is enough. Otherwise, multi-got is created. Series of primary and
271   // multiple secondary GOTs have the following layout:
272   // - Primary GOT
273   //     Header
274   //     Local entries
275   //     Global entries
276   //     Relocation only entries
277   //     TLS entries
278   //
279   // - Secondary GOT
280   //     Local entries
281   //     Global entries
282   //     TLS entries
283   // ...
284   //
285   // All GOT entries required by relocations from a single input file entirely
286   // belong to either primary or one of secondary GOTs. To reference GOT entries
287   // each GOT has its own _gp value points to the "middle" of the GOT.
288   // In the code this value loaded to the register which is used for GOT access.
289   //
290   // MIPS 32 function's prologue:
291   //   lui     v0,0x0
292   //   0: R_MIPS_HI16  _gp_disp
293   //   addiu   v0,v0,0
294   //   4: R_MIPS_LO16  _gp_disp
295   //
296   // MIPS 64:
297   //   lui     at,0x0
298   //   14: R_MIPS_GPREL16  main
299   //
300   // Dynamic linker does not know anything about secondary GOTs and cannot
301   // use a regular MIPS mechanism for GOT entries initialization. So we have
302   // to use an approach accepted by other architectures and create dynamic
303   // relocations R_MIPS_REL32 to initialize global entries (and local in case
304   // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
305   // requires GOT entries and correspondingly ordered dynamic symbol table
306   // entries to deal with dynamic relocations. To handle this problem
307   // relocation-only section in the primary GOT contains entries for all
308   // symbols referenced in global parts of secondary GOTs. Although the sum
309   // of local and normal global entries of the primary got should be less
310   // than 64K, the size of the primary got (including relocation-only entries
311   // can be greater than 64K, because parts of the primary got that overflow
312   // the 64K limit are used only by the dynamic linker at dynamic link-time
313   // and not by 16-bit gp-relative addressing at run-time.
314   //
315   // For complete multi-GOT description see the following link
316   // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
317 
318   // Number of "Header" entries.
319   static const unsigned headerEntriesNum = 2;
320 
321   uint64_t size = 0;
322 
323   // Symbol and addend.
324   using GotEntry = std::pair<Symbol *, int64_t>;
325 
326   struct FileGot {
327     InputFile *file = nullptr;
328     size_t startIndex = 0;
329 
330     struct PageBlock {
331       size_t firstIndex;
332       size_t count;
PageBlockFileGot::PageBlock333       PageBlock() : firstIndex(0), count(0) {}
334     };
335 
336     // Map output sections referenced by MIPS GOT relocations
337     // to the description (index/count) "page" entries allocated
338     // for this section.
339     llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
340     // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
341     llvm::MapVector<GotEntry, size_t> local16;
342     llvm::MapVector<GotEntry, size_t> local32;
343     llvm::MapVector<Symbol *, size_t> global;
344     llvm::MapVector<Symbol *, size_t> relocs;
345     llvm::MapVector<Symbol *, size_t> tls;
346     // Set of symbols referenced by dynamic TLS relocations.
347     llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
348 
349     // Total number of all entries.
350     size_t getEntriesNum() const;
351     // Number of "page" entries.
352     size_t getPageEntriesNum() const;
353     // Number of entries require 16-bit index to access.
354     size_t getIndexedEntriesNum() const;
355   };
356 
357   // Container of GOT created for each input file.
358   // After building a final series of GOTs this container
359   // holds primary and secondary GOT's.
360   std::vector<FileGot> gots;
361 
362   // Return (and create if necessary) `FileGot`.
363   FileGot &getGot(InputFile &f);
364 
365   // Try to merge two GOTs. In case of success the `Dst` contains
366   // result of merging and the function returns true. In case of
367   // overflow the `Dst` is unchanged and the function returns false.
368   bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
369 };
370 
371 class GotPltSection final : public SyntheticSection {
372 public:
373   GotPltSection();
374   void addEntry(Symbol &sym);
375   size_t getSize() const override;
376   void writeTo(uint8_t *buf) override;
377   bool isNeeded() const override;
378 
379   // Flag to force GotPlt to be in output if we have relocations
380   // that relies on its address.
381   bool hasGotPltOffRel = false;
382 
383 private:
384   std::vector<const Symbol *> entries;
385 };
386 
387 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
388 // Symbols that will be relocated by Target->IRelativeRel.
389 // On most Targets the IgotPltSection will immediately follow the GotPltSection
390 // on ARM the IgotPltSection will immediately follow the GotSection.
391 class IgotPltSection final : public SyntheticSection {
392 public:
393   IgotPltSection();
394   void addEntry(Symbol &sym);
395   size_t getSize() const override;
396   void writeTo(uint8_t *buf) override;
isNeeded()397   bool isNeeded() const override { return !entries.empty(); }
398 
399 private:
400   std::vector<const Symbol *> entries;
401 };
402 
403 class StringTableSection final : public SyntheticSection {
404 public:
405   StringTableSection(StringRef name, bool dynamic);
406   unsigned addString(StringRef s, bool hashIt = true);
407   void writeTo(uint8_t *buf) override;
getSize()408   size_t getSize() const override { return size; }
isDynamic()409   bool isDynamic() const { return dynamic; }
410 
411 private:
412   const bool dynamic;
413 
414   uint64_t size = 0;
415 
416   llvm::DenseMap<StringRef, unsigned> stringMap;
417   std::vector<StringRef> strings;
418 };
419 
420 class DynamicReloc {
421 public:
DynamicReloc(RelType type,const InputSectionBase * inputSec,uint64_t offsetInSec,bool useSymVA,Symbol * sym,int64_t addend)422   DynamicReloc(RelType type, const InputSectionBase *inputSec,
423                uint64_t offsetInSec, bool useSymVA, Symbol *sym, int64_t addend)
424       : type(type), sym(sym), inputSec(inputSec), offsetInSec(offsetInSec),
425         useSymVA(useSymVA), addend(addend), outputSec(nullptr) {}
426   // This constructor records dynamic relocation settings used by MIPS
427   // multi-GOT implementation. It's to relocate addresses of 64kb pages
428   // lie inside the output section.
DynamicReloc(RelType type,const InputSectionBase * inputSec,uint64_t offsetInSec,const OutputSection * outputSec,int64_t addend)429   DynamicReloc(RelType type, const InputSectionBase *inputSec,
430                uint64_t offsetInSec, const OutputSection *outputSec,
431                int64_t addend)
432       : type(type), sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec),
433         useSymVA(false), addend(addend), outputSec(outputSec) {}
434 
435   uint64_t getOffset() const;
436   uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
437 
438   // Computes the addend of the dynamic relocation. Note that this is not the
439   // same as the addend member variable as it also includes the symbol address
440   // if useSymVA is true.
441   int64_t computeAddend() const;
442 
443   RelType type;
444 
445   Symbol *sym;
446   const InputSectionBase *inputSec = nullptr;
447   uint64_t offsetInSec;
448   // If this member is true, the dynamic relocation will not be against the
449   // symbol but will instead be a relative relocation that simply adds the
450   // load address. This means we need to write the symbol virtual address
451   // plus the original addend as the final relocation addend.
452   bool useSymVA;
453   int64_t addend;
454   const OutputSection *outputSec;
455   friend class RelocationBaseSection;
456 };
457 
458 template <class ELFT> class DynamicSection final : public SyntheticSection {
459   using Elf_Dyn = typename ELFT::Dyn;
460   using Elf_Rel = typename ELFT::Rel;
461   using Elf_Rela = typename ELFT::Rela;
462   using Elf_Relr = typename ELFT::Relr;
463   using Elf_Shdr = typename ELFT::Shdr;
464   using Elf_Sym = typename ELFT::Sym;
465 
466   // finalizeContents() fills this vector with the section contents.
467   std::vector<std::pair<int32_t, std::function<uint64_t()>>> entries;
468 
469 public:
470   DynamicSection();
471   void finalizeContents() override;
472   void writeTo(uint8_t *buf) override;
getSize()473   size_t getSize() const override { return size; }
474 
475 private:
476   void add(int32_t tag, std::function<uint64_t()> fn);
477   void addInt(int32_t tag, uint64_t val);
478   void addInSec(int32_t tag, InputSection *sec);
479   void addInSecRelative(int32_t tag, InputSection *sec);
480   void addOutSec(int32_t tag, OutputSection *sec);
481   void addSize(int32_t tag, OutputSection *sec);
482   void addSym(int32_t tag, Symbol *sym);
483 
484   uint64_t size = 0;
485 };
486 
487 class RelocationBaseSection : public SyntheticSection {
488 public:
489   RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
490                         int32_t sizeDynamicTag);
491   void addReloc(RelType dynType, InputSectionBase *isec, uint64_t offsetInSec,
492                 Symbol *sym);
493   // Add a dynamic relocation that might need an addend. This takes care of
494   // writing the addend to the output section if needed.
495   void addReloc(RelType dynType, InputSectionBase *inputSec,
496                 uint64_t offsetInSec, Symbol *sym, int64_t addend, RelExpr expr,
497                 RelType type);
498   void addReloc(const DynamicReloc &reloc);
isNeeded()499   bool isNeeded() const override { return !relocs.empty(); }
getSize()500   size_t getSize() const override { return relocs.size() * this->entsize; }
getRelativeRelocCount()501   size_t getRelativeRelocCount() const { return numRelativeRelocs; }
502   void finalizeContents() override;
503   int32_t dynamicTag, sizeDynamicTag;
504   std::vector<DynamicReloc> relocs;
505 
506 protected:
507   size_t numRelativeRelocs = 0;
508 };
509 
510 template <class ELFT>
511 class RelocationSection final : public RelocationBaseSection {
512   using Elf_Rel = typename ELFT::Rel;
513   using Elf_Rela = typename ELFT::Rela;
514 
515 public:
516   RelocationSection(StringRef name, bool sort);
517   void writeTo(uint8_t *buf) override;
518 
519 private:
520   bool sort;
521 };
522 
523 template <class ELFT>
524 class AndroidPackedRelocationSection final : public RelocationBaseSection {
525   using Elf_Rel = typename ELFT::Rel;
526   using Elf_Rela = typename ELFT::Rela;
527 
528 public:
529   AndroidPackedRelocationSection(StringRef name);
530 
531   bool updateAllocSize() override;
getSize()532   size_t getSize() const override { return relocData.size(); }
writeTo(uint8_t * buf)533   void writeTo(uint8_t *buf) override {
534     memcpy(buf, relocData.data(), relocData.size());
535   }
536 
537 private:
538   SmallVector<char, 0> relocData;
539 };
540 
541 struct RelativeReloc {
getOffsetRelativeReloc542   uint64_t getOffset() const { return inputSec->getVA(offsetInSec); }
543 
544   const InputSectionBase *inputSec;
545   uint64_t offsetInSec;
546 };
547 
548 class RelrBaseSection : public SyntheticSection {
549 public:
550   RelrBaseSection();
isNeeded()551   bool isNeeded() const override { return !relocs.empty(); }
552   std::vector<RelativeReloc> relocs;
553 };
554 
555 // RelrSection is used to encode offsets for relative relocations.
556 // Proposal for adding SHT_RELR sections to generic-abi is here:
557 //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
558 // For more details, see the comment in RelrSection::updateAllocSize().
559 template <class ELFT> class RelrSection final : public RelrBaseSection {
560   using Elf_Relr = typename ELFT::Relr;
561 
562 public:
563   RelrSection();
564 
565   bool updateAllocSize() override;
getSize()566   size_t getSize() const override { return relrRelocs.size() * this->entsize; }
writeTo(uint8_t * buf)567   void writeTo(uint8_t *buf) override {
568     memcpy(buf, relrRelocs.data(), getSize());
569   }
570 
571 private:
572   std::vector<Elf_Relr> relrRelocs;
573 };
574 
575 struct SymbolTableEntry {
576   Symbol *sym;
577   size_t strTabOffset;
578 };
579 
580 class SymbolTableBaseSection : public SyntheticSection {
581 public:
582   SymbolTableBaseSection(StringTableSection &strTabSec);
583   void finalizeContents() override;
getSize()584   size_t getSize() const override { return getNumSymbols() * entsize; }
585   void addSymbol(Symbol *sym);
getNumSymbols()586   unsigned getNumSymbols() const { return symbols.size() + 1; }
587   size_t getSymbolIndex(Symbol *sym);
getSymbols()588   ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
589 
590 protected:
591   void sortSymTabSymbols();
592 
593   // A vector of symbols and their string table offsets.
594   std::vector<SymbolTableEntry> symbols;
595 
596   StringTableSection &strTabSec;
597 
598   llvm::once_flag onceFlag;
599   llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
600   llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
601 };
602 
603 template <class ELFT>
604 class SymbolTableSection final : public SymbolTableBaseSection {
605   using Elf_Sym = typename ELFT::Sym;
606 
607 public:
608   SymbolTableSection(StringTableSection &strTabSec);
609   void writeTo(uint8_t *buf) override;
610 };
611 
612 class SymtabShndxSection final : public SyntheticSection {
613 public:
614   SymtabShndxSection();
615 
616   void writeTo(uint8_t *buf) override;
617   size_t getSize() const override;
618   bool isNeeded() const override;
619   void finalizeContents() override;
620 };
621 
622 // Outputs GNU Hash section. For detailed explanation see:
623 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
624 class GnuHashTableSection final : public SyntheticSection {
625 public:
626   GnuHashTableSection();
627   void finalizeContents() override;
628   void writeTo(uint8_t *buf) override;
getSize()629   size_t getSize() const override { return size; }
630 
631   // Adds symbols to the hash table.
632   // Sorts the input to satisfy GNU hash section requirements.
633   void addSymbols(std::vector<SymbolTableEntry> &symbols);
634 
635 private:
636   // See the comment in writeBloomFilter.
637   enum { Shift2 = 26 };
638 
639   void writeBloomFilter(uint8_t *buf);
640   void writeHashTable(uint8_t *buf);
641 
642   struct Entry {
643     Symbol *sym;
644     size_t strTabOffset;
645     uint32_t hash;
646     uint32_t bucketIdx;
647   };
648 
649   std::vector<Entry> symbols;
650   size_t maskWords;
651   size_t nBuckets = 0;
652   size_t size = 0;
653 };
654 
655 class HashTableSection final : public SyntheticSection {
656 public:
657   HashTableSection();
658   void finalizeContents() override;
659   void writeTo(uint8_t *buf) override;
getSize()660   size_t getSize() const override { return size; }
661 
662 private:
663   size_t size = 0;
664 };
665 
666 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
667 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
668 // at runtime.
669 //
670 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction
671 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
672 // lazy symbol resolver.
673 //
674 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
675 // A call instruction jumps to a .plt.sec entry, which will then jump to the
676 // target (BIND_NOW) or a .plt entry.
677 class PltSection : public SyntheticSection {
678 public:
679   PltSection();
680   void writeTo(uint8_t *buf) override;
681   size_t getSize() const override;
682   bool isNeeded() const override;
683   void addSymbols();
684   void addEntry(Symbol &sym);
getNumEntries()685   size_t getNumEntries() const { return entries.size(); }
686 
687   size_t headerSize;
688 
689   std::vector<const Symbol *> entries;
690 };
691 
692 // Used for non-preemptible ifuncs. It does not have a header. Each entry is
693 // associated with an IRELATIVE relocation, which will be resolved eagerly at
694 // runtime. PltSection can only contain entries associated with JUMP_SLOT
695 // relocations, so IPLT entries are in a separate section.
696 class IpltSection final : public SyntheticSection {
697   std::vector<const Symbol *> entries;
698 
699 public:
700   IpltSection();
701   void writeTo(uint8_t *buf) override;
702   size_t getSize() const override;
isNeeded()703   bool isNeeded() const override { return !entries.empty(); }
704   void addSymbols();
705   void addEntry(Symbol &sym);
706 };
707 
708 class PPC32GlinkSection : public PltSection {
709 public:
710   PPC32GlinkSection();
711   void writeTo(uint8_t *buf) override;
712   size_t getSize() const override;
713 
714   std::vector<const Symbol *> canonical_plts;
715   static constexpr size_t footerSize = 64;
716 };
717 
718 // This is x86-only.
719 class IBTPltSection : public SyntheticSection {
720 public:
721   IBTPltSection();
722   void writeTo(uint8_t *Buf) override;
723   size_t getSize() const override;
724 };
725 
726 class GdbIndexSection final : public SyntheticSection {
727 public:
728   struct AddressEntry {
729     InputSection *section;
730     uint64_t lowAddress;
731     uint64_t highAddress;
732     uint32_t cuIndex;
733   };
734 
735   struct CuEntry {
736     uint64_t cuOffset;
737     uint64_t cuLength;
738   };
739 
740   struct NameAttrEntry {
741     llvm::CachedHashStringRef name;
742     uint32_t cuIndexAndAttrs;
743   };
744 
745   struct GdbChunk {
746     InputSection *sec;
747     std::vector<AddressEntry> addressAreas;
748     std::vector<CuEntry> compilationUnits;
749   };
750 
751   struct GdbSymbol {
752     llvm::CachedHashStringRef name;
753     std::vector<uint32_t> cuVector;
754     uint32_t nameOff;
755     uint32_t cuVectorOff;
756   };
757 
758   GdbIndexSection();
759   template <typename ELFT> static GdbIndexSection *create();
760   void writeTo(uint8_t *buf) override;
getSize()761   size_t getSize() const override { return size; }
762   bool isNeeded() const override;
763 
764 private:
765   struct GdbIndexHeader {
766     llvm::support::ulittle32_t version;
767     llvm::support::ulittle32_t cuListOff;
768     llvm::support::ulittle32_t cuTypesOff;
769     llvm::support::ulittle32_t addressAreaOff;
770     llvm::support::ulittle32_t symtabOff;
771     llvm::support::ulittle32_t constantPoolOff;
772   };
773 
774   void initOutputSize();
775   size_t computeSymtabSize() const;
776 
777   // Each chunk contains information gathered from debug sections of a
778   // single object file.
779   std::vector<GdbChunk> chunks;
780 
781   // A symbol table for this .gdb_index section.
782   std::vector<GdbSymbol> symbols;
783 
784   size_t size;
785 };
786 
787 // --eh-frame-hdr option tells linker to construct a header for all the
788 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr
789 // and also to a PT_GNU_EH_FRAME segment.
790 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
791 // calling dl_iterate_phdr.
792 // This section contains a lookup table for quick binary search of FDEs.
793 // Detailed info about internals can be found in Ian Lance Taylor's blog:
794 // http://www.airs.com/blog/archives/460 (".eh_frame")
795 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
796 class EhFrameHeader final : public SyntheticSection {
797 public:
798   EhFrameHeader();
799   void write();
800   void writeTo(uint8_t *buf) override;
801   size_t getSize() const override;
802   bool isNeeded() const override;
803 };
804 
805 // For more information about .gnu.version and .gnu.version_r see:
806 // https://www.akkadia.org/drepper/symbol-versioning
807 
808 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
809 // contain symbol version definitions. The number of entries in this section
810 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
811 // The section shall contain an array of Elf_Verdef structures, optionally
812 // followed by an array of Elf_Verdaux structures.
813 class VersionDefinitionSection final : public SyntheticSection {
814 public:
815   VersionDefinitionSection();
816   void finalizeContents() override;
817   size_t getSize() const override;
818   void writeTo(uint8_t *buf) override;
819 
820 private:
821   enum { EntrySize = 28 };
822   void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
823   StringRef getFileDefName();
824 
825   unsigned fileDefNameOff;
826   std::vector<unsigned> verDefNameOffs;
827 };
828 
829 // The .gnu.version section specifies the required version of each symbol in the
830 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
831 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version
832 // identifier defined in the either .gnu.version_r or .gnu.version_d section.
833 // The values 0 and 1 are reserved. All other values are used for versions in
834 // the own object or in any of the dependencies.
835 class VersionTableSection final : public SyntheticSection {
836 public:
837   VersionTableSection();
838   void finalizeContents() override;
839   size_t getSize() const override;
840   void writeTo(uint8_t *buf) override;
841   bool isNeeded() const override;
842 };
843 
844 // The .gnu.version_r section defines the version identifiers used by
845 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
846 // Elf_Verneed specifies the version requirements for a single DSO, and contains
847 // a reference to a linked list of Elf_Vernaux data structures which define the
848 // mapping from version identifiers to version names.
849 template <class ELFT>
850 class VersionNeedSection final : public SyntheticSection {
851   using Elf_Verneed = typename ELFT::Verneed;
852   using Elf_Vernaux = typename ELFT::Vernaux;
853 
854   struct Vernaux {
855     uint64_t hash;
856     uint32_t verneedIndex;
857     uint64_t nameStrTab;
858   };
859 
860   struct Verneed {
861     uint64_t nameStrTab;
862     std::vector<Vernaux> vernauxs;
863   };
864 
865   std::vector<Verneed> verneeds;
866 
867 public:
868   VersionNeedSection();
869   void finalizeContents() override;
870   void writeTo(uint8_t *buf) override;
871   size_t getSize() const override;
872   bool isNeeded() const override;
873 };
874 
875 // MergeSyntheticSection is a class that allows us to put mergeable sections
876 // with different attributes in a single output sections. To do that
877 // we put them into MergeSyntheticSection synthetic input sections which are
878 // attached to regular output sections.
879 class MergeSyntheticSection : public SyntheticSection {
880 public:
881   void addSection(MergeInputSection *ms);
882   std::vector<MergeInputSection *> sections;
883 
884 protected:
MergeSyntheticSection(StringRef name,uint32_t type,uint64_t flags,uint32_t alignment)885   MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
886                         uint32_t alignment)
887       : SyntheticSection(flags, type, alignment, name) {}
888 };
889 
890 class MergeTailSection final : public MergeSyntheticSection {
891 public:
892   MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
893                    uint32_t alignment);
894 
895   size_t getSize() const override;
896   void writeTo(uint8_t *buf) override;
897   void finalizeContents() override;
898 
899 private:
900   llvm::StringTableBuilder builder;
901 };
902 
903 class MergeNoTailSection final : public MergeSyntheticSection {
904 public:
MergeNoTailSection(StringRef name,uint32_t type,uint64_t flags,uint32_t alignment)905   MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
906                      uint32_t alignment)
907       : MergeSyntheticSection(name, type, flags, alignment) {}
908 
getSize()909   size_t getSize() const override { return size; }
910   void writeTo(uint8_t *buf) override;
911   void finalizeContents() override;
912 
913 private:
914   // We use the most significant bits of a hash as a shard ID.
915   // The reason why we don't want to use the least significant bits is
916   // because DenseMap also uses lower bits to determine a bucket ID.
917   // If we use lower bits, it significantly increases the probability of
918   // hash collisons.
getShardId(uint32_t hash)919   size_t getShardId(uint32_t hash) {
920     assert((hash >> 31) == 0);
921     return hash >> (31 - llvm::countTrailingZeros(numShards));
922   }
923 
924   // Section size
925   size_t size;
926 
927   // String table contents
928   constexpr static size_t numShards = 32;
929   std::vector<llvm::StringTableBuilder> shards;
930   size_t shardOffsets[numShards];
931 };
932 
933 // .MIPS.abiflags section.
934 template <class ELFT>
935 class MipsAbiFlagsSection final : public SyntheticSection {
936   using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
937 
938 public:
939   static MipsAbiFlagsSection *create();
940 
941   MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
getSize()942   size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
943   void writeTo(uint8_t *buf) override;
944   llvm::Optional<unsigned> getCheriAbiVariant() const;
945 
946 private:
947   Elf_Mips_ABIFlags flags;
948 };
949 
950 // .MIPS.options section.
951 template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
952   using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
953   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
954 
955 public:
956   static MipsOptionsSection *create();
957 
958   MipsOptionsSection(Elf_Mips_RegInfo reginfo);
959   void writeTo(uint8_t *buf) override;
960 
getSize()961   size_t getSize() const override {
962     return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
963   }
964 
965 private:
966   Elf_Mips_RegInfo reginfo;
967 };
968 
969 // MIPS .reginfo section.
970 template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
971   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
972 
973 public:
974   static MipsReginfoSection *create();
975 
976   MipsReginfoSection(Elf_Mips_RegInfo reginfo);
getSize()977   size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
978   void writeTo(uint8_t *buf) override;
979 
980 private:
981   Elf_Mips_RegInfo reginfo;
982 };
983 
984 // This is a MIPS specific section to hold a space within the data segment
985 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
986 // See "Dynamic section" in Chapter 5 in the following document:
987 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
988 class MipsRldMapSection : public SyntheticSection {
989 public:
990   MipsRldMapSection();
getSize()991   size_t getSize() const override { return config->wordsize; }
writeTo(uint8_t * buf)992   void writeTo(uint8_t *buf) override {}
993 };
994 
995 // Representation of the combined .ARM.Exidx input sections. We process these
996 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries
997 // and add terminating sentinel entries.
998 //
999 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
1000 // a table that the unwinder can derive (Addresses are encoded as offsets from
1001 // table):
1002 // | Address of function | Unwind instructions for function |
1003 // where the unwind instructions are either a small number of unwind or the
1004 // special EXIDX_CANTUNWIND entry representing no unwinding information.
1005 // When an exception is thrown from an address A, the unwinder searches the
1006 // table for the closest table entry with Address of function <= A. This means
1007 // that for two consecutive table entries:
1008 // | A1 | U1 |
1009 // | A2 | U2 |
1010 // The range of addresses described by U1 is [A1, A2)
1011 //
1012 // There are two cases where we need a linker generated table entry to fixup
1013 // the address ranges in the table
1014 // Case 1:
1015 // - A sentinel entry added with an address higher than all
1016 // executable sections. This was needed to work around libunwind bug pr31091.
1017 // - After address assignment we need to find the highest addressed executable
1018 // section and use the limit of that section so that the unwinder never
1019 // matches it.
1020 // Case 2:
1021 // - InputSections without a .ARM.exidx section (usually from Assembly)
1022 // need a table entry so that they terminate the range of the previously
1023 // function. This is pr40277.
1024 //
1025 // Instead of storing pointers to the .ARM.exidx InputSections from
1026 // InputObjects, we store pointers to the executable sections that need
1027 // .ARM.exidx sections. We can then use the dependentSections of these to
1028 // either find the .ARM.exidx section or know that we need to generate one.
1029 class ARMExidxSyntheticSection : public SyntheticSection {
1030 public:
1031   ARMExidxSyntheticSection();
1032 
1033   // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1034   // section needs to be removed from the main input section list.
1035   bool addSection(InputSection *isec);
1036 
getSize()1037   size_t getSize() const override { return size; }
1038   void writeTo(uint8_t *buf) override;
1039   bool isNeeded() const override;
1040   // Sort and remove duplicate entries.
1041   void finalizeContents() override;
1042   InputSection *getLinkOrderDep() const;
1043 
1044   static bool classof(const SectionBase *d);
1045 
1046   // Links to the ARMExidxSections so we can transfer the relocations once the
1047   // layout is known.
1048   std::vector<InputSection *> exidxSections;
1049 
1050 private:
1051   size_t size = 0;
1052 
1053   // Instead of storing pointers to the .ARM.exidx InputSections from
1054   // InputObjects, we store pointers to the executable sections that need
1055   // .ARM.exidx sections. We can then use the dependentSections of these to
1056   // either find the .ARM.exidx section or know that we need to generate one.
1057   std::vector<InputSection *> executableSections;
1058 
1059   // The executable InputSection with the highest address to use for the
1060   // sentinel. We store separately from ExecutableSections as merging of
1061   // duplicate entries may mean this InputSection is removed from
1062   // ExecutableSections.
1063   InputSection *sentinel = nullptr;
1064 };
1065 
1066 // A container for one or more linker generated thunks. Instances of these
1067 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1068 class ThunkSection : public SyntheticSection {
1069 public:
1070   // ThunkSection in OS, with desired outSecOff of Off
1071   ThunkSection(OutputSection *os, uint64_t off);
1072 
1073   // Add a newly created Thunk to this container:
1074   // Thunk is given offset from start of this InputSection
1075   // Thunk defines a symbol in this InputSection that can be used as target
1076   // of a relocation
1077   void addThunk(Thunk *t);
1078   size_t getSize() const override;
1079   void writeTo(uint8_t *buf) override;
1080   InputSection *getTargetInputSection() const;
1081   bool assignOffsets();
1082 
1083   // When true, round up reported size of section to 4 KiB. See comment
1084   // in addThunkSection() for more details.
1085   bool roundUpSizeForErrata = false;
1086 
1087 private:
1088   std::vector<Thunk *> thunks;
1089   size_t size = 0;
1090 };
1091 
1092 // Used to compute outSecOff of .got2 in each object file. This is needed to
1093 // synthesize PLT entries for PPC32 Secure PLT ABI.
1094 class PPC32Got2Section final : public SyntheticSection {
1095 public:
1096   PPC32Got2Section();
getSize()1097   size_t getSize() const override { return 0; }
1098   bool isNeeded() const override;
1099   void finalizeContents() override;
writeTo(uint8_t * buf)1100   void writeTo(uint8_t *buf) override {}
1101 };
1102 
1103 // This section is used to store the addresses of functions that are called
1104 // in range-extending thunks on PowerPC64. When producing position dependent
1105 // code the addresses are link-time constants and the table is written out to
1106 // the binary. When producing position-dependent code the table is allocated and
1107 // filled in by the dynamic linker.
1108 class PPC64LongBranchTargetSection final : public SyntheticSection {
1109 public:
1110   PPC64LongBranchTargetSection();
1111   uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1112   llvm::Optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1113   size_t getSize() const override;
1114   void writeTo(uint8_t *buf) override;
1115   bool isNeeded() const override;
finalizeContents()1116   void finalizeContents() override { finalized = true; }
1117 
1118 private:
1119   std::vector<std::pair<const Symbol *, int64_t>> entries;
1120   llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1121   bool finalized = false;
1122 };
1123 
1124 // Can only be forward declared here since it depends on SyntheticSection
1125 template <class ELFT> class CheriCapRelocsSection;
1126 class CheriCapTableSection;
1127 class CheriCapTableMappingSection;
1128 
1129 template <typename ELFT>
1130 class PartitionElfHeaderSection : public SyntheticSection {
1131 public:
1132   PartitionElfHeaderSection();
1133   size_t getSize() const override;
1134   void writeTo(uint8_t *buf) override;
1135 };
1136 
1137 template <typename ELFT>
1138 class PartitionProgramHeadersSection : public SyntheticSection {
1139 public:
1140   PartitionProgramHeadersSection();
1141   size_t getSize() const override;
1142   void writeTo(uint8_t *buf) override;
1143 };
1144 
1145 class PartitionIndexSection : public SyntheticSection {
1146 public:
1147   PartitionIndexSection();
1148   size_t getSize() const override;
1149   void finalizeContents() override;
1150   void writeTo(uint8_t *buf) override;
1151 };
1152 
1153 InputSection *createInterpSection();
1154 MergeInputSection *createCommentSection();
1155 MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type,
1156                                             uint64_t flags, uint32_t alignment);
1157 template <class ELFT> void splitSections();
1158 
1159 template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
1160 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1161 
1162 Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
1163                            uint64_t size, InputSectionBase &section);
1164 
1165 void addVerneed(Symbol *ss);
1166 
1167 // Linker generated per-partition sections.
1168 struct Partition {
1169   StringRef name;
1170   uint64_t nameStrTab;
1171 
1172   SyntheticSection *elfHeader;
1173   SyntheticSection *programHeaders;
1174   std::vector<PhdrEntry *> phdrs;
1175 
1176   ARMExidxSyntheticSection *armExidx;
1177   BuildIdSection *buildId;
1178   SyntheticSection *dynamic;
1179   StringTableSection *dynStrTab;
1180   SymbolTableBaseSection *dynSymTab;
1181   EhFrameHeader *ehFrameHdr;
1182   EhFrameSection *ehFrame;
1183   GnuHashTableSection *gnuHashTab;
1184   HashTableSection *hashTab;
1185   RelocationBaseSection *relaDyn;
1186   RelrBaseSection *relrDyn;
1187   VersionDefinitionSection *verDef;
1188   SyntheticSection *verNeed;
1189   VersionTableSection *verSym;
1190 
getNumberPartition1191   unsigned getNumber() const { return this - &partitions[0] + 1; }
1192 };
1193 
1194 extern Partition *mainPart;
1195 
getPartition()1196 inline Partition &SectionBase::getPartition() const {
1197   assert(isLive());
1198   return partitions[partition - 1];
1199 }
1200 
1201 // Linker generated sections which can be used as inputs and are not specific to
1202 // a partition.
1203 struct InStruct {
1204   InputSection *attributes;
1205   BssSection *bss;
1206   BssSection *bssRelRo;
1207   GotSection *got;
1208   GotPltSection *gotPlt;
1209   IgotPltSection *igotPlt;
1210   CheriCapTableSection *cheriCapTable;
1211   // For per-file/per-function tables:
1212   CheriCapTableMappingSection *cheriCapTableMapping;
1213   PPC64LongBranchTargetSection *ppc64LongBranchTarget;
1214   MipsGotSection *mipsGot;
1215   MipsRldMapSection *mipsRldMap;
1216   SyntheticSection *partEnd;
1217   SyntheticSection *partIndex;
1218   PltSection *plt;
1219   IpltSection *iplt;
1220   PPC32Got2Section *ppc32Got2;
1221   IBTPltSection *ibtPlt;
1222   RelocationBaseSection *relaPlt;
1223   RelocationBaseSection *relaIplt;
1224   StringTableSection *shStrTab;
1225   StringTableSection *strTab;
1226   SymbolTableBaseSection *symTab;
1227   SymtabShndxSection *symTabShndx;
1228 };
1229 
1230 extern InStruct in;
1231 
1232 template <class ELFT> struct InX {
1233   // XXXAR: needs to be templated because writing depends on endianess
1234   // TODO: use the non-templated version
1235   static CheriCapRelocsSection<ELFT> *capRelocs;
1236   static MipsAbiFlagsSection<ELFT> *mipsAbiFlags;
1237 };
1238 
1239 template <class ELFT> CheriCapRelocsSection<ELFT> *InX<ELFT>::capRelocs;
1240 template <class ELFT> MipsAbiFlagsSection<ELFT> *InX<ELFT>::mipsAbiFlags;
1241 } // namespace elf
1242 } // namespace lld
1243 
1244 #endif
1245