1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on. It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62
63 using namespace llvm;
64
65 #define DEBUG_TYPE "memdep"
66
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70
71 STATISTIC(NumCacheNonLocalPtr,
72 "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74 "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77 "Number of block queries that were completely cached");
78
79 // Limit for the number of instructions to scan in a block.
80
81 static cl::opt<unsigned> BlockScanLimit(
82 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83 cl::desc("The number of instructions to scan in a block in memory "
84 "dependency analysis (default = 100)"));
85
86 static cl::opt<unsigned>
87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88 cl::desc("The number of blocks to scan during memory "
89 "dependency analysis (default = 1000)"));
90
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
RemoveFromReverseMap(DenseMap<Instruction *,SmallPtrSet<KeyTy,4>> & ReverseMap,Instruction * Inst,KeyTy Val)99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100 Instruction *Inst, KeyTy Val) {
101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102 ReverseMap.find(Inst);
103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104 bool Found = InstIt->second.erase(Val);
105 assert(Found && "Invalid reverse map!");
106 (void)Found;
107 if (InstIt->second.empty())
108 ReverseMap.erase(InstIt);
109 }
110
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
GetLocation(const Instruction * Inst,MemoryLocation & Loc,const TargetLibraryInfo & TLI)116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117 const TargetLibraryInfo &TLI) {
118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119 if (LI->isUnordered()) {
120 Loc = MemoryLocation::get(LI);
121 return ModRefInfo::Ref;
122 }
123 if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124 Loc = MemoryLocation::get(LI);
125 return ModRefInfo::ModRef;
126 }
127 Loc = MemoryLocation();
128 return ModRefInfo::ModRef;
129 }
130
131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132 if (SI->isUnordered()) {
133 Loc = MemoryLocation::get(SI);
134 return ModRefInfo::Mod;
135 }
136 if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137 Loc = MemoryLocation::get(SI);
138 return ModRefInfo::ModRef;
139 }
140 Loc = MemoryLocation();
141 return ModRefInfo::ModRef;
142 }
143
144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145 Loc = MemoryLocation::get(V);
146 return ModRefInfo::ModRef;
147 }
148
149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150 // calls to free() deallocate the entire structure
151 Loc = MemoryLocation(CI->getArgOperand(0));
152 return ModRefInfo::Mod;
153 }
154
155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156 switch (II->getIntrinsicID()) {
157 case Intrinsic::lifetime_start:
158 case Intrinsic::lifetime_end:
159 case Intrinsic::invariant_start:
160 Loc = MemoryLocation::getForArgument(II, 1, TLI);
161 // These intrinsics don't really modify the memory, but returning Mod
162 // will allow them to be handled conservatively.
163 return ModRefInfo::Mod;
164 case Intrinsic::invariant_end:
165 Loc = MemoryLocation::getForArgument(II, 2, TLI);
166 // These intrinsics don't really modify the memory, but returning Mod
167 // will allow them to be handled conservatively.
168 return ModRefInfo::Mod;
169 default:
170 break;
171 }
172 }
173
174 // Otherwise, just do the coarse-grained thing that always works.
175 if (Inst->mayWriteToMemory())
176 return ModRefInfo::ModRef;
177 if (Inst->mayReadFromMemory())
178 return ModRefInfo::Ref;
179 return ModRefInfo::NoModRef;
180 }
181
182 /// Private helper for finding the local dependencies of a call site.
getCallDependencyFrom(CallBase * Call,bool isReadOnlyCall,BasicBlock::iterator ScanIt,BasicBlock * BB)183 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185 BasicBlock *BB) {
186 unsigned Limit = getDefaultBlockScanLimit();
187
188 // Walk backwards through the block, looking for dependencies.
189 while (ScanIt != BB->begin()) {
190 Instruction *Inst = &*--ScanIt;
191 // Debug intrinsics don't cause dependences and should not affect Limit
192 if (isa<DbgInfoIntrinsic>(Inst))
193 continue;
194
195 // Limit the amount of scanning we do so we don't end up with quadratic
196 // running time on extreme testcases.
197 --Limit;
198 if (!Limit)
199 return MemDepResult::getUnknown();
200
201 // If this inst is a memory op, get the pointer it accessed
202 MemoryLocation Loc;
203 ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204 if (Loc.Ptr) {
205 // A simple instruction.
206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207 return MemDepResult::getClobber(Inst);
208 continue;
209 }
210
211 if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212 // If these two calls do not interfere, look past it.
213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214 // If the two calls are the same, return Inst as a Def, so that
215 // Call can be found redundant and eliminated.
216 if (isReadOnlyCall && !isModSet(MR) &&
217 Call->isIdenticalToWhenDefined(CallB))
218 return MemDepResult::getDef(Inst);
219
220 // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221 // keep scanning.
222 continue;
223 } else
224 return MemDepResult::getClobber(Inst);
225 }
226
227 // If we could not obtain a pointer for the instruction and the instruction
228 // touches memory then assume that this is a dependency.
229 if (isModOrRefSet(MR))
230 return MemDepResult::getClobber(Inst);
231 }
232
233 // No dependence found. If this is the entry block of the function, it is
234 // unknown, otherwise it is non-local.
235 if (BB != &BB->getParent()->getEntryBlock())
236 return MemDepResult::getNonLocal();
237 return MemDepResult::getNonFuncLocal();
238 }
239
isVolatile(Instruction * Inst)240 static bool isVolatile(Instruction *Inst) {
241 if (auto *LI = dyn_cast<LoadInst>(Inst))
242 return LI->isVolatile();
243 if (auto *SI = dyn_cast<StoreInst>(Inst))
244 return SI->isVolatile();
245 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
246 return AI->isVolatile();
247 return false;
248 }
249
getPointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst,unsigned * Limit)250 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
251 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
252 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
253 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
254 if (QueryInst != nullptr) {
255 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
256 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
257
258 if (InvariantGroupDependency.isDef())
259 return InvariantGroupDependency;
260 }
261 }
262 MemDepResult SimpleDep = getSimplePointerDependencyFrom(
263 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
264 if (SimpleDep.isDef())
265 return SimpleDep;
266 // Non-local invariant group dependency indicates there is non local Def
267 // (it only returns nonLocal if it finds nonLocal def), which is better than
268 // local clobber and everything else.
269 if (InvariantGroupDependency.isNonLocal())
270 return InvariantGroupDependency;
271
272 assert(InvariantGroupDependency.isUnknown() &&
273 "InvariantGroupDependency should be only unknown at this point");
274 return SimpleDep;
275 }
276
277 MemDepResult
getInvariantGroupPointerDependency(LoadInst * LI,BasicBlock * BB)278 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
279 BasicBlock *BB) {
280
281 if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
282 return MemDepResult::getUnknown();
283
284 // Take the ptr operand after all casts and geps 0. This way we can search
285 // cast graph down only.
286 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
287
288 // It's is not safe to walk the use list of global value, because function
289 // passes aren't allowed to look outside their functions.
290 // FIXME: this could be fixed by filtering instructions from outside
291 // of current function.
292 if (isa<GlobalValue>(LoadOperand))
293 return MemDepResult::getUnknown();
294
295 // Queue to process all pointers that are equivalent to load operand.
296 SmallVector<const Value *, 8> LoadOperandsQueue;
297 LoadOperandsQueue.push_back(LoadOperand);
298
299 Instruction *ClosestDependency = nullptr;
300 // Order of instructions in uses list is unpredictible. In order to always
301 // get the same result, we will look for the closest dominance.
302 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
303 assert(Other && "Must call it with not null instruction");
304 if (Best == nullptr || DT.dominates(Best, Other))
305 return Other;
306 return Best;
307 };
308
309 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
310 // we will see all the instructions. This should be fixed in MSSA.
311 while (!LoadOperandsQueue.empty()) {
312 const Value *Ptr = LoadOperandsQueue.pop_back_val();
313 assert(Ptr && !isa<GlobalValue>(Ptr) &&
314 "Null or GlobalValue should not be inserted");
315
316 for (const Use &Us : Ptr->uses()) {
317 auto *U = dyn_cast<Instruction>(Us.getUser());
318 if (!U || U == LI || !DT.dominates(U, LI))
319 continue;
320
321 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
322 // users. U = bitcast Ptr
323 if (isa<BitCastInst>(U)) {
324 LoadOperandsQueue.push_back(U);
325 continue;
326 }
327 // Gep with zeros is equivalent to bitcast.
328 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
329 // or gep 0 to bitcast because of SROA, so there are 2 forms. When
330 // typeless pointers will be ready then both cases will be gone
331 // (and this BFS also won't be needed).
332 if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
333 if (GEP->hasAllZeroIndices()) {
334 LoadOperandsQueue.push_back(U);
335 continue;
336 }
337
338 // If we hit load/store with the same invariant.group metadata (and the
339 // same pointer operand) we can assume that value pointed by pointer
340 // operand didn't change.
341 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
342 U->hasMetadata(LLVMContext::MD_invariant_group))
343 ClosestDependency = GetClosestDependency(ClosestDependency, U);
344 }
345 }
346
347 if (!ClosestDependency)
348 return MemDepResult::getUnknown();
349 if (ClosestDependency->getParent() == BB)
350 return MemDepResult::getDef(ClosestDependency);
351 // Def(U) can't be returned here because it is non-local. If local
352 // dependency won't be found then return nonLocal counting that the
353 // user will call getNonLocalPointerDependency, which will return cached
354 // result.
355 NonLocalDefsCache.try_emplace(
356 LI, NonLocalDepResult(ClosestDependency->getParent(),
357 MemDepResult::getDef(ClosestDependency), nullptr));
358 ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
359 return MemDepResult::getNonLocal();
360 }
361
getSimplePointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst,unsigned * Limit)362 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
363 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
364 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
365 bool isInvariantLoad = false;
366
367 unsigned DefaultLimit = getDefaultBlockScanLimit();
368 if (!Limit)
369 Limit = &DefaultLimit;
370
371 // We must be careful with atomic accesses, as they may allow another thread
372 // to touch this location, clobbering it. We are conservative: if the
373 // QueryInst is not a simple (non-atomic) memory access, we automatically
374 // return getClobber.
375 // If it is simple, we know based on the results of
376 // "Compiler testing via a theory of sound optimisations in the C11/C++11
377 // memory model" in PLDI 2013, that a non-atomic location can only be
378 // clobbered between a pair of a release and an acquire action, with no
379 // access to the location in between.
380 // Here is an example for giving the general intuition behind this rule.
381 // In the following code:
382 // store x 0;
383 // release action; [1]
384 // acquire action; [4]
385 // %val = load x;
386 // It is unsafe to replace %val by 0 because another thread may be running:
387 // acquire action; [2]
388 // store x 42;
389 // release action; [3]
390 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
391 // being 42. A key property of this program however is that if either
392 // 1 or 4 were missing, there would be a race between the store of 42
393 // either the store of 0 or the load (making the whole program racy).
394 // The paper mentioned above shows that the same property is respected
395 // by every program that can detect any optimization of that kind: either
396 // it is racy (undefined) or there is a release followed by an acquire
397 // between the pair of accesses under consideration.
398
399 // If the load is invariant, we "know" that it doesn't alias *any* write. We
400 // do want to respect mustalias results since defs are useful for value
401 // forwarding, but any mayalias write can be assumed to be noalias.
402 // Arguably, this logic should be pushed inside AliasAnalysis itself.
403 if (isLoad && QueryInst) {
404 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
405 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
406 isInvariantLoad = true;
407 }
408
409 const DataLayout &DL = BB->getModule()->getDataLayout();
410
411 // Return "true" if and only if the instruction I is either a non-simple
412 // load or a non-simple store.
413 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
414 if (auto *LI = dyn_cast<LoadInst>(I))
415 return !LI->isSimple();
416 if (auto *SI = dyn_cast<StoreInst>(I))
417 return !SI->isSimple();
418 return false;
419 };
420
421 // Return "true" if I is not a load and not a store, but it does access
422 // memory.
423 auto isOtherMemAccess = [](Instruction *I) -> bool {
424 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
425 };
426
427 // Walk backwards through the basic block, looking for dependencies.
428 while (ScanIt != BB->begin()) {
429 Instruction *Inst = &*--ScanIt;
430
431 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
432 // Debug intrinsics don't (and can't) cause dependencies.
433 if (isa<DbgInfoIntrinsic>(II))
434 continue;
435
436 // Limit the amount of scanning we do so we don't end up with quadratic
437 // running time on extreme testcases.
438 --*Limit;
439 if (!*Limit)
440 return MemDepResult::getUnknown();
441
442 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
443 // If we reach a lifetime begin or end marker, then the query ends here
444 // because the value is undefined.
445 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
446 // FIXME: This only considers queries directly on the invariant-tagged
447 // pointer, not on query pointers that are indexed off of them. It'd
448 // be nice to handle that at some point (the right approach is to use
449 // GetPointerBaseWithConstantOffset).
450 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
451 return MemDepResult::getDef(II);
452 continue;
453 }
454 }
455
456 // Values depend on loads if the pointers are must aliased. This means
457 // that a load depends on another must aliased load from the same value.
458 // One exception is atomic loads: a value can depend on an atomic load that
459 // it does not alias with when this atomic load indicates that another
460 // thread may be accessing the location.
461 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
462 // While volatile access cannot be eliminated, they do not have to clobber
463 // non-aliasing locations, as normal accesses, for example, can be safely
464 // reordered with volatile accesses.
465 if (LI->isVolatile()) {
466 if (!QueryInst)
467 // Original QueryInst *may* be volatile
468 return MemDepResult::getClobber(LI);
469 if (isVolatile(QueryInst))
470 // Ordering required if QueryInst is itself volatile
471 return MemDepResult::getClobber(LI);
472 // Otherwise, volatile doesn't imply any special ordering
473 }
474
475 // Atomic loads have complications involved.
476 // A Monotonic (or higher) load is OK if the query inst is itself not
477 // atomic.
478 // FIXME: This is overly conservative.
479 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
480 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
481 isOtherMemAccess(QueryInst))
482 return MemDepResult::getClobber(LI);
483 if (LI->getOrdering() != AtomicOrdering::Monotonic)
484 return MemDepResult::getClobber(LI);
485 }
486
487 MemoryLocation LoadLoc = MemoryLocation::get(LI);
488
489 // If we found a pointer, check if it could be the same as our pointer.
490 AliasResult R = AA.alias(LoadLoc, MemLoc);
491
492 if (isLoad) {
493 if (R == NoAlias)
494 continue;
495
496 // Must aliased loads are defs of each other.
497 if (R == MustAlias)
498 return MemDepResult::getDef(Inst);
499
500 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
501 // in terms of clobbering loads, but since it does this by looking
502 // at the clobbering load directly, it doesn't know about any
503 // phi translation that may have happened along the way.
504
505 // If we have a partial alias, then return this as a clobber for the
506 // client to handle.
507 if (R == PartialAlias)
508 return MemDepResult::getClobber(Inst);
509 #endif
510
511 // Random may-alias loads don't depend on each other without a
512 // dependence.
513 continue;
514 }
515
516 // Stores don't depend on other no-aliased accesses.
517 if (R == NoAlias)
518 continue;
519
520 // Stores don't alias loads from read-only memory.
521 if (AA.pointsToConstantMemory(LoadLoc))
522 continue;
523
524 // Stores depend on may/must aliased loads.
525 return MemDepResult::getDef(Inst);
526 }
527
528 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
529 // Atomic stores have complications involved.
530 // A Monotonic store is OK if the query inst is itself not atomic.
531 // FIXME: This is overly conservative.
532 if (!SI->isUnordered() && SI->isAtomic()) {
533 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
534 isOtherMemAccess(QueryInst))
535 return MemDepResult::getClobber(SI);
536 if (SI->getOrdering() != AtomicOrdering::Monotonic)
537 return MemDepResult::getClobber(SI);
538 }
539
540 // FIXME: this is overly conservative.
541 // While volatile access cannot be eliminated, they do not have to clobber
542 // non-aliasing locations, as normal accesses can for example be reordered
543 // with volatile accesses.
544 if (SI->isVolatile())
545 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
546 isOtherMemAccess(QueryInst))
547 return MemDepResult::getClobber(SI);
548
549 // If alias analysis can tell that this store is guaranteed to not modify
550 // the query pointer, ignore it. Use getModRefInfo to handle cases where
551 // the query pointer points to constant memory etc.
552 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
553 continue;
554
555 // Ok, this store might clobber the query pointer. Check to see if it is
556 // a must alias: in this case, we want to return this as a def.
557 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
558 MemoryLocation StoreLoc = MemoryLocation::get(SI);
559
560 // If we found a pointer, check if it could be the same as our pointer.
561 AliasResult R = AA.alias(StoreLoc, MemLoc);
562
563 if (R == NoAlias)
564 continue;
565 if (R == MustAlias)
566 return MemDepResult::getDef(Inst);
567 if (isInvariantLoad)
568 continue;
569 return MemDepResult::getClobber(Inst);
570 }
571
572 // If this is an allocation, and if we know that the accessed pointer is to
573 // the allocation, return Def. This means that there is no dependence and
574 // the access can be optimized based on that. For example, a load could
575 // turn into undef. Note that we can bypass the allocation itself when
576 // looking for a clobber in many cases; that's an alias property and is
577 // handled by BasicAA.
578 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
579 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
580 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
581 return MemDepResult::getDef(Inst);
582 }
583
584 if (isInvariantLoad)
585 continue;
586
587 // A release fence requires that all stores complete before it, but does
588 // not prevent the reordering of following loads or stores 'before' the
589 // fence. As a result, we look past it when finding a dependency for
590 // loads. DSE uses this to find preceding stores to delete and thus we
591 // can't bypass the fence if the query instruction is a store.
592 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
593 if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
594 continue;
595
596 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
597 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
598 // If necessary, perform additional analysis.
599 if (isModAndRefSet(MR))
600 MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
601 switch (clearMust(MR)) {
602 case ModRefInfo::NoModRef:
603 // If the call has no effect on the queried pointer, just ignore it.
604 continue;
605 case ModRefInfo::Mod:
606 return MemDepResult::getClobber(Inst);
607 case ModRefInfo::Ref:
608 // If the call is known to never store to the pointer, and if this is a
609 // load query, we can safely ignore it (scan past it).
610 if (isLoad)
611 continue;
612 LLVM_FALLTHROUGH;
613 default:
614 // Otherwise, there is a potential dependence. Return a clobber.
615 return MemDepResult::getClobber(Inst);
616 }
617 }
618
619 // No dependence found. If this is the entry block of the function, it is
620 // unknown, otherwise it is non-local.
621 if (BB != &BB->getParent()->getEntryBlock())
622 return MemDepResult::getNonLocal();
623 return MemDepResult::getNonFuncLocal();
624 }
625
getDependency(Instruction * QueryInst)626 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
627 Instruction *ScanPos = QueryInst;
628
629 // Check for a cached result
630 MemDepResult &LocalCache = LocalDeps[QueryInst];
631
632 // If the cached entry is non-dirty, just return it. Note that this depends
633 // on MemDepResult's default constructing to 'dirty'.
634 if (!LocalCache.isDirty())
635 return LocalCache;
636
637 // Otherwise, if we have a dirty entry, we know we can start the scan at that
638 // instruction, which may save us some work.
639 if (Instruction *Inst = LocalCache.getInst()) {
640 ScanPos = Inst;
641
642 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
643 }
644
645 BasicBlock *QueryParent = QueryInst->getParent();
646
647 // Do the scan.
648 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
649 // No dependence found. If this is the entry block of the function, it is
650 // unknown, otherwise it is non-local.
651 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
652 LocalCache = MemDepResult::getNonLocal();
653 else
654 LocalCache = MemDepResult::getNonFuncLocal();
655 } else {
656 MemoryLocation MemLoc;
657 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
658 if (MemLoc.Ptr) {
659 // If we can do a pointer scan, make it happen.
660 bool isLoad = !isModSet(MR);
661 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
662 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
663
664 LocalCache =
665 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
666 QueryParent, QueryInst, nullptr);
667 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
668 bool isReadOnly = AA.onlyReadsMemory(QueryCall);
669 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
670 ScanPos->getIterator(), QueryParent);
671 } else
672 // Non-memory instruction.
673 LocalCache = MemDepResult::getUnknown();
674 }
675
676 // Remember the result!
677 if (Instruction *I = LocalCache.getInst())
678 ReverseLocalDeps[I].insert(QueryInst);
679
680 return LocalCache;
681 }
682
683 #ifndef NDEBUG
684 /// This method is used when -debug is specified to verify that cache arrays
685 /// are properly kept sorted.
AssertSorted(MemoryDependenceResults::NonLocalDepInfo & Cache,int Count=-1)686 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
687 int Count = -1) {
688 if (Count == -1)
689 Count = Cache.size();
690 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
691 "Cache isn't sorted!");
692 }
693 #endif
694
695 const MemoryDependenceResults::NonLocalDepInfo &
getNonLocalCallDependency(CallBase * QueryCall)696 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
697 assert(getDependency(QueryCall).isNonLocal() &&
698 "getNonLocalCallDependency should only be used on calls with "
699 "non-local deps!");
700 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
701 NonLocalDepInfo &Cache = CacheP.first;
702
703 // This is the set of blocks that need to be recomputed. In the cached case,
704 // this can happen due to instructions being deleted etc. In the uncached
705 // case, this starts out as the set of predecessors we care about.
706 SmallVector<BasicBlock *, 32> DirtyBlocks;
707
708 if (!Cache.empty()) {
709 // Okay, we have a cache entry. If we know it is not dirty, just return it
710 // with no computation.
711 if (!CacheP.second) {
712 ++NumCacheNonLocal;
713 return Cache;
714 }
715
716 // If we already have a partially computed set of results, scan them to
717 // determine what is dirty, seeding our initial DirtyBlocks worklist.
718 for (auto &Entry : Cache)
719 if (Entry.getResult().isDirty())
720 DirtyBlocks.push_back(Entry.getBB());
721
722 // Sort the cache so that we can do fast binary search lookups below.
723 llvm::sort(Cache);
724
725 ++NumCacheDirtyNonLocal;
726 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
727 // << Cache.size() << " cached: " << *QueryInst;
728 } else {
729 // Seed DirtyBlocks with each of the preds of QueryInst's block.
730 BasicBlock *QueryBB = QueryCall->getParent();
731 for (BasicBlock *Pred : PredCache.get(QueryBB))
732 DirtyBlocks.push_back(Pred);
733 ++NumUncacheNonLocal;
734 }
735
736 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
737 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
738
739 SmallPtrSet<BasicBlock *, 32> Visited;
740
741 unsigned NumSortedEntries = Cache.size();
742 LLVM_DEBUG(AssertSorted(Cache));
743
744 // Iterate while we still have blocks to update.
745 while (!DirtyBlocks.empty()) {
746 BasicBlock *DirtyBB = DirtyBlocks.back();
747 DirtyBlocks.pop_back();
748
749 // Already processed this block?
750 if (!Visited.insert(DirtyBB).second)
751 continue;
752
753 // Do a binary search to see if we already have an entry for this block in
754 // the cache set. If so, find it.
755 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
756 NonLocalDepInfo::iterator Entry =
757 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
758 NonLocalDepEntry(DirtyBB));
759 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
760 --Entry;
761
762 NonLocalDepEntry *ExistingResult = nullptr;
763 if (Entry != Cache.begin() + NumSortedEntries &&
764 Entry->getBB() == DirtyBB) {
765 // If we already have an entry, and if it isn't already dirty, the block
766 // is done.
767 if (!Entry->getResult().isDirty())
768 continue;
769
770 // Otherwise, remember this slot so we can update the value.
771 ExistingResult = &*Entry;
772 }
773
774 // If the dirty entry has a pointer, start scanning from it so we don't have
775 // to rescan the entire block.
776 BasicBlock::iterator ScanPos = DirtyBB->end();
777 if (ExistingResult) {
778 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
779 ScanPos = Inst->getIterator();
780 // We're removing QueryInst's use of Inst.
781 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
782 QueryCall);
783 }
784 }
785
786 // Find out if this block has a local dependency for QueryInst.
787 MemDepResult Dep;
788
789 if (ScanPos != DirtyBB->begin()) {
790 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
791 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
792 // No dependence found. If this is the entry block of the function, it is
793 // a clobber, otherwise it is unknown.
794 Dep = MemDepResult::getNonLocal();
795 } else {
796 Dep = MemDepResult::getNonFuncLocal();
797 }
798
799 // If we had a dirty entry for the block, update it. Otherwise, just add
800 // a new entry.
801 if (ExistingResult)
802 ExistingResult->setResult(Dep);
803 else
804 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
805
806 // If the block has a dependency (i.e. it isn't completely transparent to
807 // the value), remember the association!
808 if (!Dep.isNonLocal()) {
809 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
810 // update this when we remove instructions.
811 if (Instruction *Inst = Dep.getInst())
812 ReverseNonLocalDeps[Inst].insert(QueryCall);
813 } else {
814
815 // If the block *is* completely transparent to the load, we need to check
816 // the predecessors of this block. Add them to our worklist.
817 for (BasicBlock *Pred : PredCache.get(DirtyBB))
818 DirtyBlocks.push_back(Pred);
819 }
820 }
821
822 return Cache;
823 }
824
getNonLocalPointerDependency(Instruction * QueryInst,SmallVectorImpl<NonLocalDepResult> & Result)825 void MemoryDependenceResults::getNonLocalPointerDependency(
826 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
827 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
828 bool isLoad = isa<LoadInst>(QueryInst);
829 BasicBlock *FromBB = QueryInst->getParent();
830 assert(FromBB);
831
832 assert(Loc.Ptr->getType()->isPointerTy() &&
833 "Can't get pointer deps of a non-pointer!");
834 Result.clear();
835 {
836 // Check if there is cached Def with invariant.group.
837 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
838 if (NonLocalDefIt != NonLocalDefsCache.end()) {
839 Result.push_back(NonLocalDefIt->second);
840 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
841 .erase(QueryInst);
842 NonLocalDefsCache.erase(NonLocalDefIt);
843 return;
844 }
845 }
846 // This routine does not expect to deal with volatile instructions.
847 // Doing so would require piping through the QueryInst all the way through.
848 // TODO: volatiles can't be elided, but they can be reordered with other
849 // non-volatile accesses.
850
851 // We currently give up on any instruction which is ordered, but we do handle
852 // atomic instructions which are unordered.
853 // TODO: Handle ordered instructions
854 auto isOrdered = [](Instruction *Inst) {
855 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
856 return !LI->isUnordered();
857 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
858 return !SI->isUnordered();
859 }
860 return false;
861 };
862 if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
863 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
864 const_cast<Value *>(Loc.Ptr)));
865 return;
866 }
867 const DataLayout &DL = FromBB->getModule()->getDataLayout();
868 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
869
870 // This is the set of blocks we've inspected, and the pointer we consider in
871 // each block. Because of critical edges, we currently bail out if querying
872 // a block with multiple different pointers. This can happen during PHI
873 // translation.
874 DenseMap<BasicBlock *, Value *> Visited;
875 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
876 Result, Visited, true))
877 return;
878 Result.clear();
879 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
880 const_cast<Value *>(Loc.Ptr)));
881 }
882
883 /// Compute the memdep value for BB with Pointer/PointeeSize using either
884 /// cached information in Cache or by doing a lookup (which may use dirty cache
885 /// info if available).
886 ///
887 /// If we do a lookup, add the result to the cache.
GetNonLocalInfoForBlock(Instruction * QueryInst,const MemoryLocation & Loc,bool isLoad,BasicBlock * BB,NonLocalDepInfo * Cache,unsigned NumSortedEntries)888 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
889 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
890 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
891
892 bool isInvariantLoad = false;
893
894 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
895 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
896
897 // Do a binary search to see if we already have an entry for this block in
898 // the cache set. If so, find it.
899 NonLocalDepInfo::iterator Entry = std::upper_bound(
900 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
901 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
902 --Entry;
903
904 NonLocalDepEntry *ExistingResult = nullptr;
905 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
906 ExistingResult = &*Entry;
907
908 // Use cached result for invariant load only if there is no dependency for non
909 // invariant load. In this case invariant load can not have any dependency as
910 // well.
911 if (ExistingResult && isInvariantLoad &&
912 !ExistingResult->getResult().isNonFuncLocal())
913 ExistingResult = nullptr;
914
915 // If we have a cached entry, and it is non-dirty, use it as the value for
916 // this dependency.
917 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
918 ++NumCacheNonLocalPtr;
919 return ExistingResult->getResult();
920 }
921
922 // Otherwise, we have to scan for the value. If we have a dirty cache
923 // entry, start scanning from its position, otherwise we scan from the end
924 // of the block.
925 BasicBlock::iterator ScanPos = BB->end();
926 if (ExistingResult && ExistingResult->getResult().getInst()) {
927 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
928 "Instruction invalidated?");
929 ++NumCacheDirtyNonLocalPtr;
930 ScanPos = ExistingResult->getResult().getInst()->getIterator();
931
932 // Eliminating the dirty entry from 'Cache', so update the reverse info.
933 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
934 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
935 } else {
936 ++NumUncacheNonLocalPtr;
937 }
938
939 // Scan the block for the dependency.
940 MemDepResult Dep =
941 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
942
943 // Don't cache results for invariant load.
944 if (isInvariantLoad)
945 return Dep;
946
947 // If we had a dirty entry for the block, update it. Otherwise, just add
948 // a new entry.
949 if (ExistingResult)
950 ExistingResult->setResult(Dep);
951 else
952 Cache->push_back(NonLocalDepEntry(BB, Dep));
953
954 // If the block has a dependency (i.e. it isn't completely transparent to
955 // the value), remember the reverse association because we just added it
956 // to Cache!
957 if (!Dep.isDef() && !Dep.isClobber())
958 return Dep;
959
960 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
961 // update MemDep when we remove instructions.
962 Instruction *Inst = Dep.getInst();
963 assert(Inst && "Didn't depend on anything?");
964 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
965 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
966 return Dep;
967 }
968
969 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
970 /// array that are already properly ordered.
971 ///
972 /// This is optimized for the case when only a few entries are added.
973 static void
SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo & Cache,unsigned NumSortedEntries)974 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
975 unsigned NumSortedEntries) {
976 switch (Cache.size() - NumSortedEntries) {
977 case 0:
978 // done, no new entries.
979 break;
980 case 2: {
981 // Two new entries, insert the last one into place.
982 NonLocalDepEntry Val = Cache.back();
983 Cache.pop_back();
984 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
985 std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
986 Cache.insert(Entry, Val);
987 LLVM_FALLTHROUGH;
988 }
989 case 1:
990 // One new entry, Just insert the new value at the appropriate position.
991 if (Cache.size() != 1) {
992 NonLocalDepEntry Val = Cache.back();
993 Cache.pop_back();
994 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
995 std::upper_bound(Cache.begin(), Cache.end(), Val);
996 Cache.insert(Entry, Val);
997 }
998 break;
999 default:
1000 // Added many values, do a full scale sort.
1001 llvm::sort(Cache);
1002 break;
1003 }
1004 }
1005
1006 /// Perform a dependency query based on pointer/pointeesize starting at the end
1007 /// of StartBB.
1008 ///
1009 /// Add any clobber/def results to the results vector and keep track of which
1010 /// blocks are visited in 'Visited'.
1011 ///
1012 /// This has special behavior for the first block queries (when SkipFirstBlock
1013 /// is true). In this special case, it ignores the contents of the specified
1014 /// block and starts returning dependence info for its predecessors.
1015 ///
1016 /// This function returns true on success, or false to indicate that it could
1017 /// not compute dependence information for some reason. This should be treated
1018 /// as a clobber dependence on the first instruction in the predecessor block.
getNonLocalPointerDepFromBB(Instruction * QueryInst,const PHITransAddr & Pointer,const MemoryLocation & Loc,bool isLoad,BasicBlock * StartBB,SmallVectorImpl<NonLocalDepResult> & Result,DenseMap<BasicBlock *,Value * > & Visited,bool SkipFirstBlock,bool IsIncomplete)1019 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1020 Instruction *QueryInst, const PHITransAddr &Pointer,
1021 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1022 SmallVectorImpl<NonLocalDepResult> &Result,
1023 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1024 bool IsIncomplete) {
1025 // Look up the cached info for Pointer.
1026 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1027
1028 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1029 // CacheKey, this value will be inserted as the associated value. Otherwise,
1030 // it'll be ignored, and we'll have to check to see if the cached size and
1031 // aa tags are consistent with the current query.
1032 NonLocalPointerInfo InitialNLPI;
1033 InitialNLPI.Size = Loc.Size;
1034 InitialNLPI.AATags = Loc.AATags;
1035
1036 bool isInvariantLoad = false;
1037 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1038 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1039
1040 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1041 // already have one.
1042 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1043 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1044 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1045
1046 // If we already have a cache entry for this CacheKey, we may need to do some
1047 // work to reconcile the cache entry and the current query.
1048 // Invariant loads don't participate in caching. Thus no need to reconcile.
1049 if (!isInvariantLoad && !Pair.second) {
1050 if (CacheInfo->Size != Loc.Size) {
1051 bool ThrowOutEverything;
1052 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1053 // FIXME: We may be able to do better in the face of results with mixed
1054 // precision. We don't appear to get them in practice, though, so just
1055 // be conservative.
1056 ThrowOutEverything =
1057 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1058 CacheInfo->Size.getValue() < Loc.Size.getValue();
1059 } else {
1060 // For our purposes, unknown size > all others.
1061 ThrowOutEverything = !Loc.Size.hasValue();
1062 }
1063
1064 if (ThrowOutEverything) {
1065 // The query's Size is greater than the cached one. Throw out the
1066 // cached data and proceed with the query at the greater size.
1067 CacheInfo->Pair = BBSkipFirstBlockPair();
1068 CacheInfo->Size = Loc.Size;
1069 for (auto &Entry : CacheInfo->NonLocalDeps)
1070 if (Instruction *Inst = Entry.getResult().getInst())
1071 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1072 CacheInfo->NonLocalDeps.clear();
1073 // The cache is cleared (in the above line) so we will have lost
1074 // information about blocks we have already visited. We therefore must
1075 // assume that the cache information is incomplete.
1076 IsIncomplete = true;
1077 } else {
1078 // This query's Size is less than the cached one. Conservatively restart
1079 // the query using the greater size.
1080 return getNonLocalPointerDepFromBB(
1081 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1082 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1083 }
1084 }
1085
1086 // If the query's AATags are inconsistent with the cached one,
1087 // conservatively throw out the cached data and restart the query with
1088 // no tag if needed.
1089 if (CacheInfo->AATags != Loc.AATags) {
1090 if (CacheInfo->AATags) {
1091 CacheInfo->Pair = BBSkipFirstBlockPair();
1092 CacheInfo->AATags = AAMDNodes();
1093 for (auto &Entry : CacheInfo->NonLocalDeps)
1094 if (Instruction *Inst = Entry.getResult().getInst())
1095 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1096 CacheInfo->NonLocalDeps.clear();
1097 // The cache is cleared (in the above line) so we will have lost
1098 // information about blocks we have already visited. We therefore must
1099 // assume that the cache information is incomplete.
1100 IsIncomplete = true;
1101 }
1102 if (Loc.AATags)
1103 return getNonLocalPointerDepFromBB(
1104 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1105 Visited, SkipFirstBlock, IsIncomplete);
1106 }
1107 }
1108
1109 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1110
1111 // If we have valid cached information for exactly the block we are
1112 // investigating, just return it with no recomputation.
1113 // Don't use cached information for invariant loads since it is valid for
1114 // non-invariant loads only.
1115 //
1116 // Don't use cached information for invariant loads since it is valid for
1117 // non-invariant loads only.
1118 if (!IsIncomplete && !isInvariantLoad &&
1119 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1120 // We have a fully cached result for this query then we can just return the
1121 // cached results and populate the visited set. However, we have to verify
1122 // that we don't already have conflicting results for these blocks. Check
1123 // to ensure that if a block in the results set is in the visited set that
1124 // it was for the same pointer query.
1125 if (!Visited.empty()) {
1126 for (auto &Entry : *Cache) {
1127 DenseMap<BasicBlock *, Value *>::iterator VI =
1128 Visited.find(Entry.getBB());
1129 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1130 continue;
1131
1132 // We have a pointer mismatch in a block. Just return false, saying
1133 // that something was clobbered in this result. We could also do a
1134 // non-fully cached query, but there is little point in doing this.
1135 return false;
1136 }
1137 }
1138
1139 Value *Addr = Pointer.getAddr();
1140 for (auto &Entry : *Cache) {
1141 Visited.insert(std::make_pair(Entry.getBB(), Addr));
1142 if (Entry.getResult().isNonLocal()) {
1143 continue;
1144 }
1145
1146 if (DT.isReachableFromEntry(Entry.getBB())) {
1147 Result.push_back(
1148 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1149 }
1150 }
1151 ++NumCacheCompleteNonLocalPtr;
1152 return true;
1153 }
1154
1155 // Otherwise, either this is a new block, a block with an invalid cache
1156 // pointer or one that we're about to invalidate by putting more info into
1157 // it than its valid cache info. If empty and not explicitly indicated as
1158 // incomplete, the result will be valid cache info, otherwise it isn't.
1159 //
1160 // Invariant loads don't affect cache in any way thus no need to update
1161 // CacheInfo as well.
1162 if (!isInvariantLoad) {
1163 if (!IsIncomplete && Cache->empty())
1164 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1165 else
1166 CacheInfo->Pair = BBSkipFirstBlockPair();
1167 }
1168
1169 SmallVector<BasicBlock *, 32> Worklist;
1170 Worklist.push_back(StartBB);
1171
1172 // PredList used inside loop.
1173 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1174
1175 // Keep track of the entries that we know are sorted. Previously cached
1176 // entries will all be sorted. The entries we add we only sort on demand (we
1177 // don't insert every element into its sorted position). We know that we
1178 // won't get any reuse from currently inserted values, because we don't
1179 // revisit blocks after we insert info for them.
1180 unsigned NumSortedEntries = Cache->size();
1181 unsigned WorklistEntries = BlockNumberLimit;
1182 bool GotWorklistLimit = false;
1183 LLVM_DEBUG(AssertSorted(*Cache));
1184
1185 while (!Worklist.empty()) {
1186 BasicBlock *BB = Worklist.pop_back_val();
1187
1188 // If we do process a large number of blocks it becomes very expensive and
1189 // likely it isn't worth worrying about
1190 if (Result.size() > NumResultsLimit) {
1191 Worklist.clear();
1192 // Sort it now (if needed) so that recursive invocations of
1193 // getNonLocalPointerDepFromBB and other routines that could reuse the
1194 // cache value will only see properly sorted cache arrays.
1195 if (Cache && NumSortedEntries != Cache->size()) {
1196 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1197 }
1198 // Since we bail out, the "Cache" set won't contain all of the
1199 // results for the query. This is ok (we can still use it to accelerate
1200 // specific block queries) but we can't do the fastpath "return all
1201 // results from the set". Clear out the indicator for this.
1202 CacheInfo->Pair = BBSkipFirstBlockPair();
1203 return false;
1204 }
1205
1206 // Skip the first block if we have it.
1207 if (!SkipFirstBlock) {
1208 // Analyze the dependency of *Pointer in FromBB. See if we already have
1209 // been here.
1210 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1211
1212 // Get the dependency info for Pointer in BB. If we have cached
1213 // information, we will use it, otherwise we compute it.
1214 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1215 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1216 Cache, NumSortedEntries);
1217
1218 // If we got a Def or Clobber, add this to the list of results.
1219 if (!Dep.isNonLocal()) {
1220 if (DT.isReachableFromEntry(BB)) {
1221 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1222 continue;
1223 }
1224 }
1225 }
1226
1227 // If 'Pointer' is an instruction defined in this block, then we need to do
1228 // phi translation to change it into a value live in the predecessor block.
1229 // If not, we just add the predecessors to the worklist and scan them with
1230 // the same Pointer.
1231 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1232 SkipFirstBlock = false;
1233 SmallVector<BasicBlock *, 16> NewBlocks;
1234 for (BasicBlock *Pred : PredCache.get(BB)) {
1235 // Verify that we haven't looked at this block yet.
1236 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1237 Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1238 if (InsertRes.second) {
1239 // First time we've looked at *PI.
1240 NewBlocks.push_back(Pred);
1241 continue;
1242 }
1243
1244 // If we have seen this block before, but it was with a different
1245 // pointer then we have a phi translation failure and we have to treat
1246 // this as a clobber.
1247 if (InsertRes.first->second != Pointer.getAddr()) {
1248 // Make sure to clean up the Visited map before continuing on to
1249 // PredTranslationFailure.
1250 for (unsigned i = 0; i < NewBlocks.size(); i++)
1251 Visited.erase(NewBlocks[i]);
1252 goto PredTranslationFailure;
1253 }
1254 }
1255 if (NewBlocks.size() > WorklistEntries) {
1256 // Make sure to clean up the Visited map before continuing on to
1257 // PredTranslationFailure.
1258 for (unsigned i = 0; i < NewBlocks.size(); i++)
1259 Visited.erase(NewBlocks[i]);
1260 GotWorklistLimit = true;
1261 goto PredTranslationFailure;
1262 }
1263 WorklistEntries -= NewBlocks.size();
1264 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1265 continue;
1266 }
1267
1268 // We do need to do phi translation, if we know ahead of time we can't phi
1269 // translate this value, don't even try.
1270 if (!Pointer.IsPotentiallyPHITranslatable())
1271 goto PredTranslationFailure;
1272
1273 // We may have added values to the cache list before this PHI translation.
1274 // If so, we haven't done anything to ensure that the cache remains sorted.
1275 // Sort it now (if needed) so that recursive invocations of
1276 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1277 // value will only see properly sorted cache arrays.
1278 if (Cache && NumSortedEntries != Cache->size()) {
1279 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1280 NumSortedEntries = Cache->size();
1281 }
1282 Cache = nullptr;
1283
1284 PredList.clear();
1285 for (BasicBlock *Pred : PredCache.get(BB)) {
1286 PredList.push_back(std::make_pair(Pred, Pointer));
1287
1288 // Get the PHI translated pointer in this predecessor. This can fail if
1289 // not translatable, in which case the getAddr() returns null.
1290 PHITransAddr &PredPointer = PredList.back().second;
1291 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1292 Value *PredPtrVal = PredPointer.getAddr();
1293
1294 // Check to see if we have already visited this pred block with another
1295 // pointer. If so, we can't do this lookup. This failure can occur
1296 // with PHI translation when a critical edge exists and the PHI node in
1297 // the successor translates to a pointer value different than the
1298 // pointer the block was first analyzed with.
1299 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1300 Visited.insert(std::make_pair(Pred, PredPtrVal));
1301
1302 if (!InsertRes.second) {
1303 // We found the pred; take it off the list of preds to visit.
1304 PredList.pop_back();
1305
1306 // If the predecessor was visited with PredPtr, then we already did
1307 // the analysis and can ignore it.
1308 if (InsertRes.first->second == PredPtrVal)
1309 continue;
1310
1311 // Otherwise, the block was previously analyzed with a different
1312 // pointer. We can't represent the result of this case, so we just
1313 // treat this as a phi translation failure.
1314
1315 // Make sure to clean up the Visited map before continuing on to
1316 // PredTranslationFailure.
1317 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1318 Visited.erase(PredList[i].first);
1319
1320 goto PredTranslationFailure;
1321 }
1322 }
1323
1324 // Actually process results here; this need to be a separate loop to avoid
1325 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1326 // any results for. (getNonLocalPointerDepFromBB will modify our
1327 // datastructures in ways the code after the PredTranslationFailure label
1328 // doesn't expect.)
1329 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1330 BasicBlock *Pred = PredList[i].first;
1331 PHITransAddr &PredPointer = PredList[i].second;
1332 Value *PredPtrVal = PredPointer.getAddr();
1333
1334 bool CanTranslate = true;
1335 // If PHI translation was unable to find an available pointer in this
1336 // predecessor, then we have to assume that the pointer is clobbered in
1337 // that predecessor. We can still do PRE of the load, which would insert
1338 // a computation of the pointer in this predecessor.
1339 if (!PredPtrVal)
1340 CanTranslate = false;
1341
1342 // FIXME: it is entirely possible that PHI translating will end up with
1343 // the same value. Consider PHI translating something like:
1344 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1345 // to recurse here, pedantically speaking.
1346
1347 // If getNonLocalPointerDepFromBB fails here, that means the cached
1348 // result conflicted with the Visited list; we have to conservatively
1349 // assume it is unknown, but this also does not block PRE of the load.
1350 if (!CanTranslate ||
1351 !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1352 Loc.getWithNewPtr(PredPtrVal), isLoad,
1353 Pred, Result, Visited)) {
1354 // Add the entry to the Result list.
1355 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1356 Result.push_back(Entry);
1357
1358 // Since we had a phi translation failure, the cache for CacheKey won't
1359 // include all of the entries that we need to immediately satisfy future
1360 // queries. Mark this in NonLocalPointerDeps by setting the
1361 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1362 // cached value to do more work but not miss the phi trans failure.
1363 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1364 NLPI.Pair = BBSkipFirstBlockPair();
1365 continue;
1366 }
1367 }
1368
1369 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1370 CacheInfo = &NonLocalPointerDeps[CacheKey];
1371 Cache = &CacheInfo->NonLocalDeps;
1372 NumSortedEntries = Cache->size();
1373
1374 // Since we did phi translation, the "Cache" set won't contain all of the
1375 // results for the query. This is ok (we can still use it to accelerate
1376 // specific block queries) but we can't do the fastpath "return all
1377 // results from the set" Clear out the indicator for this.
1378 CacheInfo->Pair = BBSkipFirstBlockPair();
1379 SkipFirstBlock = false;
1380 continue;
1381
1382 PredTranslationFailure:
1383 // The following code is "failure"; we can't produce a sane translation
1384 // for the given block. It assumes that we haven't modified any of
1385 // our datastructures while processing the current block.
1386
1387 if (!Cache) {
1388 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1389 CacheInfo = &NonLocalPointerDeps[CacheKey];
1390 Cache = &CacheInfo->NonLocalDeps;
1391 NumSortedEntries = Cache->size();
1392 }
1393
1394 // Since we failed phi translation, the "Cache" set won't contain all of the
1395 // results for the query. This is ok (we can still use it to accelerate
1396 // specific block queries) but we can't do the fastpath "return all
1397 // results from the set". Clear out the indicator for this.
1398 CacheInfo->Pair = BBSkipFirstBlockPair();
1399
1400 // If *nothing* works, mark the pointer as unknown.
1401 //
1402 // If this is the magic first block, return this as a clobber of the whole
1403 // incoming value. Since we can't phi translate to one of the predecessors,
1404 // we have to bail out.
1405 if (SkipFirstBlock)
1406 return false;
1407
1408 // Results of invariant loads are not cached thus no need to update cached
1409 // information.
1410 if (!isInvariantLoad) {
1411 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1412 if (I.getBB() != BB)
1413 continue;
1414
1415 assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1416 !DT.isReachableFromEntry(BB)) &&
1417 "Should only be here with transparent block");
1418
1419 I.setResult(MemDepResult::getUnknown());
1420
1421
1422 break;
1423 }
1424 }
1425 (void)GotWorklistLimit;
1426 // Go ahead and report unknown dependence.
1427 Result.push_back(
1428 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1429 }
1430
1431 // Okay, we're done now. If we added new values to the cache, re-sort it.
1432 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1433 LLVM_DEBUG(AssertSorted(*Cache));
1434 return true;
1435 }
1436
1437 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P)1438 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1439 ValueIsLoadPair P) {
1440
1441 // Most of the time this cache is empty.
1442 if (!NonLocalDefsCache.empty()) {
1443 auto it = NonLocalDefsCache.find(P.getPointer());
1444 if (it != NonLocalDefsCache.end()) {
1445 RemoveFromReverseMap(ReverseNonLocalDefsCache,
1446 it->second.getResult().getInst(), P.getPointer());
1447 NonLocalDefsCache.erase(it);
1448 }
1449
1450 if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1451 auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1452 if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1453 for (const auto *entry : toRemoveIt->second)
1454 NonLocalDefsCache.erase(entry);
1455 ReverseNonLocalDefsCache.erase(toRemoveIt);
1456 }
1457 }
1458 }
1459
1460 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1461 if (It == NonLocalPointerDeps.end())
1462 return;
1463
1464 // Remove all of the entries in the BB->val map. This involves removing
1465 // instructions from the reverse map.
1466 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1467
1468 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1469 Instruction *Target = PInfo[i].getResult().getInst();
1470 if (!Target)
1471 continue; // Ignore non-local dep results.
1472 assert(Target->getParent() == PInfo[i].getBB());
1473
1474 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1475 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1476 }
1477
1478 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1479 NonLocalPointerDeps.erase(It);
1480 }
1481
invalidateCachedPointerInfo(Value * Ptr)1482 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1483 // If Ptr isn't really a pointer, just ignore it.
1484 if (!Ptr->getType()->isPointerTy())
1485 return;
1486 // Flush store info for the pointer.
1487 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1488 // Flush load info for the pointer.
1489 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1490 // Invalidate phis that use the pointer.
1491 PV.invalidateValue(Ptr);
1492 }
1493
invalidateCachedPredecessors()1494 void MemoryDependenceResults::invalidateCachedPredecessors() {
1495 PredCache.clear();
1496 }
1497
removeInstruction(Instruction * RemInst)1498 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1499 // Walk through the Non-local dependencies, removing this one as the value
1500 // for any cached queries.
1501 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1502 if (NLDI != NonLocalDeps.end()) {
1503 NonLocalDepInfo &BlockMap = NLDI->second.first;
1504 for (auto &Entry : BlockMap)
1505 if (Instruction *Inst = Entry.getResult().getInst())
1506 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1507 NonLocalDeps.erase(NLDI);
1508 }
1509
1510 // If we have a cached local dependence query for this instruction, remove it.
1511 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1512 if (LocalDepEntry != LocalDeps.end()) {
1513 // Remove us from DepInst's reverse set now that the local dep info is gone.
1514 if (Instruction *Inst = LocalDepEntry->second.getInst())
1515 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1516
1517 // Remove this local dependency info.
1518 LocalDeps.erase(LocalDepEntry);
1519 }
1520
1521 // If we have any cached dependencies on this instruction, remove
1522 // them.
1523
1524 // If the instruction is a pointer, remove it from both the load info and the
1525 // store info.
1526 if (RemInst->getType()->isPointerTy()) {
1527 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1528 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1529 } else {
1530 // Otherwise, if the instructions is in the map directly, it must be a load.
1531 // Remove it.
1532 auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1533 if (toRemoveIt != NonLocalDefsCache.end()) {
1534 assert(isa<LoadInst>(RemInst) &&
1535 "only load instructions should be added directly");
1536 const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1537 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1538 NonLocalDefsCache.erase(toRemoveIt);
1539 }
1540 }
1541
1542 // Loop over all of the things that depend on the instruction we're removing.
1543 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1544
1545 // If we find RemInst as a clobber or Def in any of the maps for other values,
1546 // we need to replace its entry with a dirty version of the instruction after
1547 // it. If RemInst is a terminator, we use a null dirty value.
1548 //
1549 // Using a dirty version of the instruction after RemInst saves having to scan
1550 // the entire block to get to this point.
1551 MemDepResult NewDirtyVal;
1552 if (!RemInst->isTerminator())
1553 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1554
1555 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1556 if (ReverseDepIt != ReverseLocalDeps.end()) {
1557 // RemInst can't be the terminator if it has local stuff depending on it.
1558 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1559 "Nothing can locally depend on a terminator");
1560
1561 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1562 assert(InstDependingOnRemInst != RemInst &&
1563 "Already removed our local dep info");
1564
1565 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1566
1567 // Make sure to remember that new things depend on NewDepInst.
1568 assert(NewDirtyVal.getInst() &&
1569 "There is no way something else can have "
1570 "a local dep on this if it is a terminator!");
1571 ReverseDepsToAdd.push_back(
1572 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1573 }
1574
1575 ReverseLocalDeps.erase(ReverseDepIt);
1576
1577 // Add new reverse deps after scanning the set, to avoid invalidating the
1578 // 'ReverseDeps' reference.
1579 while (!ReverseDepsToAdd.empty()) {
1580 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1581 ReverseDepsToAdd.back().second);
1582 ReverseDepsToAdd.pop_back();
1583 }
1584 }
1585
1586 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1587 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1588 for (Instruction *I : ReverseDepIt->second) {
1589 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1590
1591 PerInstNLInfo &INLD = NonLocalDeps[I];
1592 // The information is now dirty!
1593 INLD.second = true;
1594
1595 for (auto &Entry : INLD.first) {
1596 if (Entry.getResult().getInst() != RemInst)
1597 continue;
1598
1599 // Convert to a dirty entry for the subsequent instruction.
1600 Entry.setResult(NewDirtyVal);
1601
1602 if (Instruction *NextI = NewDirtyVal.getInst())
1603 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1604 }
1605 }
1606
1607 ReverseNonLocalDeps.erase(ReverseDepIt);
1608
1609 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1610 while (!ReverseDepsToAdd.empty()) {
1611 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1612 ReverseDepsToAdd.back().second);
1613 ReverseDepsToAdd.pop_back();
1614 }
1615 }
1616
1617 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1618 // value in the NonLocalPointerDeps info.
1619 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1620 ReverseNonLocalPtrDeps.find(RemInst);
1621 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1622 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1623 ReversePtrDepsToAdd;
1624
1625 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1626 assert(P.getPointer() != RemInst &&
1627 "Already removed NonLocalPointerDeps info for RemInst");
1628
1629 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1630
1631 // The cache is not valid for any specific block anymore.
1632 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1633
1634 // Update any entries for RemInst to use the instruction after it.
1635 for (auto &Entry : NLPDI) {
1636 if (Entry.getResult().getInst() != RemInst)
1637 continue;
1638
1639 // Convert to a dirty entry for the subsequent instruction.
1640 Entry.setResult(NewDirtyVal);
1641
1642 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1643 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1644 }
1645
1646 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1647 // subsequent value may invalidate the sortedness.
1648 llvm::sort(NLPDI);
1649 }
1650
1651 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1652
1653 while (!ReversePtrDepsToAdd.empty()) {
1654 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1655 ReversePtrDepsToAdd.back().second);
1656 ReversePtrDepsToAdd.pop_back();
1657 }
1658 }
1659
1660 // Invalidate phis that use the removed instruction.
1661 PV.invalidateValue(RemInst);
1662
1663 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1664 LLVM_DEBUG(verifyRemoved(RemInst));
1665 }
1666
1667 /// Verify that the specified instruction does not occur in our internal data
1668 /// structures.
1669 ///
1670 /// This function verifies by asserting in debug builds.
verifyRemoved(Instruction * D) const1671 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1672 #ifndef NDEBUG
1673 for (const auto &DepKV : LocalDeps) {
1674 assert(DepKV.first != D && "Inst occurs in data structures");
1675 assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1676 }
1677
1678 for (const auto &DepKV : NonLocalPointerDeps) {
1679 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1680 for (const auto &Entry : DepKV.second.NonLocalDeps)
1681 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1682 }
1683
1684 for (const auto &DepKV : NonLocalDeps) {
1685 assert(DepKV.first != D && "Inst occurs in data structures");
1686 const PerInstNLInfo &INLD = DepKV.second;
1687 for (const auto &Entry : INLD.first)
1688 assert(Entry.getResult().getInst() != D &&
1689 "Inst occurs in data structures");
1690 }
1691
1692 for (const auto &DepKV : ReverseLocalDeps) {
1693 assert(DepKV.first != D && "Inst occurs in data structures");
1694 for (Instruction *Inst : DepKV.second)
1695 assert(Inst != D && "Inst occurs in data structures");
1696 }
1697
1698 for (const auto &DepKV : ReverseNonLocalDeps) {
1699 assert(DepKV.first != D && "Inst occurs in data structures");
1700 for (Instruction *Inst : DepKV.second)
1701 assert(Inst != D && "Inst occurs in data structures");
1702 }
1703
1704 for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1705 assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1706
1707 for (ValueIsLoadPair P : DepKV.second)
1708 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1709 "Inst occurs in ReverseNonLocalPtrDeps map");
1710 }
1711 #endif
1712 }
1713
1714 AnalysisKey MemoryDependenceAnalysis::Key;
1715
MemoryDependenceAnalysis()1716 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1717 : DefaultBlockScanLimit(BlockScanLimit) {}
1718
1719 MemoryDependenceResults
run(Function & F,FunctionAnalysisManager & AM)1720 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1721 auto &AA = AM.getResult<AAManager>(F);
1722 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1723 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1724 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1725 auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1726 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1727 }
1728
1729 char MemoryDependenceWrapperPass::ID = 0;
1730
1731 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1732 "Memory Dependence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1733 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1734 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1735 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1736 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1737 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1738 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1739 "Memory Dependence Analysis", false, true)
1740
1741 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1742 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1743 }
1744
1745 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1746
releaseMemory()1747 void MemoryDependenceWrapperPass::releaseMemory() {
1748 MemDep.reset();
1749 }
1750
getAnalysisUsage(AnalysisUsage & AU) const1751 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1752 AU.setPreservesAll();
1753 AU.addRequired<AssumptionCacheTracker>();
1754 AU.addRequired<DominatorTreeWrapperPass>();
1755 AU.addRequired<PhiValuesWrapperPass>();
1756 AU.addRequiredTransitive<AAResultsWrapperPass>();
1757 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1758 }
1759
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)1760 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1761 FunctionAnalysisManager::Invalidator &Inv) {
1762 // Check whether our analysis is preserved.
1763 auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1764 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1765 // If not, give up now.
1766 return true;
1767
1768 // Check whether the analyses we depend on became invalid for any reason.
1769 if (Inv.invalidate<AAManager>(F, PA) ||
1770 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1771 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1772 Inv.invalidate<PhiValuesAnalysis>(F, PA))
1773 return true;
1774
1775 // Otherwise this analysis result remains valid.
1776 return false;
1777 }
1778
getDefaultBlockScanLimit() const1779 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1780 return DefaultBlockScanLimit;
1781 }
1782
runOnFunction(Function & F)1783 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1784 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1785 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1786 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1787 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1788 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1789 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1790 return false;
1791 }
1792