1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Instruction class, which is the
10 // base class for all of the LLVM instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_INSTRUCTION_H
15 #define LLVM_IR_INSTRUCTION_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Bitfields.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/SymbolTableListTraits.h"
24 #include "llvm/IR/User.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/AtomicOrdering.h"
27 #include "llvm/Support/Casting.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstdint>
31 #include <utility>
32 
33 namespace llvm {
34 
35 class BasicBlock;
36 class FastMathFlags;
37 class MDNode;
38 class Module;
39 struct AAMDNodes;
40 
41 template <> struct ilist_alloc_traits<Instruction> {
42   static inline void deleteNode(Instruction *V);
43 };
44 
45 class Instruction : public User,
46                     public ilist_node_with_parent<Instruction, BasicBlock> {
47   BasicBlock *Parent;
48   DebugLoc DbgLoc;                         // 'dbg' Metadata cache.
49 
50   /// Relative order of this instruction in its parent basic block. Used for
51   /// O(1) local dominance checks between instructions.
52   mutable unsigned Order = 0;
53 
54 protected:
55   // The 15 first bits of `Value::SubclassData` are available for subclasses of
56   // `Instruction` to use.
57   using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
58 
59   // Template alias so that all Instruction storing alignment use the same
60   // definiton.
61   // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
62   // 2^29. We store them as Log2(Alignment), so we need 5 bits to encode the 30
63   // possible values.
64   template <unsigned Offset>
65   using AlignmentBitfieldElementT =
66       typename Bitfield::Element<unsigned, Offset, 5,
67                                  Value::MaxAlignmentExponent>;
68 
69   template <unsigned Offset>
70   using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
71 
72   template <unsigned Offset>
73   using AtomicOrderingBitfieldElementT =
74       typename Bitfield::Element<AtomicOrdering, Offset, 3,
75                                  AtomicOrdering::LAST>;
76 
77 private:
78   // The last bit is used to store whether the instruction has metadata attached
79   // or not.
80   using HasMetadataField = Bitfield::Element<bool, 15, 1>;
81 
82 protected:
83   ~Instruction(); // Use deleteValue() to delete a generic Instruction.
84 
85 public:
86   Instruction(const Instruction &) = delete;
87   Instruction &operator=(const Instruction &) = delete;
88 
89   /// Specialize the methods defined in Value, as we know that an instruction
90   /// can only be used by other instructions.
91   Instruction       *user_back()       { return cast<Instruction>(*user_begin());}
92   const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
93 
94   inline const BasicBlock *getParent() const { return Parent; }
95   inline       BasicBlock *getParent()       { return Parent; }
96 
97   /// Return the module owning the function this instruction belongs to
98   /// or nullptr it the function does not have a module.
99   ///
100   /// Note: this is undefined behavior if the instruction does not have a
101   /// parent, or the parent basic block does not have a parent function.
102   const Module *getModule() const;
103   Module *getModule() {
104     return const_cast<Module *>(
105                            static_cast<const Instruction *>(this)->getModule());
106   }
107 
108   /// Return the function this instruction belongs to.
109   ///
110   /// Note: it is undefined behavior to call this on an instruction not
111   /// currently inserted into a function.
112   const Function *getFunction() const;
113   Function *getFunction() {
114     return const_cast<Function *>(
115                          static_cast<const Instruction *>(this)->getFunction());
116   }
117 
118   /// This method unlinks 'this' from the containing basic block, but does not
119   /// delete it.
120   void removeFromParent();
121 
122   /// This method unlinks 'this' from the containing basic block and deletes it.
123   ///
124   /// \returns an iterator pointing to the element after the erased one
125   SymbolTableList<Instruction>::iterator eraseFromParent();
126 
127   /// Insert an unlinked instruction into a basic block immediately before
128   /// the specified instruction.
129   void insertBefore(Instruction *InsertPos);
130 
131   /// Insert an unlinked instruction into a basic block immediately after the
132   /// specified instruction.
133   void insertAfter(Instruction *InsertPos);
134 
135   /// Unlink this instruction from its current basic block and insert it into
136   /// the basic block that MovePos lives in, right before MovePos.
137   void moveBefore(Instruction *MovePos);
138 
139   /// Unlink this instruction and insert into BB before I.
140   ///
141   /// \pre I is a valid iterator into BB.
142   void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
143 
144   /// Unlink this instruction from its current basic block and insert it into
145   /// the basic block that MovePos lives in, right after MovePos.
146   void moveAfter(Instruction *MovePos);
147 
148   /// Given an instruction Other in the same basic block as this instruction,
149   /// return true if this instruction comes before Other. In this worst case,
150   /// this takes linear time in the number of instructions in the block. The
151   /// results are cached, so in common cases when the block remains unmodified,
152   /// it takes constant time.
153   bool comesBefore(const Instruction *Other) const;
154 
155   //===--------------------------------------------------------------------===//
156   // Subclass classification.
157   //===--------------------------------------------------------------------===//
158 
159   /// Returns a member of one of the enums like Instruction::Add.
160   unsigned getOpcode() const { return getValueID() - InstructionVal; }
161 
162   const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
163   bool isTerminator() const { return isTerminator(getOpcode()); }
164   bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
165   bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
166   bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
167   bool isShift() const { return isShift(getOpcode()); }
168   bool isCast() const { return isCast(getOpcode()); }
169   bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
170   bool isExceptionalTerminator() const {
171     return isExceptionalTerminator(getOpcode());
172   }
173   bool isIndirectTerminator() const {
174     return isIndirectTerminator(getOpcode());
175   }
176 
177   static const char* getOpcodeName(unsigned OpCode);
178 
179   static inline bool isTerminator(unsigned OpCode) {
180     return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
181   }
182 
183   static inline bool isUnaryOp(unsigned Opcode) {
184     return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
185   }
186   static inline bool isBinaryOp(unsigned Opcode) {
187     return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
188   }
189 
190   static inline bool isIntDivRem(unsigned Opcode) {
191     return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
192   }
193 
194   /// Determine if the Opcode is one of the shift instructions.
195   static inline bool isShift(unsigned Opcode) {
196     return Opcode >= Shl && Opcode <= AShr;
197   }
198 
199   /// Return true if this is a logical shift left or a logical shift right.
200   inline bool isLogicalShift() const {
201     return getOpcode() == Shl || getOpcode() == LShr;
202   }
203 
204   /// Return true if this is an arithmetic shift right.
205   inline bool isArithmeticShift() const {
206     return getOpcode() == AShr;
207   }
208 
209   /// Determine if the Opcode is and/or/xor.
210   static inline bool isBitwiseLogicOp(unsigned Opcode) {
211     return Opcode == And || Opcode == Or || Opcode == Xor;
212   }
213 
214   /// Return true if this is and/or/xor.
215   inline bool isBitwiseLogicOp() const {
216     return isBitwiseLogicOp(getOpcode());
217   }
218 
219   /// Determine if the OpCode is one of the CastInst instructions.
220   static inline bool isCast(unsigned OpCode) {
221     return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
222   }
223 
224   /// Determine if the OpCode is one of the FuncletPadInst instructions.
225   static inline bool isFuncletPad(unsigned OpCode) {
226     return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
227   }
228 
229   /// Returns true if the OpCode is a terminator related to exception handling.
230   static inline bool isExceptionalTerminator(unsigned OpCode) {
231     switch (OpCode) {
232     case Instruction::CatchSwitch:
233     case Instruction::CatchRet:
234     case Instruction::CleanupRet:
235     case Instruction::Invoke:
236     case Instruction::Resume:
237       return true;
238     default:
239       return false;
240     }
241   }
242 
243   /// Returns true if the OpCode is a terminator with indirect targets.
244   static inline bool isIndirectTerminator(unsigned OpCode) {
245     switch (OpCode) {
246     case Instruction::IndirectBr:
247     case Instruction::CallBr:
248       return true;
249     default:
250       return false;
251     }
252   }
253 
254   //===--------------------------------------------------------------------===//
255   // Metadata manipulation.
256   //===--------------------------------------------------------------------===//
257 
258   /// Return true if this instruction has any metadata attached to it.
259   bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
260 
261   /// Return true if this instruction has metadata attached to it other than a
262   /// debug location.
263   bool hasMetadataOtherThanDebugLoc() const {
264     return hasMetadataHashEntry();
265   }
266 
267   /// Return true if this instruction has the given type of metadata attached.
268   bool hasMetadata(unsigned KindID) const {
269     return getMetadata(KindID) != nullptr;
270   }
271 
272   /// Return true if this instruction has the given type of metadata attached.
273   bool hasMetadata(StringRef Kind) const {
274     return getMetadata(Kind) != nullptr;
275   }
276 
277   /// Get the metadata of given kind attached to this Instruction.
278   /// If the metadata is not found then return null.
279   MDNode *getMetadata(unsigned KindID) const {
280     if (!hasMetadata()) return nullptr;
281     return getMetadataImpl(KindID);
282   }
283 
284   /// Get the metadata of given kind attached to this Instruction.
285   /// If the metadata is not found then return null.
286   MDNode *getMetadata(StringRef Kind) const {
287     if (!hasMetadata()) return nullptr;
288     return getMetadataImpl(Kind);
289   }
290 
291   /// Get all metadata attached to this Instruction. The first element of each
292   /// pair returned is the KindID, the second element is the metadata value.
293   /// This list is returned sorted by the KindID.
294   void
295   getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
296     if (hasMetadata())
297       getAllMetadataImpl(MDs);
298   }
299 
300   /// This does the same thing as getAllMetadata, except that it filters out the
301   /// debug location.
302   void getAllMetadataOtherThanDebugLoc(
303       SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
304     if (hasMetadataOtherThanDebugLoc())
305       getAllMetadataOtherThanDebugLocImpl(MDs);
306   }
307 
308   /// Fills the AAMDNodes structure with AA metadata from this instruction.
309   /// When Merge is true, the existing AA metadata is merged with that from this
310   /// instruction providing the most-general result.
311   void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
312 
313   /// Set the metadata of the specified kind to the specified node. This updates
314   /// or replaces metadata if already present, or removes it if Node is null.
315   void setMetadata(unsigned KindID, MDNode *Node);
316   void setMetadata(StringRef Kind, MDNode *Node);
317 
318   /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
319   /// specifies the list of meta data that needs to be copied. If \p WL is
320   /// empty, all meta data will be copied.
321   void copyMetadata(const Instruction &SrcInst,
322                     ArrayRef<unsigned> WL = ArrayRef<unsigned>());
323 
324   /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
325   /// has three operands (including name string), swap the order of the
326   /// metadata.
327   void swapProfMetadata();
328 
329   /// Drop all unknown metadata except for debug locations.
330   /// @{
331   /// Passes are required to drop metadata they don't understand. This is a
332   /// convenience method for passes to do so.
333   void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
334   void dropUnknownNonDebugMetadata() {
335     return dropUnknownNonDebugMetadata(None);
336   }
337   void dropUnknownNonDebugMetadata(unsigned ID1) {
338     return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
339   }
340   void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
341     unsigned IDs[] = {ID1, ID2};
342     return dropUnknownNonDebugMetadata(IDs);
343   }
344   /// @}
345 
346   /// Sets the metadata on this instruction from the AAMDNodes structure.
347   void setAAMetadata(const AAMDNodes &N);
348 
349   /// Retrieve the raw weight values of a conditional branch or select.
350   /// Returns true on success with profile weights filled in.
351   /// Returns false if no metadata or invalid metadata was found.
352   bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
353 
354   /// Retrieve total raw weight values of a branch.
355   /// Returns true on success with profile total weights filled in.
356   /// Returns false if no metadata was found.
357   bool extractProfTotalWeight(uint64_t &TotalVal) const;
358 
359   /// Set the debug location information for this instruction.
360   void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
361 
362   /// Return the debug location for this node as a DebugLoc.
363   const DebugLoc &getDebugLoc() const { return DbgLoc; }
364 
365   /// Set or clear the nuw flag on this instruction, which must be an operator
366   /// which supports this flag. See LangRef.html for the meaning of this flag.
367   void setHasNoUnsignedWrap(bool b = true);
368 
369   /// Set or clear the nsw flag on this instruction, which must be an operator
370   /// which supports this flag. See LangRef.html for the meaning of this flag.
371   void setHasNoSignedWrap(bool b = true);
372 
373   /// Set or clear the exact flag on this instruction, which must be an operator
374   /// which supports this flag. See LangRef.html for the meaning of this flag.
375   void setIsExact(bool b = true);
376 
377   /// Determine whether the no unsigned wrap flag is set.
378   bool hasNoUnsignedWrap() const;
379 
380   /// Determine whether the no signed wrap flag is set.
381   bool hasNoSignedWrap() const;
382 
383   /// Drops flags that may cause this instruction to evaluate to poison despite
384   /// having non-poison inputs.
385   void dropPoisonGeneratingFlags();
386 
387   /// Determine whether the exact flag is set.
388   bool isExact() const;
389 
390   /// Set or clear all fast-math-flags on this instruction, which must be an
391   /// operator which supports this flag. See LangRef.html for the meaning of
392   /// this flag.
393   void setFast(bool B);
394 
395   /// Set or clear the reassociation flag on this instruction, which must be
396   /// an operator which supports this flag. See LangRef.html for the meaning of
397   /// this flag.
398   void setHasAllowReassoc(bool B);
399 
400   /// Set or clear the no-nans flag on this instruction, which must be an
401   /// operator which supports this flag. See LangRef.html for the meaning of
402   /// this flag.
403   void setHasNoNaNs(bool B);
404 
405   /// Set or clear the no-infs flag on this instruction, which must be an
406   /// operator which supports this flag. See LangRef.html for the meaning of
407   /// this flag.
408   void setHasNoInfs(bool B);
409 
410   /// Set or clear the no-signed-zeros flag on this instruction, which must be
411   /// an operator which supports this flag. See LangRef.html for the meaning of
412   /// this flag.
413   void setHasNoSignedZeros(bool B);
414 
415   /// Set or clear the allow-reciprocal flag on this instruction, which must be
416   /// an operator which supports this flag. See LangRef.html for the meaning of
417   /// this flag.
418   void setHasAllowReciprocal(bool B);
419 
420   /// Set or clear the allow-contract flag on this instruction, which must be
421   /// an operator which supports this flag. See LangRef.html for the meaning of
422   /// this flag.
423   void setHasAllowContract(bool B);
424 
425   /// Set or clear the approximate-math-functions flag on this instruction,
426   /// which must be an operator which supports this flag. See LangRef.html for
427   /// the meaning of this flag.
428   void setHasApproxFunc(bool B);
429 
430   /// Convenience function for setting multiple fast-math flags on this
431   /// instruction, which must be an operator which supports these flags. See
432   /// LangRef.html for the meaning of these flags.
433   void setFastMathFlags(FastMathFlags FMF);
434 
435   /// Convenience function for transferring all fast-math flag values to this
436   /// instruction, which must be an operator which supports these flags. See
437   /// LangRef.html for the meaning of these flags.
438   void copyFastMathFlags(FastMathFlags FMF);
439 
440   /// Determine whether all fast-math-flags are set.
441   bool isFast() const;
442 
443   /// Determine whether the allow-reassociation flag is set.
444   bool hasAllowReassoc() const;
445 
446   /// Determine whether the no-NaNs flag is set.
447   bool hasNoNaNs() const;
448 
449   /// Determine whether the no-infs flag is set.
450   bool hasNoInfs() const;
451 
452   /// Determine whether the no-signed-zeros flag is set.
453   bool hasNoSignedZeros() const;
454 
455   /// Determine whether the allow-reciprocal flag is set.
456   bool hasAllowReciprocal() const;
457 
458   /// Determine whether the allow-contract flag is set.
459   bool hasAllowContract() const;
460 
461   /// Determine whether the approximate-math-functions flag is set.
462   bool hasApproxFunc() const;
463 
464   /// Convenience function for getting all the fast-math flags, which must be an
465   /// operator which supports these flags. See LangRef.html for the meaning of
466   /// these flags.
467   FastMathFlags getFastMathFlags() const;
468 
469   /// Copy I's fast-math flags
470   void copyFastMathFlags(const Instruction *I);
471 
472   /// Convenience method to copy supported exact, fast-math, and (optionally)
473   /// wrapping flags from V to this instruction.
474   void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
475 
476   /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
477   /// V and this instruction.
478   void andIRFlags(const Value *V);
479 
480   /// Merge 2 debug locations and apply it to the Instruction. If the
481   /// instruction is a CallIns, we need to traverse the inline chain to find
482   /// the common scope. This is not efficient for N-way merging as each time
483   /// you merge 2 iterations, you need to rebuild the hashmap to find the
484   /// common scope. However, we still choose this API because:
485   ///  1) Simplicity: it takes 2 locations instead of a list of locations.
486   ///  2) In worst case, it increases the complexity from O(N*I) to
487   ///     O(2*N*I), where N is # of Instructions to merge, and I is the
488   ///     maximum level of inline stack. So it is still linear.
489   ///  3) Merging of call instructions should be extremely rare in real
490   ///     applications, thus the N-way merging should be in code path.
491   /// The DebugLoc attached to this instruction will be overwritten by the
492   /// merged DebugLoc.
493   void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
494 
495 private:
496   /// Return true if we have an entry in the on-the-side metadata hash.
497   bool hasMetadataHashEntry() const {
498     return Bitfield::test<HasMetadataField>(getSubclassDataFromValue());
499   }
500 
501   // These are all implemented in Metadata.cpp.
502   MDNode *getMetadataImpl(unsigned KindID) const;
503   MDNode *getMetadataImpl(StringRef Kind) const;
504   void
505   getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
506   void getAllMetadataOtherThanDebugLocImpl(
507       SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
508   /// Clear all hashtable-based metadata from this instruction.
509   void clearMetadataHashEntries();
510 
511 public:
512   //===--------------------------------------------------------------------===//
513   // Predicates and helper methods.
514   //===--------------------------------------------------------------------===//
515 
516   /// Return true if the instruction is associative:
517   ///
518   ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
519   ///
520   /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
521   ///
522   bool isAssociative() const LLVM_READONLY;
523   static bool isAssociative(unsigned Opcode) {
524     return Opcode == And || Opcode == Or || Opcode == Xor ||
525            Opcode == Add || Opcode == Mul;
526   }
527 
528   /// Return true if the instruction is commutative:
529   ///
530   ///   Commutative operators satisfy: (x op y) === (y op x)
531   ///
532   /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
533   /// applied to any type.
534   ///
535   bool isCommutative() const { return isCommutative(getOpcode()); }
536   static bool isCommutative(unsigned Opcode) {
537     switch (Opcode) {
538     case Add: case FAdd:
539     case Mul: case FMul:
540     case And: case Or: case Xor:
541       return true;
542     default:
543       return false;
544   }
545   }
546 
547   /// Return true if the instruction is idempotent:
548   ///
549   ///   Idempotent operators satisfy:  x op x === x
550   ///
551   /// In LLVM, the And and Or operators are idempotent.
552   ///
553   bool isIdempotent() const { return isIdempotent(getOpcode()); }
554   static bool isIdempotent(unsigned Opcode) {
555     return Opcode == And || Opcode == Or;
556   }
557 
558   /// Return true if the instruction is nilpotent:
559   ///
560   ///   Nilpotent operators satisfy:  x op x === Id,
561   ///
562   ///   where Id is the identity for the operator, i.e. a constant such that
563   ///     x op Id === x and Id op x === x for all x.
564   ///
565   /// In LLVM, the Xor operator is nilpotent.
566   ///
567   bool isNilpotent() const { return isNilpotent(getOpcode()); }
568   static bool isNilpotent(unsigned Opcode) {
569     return Opcode == Xor;
570   }
571 
572   /// Return true if this instruction may modify memory.
573   bool mayWriteToMemory() const;
574 
575   /// Return true if this instruction may read memory.
576   bool mayReadFromMemory() const;
577 
578   /// Return true if this instruction may read or write memory.
579   bool mayReadOrWriteMemory() const {
580     return mayReadFromMemory() || mayWriteToMemory();
581   }
582 
583   /// Return true if this instruction has an AtomicOrdering of unordered or
584   /// higher.
585   bool isAtomic() const;
586 
587   /// Return true if this atomic instruction loads from memory.
588   bool hasAtomicLoad() const;
589 
590   /// Return true if this atomic instruction stores to memory.
591   bool hasAtomicStore() const;
592 
593   /// Return true if this instruction may throw an exception.
594   bool mayThrow() const;
595 
596   /// Return true if this instruction unmodeled side-effects.
597   bool hasSideEffects() const;
598 
599   /// Return true if this instruction behaves like a memory fence: it can load
600   /// or store to memory location without being given a memory location.
601   bool isFenceLike() const {
602     switch (getOpcode()) {
603     default:
604       return false;
605     // This list should be kept in sync with the list in mayWriteToMemory for
606     // all opcodes which don't have a memory location.
607     case Instruction::Fence:
608     case Instruction::CatchPad:
609     case Instruction::CatchRet:
610     case Instruction::Call:
611     case Instruction::Invoke:
612       return true;
613     }
614   }
615 
616   /// Return true if the instruction may have side effects.
617   ///
618   /// Note that this does not consider malloc and alloca to have side
619   /// effects because the newly allocated memory is completely invisible to
620   /// instructions which don't use the returned value.  For cases where this
621   /// matters, isSafeToSpeculativelyExecute may be more appropriate.
622   bool mayHaveSideEffects() const {
623     return mayWriteToMemory() || mayThrow() || hasSideEffects();
624   }
625 
626   /// Return true if the instruction can be removed if the result is unused.
627   ///
628   /// When constant folding some instructions cannot be removed even if their
629   /// results are unused. Specifically terminator instructions and calls that
630   /// may have side effects cannot be removed without semantically changing the
631   /// generated program.
632   bool isSafeToRemove() const;
633 
634   /// Return true if the instruction is a variety of EH-block.
635   bool isEHPad() const {
636     switch (getOpcode()) {
637     case Instruction::CatchSwitch:
638     case Instruction::CatchPad:
639     case Instruction::CleanupPad:
640     case Instruction::LandingPad:
641       return true;
642     default:
643       return false;
644     }
645   }
646 
647   /// Return true if the instruction is a llvm.lifetime.start or
648   /// llvm.lifetime.end marker.
649   bool isLifetimeStartOrEnd() const;
650 
651   /// Return a pointer to the next non-debug instruction in the same basic
652   /// block as 'this', or nullptr if no such instruction exists.
653   const Instruction *getNextNonDebugInstruction() const;
654   Instruction *getNextNonDebugInstruction() {
655     return const_cast<Instruction *>(
656         static_cast<const Instruction *>(this)->getNextNonDebugInstruction());
657   }
658 
659   /// Return a pointer to the previous non-debug instruction in the same basic
660   /// block as 'this', or nullptr if no such instruction exists.
661   const Instruction *getPrevNonDebugInstruction() const;
662   Instruction *getPrevNonDebugInstruction() {
663     return const_cast<Instruction *>(
664         static_cast<const Instruction *>(this)->getPrevNonDebugInstruction());
665   }
666 
667   /// Create a copy of 'this' instruction that is identical in all ways except
668   /// the following:
669   ///   * The instruction has no parent
670   ///   * The instruction has no name
671   ///
672   Instruction *clone() const;
673 
674   /// Return true if the specified instruction is exactly identical to the
675   /// current one. This means that all operands match and any extra information
676   /// (e.g. load is volatile) agree.
677   bool isIdenticalTo(const Instruction *I) const;
678 
679   /// This is like isIdenticalTo, except that it ignores the
680   /// SubclassOptionalData flags, which may specify conditions under which the
681   /// instruction's result is undefined.
682   bool isIdenticalToWhenDefined(const Instruction *I) const;
683 
684   /// When checking for operation equivalence (using isSameOperationAs) it is
685   /// sometimes useful to ignore certain attributes.
686   enum OperationEquivalenceFlags {
687     /// Check for equivalence ignoring load/store alignment.
688     CompareIgnoringAlignment = 1<<0,
689     /// Check for equivalence treating a type and a vector of that type
690     /// as equivalent.
691     CompareUsingScalarTypes = 1<<1
692   };
693 
694   /// This function determines if the specified instruction executes the same
695   /// operation as the current one. This means that the opcodes, type, operand
696   /// types and any other factors affecting the operation must be the same. This
697   /// is similar to isIdenticalTo except the operands themselves don't have to
698   /// be identical.
699   /// @returns true if the specified instruction is the same operation as
700   /// the current one.
701   /// Determine if one instruction is the same operation as another.
702   bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
703 
704   /// Return true if there are any uses of this instruction in blocks other than
705   /// the specified block. Note that PHI nodes are considered to evaluate their
706   /// operands in the corresponding predecessor block.
707   bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
708 
709   /// Return the number of successors that this instruction has. The instruction
710   /// must be a terminator.
711   unsigned getNumSuccessors() const;
712 
713   /// Return the specified successor. This instruction must be a terminator.
714   BasicBlock *getSuccessor(unsigned Idx) const;
715 
716   /// Update the specified successor to point at the provided block. This
717   /// instruction must be a terminator.
718   void setSuccessor(unsigned Idx, BasicBlock *BB);
719 
720   /// Replace specified successor OldBB to point at the provided block.
721   /// This instruction must be a terminator.
722   void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
723 
724   /// Methods for support type inquiry through isa, cast, and dyn_cast:
725   static bool classof(const Value *V) {
726     return V->getValueID() >= Value::InstructionVal;
727   }
728 
729   //----------------------------------------------------------------------
730   // Exported enumerations.
731   //
732   enum TermOps {       // These terminate basic blocks
733 #define  FIRST_TERM_INST(N)             TermOpsBegin = N,
734 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
735 #define   LAST_TERM_INST(N)             TermOpsEnd = N+1
736 #include "llvm/IR/Instruction.def"
737   };
738 
739   enum UnaryOps {
740 #define  FIRST_UNARY_INST(N)             UnaryOpsBegin = N,
741 #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
742 #define   LAST_UNARY_INST(N)             UnaryOpsEnd = N+1
743 #include "llvm/IR/Instruction.def"
744   };
745 
746   enum BinaryOps {
747 #define  FIRST_BINARY_INST(N)             BinaryOpsBegin = N,
748 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
749 #define   LAST_BINARY_INST(N)             BinaryOpsEnd = N+1
750 #include "llvm/IR/Instruction.def"
751   };
752 
753   enum MemoryOps {
754 #define  FIRST_MEMORY_INST(N)             MemoryOpsBegin = N,
755 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
756 #define   LAST_MEMORY_INST(N)             MemoryOpsEnd = N+1
757 #include "llvm/IR/Instruction.def"
758   };
759 
760   enum CastOps {
761 #define  FIRST_CAST_INST(N)             CastOpsBegin = N,
762 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
763 #define   LAST_CAST_INST(N)             CastOpsEnd = N+1
764 #include "llvm/IR/Instruction.def"
765   };
766 
767   enum FuncletPadOps {
768 #define  FIRST_FUNCLETPAD_INST(N)             FuncletPadOpsBegin = N,
769 #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
770 #define   LAST_FUNCLETPAD_INST(N)             FuncletPadOpsEnd = N+1
771 #include "llvm/IR/Instruction.def"
772   };
773 
774   enum OtherOps {
775 #define  FIRST_OTHER_INST(N)             OtherOpsBegin = N,
776 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
777 #define   LAST_OTHER_INST(N)             OtherOpsEnd = N+1
778 #include "llvm/IR/Instruction.def"
779   };
780 
781 private:
782   friend class SymbolTableListTraits<Instruction>;
783   friend class BasicBlock; // For renumbering.
784 
785   // Shadow Value::setValueSubclassData with a private forwarding method so that
786   // subclasses cannot accidentally use it.
787   void setValueSubclassData(unsigned short D) {
788     Value::setValueSubclassData(D);
789   }
790 
791   unsigned short getSubclassDataFromValue() const {
792     return Value::getSubclassDataFromValue();
793   }
794 
795   void setHasMetadataHashEntry(bool V) { setSubclassData<HasMetadataField>(V); }
796 
797   void setParent(BasicBlock *P);
798 
799 protected:
800   // Instruction subclasses can stick up to 15 bits of stuff into the
801   // SubclassData field of instruction with these members.
802 
803   template <typename BitfieldElement>
804   typename BitfieldElement::Type getSubclassData() const {
805     static_assert(
806         std::is_same<BitfieldElement, HasMetadataField>::value ||
807             !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
808         "Must not overlap with the metadata bit");
809     return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
810   }
811 
812   template <typename BitfieldElement>
813   void setSubclassData(typename BitfieldElement::Type Value) {
814     static_assert(
815         std::is_same<BitfieldElement, HasMetadataField>::value ||
816             !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
817         "Must not overlap with the metadata bit");
818     auto Storage = getSubclassDataFromValue();
819     Bitfield::set<BitfieldElement>(Storage, Value);
820     setValueSubclassData(Storage);
821   }
822 
823   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
824               Instruction *InsertBefore = nullptr);
825   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
826               BasicBlock *InsertAtEnd);
827 
828 private:
829   /// Create a copy of this instruction.
830   Instruction *cloneImpl() const;
831 };
832 
833 inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
834   V->deleteValue();
835 }
836 
837 } // end namespace llvm
838 
839 #endif // LLVM_IR_INSTRUCTION_H
840