1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   SDValue ExpandStrictFPOp(SDNode *Node);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169 public:
VectorLegalizer(SelectionDAG & dag)170   VectorLegalizer(SelectionDAG& dag) :
171       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 
173   /// Begin legalizer the vector operations in the DAG.
174   bool Run();
175 };
176 
177 } // end anonymous namespace
178 
Run()179 bool VectorLegalizer::Run() {
180   // Before we start legalizing vector nodes, check if there are any vectors.
181   bool HasVectors = false;
182   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184     // Check if the values of the nodes contain vectors. We don't need to check
185     // the operands because we are going to check their values at some point.
186     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
TranslateLegalizeResults(SDValue Op,SDNode * Result)221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222   assert(Op->getNumValues() == Result->getNumValues() &&
223          "Unexpected number of results");
224   // Generic legalization: just pass the operand through.
225   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227   return SDValue(Result, Op.getResNo());
228 }
229 
230 SDValue
RecursivelyLegalizeResults(SDValue Op,MutableArrayRef<SDValue> Results)231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232                                             MutableArrayRef<SDValue> Results) {
233   assert(Results.size() == Op->getNumValues() &&
234          "Unexpected number of results");
235   // Make sure that the generated code is itself legal.
236   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237     Results[i] = LegalizeOp(Results[i]);
238     AddLegalizedOperand(Op.getValue(i), Results[i]);
239   }
240 
241   return Results[Op.getResNo()];
242 }
243 
LegalizeOp(SDValue Op)244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245   // Note that LegalizeOp may be reentered even from single-use nodes, which
246   // means that we always must cache transformed nodes.
247   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248   if (I != LegalizedNodes.end()) return I->second;
249 
250   // Legalize the operands
251   SmallVector<SDValue, 8> Ops;
252   for (const SDValue &Oper : Op->op_values())
253     Ops.push_back(LegalizeOp(Oper));
254 
255   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256 
257   if (Op.getOpcode() == ISD::LOAD) {
258     LoadSDNode *LD = cast<LoadSDNode>(Node);
259     ISD::LoadExtType ExtType = LD->getExtensionType();
260     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
261       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
262                  Node->dump(&DAG));
263       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
264                                    LD->getMemoryVT())) {
265       default: llvm_unreachable("This action is not supported yet!");
266       case TargetLowering::Legal:
267         return TranslateLegalizeResults(Op, Node);
268       case TargetLowering::Custom: {
269         SmallVector<SDValue, 2> ResultVals;
270         if (LowerOperationWrapper(Node, ResultVals)) {
271           if (ResultVals.empty())
272             return TranslateLegalizeResults(Op, Node);
273 
274           Changed = true;
275           return RecursivelyLegalizeResults(Op, ResultVals);
276         }
277         LLVM_FALLTHROUGH;
278       }
279       case TargetLowering::Expand: {
280         Changed = true;
281         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
282         AddLegalizedOperand(Op.getValue(0), Tmp.first);
283         AddLegalizedOperand(Op.getValue(1), Tmp.second);
284         return Op.getResNo() ? Tmp.first : Tmp.second;
285       }
286       }
287     }
288   } else if (Op.getOpcode() == ISD::STORE) {
289     StoreSDNode *ST = cast<StoreSDNode>(Node);
290     EVT StVT = ST->getMemoryVT();
291     MVT ValVT = ST->getValue().getSimpleValueType();
292     if (StVT.isVector() && ST->isTruncatingStore()) {
293       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
294                  Node->dump(&DAG));
295       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
296       default: llvm_unreachable("This action is not supported yet!");
297       case TargetLowering::Legal:
298         return TranslateLegalizeResults(Op, Node);
299       case TargetLowering::Custom: {
300         SmallVector<SDValue, 1> ResultVals;
301         if (LowerOperationWrapper(Node, ResultVals)) {
302           if (ResultVals.empty())
303             return TranslateLegalizeResults(Op, Node);
304 
305           Changed = true;
306           return RecursivelyLegalizeResults(Op, ResultVals);
307         }
308         LLVM_FALLTHROUGH;
309       }
310       case TargetLowering::Expand: {
311         Changed = true;
312         SDValue Chain = ExpandStore(Node);
313         AddLegalizedOperand(Op, Chain);
314         return Chain;
315       }
316       }
317     }
318   }
319 
320   bool HasVectorValueOrOp =
321       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
322       llvm::any_of(Node->op_values(),
323                    [](SDValue O) { return O.getValueType().isVector(); });
324   if (!HasVectorValueOrOp)
325     return TranslateLegalizeResults(Op, Node);
326 
327   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
328   EVT ValVT;
329   switch (Op.getOpcode()) {
330   default:
331     return TranslateLegalizeResults(Op, Node);
332   case ISD::MERGE_VALUES:
333     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
334     // This operation lies about being legal: when it claims to be legal,
335     // it should actually be expanded.
336     if (Action == TargetLowering::Legal)
337       Action = TargetLowering::Expand;
338     break;
339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
340   case ISD::STRICT_##DAGN:
341 #include "llvm/IR/ConstrainedOps.def"
342     ValVT = Node->getValueType(0);
343     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
344         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
345       ValVT = Node->getOperand(1).getValueType();
346     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
347     // If we're asked to expand a strict vector floating-point operation,
348     // by default we're going to simply unroll it.  That is usually the
349     // best approach, except in the case where the resulting strict (scalar)
350     // operations would themselves use the fallback mutation to non-strict.
351     // In that specific case, just do the fallback on the vector op.
352     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
353         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
354             TargetLowering::Legal) {
355       EVT EltVT = ValVT.getVectorElementType();
356       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
357           == TargetLowering::Expand &&
358           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
359           == TargetLowering::Legal)
360         Action = TargetLowering::Legal;
361     }
362     break;
363   case ISD::ADD:
364   case ISD::SUB:
365   case ISD::MUL:
366   case ISD::MULHS:
367   case ISD::MULHU:
368   case ISD::SDIV:
369   case ISD::UDIV:
370   case ISD::SREM:
371   case ISD::UREM:
372   case ISD::SDIVREM:
373   case ISD::UDIVREM:
374   case ISD::FADD:
375   case ISD::FSUB:
376   case ISD::FMUL:
377   case ISD::FDIV:
378   case ISD::FREM:
379   case ISD::AND:
380   case ISD::OR:
381   case ISD::XOR:
382   case ISD::SHL:
383   case ISD::SRA:
384   case ISD::SRL:
385   case ISD::FSHL:
386   case ISD::FSHR:
387   case ISD::ROTL:
388   case ISD::ROTR:
389   case ISD::ABS:
390   case ISD::BSWAP:
391   case ISD::BITREVERSE:
392   case ISD::CTLZ:
393   case ISD::CTTZ:
394   case ISD::CTLZ_ZERO_UNDEF:
395   case ISD::CTTZ_ZERO_UNDEF:
396   case ISD::CTPOP:
397   case ISD::SELECT:
398   case ISD::VSELECT:
399   case ISD::SELECT_CC:
400   case ISD::SETCC:
401   case ISD::ZERO_EXTEND:
402   case ISD::ANY_EXTEND:
403   case ISD::TRUNCATE:
404   case ISD::SIGN_EXTEND:
405   case ISD::FP_TO_SINT:
406   case ISD::FP_TO_UINT:
407   case ISD::FNEG:
408   case ISD::FABS:
409   case ISD::FMINNUM:
410   case ISD::FMAXNUM:
411   case ISD::FMINNUM_IEEE:
412   case ISD::FMAXNUM_IEEE:
413   case ISD::FMINIMUM:
414   case ISD::FMAXIMUM:
415   case ISD::FCOPYSIGN:
416   case ISD::FSQRT:
417   case ISD::FSIN:
418   case ISD::FCOS:
419   case ISD::FPOWI:
420   case ISD::FPOW:
421   case ISD::FLOG:
422   case ISD::FLOG2:
423   case ISD::FLOG10:
424   case ISD::FEXP:
425   case ISD::FEXP2:
426   case ISD::FCEIL:
427   case ISD::FTRUNC:
428   case ISD::FRINT:
429   case ISD::FNEARBYINT:
430   case ISD::FROUND:
431   case ISD::FROUNDEVEN:
432   case ISD::FFLOOR:
433   case ISD::FP_ROUND:
434   case ISD::FP_EXTEND:
435   case ISD::FMA:
436   case ISD::SIGN_EXTEND_INREG:
437   case ISD::ANY_EXTEND_VECTOR_INREG:
438   case ISD::SIGN_EXTEND_VECTOR_INREG:
439   case ISD::ZERO_EXTEND_VECTOR_INREG:
440   case ISD::SMIN:
441   case ISD::SMAX:
442   case ISD::UMIN:
443   case ISD::UMAX:
444   case ISD::SMUL_LOHI:
445   case ISD::UMUL_LOHI:
446   case ISD::SADDO:
447   case ISD::UADDO:
448   case ISD::SSUBO:
449   case ISD::USUBO:
450   case ISD::SMULO:
451   case ISD::UMULO:
452   case ISD::FCANONICALIZE:
453   case ISD::SADDSAT:
454   case ISD::UADDSAT:
455   case ISD::SSUBSAT:
456   case ISD::USUBSAT:
457     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
458     break;
459   case ISD::SMULFIX:
460   case ISD::SMULFIXSAT:
461   case ISD::UMULFIX:
462   case ISD::UMULFIXSAT:
463   case ISD::SDIVFIX:
464   case ISD::SDIVFIXSAT:
465   case ISD::UDIVFIX:
466   case ISD::UDIVFIXSAT: {
467     unsigned Scale = Node->getConstantOperandVal(2);
468     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
469                                               Node->getValueType(0), Scale);
470     break;
471   }
472   case ISD::SINT_TO_FP:
473   case ISD::UINT_TO_FP:
474   case ISD::VECREDUCE_ADD:
475   case ISD::VECREDUCE_MUL:
476   case ISD::VECREDUCE_AND:
477   case ISD::VECREDUCE_OR:
478   case ISD::VECREDUCE_XOR:
479   case ISD::VECREDUCE_SMAX:
480   case ISD::VECREDUCE_SMIN:
481   case ISD::VECREDUCE_UMAX:
482   case ISD::VECREDUCE_UMIN:
483   case ISD::VECREDUCE_FADD:
484   case ISD::VECREDUCE_FMUL:
485   case ISD::VECREDUCE_FMAX:
486   case ISD::VECREDUCE_FMIN:
487     Action = TLI.getOperationAction(Node->getOpcode(),
488                                     Node->getOperand(0).getValueType());
489     break;
490   }
491 
492   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
493 
494   SmallVector<SDValue, 8> ResultVals;
495   switch (Action) {
496   default: llvm_unreachable("This action is not supported yet!");
497   case TargetLowering::Promote:
498     LLVM_DEBUG(dbgs() << "Promoting\n");
499     Promote(Node, ResultVals);
500     assert(!ResultVals.empty() && "No results for promotion?");
501     break;
502   case TargetLowering::Legal:
503     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
504     break;
505   case TargetLowering::Custom:
506     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
507     if (LowerOperationWrapper(Node, ResultVals))
508       break;
509     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
510     LLVM_FALLTHROUGH;
511   case TargetLowering::Expand:
512     LLVM_DEBUG(dbgs() << "Expanding\n");
513     Expand(Node, ResultVals);
514     break;
515   }
516 
517   if (ResultVals.empty())
518     return TranslateLegalizeResults(Op, Node);
519 
520   Changed = true;
521   return RecursivelyLegalizeResults(Op, ResultVals);
522 }
523 
524 // FIME: This is very similar to the X86 override of
525 // TargetLowering::LowerOperationWrapper. Can we merge them somehow?
LowerOperationWrapper(SDNode * Node,SmallVectorImpl<SDValue> & Results)526 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
527                                             SmallVectorImpl<SDValue> &Results) {
528   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
529 
530   if (!Res.getNode())
531     return false;
532 
533   if (Res == SDValue(Node, 0))
534     return true;
535 
536   // If the original node has one result, take the return value from
537   // LowerOperation as is. It might not be result number 0.
538   if (Node->getNumValues() == 1) {
539     Results.push_back(Res);
540     return true;
541   }
542 
543   // If the original node has multiple results, then the return node should
544   // have the same number of results.
545   assert((Node->getNumValues() == Res->getNumValues()) &&
546          "Lowering returned the wrong number of results!");
547 
548   // Places new result values base on N result number.
549   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
550     Results.push_back(Res.getValue(I));
551 
552   return true;
553 }
554 
Promote(SDNode * Node,SmallVectorImpl<SDValue> & Results)555 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
556   // For a few operations there is a specific concept for promotion based on
557   // the operand's type.
558   switch (Node->getOpcode()) {
559   case ISD::SINT_TO_FP:
560   case ISD::UINT_TO_FP:
561   case ISD::STRICT_SINT_TO_FP:
562   case ISD::STRICT_UINT_TO_FP:
563     // "Promote" the operation by extending the operand.
564     PromoteINT_TO_FP(Node, Results);
565     return;
566   case ISD::FP_TO_UINT:
567   case ISD::FP_TO_SINT:
568   case ISD::STRICT_FP_TO_UINT:
569   case ISD::STRICT_FP_TO_SINT:
570     // Promote the operation by extending the operand.
571     PromoteFP_TO_INT(Node, Results);
572     return;
573   case ISD::FP_ROUND:
574   case ISD::FP_EXTEND:
575     // These operations are used to do promotion so they can't be promoted
576     // themselves.
577     llvm_unreachable("Don't know how to promote this operation!");
578   }
579 
580   // There are currently two cases of vector promotion:
581   // 1) Bitcasting a vector of integers to a different type to a vector of the
582   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
583   // 2) Extending a vector of floats to a vector of the same number of larger
584   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
585   assert(Node->getNumValues() == 1 &&
586          "Can't promote a vector with multiple results!");
587   MVT VT = Node->getSimpleValueType(0);
588   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
589   SDLoc dl(Node);
590   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
591 
592   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
593     if (Node->getOperand(j).getValueType().isVector())
594       if (Node->getOperand(j)
595               .getValueType()
596               .getVectorElementType()
597               .isFloatingPoint() &&
598           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
599         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
600       else
601         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
602     else
603       Operands[j] = Node->getOperand(j);
604   }
605 
606   SDValue Res =
607       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
608 
609   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
610       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
611        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
612     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
613   else
614     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
615 
616   Results.push_back(Res);
617 }
618 
PromoteINT_TO_FP(SDNode * Node,SmallVectorImpl<SDValue> & Results)619 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
620                                        SmallVectorImpl<SDValue> &Results) {
621   // INT_TO_FP operations may require the input operand be promoted even
622   // when the type is otherwise legal.
623   bool IsStrict = Node->isStrictFPOpcode();
624   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
625   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
626   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
627          "Vectors have different number of elements!");
628 
629   SDLoc dl(Node);
630   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
631 
632   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
633                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
634                      ? ISD::ZERO_EXTEND
635                      : ISD::SIGN_EXTEND;
636   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
637     if (Node->getOperand(j).getValueType().isVector())
638       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
639     else
640       Operands[j] = Node->getOperand(j);
641   }
642 
643   if (IsStrict) {
644     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
645                               {Node->getValueType(0), MVT::Other}, Operands);
646     Results.push_back(Res);
647     Results.push_back(Res.getValue(1));
648     return;
649   }
650 
651   SDValue Res =
652       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
653   Results.push_back(Res);
654 }
655 
656 // For FP_TO_INT we promote the result type to a vector type with wider
657 // elements and then truncate the result.  This is different from the default
658 // PromoteVector which uses bitcast to promote thus assumning that the
659 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDNode * Node,SmallVectorImpl<SDValue> & Results)660 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
661                                        SmallVectorImpl<SDValue> &Results) {
662   MVT VT = Node->getSimpleValueType(0);
663   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
664   bool IsStrict = Node->isStrictFPOpcode();
665   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
666          "Vectors have different number of elements!");
667 
668   unsigned NewOpc = Node->getOpcode();
669   // Change FP_TO_UINT to FP_TO_SINT if possible.
670   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
671   if (NewOpc == ISD::FP_TO_UINT &&
672       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
673     NewOpc = ISD::FP_TO_SINT;
674 
675   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
676       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
677     NewOpc = ISD::STRICT_FP_TO_SINT;
678 
679   SDLoc dl(Node);
680   SDValue Promoted, Chain;
681   if (IsStrict) {
682     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
683                            {Node->getOperand(0), Node->getOperand(1)});
684     Chain = Promoted.getValue(1);
685   } else
686     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
687 
688   // Assert that the converted value fits in the original type.  If it doesn't
689   // (eg: because the value being converted is too big), then the result of the
690   // original operation was undefined anyway, so the assert is still correct.
691   if (Node->getOpcode() == ISD::FP_TO_UINT ||
692       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
693     NewOpc = ISD::AssertZext;
694   else
695     NewOpc = ISD::AssertSext;
696 
697   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
698                          DAG.getValueType(VT.getScalarType()));
699   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
700   Results.push_back(Promoted);
701   if (IsStrict)
702     Results.push_back(Chain);
703 }
704 
ExpandLoad(SDNode * N)705 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
706   LoadSDNode *LD = cast<LoadSDNode>(N);
707   return TLI.scalarizeVectorLoad(LD, DAG);
708 }
709 
ExpandStore(SDNode * N)710 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
711   StoreSDNode *ST = cast<StoreSDNode>(N);
712   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
713   return TF;
714 }
715 
Expand(SDNode * Node,SmallVectorImpl<SDValue> & Results)716 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
717   SDValue Tmp;
718   switch (Node->getOpcode()) {
719   case ISD::MERGE_VALUES:
720     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
721       Results.push_back(Node->getOperand(i));
722     return;
723   case ISD::SIGN_EXTEND_INREG:
724     Results.push_back(ExpandSEXTINREG(Node));
725     return;
726   case ISD::ANY_EXTEND_VECTOR_INREG:
727     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
728     return;
729   case ISD::SIGN_EXTEND_VECTOR_INREG:
730     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
731     return;
732   case ISD::ZERO_EXTEND_VECTOR_INREG:
733     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
734     return;
735   case ISD::BSWAP:
736     Results.push_back(ExpandBSWAP(Node));
737     return;
738   case ISD::VSELECT:
739     Results.push_back(ExpandVSELECT(Node));
740     return;
741   case ISD::SELECT:
742     Results.push_back(ExpandSELECT(Node));
743     return;
744   case ISD::FP_TO_UINT:
745     ExpandFP_TO_UINT(Node, Results);
746     return;
747   case ISD::UINT_TO_FP:
748     ExpandUINT_TO_FLOAT(Node, Results);
749     return;
750   case ISD::FNEG:
751     Results.push_back(ExpandFNEG(Node));
752     return;
753   case ISD::FSUB:
754     ExpandFSUB(Node, Results);
755     return;
756   case ISD::SETCC:
757     Results.push_back(UnrollVSETCC(Node));
758     return;
759   case ISD::ABS:
760     if (TLI.expandABS(Node, Tmp, DAG)) {
761       Results.push_back(Tmp);
762       return;
763     }
764     break;
765   case ISD::BITREVERSE:
766     ExpandBITREVERSE(Node, Results);
767     return;
768   case ISD::CTPOP:
769     if (TLI.expandCTPOP(Node, Tmp, DAG)) {
770       Results.push_back(Tmp);
771       return;
772     }
773     break;
774   case ISD::CTLZ:
775   case ISD::CTLZ_ZERO_UNDEF:
776     if (TLI.expandCTLZ(Node, Tmp, DAG)) {
777       Results.push_back(Tmp);
778       return;
779     }
780     break;
781   case ISD::CTTZ:
782   case ISD::CTTZ_ZERO_UNDEF:
783     if (TLI.expandCTTZ(Node, Tmp, DAG)) {
784       Results.push_back(Tmp);
785       return;
786     }
787     break;
788   case ISD::FSHL:
789   case ISD::FSHR:
790     if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
791       Results.push_back(Tmp);
792       return;
793     }
794     break;
795   case ISD::ROTL:
796   case ISD::ROTR:
797     if (TLI.expandROT(Node, Tmp, DAG)) {
798       Results.push_back(Tmp);
799       return;
800     }
801     break;
802   case ISD::FMINNUM:
803   case ISD::FMAXNUM:
804     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
805       Results.push_back(Expanded);
806       return;
807     }
808     break;
809   case ISD::UADDO:
810   case ISD::USUBO:
811     ExpandUADDSUBO(Node, Results);
812     return;
813   case ISD::SADDO:
814   case ISD::SSUBO:
815     ExpandSADDSUBO(Node, Results);
816     return;
817   case ISD::UMULO:
818   case ISD::SMULO:
819     ExpandMULO(Node, Results);
820     return;
821   case ISD::USUBSAT:
822   case ISD::SSUBSAT:
823   case ISD::UADDSAT:
824   case ISD::SADDSAT:
825     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
826       Results.push_back(Expanded);
827       return;
828     }
829     break;
830   case ISD::SMULFIX:
831   case ISD::UMULFIX:
832     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
833       Results.push_back(Expanded);
834       return;
835     }
836     break;
837   case ISD::SMULFIXSAT:
838   case ISD::UMULFIXSAT:
839     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
840     // why. Maybe it results in worse codegen compared to the unroll for some
841     // targets? This should probably be investigated. And if we still prefer to
842     // unroll an explanation could be helpful.
843     break;
844   case ISD::SDIVFIX:
845   case ISD::UDIVFIX:
846     ExpandFixedPointDiv(Node, Results);
847     return;
848   case ISD::SDIVFIXSAT:
849   case ISD::UDIVFIXSAT:
850     break;
851 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
852   case ISD::STRICT_##DAGN:
853 #include "llvm/IR/ConstrainedOps.def"
854     ExpandStrictFPOp(Node, Results);
855     return;
856   case ISD::VECREDUCE_ADD:
857   case ISD::VECREDUCE_MUL:
858   case ISD::VECREDUCE_AND:
859   case ISD::VECREDUCE_OR:
860   case ISD::VECREDUCE_XOR:
861   case ISD::VECREDUCE_SMAX:
862   case ISD::VECREDUCE_SMIN:
863   case ISD::VECREDUCE_UMAX:
864   case ISD::VECREDUCE_UMIN:
865   case ISD::VECREDUCE_FADD:
866   case ISD::VECREDUCE_FMUL:
867   case ISD::VECREDUCE_FMAX:
868   case ISD::VECREDUCE_FMIN:
869     Results.push_back(TLI.expandVecReduce(Node, DAG));
870     return;
871   case ISD::SREM:
872   case ISD::UREM:
873     ExpandREM(Node, Results);
874     return;
875   }
876 
877   Results.push_back(DAG.UnrollVectorOp(Node));
878 }
879 
ExpandSELECT(SDNode * Node)880 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
881   // Lower a select instruction where the condition is a scalar and the
882   // operands are vectors. Lower this select to VSELECT and implement it
883   // using XOR AND OR. The selector bit is broadcasted.
884   EVT VT = Node->getValueType(0);
885   SDLoc DL(Node);
886 
887   SDValue Mask = Node->getOperand(0);
888   SDValue Op1 = Node->getOperand(1);
889   SDValue Op2 = Node->getOperand(2);
890 
891   assert(VT.isVector() && !Mask.getValueType().isVector()
892          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
893 
894   // If we can't even use the basic vector operations of
895   // AND,OR,XOR, we will have to scalarize the op.
896   // Notice that the operation may be 'promoted' which means that it is
897   // 'bitcasted' to another type which is handled.
898   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
899   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
900       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
901       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
902       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
903     return DAG.UnrollVectorOp(Node);
904 
905   // Generate a mask operand.
906   EVT MaskTy = VT.changeVectorElementTypeToInteger();
907 
908   // What is the size of each element in the vector mask.
909   EVT BitTy = MaskTy.getScalarType();
910 
911   Mask = DAG.getSelect(DL, BitTy, Mask,
912           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
913                           BitTy),
914           DAG.getConstant(0, DL, BitTy));
915 
916   // Broadcast the mask so that the entire vector is all-one or all zero.
917   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
918 
919   // Bitcast the operands to be the same type as the mask.
920   // This is needed when we select between FP types because
921   // the mask is a vector of integers.
922   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
923   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
924 
925   SDValue AllOnes = DAG.getConstant(
926             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
927   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
928 
929   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
930   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
931   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
932   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
933 }
934 
ExpandSEXTINREG(SDNode * Node)935 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
936   EVT VT = Node->getValueType(0);
937 
938   // Make sure that the SRA and SHL instructions are available.
939   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
940       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
941     return DAG.UnrollVectorOp(Node);
942 
943   SDLoc DL(Node);
944   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
945 
946   unsigned BW = VT.getScalarSizeInBits();
947   unsigned OrigBW = OrigTy.getScalarSizeInBits();
948   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
949 
950   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
951   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
952 }
953 
954 // Generically expand a vector anyext in register to a shuffle of the relevant
955 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDNode * Node)956 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
957   SDLoc DL(Node);
958   EVT VT = Node->getValueType(0);
959   int NumElements = VT.getVectorNumElements();
960   SDValue Src = Node->getOperand(0);
961   EVT SrcVT = Src.getValueType();
962   int NumSrcElements = SrcVT.getVectorNumElements();
963 
964   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
965   // into a larger vector type.
966   if (SrcVT.bitsLE(VT)) {
967     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
968            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
969     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
970     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
971                              NumSrcElements);
972     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
973                       Src, DAG.getVectorIdxConstant(0, DL));
974   }
975 
976   // Build a base mask of undef shuffles.
977   SmallVector<int, 16> ShuffleMask;
978   ShuffleMask.resize(NumSrcElements, -1);
979 
980   // Place the extended lanes into the correct locations.
981   int ExtLaneScale = NumSrcElements / NumElements;
982   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
983   for (int i = 0; i < NumElements; ++i)
984     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
985 
986   return DAG.getNode(
987       ISD::BITCAST, DL, VT,
988       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
989 }
990 
ExpandSIGN_EXTEND_VECTOR_INREG(SDNode * Node)991 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
992   SDLoc DL(Node);
993   EVT VT = Node->getValueType(0);
994   SDValue Src = Node->getOperand(0);
995   EVT SrcVT = Src.getValueType();
996 
997   // First build an any-extend node which can be legalized above when we
998   // recurse through it.
999   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1000 
1001   // Now we need sign extend. Do this by shifting the elements. Even if these
1002   // aren't legal operations, they have a better chance of being legalized
1003   // without full scalarization than the sign extension does.
1004   unsigned EltWidth = VT.getScalarSizeInBits();
1005   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1006   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1007   return DAG.getNode(ISD::SRA, DL, VT,
1008                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1009                      ShiftAmount);
1010 }
1011 
1012 // Generically expand a vector zext in register to a shuffle of the relevant
1013 // lanes into the appropriate locations, a blend of zero into the high bits,
1014 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDNode * Node)1015 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1016   SDLoc DL(Node);
1017   EVT VT = Node->getValueType(0);
1018   int NumElements = VT.getVectorNumElements();
1019   SDValue Src = Node->getOperand(0);
1020   EVT SrcVT = Src.getValueType();
1021   int NumSrcElements = SrcVT.getVectorNumElements();
1022 
1023   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1024   // into a larger vector type.
1025   if (SrcVT.bitsLE(VT)) {
1026     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1027            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1028     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1029     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1030                              NumSrcElements);
1031     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1032                       Src, DAG.getVectorIdxConstant(0, DL));
1033   }
1034 
1035   // Build up a zero vector to blend into this one.
1036   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1037 
1038   // Shuffle the incoming lanes into the correct position, and pull all other
1039   // lanes from the zero vector.
1040   SmallVector<int, 16> ShuffleMask;
1041   ShuffleMask.reserve(NumSrcElements);
1042   for (int i = 0; i < NumSrcElements; ++i)
1043     ShuffleMask.push_back(i);
1044 
1045   int ExtLaneScale = NumSrcElements / NumElements;
1046   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1047   for (int i = 0; i < NumElements; ++i)
1048     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1049 
1050   return DAG.getNode(ISD::BITCAST, DL, VT,
1051                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1052 }
1053 
createBSWAPShuffleMask(EVT VT,SmallVectorImpl<int> & ShuffleMask)1054 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1055   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1056   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1057     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1058       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1059 }
1060 
ExpandBSWAP(SDNode * Node)1061 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1062   EVT VT = Node->getValueType(0);
1063 
1064   // Generate a byte wise shuffle mask for the BSWAP.
1065   SmallVector<int, 16> ShuffleMask;
1066   createBSWAPShuffleMask(VT, ShuffleMask);
1067   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1068 
1069   // Only emit a shuffle if the mask is legal.
1070   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1071     return DAG.UnrollVectorOp(Node);
1072 
1073   SDLoc DL(Node);
1074   SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1075   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1076   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1077 }
1078 
ExpandBITREVERSE(SDNode * Node,SmallVectorImpl<SDValue> & Results)1079 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1080                                        SmallVectorImpl<SDValue> &Results) {
1081   EVT VT = Node->getValueType(0);
1082 
1083   // If we have the scalar operation, it's probably cheaper to unroll it.
1084   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1085     SDValue Tmp = DAG.UnrollVectorOp(Node);
1086     Results.push_back(Tmp);
1087     return;
1088   }
1089 
1090   // If the vector element width is a whole number of bytes, test if its legal
1091   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1092   // vector. This greatly reduces the number of bit shifts necessary.
1093   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1094   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1095     SmallVector<int, 16> BSWAPMask;
1096     createBSWAPShuffleMask(VT, BSWAPMask);
1097 
1098     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1099     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1100         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1101          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1102           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1103           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1104           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1105       SDLoc DL(Node);
1106       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1107       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1108                                 BSWAPMask);
1109       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1110       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1111       Results.push_back(Op);
1112       return;
1113     }
1114   }
1115 
1116   // If we have the appropriate vector bit operations, it is better to use them
1117   // than unrolling and expanding each component.
1118   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1119       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1120       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1121       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1122     // Let LegalizeDAG handle this later.
1123     return;
1124 
1125   // Otherwise unroll.
1126   SDValue Tmp = DAG.UnrollVectorOp(Node);
1127   Results.push_back(Tmp);
1128 }
1129 
ExpandVSELECT(SDNode * Node)1130 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1131   // Implement VSELECT in terms of XOR, AND, OR
1132   // on platforms which do not support blend natively.
1133   SDLoc DL(Node);
1134 
1135   SDValue Mask = Node->getOperand(0);
1136   SDValue Op1 = Node->getOperand(1);
1137   SDValue Op2 = Node->getOperand(2);
1138 
1139   EVT VT = Mask.getValueType();
1140 
1141   // If we can't even use the basic vector operations of
1142   // AND,OR,XOR, we will have to scalarize the op.
1143   // Notice that the operation may be 'promoted' which means that it is
1144   // 'bitcasted' to another type which is handled.
1145   // This operation also isn't safe with AND, OR, XOR when the boolean
1146   // type is 0/1 as we need an all ones vector constant to mask with.
1147   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1148   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1149       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1150       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1151       TLI.getBooleanContents(Op1.getValueType()) !=
1152           TargetLowering::ZeroOrNegativeOneBooleanContent)
1153     return DAG.UnrollVectorOp(Node);
1154 
1155   // If the mask and the type are different sizes, unroll the vector op. This
1156   // can occur when getSetCCResultType returns something that is different in
1157   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1158   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1159     return DAG.UnrollVectorOp(Node);
1160 
1161   // Bitcast the operands to be the same type as the mask.
1162   // This is needed when we select between FP types because
1163   // the mask is a vector of integers.
1164   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1165   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1166 
1167   SDValue AllOnes = DAG.getConstant(
1168     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1169   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1170 
1171   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1172   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1173   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1174   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1175 }
1176 
ExpandFP_TO_UINT(SDNode * Node,SmallVectorImpl<SDValue> & Results)1177 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1178                                        SmallVectorImpl<SDValue> &Results) {
1179   // Attempt to expand using TargetLowering.
1180   SDValue Result, Chain;
1181   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1182     Results.push_back(Result);
1183     if (Node->isStrictFPOpcode())
1184       Results.push_back(Chain);
1185     return;
1186   }
1187 
1188   // Otherwise go ahead and unroll.
1189   if (Node->isStrictFPOpcode()) {
1190     UnrollStrictFPOp(Node, Results);
1191     return;
1192   }
1193 
1194   Results.push_back(DAG.UnrollVectorOp(Node));
1195 }
1196 
ExpandUINT_TO_FLOAT(SDNode * Node,SmallVectorImpl<SDValue> & Results)1197 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1198                                           SmallVectorImpl<SDValue> &Results) {
1199   bool IsStrict = Node->isStrictFPOpcode();
1200   unsigned OpNo = IsStrict ? 1 : 0;
1201   SDValue Src = Node->getOperand(OpNo);
1202   EVT VT = Src.getValueType();
1203   SDLoc DL(Node);
1204 
1205   // Attempt to expand using TargetLowering.
1206   SDValue Result;
1207   SDValue Chain;
1208   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1209     Results.push_back(Result);
1210     if (IsStrict)
1211       Results.push_back(Chain);
1212     return;
1213   }
1214 
1215   // Make sure that the SINT_TO_FP and SRL instructions are available.
1216   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1217                          TargetLowering::Expand) ||
1218        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1219                         TargetLowering::Expand)) ||
1220       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1221     if (IsStrict) {
1222       UnrollStrictFPOp(Node, Results);
1223       return;
1224     }
1225 
1226     Results.push_back(DAG.UnrollVectorOp(Node));
1227     return;
1228   }
1229 
1230   unsigned BW = VT.getScalarSizeInBits();
1231   assert((BW == 64 || BW == 32) &&
1232          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1233 
1234   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1235 
1236   // Constants to clear the upper part of the word.
1237   // Notice that we can also use SHL+SHR, but using a constant is slightly
1238   // faster on x86.
1239   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1240   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1241 
1242   // Two to the power of half-word-size.
1243   SDValue TWOHW =
1244       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1245 
1246   // Clear upper part of LO, lower HI
1247   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1248   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1249 
1250   if (IsStrict) {
1251     // Convert hi and lo to floats
1252     // Convert the hi part back to the upper values
1253     // TODO: Can any fast-math-flags be set on these nodes?
1254     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1255                               {Node->getValueType(0), MVT::Other},
1256                               {Node->getOperand(0), HI});
1257     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1258                       {fHI.getValue(1), fHI, TWOHW});
1259     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1260                               {Node->getValueType(0), MVT::Other},
1261                               {Node->getOperand(0), LO});
1262 
1263     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1264                              fLO.getValue(1));
1265 
1266     // Add the two halves
1267     SDValue Result =
1268         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1269                     {TF, fHI, fLO});
1270 
1271     Results.push_back(Result);
1272     Results.push_back(Result.getValue(1));
1273     return;
1274   }
1275 
1276   // Convert hi and lo to floats
1277   // Convert the hi part back to the upper values
1278   // TODO: Can any fast-math-flags be set on these nodes?
1279   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1280   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1281   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1282 
1283   // Add the two halves
1284   Results.push_back(
1285       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1286 }
1287 
ExpandFNEG(SDNode * Node)1288 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1289   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1290     SDLoc DL(Node);
1291     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1292     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1293     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1294                        Node->getOperand(0));
1295   }
1296   return DAG.UnrollVectorOp(Node);
1297 }
1298 
ExpandFSUB(SDNode * Node,SmallVectorImpl<SDValue> & Results)1299 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1300                                  SmallVectorImpl<SDValue> &Results) {
1301   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1302   // we can defer this to operation legalization where it will be lowered as
1303   // a+(-b).
1304   EVT VT = Node->getValueType(0);
1305   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1306       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1307     return; // Defer to LegalizeDAG
1308 
1309   SDValue Tmp = DAG.UnrollVectorOp(Node);
1310   Results.push_back(Tmp);
1311 }
1312 
ExpandUADDSUBO(SDNode * Node,SmallVectorImpl<SDValue> & Results)1313 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1314                                      SmallVectorImpl<SDValue> &Results) {
1315   SDValue Result, Overflow;
1316   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1317   Results.push_back(Result);
1318   Results.push_back(Overflow);
1319 }
1320 
ExpandSADDSUBO(SDNode * Node,SmallVectorImpl<SDValue> & Results)1321 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1322                                      SmallVectorImpl<SDValue> &Results) {
1323   SDValue Result, Overflow;
1324   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1325   Results.push_back(Result);
1326   Results.push_back(Overflow);
1327 }
1328 
ExpandMULO(SDNode * Node,SmallVectorImpl<SDValue> & Results)1329 void VectorLegalizer::ExpandMULO(SDNode *Node,
1330                                  SmallVectorImpl<SDValue> &Results) {
1331   SDValue Result, Overflow;
1332   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1333     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1334 
1335   Results.push_back(Result);
1336   Results.push_back(Overflow);
1337 }
1338 
ExpandFixedPointDiv(SDNode * Node,SmallVectorImpl<SDValue> & Results)1339 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1340                                           SmallVectorImpl<SDValue> &Results) {
1341   SDNode *N = Node;
1342   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1343           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1344     Results.push_back(Expanded);
1345 }
1346 
ExpandStrictFPOp(SDNode * Node,SmallVectorImpl<SDValue> & Results)1347 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1348                                        SmallVectorImpl<SDValue> &Results) {
1349   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1350     ExpandUINT_TO_FLOAT(Node, Results);
1351     return;
1352   }
1353   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1354     ExpandFP_TO_UINT(Node, Results);
1355     return;
1356   }
1357 
1358   UnrollStrictFPOp(Node, Results);
1359 }
1360 
ExpandREM(SDNode * Node,SmallVectorImpl<SDValue> & Results)1361 void VectorLegalizer::ExpandREM(SDNode *Node,
1362                                 SmallVectorImpl<SDValue> &Results) {
1363   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1364          "Expected REM node");
1365 
1366   SDValue Result;
1367   if (!TLI.expandREM(Node, Result, DAG))
1368     Result = DAG.UnrollVectorOp(Node);
1369   Results.push_back(Result);
1370 }
1371 
UnrollStrictFPOp(SDNode * Node,SmallVectorImpl<SDValue> & Results)1372 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1373                                        SmallVectorImpl<SDValue> &Results) {
1374   EVT VT = Node->getValueType(0);
1375   EVT EltVT = VT.getVectorElementType();
1376   unsigned NumElems = VT.getVectorNumElements();
1377   unsigned NumOpers = Node->getNumOperands();
1378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1379 
1380   EVT TmpEltVT = EltVT;
1381   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1382       Node->getOpcode() == ISD::STRICT_FSETCCS)
1383     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1384                                       *DAG.getContext(), TmpEltVT);
1385 
1386   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1387   SDValue Chain = Node->getOperand(0);
1388   SDLoc dl(Node);
1389 
1390   SmallVector<SDValue, 32> OpValues;
1391   SmallVector<SDValue, 32> OpChains;
1392   for (unsigned i = 0; i < NumElems; ++i) {
1393     SmallVector<SDValue, 4> Opers;
1394     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1395 
1396     // The Chain is the first operand.
1397     Opers.push_back(Chain);
1398 
1399     // Now process the remaining operands.
1400     for (unsigned j = 1; j < NumOpers; ++j) {
1401       SDValue Oper = Node->getOperand(j);
1402       EVT OperVT = Oper.getValueType();
1403 
1404       if (OperVT.isVector())
1405         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1406                            OperVT.getVectorElementType(), Oper, Idx);
1407 
1408       Opers.push_back(Oper);
1409     }
1410 
1411     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1412     SDValue ScalarResult = ScalarOp.getValue(0);
1413     SDValue ScalarChain = ScalarOp.getValue(1);
1414 
1415     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1416         Node->getOpcode() == ISD::STRICT_FSETCCS)
1417       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1418                            DAG.getConstant(APInt::getAllOnesValue
1419                                            (EltVT.getSizeInBits()), dl, EltVT),
1420                            DAG.getConstant(0, dl, EltVT));
1421 
1422     OpValues.push_back(ScalarResult);
1423     OpChains.push_back(ScalarChain);
1424   }
1425 
1426   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1427   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1428 
1429   Results.push_back(Result);
1430   Results.push_back(NewChain);
1431 }
1432 
UnrollVSETCC(SDNode * Node)1433 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1434   EVT VT = Node->getValueType(0);
1435   unsigned NumElems = VT.getVectorNumElements();
1436   EVT EltVT = VT.getVectorElementType();
1437   SDValue LHS = Node->getOperand(0);
1438   SDValue RHS = Node->getOperand(1);
1439   SDValue CC = Node->getOperand(2);
1440   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1441   SDLoc dl(Node);
1442   SmallVector<SDValue, 8> Ops(NumElems);
1443   for (unsigned i = 0; i < NumElems; ++i) {
1444     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1445                                   DAG.getVectorIdxConstant(i, dl));
1446     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1447                                   DAG.getVectorIdxConstant(i, dl));
1448     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1449                          TLI.getSetCCResultType(DAG.getDataLayout(),
1450                                                 *DAG.getContext(), TmpEltVT),
1451                          LHSElem, RHSElem, CC);
1452     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1453                            DAG.getConstant(APInt::getAllOnesValue
1454                                            (EltVT.getSizeInBits()), dl, EltVT),
1455                            DAG.getConstant(0, dl, EltVT));
1456   }
1457   return DAG.getBuildVector(VT, dl, Ops);
1458 }
1459 
LegalizeVectors()1460 bool SelectionDAG::LegalizeVectors() {
1461   return VectorLegalizer(*this).Run();
1462 }
1463