1 //===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers type metadata and calls to the llvm.type.test intrinsic.
10 // It also ensures that globals are properly laid out for the
11 // llvm.icall.branch.funnel intrinsic.
12 // See http://llvm.org/docs/TypeMetadata.html for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/LowerTypeTests.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/EquivalenceClasses.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TypeMetadataUtils.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/ModuleSummaryIndex.h"
50 #include "llvm/IR/ModuleSummaryIndexYAML.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Allocator.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/Error.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FileSystem.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/TrailingObjects.h"
69 #include "llvm/Support/YAMLTraits.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/ModuleUtils.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <memory>
78 #include <set>
79 #include <string>
80 #include <system_error>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 using namespace lowertypetests;
86 
87 #define DEBUG_TYPE "lowertypetests"
88 
89 STATISTIC(ByteArraySizeBits, "Byte array size in bits");
90 STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
91 STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
92 STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
93 STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
94 
95 static cl::opt<bool> AvoidReuse(
96     "lowertypetests-avoid-reuse",
97     cl::desc("Try to avoid reuse of byte array addresses using aliases"),
98     cl::Hidden, cl::init(true));
99 
100 static cl::opt<PassSummaryAction> ClSummaryAction(
101     "lowertypetests-summary-action",
102     cl::desc("What to do with the summary when running this pass"),
103     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
104                clEnumValN(PassSummaryAction::Import, "import",
105                           "Import typeid resolutions from summary and globals"),
106                clEnumValN(PassSummaryAction::Export, "export",
107                           "Export typeid resolutions to summary and globals")),
108     cl::Hidden);
109 
110 static cl::opt<std::string> ClReadSummary(
111     "lowertypetests-read-summary",
112     cl::desc("Read summary from given YAML file before running pass"),
113     cl::Hidden);
114 
115 static cl::opt<std::string> ClWriteSummary(
116     "lowertypetests-write-summary",
117     cl::desc("Write summary to given YAML file after running pass"),
118     cl::Hidden);
119 
containsGlobalOffset(uint64_t Offset) const120 bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
121   if (Offset < ByteOffset)
122     return false;
123 
124   if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
125     return false;
126 
127   uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
128   if (BitOffset >= BitSize)
129     return false;
130 
131   return Bits.count(BitOffset);
132 }
133 
print(raw_ostream & OS) const134 void BitSetInfo::print(raw_ostream &OS) const {
135   OS << "offset " << ByteOffset << " size " << BitSize << " align "
136      << (1 << AlignLog2);
137 
138   if (isAllOnes()) {
139     OS << " all-ones\n";
140     return;
141   }
142 
143   OS << " { ";
144   for (uint64_t B : Bits)
145     OS << B << ' ';
146   OS << "}\n";
147 }
148 
build()149 BitSetInfo BitSetBuilder::build() {
150   if (Min > Max)
151     Min = 0;
152 
153   // Normalize each offset against the minimum observed offset, and compute
154   // the bitwise OR of each of the offsets. The number of trailing zeros
155   // in the mask gives us the log2 of the alignment of all offsets, which
156   // allows us to compress the bitset by only storing one bit per aligned
157   // address.
158   uint64_t Mask = 0;
159   for (uint64_t &Offset : Offsets) {
160     Offset -= Min;
161     Mask |= Offset;
162   }
163 
164   BitSetInfo BSI;
165   BSI.ByteOffset = Min;
166 
167   BSI.AlignLog2 = 0;
168   if (Mask != 0)
169     BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
170 
171   // Build the compressed bitset while normalizing the offsets against the
172   // computed alignment.
173   BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
174   for (uint64_t Offset : Offsets) {
175     Offset >>= BSI.AlignLog2;
176     BSI.Bits.insert(Offset);
177   }
178 
179   return BSI;
180 }
181 
addFragment(const std::set<uint64_t> & F)182 void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
183   // Create a new fragment to hold the layout for F.
184   Fragments.emplace_back();
185   std::vector<uint64_t> &Fragment = Fragments.back();
186   uint64_t FragmentIndex = Fragments.size() - 1;
187 
188   for (auto ObjIndex : F) {
189     uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
190     if (OldFragmentIndex == 0) {
191       // We haven't seen this object index before, so just add it to the current
192       // fragment.
193       Fragment.push_back(ObjIndex);
194     } else {
195       // This index belongs to an existing fragment. Copy the elements of the
196       // old fragment into this one and clear the old fragment. We don't update
197       // the fragment map just yet, this ensures that any further references to
198       // indices from the old fragment in this fragment do not insert any more
199       // indices.
200       std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
201       Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
202       OldFragment.clear();
203     }
204   }
205 
206   // Update the fragment map to point our object indices to this fragment.
207   for (uint64_t ObjIndex : Fragment)
208     FragmentMap[ObjIndex] = FragmentIndex;
209 }
210 
allocate(const std::set<uint64_t> & Bits,uint64_t BitSize,uint64_t & AllocByteOffset,uint8_t & AllocMask)211 void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
212                                 uint64_t BitSize, uint64_t &AllocByteOffset,
213                                 uint8_t &AllocMask) {
214   // Find the smallest current allocation.
215   unsigned Bit = 0;
216   for (unsigned I = 1; I != BitsPerByte; ++I)
217     if (BitAllocs[I] < BitAllocs[Bit])
218       Bit = I;
219 
220   AllocByteOffset = BitAllocs[Bit];
221 
222   // Add our size to it.
223   unsigned ReqSize = AllocByteOffset + BitSize;
224   BitAllocs[Bit] = ReqSize;
225   if (Bytes.size() < ReqSize)
226     Bytes.resize(ReqSize);
227 
228   // Set our bits.
229   AllocMask = 1 << Bit;
230   for (uint64_t B : Bits)
231     Bytes[AllocByteOffset + B] |= AllocMask;
232 }
233 
isJumpTableCanonical(Function * F)234 bool lowertypetests::isJumpTableCanonical(Function *F) {
235   if (F->isDeclarationForLinker())
236     return false;
237   auto *CI = mdconst::extract_or_null<ConstantInt>(
238       F->getParent()->getModuleFlag("CFI Canonical Jump Tables"));
239   if (!CI || CI->getZExtValue() != 0)
240     return true;
241   return F->hasFnAttribute("cfi-canonical-jump-table");
242 }
243 
244 namespace {
245 
246 struct ByteArrayInfo {
247   std::set<uint64_t> Bits;
248   uint64_t BitSize;
249   GlobalVariable *ByteArray;
250   GlobalVariable *MaskGlobal;
251   uint8_t *MaskPtr = nullptr;
252 };
253 
254 /// A POD-like structure that we use to store a global reference together with
255 /// its metadata types. In this pass we frequently need to query the set of
256 /// metadata types referenced by a global, which at the IR level is an expensive
257 /// operation involving a map lookup; this data structure helps to reduce the
258 /// number of times we need to do this lookup.
259 class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
260   friend TrailingObjects;
261 
262   GlobalObject *GO;
263   size_t NTypes;
264 
265   // For functions: true if the jump table is canonical. This essentially means
266   // whether the canonical address (i.e. the symbol table entry) of the function
267   // is provided by the local jump table. This is normally the same as whether
268   // the function is defined locally, but if canonical jump tables are disabled
269   // by the user then the jump table never provides a canonical definition.
270   bool IsJumpTableCanonical;
271 
272   // For functions: true if this function is either defined or used in a thinlto
273   // module and its jumptable entry needs to be exported to thinlto backends.
274   bool IsExported;
275 
numTrailingObjects(OverloadToken<MDNode * >) const276   size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }
277 
278 public:
create(BumpPtrAllocator & Alloc,GlobalObject * GO,bool IsJumpTableCanonical,bool IsExported,ArrayRef<MDNode * > Types)279   static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
280                                   bool IsJumpTableCanonical, bool IsExported,
281                                   ArrayRef<MDNode *> Types) {
282     auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
283         totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
284     GTM->GO = GO;
285     GTM->NTypes = Types.size();
286     GTM->IsJumpTableCanonical = IsJumpTableCanonical;
287     GTM->IsExported = IsExported;
288     std::uninitialized_copy(Types.begin(), Types.end(),
289                             GTM->getTrailingObjects<MDNode *>());
290     return GTM;
291   }
292 
getGlobal() const293   GlobalObject *getGlobal() const {
294     return GO;
295   }
296 
isJumpTableCanonical() const297   bool isJumpTableCanonical() const {
298     return IsJumpTableCanonical;
299   }
300 
isExported() const301   bool isExported() const {
302     return IsExported;
303   }
304 
types() const305   ArrayRef<MDNode *> types() const {
306     return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
307   }
308 };
309 
310 struct ICallBranchFunnel final
311     : TrailingObjects<ICallBranchFunnel, GlobalTypeMember *> {
create__anon162e04710111::ICallBranchFunnel312   static ICallBranchFunnel *create(BumpPtrAllocator &Alloc, CallInst *CI,
313                                    ArrayRef<GlobalTypeMember *> Targets,
314                                    unsigned UniqueId) {
315     auto *Call = static_cast<ICallBranchFunnel *>(
316         Alloc.Allocate(totalSizeToAlloc<GlobalTypeMember *>(Targets.size()),
317                        alignof(ICallBranchFunnel)));
318     Call->CI = CI;
319     Call->UniqueId = UniqueId;
320     Call->NTargets = Targets.size();
321     std::uninitialized_copy(Targets.begin(), Targets.end(),
322                             Call->getTrailingObjects<GlobalTypeMember *>());
323     return Call;
324   }
325 
326   CallInst *CI;
targets__anon162e04710111::ICallBranchFunnel327   ArrayRef<GlobalTypeMember *> targets() const {
328     return makeArrayRef(getTrailingObjects<GlobalTypeMember *>(), NTargets);
329   }
330 
331   unsigned UniqueId;
332 
333 private:
334   size_t NTargets;
335 };
336 
337 struct ScopedSaveAliaseesAndUsed {
338   Module &M;
339   SmallPtrSet<GlobalValue *, 16> Used, CompilerUsed;
340   std::vector<std::pair<GlobalIndirectSymbol *, Function *>> FunctionAliases;
341 
ScopedSaveAliaseesAndUsed__anon162e04710111::ScopedSaveAliaseesAndUsed342   ScopedSaveAliaseesAndUsed(Module &M) : M(M) {
343     // The users of this class want to replace all function references except
344     // for aliases and llvm.used/llvm.compiler.used with references to a jump
345     // table. We avoid replacing aliases in order to avoid introducing a double
346     // indirection (or an alias pointing to a declaration in ThinLTO mode), and
347     // we avoid replacing llvm.used/llvm.compiler.used because these global
348     // variables describe properties of the global, not the jump table (besides,
349     // offseted references to the jump table in llvm.used are invalid).
350     // Unfortunately, LLVM doesn't have a "RAUW except for these (possibly
351     // indirect) users", so what we do is save the list of globals referenced by
352     // llvm.used/llvm.compiler.used and aliases, erase the used lists, let RAUW
353     // replace the aliasees and then set them back to their original values at
354     // the end.
355     if (GlobalVariable *GV = collectUsedGlobalVariables(M, Used, false))
356       GV->eraseFromParent();
357     if (GlobalVariable *GV = collectUsedGlobalVariables(M, CompilerUsed, true))
358       GV->eraseFromParent();
359 
360     for (auto &GIS : concat<GlobalIndirectSymbol>(M.aliases(), M.ifuncs())) {
361       // FIXME: This should look past all aliases not just interposable ones,
362       // see discussion on D65118.
363       if (auto *F =
364               dyn_cast<Function>(GIS.getIndirectSymbol()->stripPointerCasts()))
365         FunctionAliases.push_back({&GIS, F});
366     }
367   }
368 
~ScopedSaveAliaseesAndUsed__anon162e04710111::ScopedSaveAliaseesAndUsed369   ~ScopedSaveAliaseesAndUsed() {
370     appendToUsed(M, std::vector<GlobalValue *>(Used.begin(), Used.end()));
371     appendToCompilerUsed(M, std::vector<GlobalValue *>(CompilerUsed.begin(),
372                                                        CompilerUsed.end()));
373 
374     for (auto P : FunctionAliases)
375       P.first->setIndirectSymbol(
376           ConstantExpr::getBitCast(P.second, P.first->getType()));
377   }
378 };
379 
380 class LowerTypeTestsModule {
381   Module &M;
382 
383   ModuleSummaryIndex *ExportSummary;
384   const ModuleSummaryIndex *ImportSummary;
385   // Set when the client has invoked this to simply drop all type test assume
386   // sequences.
387   bool DropTypeTests;
388 
389   Triple::ArchType Arch;
390   Triple::OSType OS;
391   Triple::ObjectFormatType ObjectFormat;
392 
393   IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
394   IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
395   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
396   ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
397   IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
398   PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
399   IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
400   IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);
401 
402   // Indirect function call index assignment counter for WebAssembly
403   uint64_t IndirectIndex = 1;
404 
405   // Mapping from type identifiers to the call sites that test them, as well as
406   // whether the type identifier needs to be exported to ThinLTO backends as
407   // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
408   struct TypeIdUserInfo {
409     std::vector<CallInst *> CallSites;
410     bool IsExported = false;
411   };
412   DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;
413 
414   /// This structure describes how to lower type tests for a particular type
415   /// identifier. It is either built directly from the global analysis (during
416   /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
417   /// identifier summaries and external symbol references (in ThinLTO backends).
418   struct TypeIdLowering {
419     TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;
420 
421     /// All except Unsat: the start address within the combined global.
422     Constant *OffsetedGlobal;
423 
424     /// ByteArray, Inline, AllOnes: log2 of the required global alignment
425     /// relative to the start address.
426     Constant *AlignLog2;
427 
428     /// ByteArray, Inline, AllOnes: one less than the size of the memory region
429     /// covering members of this type identifier as a multiple of 2^AlignLog2.
430     Constant *SizeM1;
431 
432     /// ByteArray: the byte array to test the address against.
433     Constant *TheByteArray;
434 
435     /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
436     Constant *BitMask;
437 
438     /// Inline: the bit mask to test the address against.
439     Constant *InlineBits;
440   };
441 
442   std::vector<ByteArrayInfo> ByteArrayInfos;
443 
444   Function *WeakInitializerFn = nullptr;
445 
446   bool shouldExportConstantsAsAbsoluteSymbols();
447   uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
448   TypeIdLowering importTypeId(StringRef TypeId);
449   void importTypeTest(CallInst *CI);
450   void importFunction(Function *F, bool isJumpTableCanonical,
451                       std::vector<GlobalAlias *> &AliasesToErase);
452 
453   BitSetInfo
454   buildBitSet(Metadata *TypeId,
455               const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
456   ByteArrayInfo *createByteArray(BitSetInfo &BSI);
457   void allocateByteArrays();
458   Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
459                           Value *BitOffset);
460   void lowerTypeTestCalls(
461       ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
462       const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
463   Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
464                            const TypeIdLowering &TIL);
465 
466   void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
467                                        ArrayRef<GlobalTypeMember *> Globals);
468   unsigned getJumpTableEntrySize();
469   Type *getJumpTableEntryType();
470   void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
471                             Triple::ArchType JumpTableArch,
472                             SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
473   void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
474   void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
475                                  ArrayRef<GlobalTypeMember *> Functions);
476   void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
477                                        ArrayRef<GlobalTypeMember *> Functions);
478   void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
479                                      ArrayRef<GlobalTypeMember *> Functions);
480   void
481   buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
482                               ArrayRef<GlobalTypeMember *> Globals,
483                               ArrayRef<ICallBranchFunnel *> ICallBranchFunnels);
484 
485   void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT,
486                                               bool IsJumpTableCanonical);
487   void moveInitializerToModuleConstructor(GlobalVariable *GV);
488   void findGlobalVariableUsersOf(Constant *C,
489                                  SmallSetVector<GlobalVariable *, 8> &Out);
490 
491   void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);
492 
493   /// replaceCfiUses - Go through the uses list for this definition
494   /// and make each use point to "V" instead of "this" when the use is outside
495   /// the block. 'This's use list is expected to have at least one element.
496   /// Unlike replaceAllUsesWith this function skips blockaddr and direct call
497   /// uses.
498   void replaceCfiUses(Function *Old, Value *New, bool IsJumpTableCanonical);
499 
500   /// replaceDirectCalls - Go through the uses list for this definition and
501   /// replace each use, which is a direct function call.
502   void replaceDirectCalls(Value *Old, Value *New);
503 
504 public:
505   LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
506                        const ModuleSummaryIndex *ImportSummary,
507                        bool DropTypeTests);
508 
509   bool lower();
510 
511   // Lower the module using the action and summary passed as command line
512   // arguments. For testing purposes only.
513   static bool runForTesting(Module &M);
514 };
515 
516 struct LowerTypeTests : public ModulePass {
517   static char ID;
518 
519   bool UseCommandLine = false;
520 
521   ModuleSummaryIndex *ExportSummary;
522   const ModuleSummaryIndex *ImportSummary;
523   bool DropTypeTests;
524 
LowerTypeTests__anon162e04710111::LowerTypeTests525   LowerTypeTests() : ModulePass(ID), UseCommandLine(true) {
526     initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
527   }
528 
LowerTypeTests__anon162e04710111::LowerTypeTests529   LowerTypeTests(ModuleSummaryIndex *ExportSummary,
530                  const ModuleSummaryIndex *ImportSummary, bool DropTypeTests)
531       : ModulePass(ID), ExportSummary(ExportSummary),
532         ImportSummary(ImportSummary), DropTypeTests(DropTypeTests) {
533     initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
534   }
535 
runOnModule__anon162e04710111::LowerTypeTests536   bool runOnModule(Module &M) override {
537     if (UseCommandLine)
538       return LowerTypeTestsModule::runForTesting(M);
539     return LowerTypeTestsModule(M, ExportSummary, ImportSummary, DropTypeTests)
540         .lower();
541   }
542 };
543 
544 } // end anonymous namespace
545 
546 char LowerTypeTests::ID = 0;
547 
548 INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
549                 false)
550 
551 ModulePass *
createLowerTypeTestsPass(ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary,bool DropTypeTests)552 llvm::createLowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
553                                const ModuleSummaryIndex *ImportSummary,
554                                bool DropTypeTests) {
555   return new LowerTypeTests(ExportSummary, ImportSummary, DropTypeTests);
556 }
557 
558 /// Build a bit set for TypeId using the object layouts in
559 /// GlobalLayout.
buildBitSet(Metadata * TypeId,const DenseMap<GlobalTypeMember *,uint64_t> & GlobalLayout)560 BitSetInfo LowerTypeTestsModule::buildBitSet(
561     Metadata *TypeId,
562     const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
563   BitSetBuilder BSB;
564 
565   // Compute the byte offset of each address associated with this type
566   // identifier.
567   for (auto &GlobalAndOffset : GlobalLayout) {
568     for (MDNode *Type : GlobalAndOffset.first->types()) {
569       if (Type->getOperand(1) != TypeId)
570         continue;
571       uint64_t Offset =
572           cast<ConstantInt>(
573               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
574               ->getZExtValue();
575       BSB.addOffset(GlobalAndOffset.second + Offset);
576     }
577   }
578 
579   return BSB.build();
580 }
581 
582 /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
583 /// Bits. This pattern matches to the bt instruction on x86.
createMaskedBitTest(IRBuilder<> & B,Value * Bits,Value * BitOffset)584 static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
585                                   Value *BitOffset) {
586   auto BitsType = cast<IntegerType>(Bits->getType());
587   unsigned BitWidth = BitsType->getBitWidth();
588 
589   BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
590   Value *BitIndex =
591       B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
592   Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
593   Value *MaskedBits = B.CreateAnd(Bits, BitMask);
594   return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
595 }
596 
createByteArray(BitSetInfo & BSI)597 ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
598   // Create globals to stand in for byte arrays and masks. These never actually
599   // get initialized, we RAUW and erase them later in allocateByteArrays() once
600   // we know the offset and mask to use.
601   auto ByteArrayGlobal = new GlobalVariable(
602       M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
603   auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
604                                        GlobalValue::PrivateLinkage, nullptr);
605 
606   ByteArrayInfos.emplace_back();
607   ByteArrayInfo *BAI = &ByteArrayInfos.back();
608 
609   BAI->Bits = BSI.Bits;
610   BAI->BitSize = BSI.BitSize;
611   BAI->ByteArray = ByteArrayGlobal;
612   BAI->MaskGlobal = MaskGlobal;
613   return BAI;
614 }
615 
allocateByteArrays()616 void LowerTypeTestsModule::allocateByteArrays() {
617   llvm::stable_sort(ByteArrayInfos,
618                     [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
619                       return BAI1.BitSize > BAI2.BitSize;
620                     });
621 
622   std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
623 
624   ByteArrayBuilder BAB;
625   for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
626     ByteArrayInfo *BAI = &ByteArrayInfos[I];
627 
628     uint8_t Mask;
629     BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
630 
631     BAI->MaskGlobal->replaceAllUsesWith(
632         ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
633     BAI->MaskGlobal->eraseFromParent();
634     if (BAI->MaskPtr)
635       *BAI->MaskPtr = Mask;
636   }
637 
638   Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
639   auto ByteArray =
640       new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
641                          GlobalValue::PrivateLinkage, ByteArrayConst);
642 
643   for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
644     ByteArrayInfo *BAI = &ByteArrayInfos[I];
645 
646     Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
647                         ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
648     Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
649         ByteArrayConst->getType(), ByteArray, Idxs);
650 
651     // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
652     // that the pc-relative displacement is folded into the lea instead of the
653     // test instruction getting another displacement.
654     GlobalAlias *Alias = GlobalAlias::create(
655         Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
656     BAI->ByteArray->replaceAllUsesWith(Alias);
657     BAI->ByteArray->eraseFromParent();
658   }
659 
660   ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
661                       BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
662                       BAB.BitAllocs[6] + BAB.BitAllocs[7];
663   ByteArraySizeBytes = BAB.Bytes.size();
664 }
665 
666 /// Build a test that bit BitOffset is set in the type identifier that was
667 /// lowered to TIL, which must be either an Inline or a ByteArray.
createBitSetTest(IRBuilder<> & B,const TypeIdLowering & TIL,Value * BitOffset)668 Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
669                                               const TypeIdLowering &TIL,
670                                               Value *BitOffset) {
671   if (TIL.TheKind == TypeTestResolution::Inline) {
672     // If the bit set is sufficiently small, we can avoid a load by bit testing
673     // a constant.
674     return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
675   } else {
676     Constant *ByteArray = TIL.TheByteArray;
677     if (AvoidReuse && !ImportSummary) {
678       // Each use of the byte array uses a different alias. This makes the
679       // backend less likely to reuse previously computed byte array addresses,
680       // improving the security of the CFI mechanism based on this pass.
681       // This won't work when importing because TheByteArray is external.
682       ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
683                                       "bits_use", ByteArray, &M);
684     }
685 
686     Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
687     Value *Byte = B.CreateLoad(Int8Ty, ByteAddr);
688 
689     Value *ByteAndMask =
690         B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
691     return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
692   }
693 }
694 
isKnownTypeIdMember(Metadata * TypeId,const DataLayout & DL,Value * V,uint64_t COffset)695 static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
696                                 Value *V, uint64_t COffset) {
697   if (auto GV = dyn_cast<GlobalObject>(V)) {
698     SmallVector<MDNode *, 2> Types;
699     GV->getMetadata(LLVMContext::MD_type, Types);
700     for (MDNode *Type : Types) {
701       if (Type->getOperand(1) != TypeId)
702         continue;
703       uint64_t Offset =
704           cast<ConstantInt>(
705               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
706               ->getZExtValue();
707       if (COffset == Offset)
708         return true;
709     }
710     return false;
711   }
712 
713   if (auto GEP = dyn_cast<GEPOperator>(V)) {
714     APInt APOffset(DL.getPointerSizeInBits(0), 0);
715     bool Result = GEP->accumulateConstantOffset(DL, APOffset);
716     if (!Result)
717       return false;
718     COffset += APOffset.getZExtValue();
719     return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
720   }
721 
722   if (auto Op = dyn_cast<Operator>(V)) {
723     if (Op->getOpcode() == Instruction::BitCast)
724       return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);
725 
726     if (Op->getOpcode() == Instruction::Select)
727       return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
728              isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
729   }
730 
731   return false;
732 }
733 
734 /// Lower a llvm.type.test call to its implementation. Returns the value to
735 /// replace the call with.
lowerTypeTestCall(Metadata * TypeId,CallInst * CI,const TypeIdLowering & TIL)736 Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
737                                                const TypeIdLowering &TIL) {
738   // Delay lowering if the resolution is currently unknown.
739   if (TIL.TheKind == TypeTestResolution::Unknown)
740     return nullptr;
741   if (TIL.TheKind == TypeTestResolution::Unsat)
742     return ConstantInt::getFalse(M.getContext());
743 
744   Value *Ptr = CI->getArgOperand(0);
745   const DataLayout &DL = M.getDataLayout();
746   if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
747     return ConstantInt::getTrue(M.getContext());
748 
749   BasicBlock *InitialBB = CI->getParent();
750 
751   IRBuilder<> B(CI);
752 
753   Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
754 
755   Constant *OffsetedGlobalAsInt =
756       ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
757   if (TIL.TheKind == TypeTestResolution::Single)
758     return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
759 
760   Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
761 
762   // We need to check that the offset both falls within our range and is
763   // suitably aligned. We can check both properties at the same time by
764   // performing a right rotate by log2(alignment) followed by an integer
765   // comparison against the bitset size. The rotate will move the lower
766   // order bits that need to be zero into the higher order bits of the
767   // result, causing the comparison to fail if they are nonzero. The rotate
768   // also conveniently gives us a bit offset to use during the load from
769   // the bitset.
770   Value *OffsetSHR =
771       B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
772   Value *OffsetSHL = B.CreateShl(
773       PtrOffset, ConstantExpr::getZExt(
774                      ConstantExpr::getSub(
775                          ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
776                          TIL.AlignLog2),
777                      IntPtrTy));
778   Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
779 
780   Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);
781 
782   // If the bit set is all ones, testing against it is unnecessary.
783   if (TIL.TheKind == TypeTestResolution::AllOnes)
784     return OffsetInRange;
785 
786   // See if the intrinsic is used in the following common pattern:
787   //   br(llvm.type.test(...), thenbb, elsebb)
788   // where nothing happens between the type test and the br.
789   // If so, create slightly simpler IR.
790   if (CI->hasOneUse())
791     if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
792       if (CI->getNextNode() == Br) {
793         BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
794         BasicBlock *Else = Br->getSuccessor(1);
795         BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
796         NewBr->setMetadata(LLVMContext::MD_prof,
797                            Br->getMetadata(LLVMContext::MD_prof));
798         ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);
799 
800         // Update phis in Else resulting from InitialBB being split
801         for (auto &Phi : Else->phis())
802           Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);
803 
804         IRBuilder<> ThenB(CI);
805         return createBitSetTest(ThenB, TIL, BitOffset);
806       }
807 
808   IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));
809 
810   // Now that we know that the offset is in range and aligned, load the
811   // appropriate bit from the bitset.
812   Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);
813 
814   // The value we want is 0 if we came directly from the initial block
815   // (having failed the range or alignment checks), or the loaded bit if
816   // we came from the block in which we loaded it.
817   B.SetInsertPoint(CI);
818   PHINode *P = B.CreatePHI(Int1Ty, 2);
819   P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
820   P->addIncoming(Bit, ThenB.GetInsertBlock());
821   return P;
822 }
823 
824 /// Given a disjoint set of type identifiers and globals, lay out the globals,
825 /// build the bit sets and lower the llvm.type.test calls.
buildBitSetsFromGlobalVariables(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Globals)826 void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
827     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
828   // Build a new global with the combined contents of the referenced globals.
829   // This global is a struct whose even-indexed elements contain the original
830   // contents of the referenced globals and whose odd-indexed elements contain
831   // any padding required to align the next element to the next power of 2 plus
832   // any additional padding required to meet its alignment requirements.
833   std::vector<Constant *> GlobalInits;
834   const DataLayout &DL = M.getDataLayout();
835   DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
836   Align MaxAlign;
837   uint64_t CurOffset = 0;
838   uint64_t DesiredPadding = 0;
839   for (GlobalTypeMember *G : Globals) {
840     auto *GV = cast<GlobalVariable>(G->getGlobal());
841     Align Alignment =
842         DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
843     MaxAlign = std::max(MaxAlign, Alignment);
844     uint64_t GVOffset = alignTo(CurOffset + DesiredPadding, Alignment);
845     GlobalLayout[G] = GVOffset;
846     if (GVOffset != 0) {
847       uint64_t Padding = GVOffset - CurOffset;
848       GlobalInits.push_back(
849           ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
850     }
851 
852     GlobalInits.push_back(GV->getInitializer());
853     uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
854     CurOffset = GVOffset + InitSize;
855 
856     // Compute the amount of padding that we'd like for the next element.
857     DesiredPadding = NextPowerOf2(InitSize - 1) - InitSize;
858 
859     // Experiments of different caps with Chromium on both x64 and ARM64
860     // have shown that the 32-byte cap generates the smallest binary on
861     // both platforms while different caps yield similar performance.
862     // (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
863     if (DesiredPadding > 32)
864       DesiredPadding = alignTo(InitSize, 32) - InitSize;
865   }
866 
867   Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
868   auto *CombinedGlobal =
869       new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
870                          GlobalValue::PrivateLinkage, NewInit);
871   CombinedGlobal->setAlignment(MaxAlign);
872 
873   StructType *NewTy = cast<StructType>(NewInit->getType());
874   lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
875 
876   // Build aliases pointing to offsets into the combined global for each
877   // global from which we built the combined global, and replace references
878   // to the original globals with references to the aliases.
879   for (unsigned I = 0; I != Globals.size(); ++I) {
880     GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());
881 
882     // Multiply by 2 to account for padding elements.
883     Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
884                                       ConstantInt::get(Int32Ty, I * 2)};
885     Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
886         NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
887     assert(GV->getType()->getAddressSpace() == 0);
888     GlobalAlias *GAlias =
889         GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
890                             "", CombinedGlobalElemPtr, &M);
891     GAlias->setVisibility(GV->getVisibility());
892     GAlias->takeName(GV);
893     GV->replaceAllUsesWith(GAlias);
894     GV->eraseFromParent();
895   }
896 }
897 
shouldExportConstantsAsAbsoluteSymbols()898 bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
899   return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
900          ObjectFormat == Triple::ELF;
901 }
902 
903 /// Export the given type identifier so that ThinLTO backends may import it.
904 /// Type identifiers are exported by adding coarse-grained information about how
905 /// to test the type identifier to the summary, and creating symbols in the
906 /// object file (aliases and absolute symbols) containing fine-grained
907 /// information about the type identifier.
908 ///
909 /// Returns a pointer to the location in which to store the bitmask, if
910 /// applicable.
exportTypeId(StringRef TypeId,const TypeIdLowering & TIL)911 uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
912                                             const TypeIdLowering &TIL) {
913   TypeTestResolution &TTRes =
914       ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
915   TTRes.TheKind = TIL.TheKind;
916 
917   auto ExportGlobal = [&](StringRef Name, Constant *C) {
918     GlobalAlias *GA =
919         GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
920                             "__typeid_" + TypeId + "_" + Name, C, &M);
921     GA->setVisibility(GlobalValue::HiddenVisibility);
922   };
923 
924   auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
925     if (shouldExportConstantsAsAbsoluteSymbols())
926       ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
927     else
928       Storage = cast<ConstantInt>(C)->getZExtValue();
929   };
930 
931   if (TIL.TheKind != TypeTestResolution::Unsat)
932     ExportGlobal("global_addr", TIL.OffsetedGlobal);
933 
934   if (TIL.TheKind == TypeTestResolution::ByteArray ||
935       TIL.TheKind == TypeTestResolution::Inline ||
936       TIL.TheKind == TypeTestResolution::AllOnes) {
937     ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
938     ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);
939 
940     uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
941     if (TIL.TheKind == TypeTestResolution::Inline)
942       TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
943     else
944       TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
945   }
946 
947   if (TIL.TheKind == TypeTestResolution::ByteArray) {
948     ExportGlobal("byte_array", TIL.TheByteArray);
949     if (shouldExportConstantsAsAbsoluteSymbols())
950       ExportGlobal("bit_mask", TIL.BitMask);
951     else
952       return &TTRes.BitMask;
953   }
954 
955   if (TIL.TheKind == TypeTestResolution::Inline)
956     ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);
957 
958   return nullptr;
959 }
960 
961 LowerTypeTestsModule::TypeIdLowering
importTypeId(StringRef TypeId)962 LowerTypeTestsModule::importTypeId(StringRef TypeId) {
963   const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
964   if (!TidSummary)
965     return {}; // Unsat: no globals match this type id.
966   const TypeTestResolution &TTRes = TidSummary->TTRes;
967 
968   TypeIdLowering TIL;
969   TIL.TheKind = TTRes.TheKind;
970 
971   auto ImportGlobal = [&](StringRef Name) {
972     // Give the global a type of length 0 so that it is not assumed not to alias
973     // with any other global.
974     Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
975                                       Int8Arr0Ty);
976     if (auto *GV = dyn_cast<GlobalVariable>(C))
977       GV->setVisibility(GlobalValue::HiddenVisibility);
978     C = ConstantExpr::getBitCast(C, Int8PtrTy);
979     return C;
980   };
981 
982   auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
983                             Type *Ty) {
984     if (!shouldExportConstantsAsAbsoluteSymbols()) {
985       Constant *C =
986           ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
987       if (!isa<IntegerType>(Ty))
988         C = ConstantExpr::getIntToPtr(C, Ty);
989       return C;
990     }
991 
992     Constant *C = ImportGlobal(Name);
993     auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
994     if (isa<IntegerType>(Ty))
995       C = ConstantExpr::getPtrToInt(C, Ty);
996     if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
997       return C;
998 
999     auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1000       auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1001       auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1002       GV->setMetadata(LLVMContext::MD_absolute_symbol,
1003                       MDNode::get(M.getContext(), {MinC, MaxC}));
1004     };
1005     if (AbsWidth == IntPtrTy->getBitWidth())
1006       SetAbsRange(~0ull, ~0ull); // Full set.
1007     else
1008       SetAbsRange(0, 1ull << AbsWidth);
1009     return C;
1010   };
1011 
1012   if (TIL.TheKind != TypeTestResolution::Unsat)
1013     TIL.OffsetedGlobal = ImportGlobal("global_addr");
1014 
1015   if (TIL.TheKind == TypeTestResolution::ByteArray ||
1016       TIL.TheKind == TypeTestResolution::Inline ||
1017       TIL.TheKind == TypeTestResolution::AllOnes) {
1018     TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
1019     TIL.SizeM1 =
1020         ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
1021   }
1022 
1023   if (TIL.TheKind == TypeTestResolution::ByteArray) {
1024     TIL.TheByteArray = ImportGlobal("byte_array");
1025     TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
1026   }
1027 
1028   if (TIL.TheKind == TypeTestResolution::Inline)
1029     TIL.InlineBits = ImportConstant(
1030         "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
1031         TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);
1032 
1033   return TIL;
1034 }
1035 
importTypeTest(CallInst * CI)1036 void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
1037   auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
1038   if (!TypeIdMDVal)
1039     report_fatal_error("Second argument of llvm.type.test must be metadata");
1040 
1041   auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
1042   // If this is a local unpromoted type, which doesn't have a metadata string,
1043   // treat as Unknown and delay lowering, so that we can still utilize it for
1044   // later optimizations.
1045   if (!TypeIdStr)
1046     return;
1047 
1048   TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
1049   Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
1050   if (Lowered) {
1051     CI->replaceAllUsesWith(Lowered);
1052     CI->eraseFromParent();
1053   }
1054 }
1055 
1056 // ThinLTO backend: the function F has a jump table entry; update this module
1057 // accordingly. isJumpTableCanonical describes the type of the jump table entry.
importFunction(Function * F,bool isJumpTableCanonical,std::vector<GlobalAlias * > & AliasesToErase)1058 void LowerTypeTestsModule::importFunction(
1059     Function *F, bool isJumpTableCanonical,
1060     std::vector<GlobalAlias *> &AliasesToErase) {
1061   assert(F->getType()->getAddressSpace() == 0);
1062 
1063   GlobalValue::VisibilityTypes Visibility = F->getVisibility();
1064   std::string Name = std::string(F->getName());
1065 
1066   if (F->isDeclarationForLinker() && isJumpTableCanonical) {
1067     // Non-dso_local functions may be overriden at run time,
1068     // don't short curcuit them
1069     if (F->isDSOLocal()) {
1070       Function *RealF = Function::Create(F->getFunctionType(),
1071                                          GlobalValue::ExternalLinkage,
1072                                          F->getAddressSpace(),
1073                                          Name + ".cfi", &M);
1074       RealF->setVisibility(GlobalVariable::HiddenVisibility);
1075       replaceDirectCalls(F, RealF);
1076     }
1077     return;
1078   }
1079 
1080   Function *FDecl;
1081   if (!isJumpTableCanonical) {
1082     // Either a declaration of an external function or a reference to a locally
1083     // defined jump table.
1084     FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1085                              F->getAddressSpace(), Name + ".cfi_jt", &M);
1086     FDecl->setVisibility(GlobalValue::HiddenVisibility);
1087   } else {
1088     F->setName(Name + ".cfi");
1089     F->setLinkage(GlobalValue::ExternalLinkage);
1090     FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1091                              F->getAddressSpace(), Name, &M);
1092     FDecl->setVisibility(Visibility);
1093     Visibility = GlobalValue::HiddenVisibility;
1094 
1095     // Delete aliases pointing to this function, they'll be re-created in the
1096     // merged output. Don't do it yet though because ScopedSaveAliaseesAndUsed
1097     // will want to reset the aliasees first.
1098     for (auto &U : F->uses()) {
1099       if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
1100         Function *AliasDecl = Function::Create(
1101             F->getFunctionType(), GlobalValue::ExternalLinkage,
1102             F->getAddressSpace(), "", &M);
1103         AliasDecl->takeName(A);
1104         A->replaceAllUsesWith(AliasDecl);
1105         AliasesToErase.push_back(A);
1106       }
1107     }
1108   }
1109 
1110   if (F->hasExternalWeakLinkage())
1111     replaceWeakDeclarationWithJumpTablePtr(F, FDecl, isJumpTableCanonical);
1112   else
1113     replaceCfiUses(F, FDecl, isJumpTableCanonical);
1114 
1115   // Set visibility late because it's used in replaceCfiUses() to determine
1116   // whether uses need to to be replaced.
1117   F->setVisibility(Visibility);
1118 }
1119 
lowerTypeTestCalls(ArrayRef<Metadata * > TypeIds,Constant * CombinedGlobalAddr,const DenseMap<GlobalTypeMember *,uint64_t> & GlobalLayout)1120 void LowerTypeTestsModule::lowerTypeTestCalls(
1121     ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
1122     const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
1123   CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);
1124 
1125   // For each type identifier in this disjoint set...
1126   for (Metadata *TypeId : TypeIds) {
1127     // Build the bitset.
1128     BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
1129     LLVM_DEBUG({
1130       if (auto MDS = dyn_cast<MDString>(TypeId))
1131         dbgs() << MDS->getString() << ": ";
1132       else
1133         dbgs() << "<unnamed>: ";
1134       BSI.print(dbgs());
1135     });
1136 
1137     ByteArrayInfo *BAI = nullptr;
1138     TypeIdLowering TIL;
1139     TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
1140         Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
1141     TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
1142     TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
1143     if (BSI.isAllOnes()) {
1144       TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
1145                                        : TypeTestResolution::AllOnes;
1146     } else if (BSI.BitSize <= 64) {
1147       TIL.TheKind = TypeTestResolution::Inline;
1148       uint64_t InlineBits = 0;
1149       for (auto Bit : BSI.Bits)
1150         InlineBits |= uint64_t(1) << Bit;
1151       if (InlineBits == 0)
1152         TIL.TheKind = TypeTestResolution::Unsat;
1153       else
1154         TIL.InlineBits = ConstantInt::get(
1155             (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
1156     } else {
1157       TIL.TheKind = TypeTestResolution::ByteArray;
1158       ++NumByteArraysCreated;
1159       BAI = createByteArray(BSI);
1160       TIL.TheByteArray = BAI->ByteArray;
1161       TIL.BitMask = BAI->MaskGlobal;
1162     }
1163 
1164     TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];
1165 
1166     if (TIUI.IsExported) {
1167       uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
1168       if (BAI)
1169         BAI->MaskPtr = MaskPtr;
1170     }
1171 
1172     // Lower each call to llvm.type.test for this type identifier.
1173     for (CallInst *CI : TIUI.CallSites) {
1174       ++NumTypeTestCallsLowered;
1175       Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
1176       if (Lowered) {
1177         CI->replaceAllUsesWith(Lowered);
1178         CI->eraseFromParent();
1179       }
1180     }
1181   }
1182 }
1183 
verifyTypeMDNode(GlobalObject * GO,MDNode * Type)1184 void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
1185   if (Type->getNumOperands() != 2)
1186     report_fatal_error("All operands of type metadata must have 2 elements");
1187 
1188   if (GO->isThreadLocal())
1189     report_fatal_error("Bit set element may not be thread-local");
1190   if (isa<GlobalVariable>(GO) && GO->hasSection())
1191     report_fatal_error(
1192         "A member of a type identifier may not have an explicit section");
1193 
1194   // FIXME: We previously checked that global var member of a type identifier
1195   // must be a definition, but the IR linker may leave type metadata on
1196   // declarations. We should restore this check after fixing PR31759.
1197 
1198   auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
1199   if (!OffsetConstMD)
1200     report_fatal_error("Type offset must be a constant");
1201   auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
1202   if (!OffsetInt)
1203     report_fatal_error("Type offset must be an integer constant");
1204 }
1205 
1206 static const unsigned kX86JumpTableEntrySize = 8;
1207 static const unsigned kARMJumpTableEntrySize = 4;
1208 
getJumpTableEntrySize()1209 unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
1210   switch (Arch) {
1211     case Triple::x86:
1212     case Triple::x86_64:
1213       return kX86JumpTableEntrySize;
1214     case Triple::arm:
1215     case Triple::thumb:
1216     case Triple::aarch64:
1217       return kARMJumpTableEntrySize;
1218     default:
1219       report_fatal_error("Unsupported architecture for jump tables");
1220   }
1221 }
1222 
1223 // Create a jump table entry for the target. This consists of an instruction
1224 // sequence containing a relative branch to Dest. Appends inline asm text,
1225 // constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
createJumpTableEntry(raw_ostream & AsmOS,raw_ostream & ConstraintOS,Triple::ArchType JumpTableArch,SmallVectorImpl<Value * > & AsmArgs,Function * Dest)1226 void LowerTypeTestsModule::createJumpTableEntry(
1227     raw_ostream &AsmOS, raw_ostream &ConstraintOS,
1228     Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
1229     Function *Dest) {
1230   unsigned ArgIndex = AsmArgs.size();
1231 
1232   if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
1233     AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
1234     AsmOS << "int3\nint3\nint3\n";
1235   } else if (JumpTableArch == Triple::arm || JumpTableArch == Triple::aarch64) {
1236     AsmOS << "b $" << ArgIndex << "\n";
1237   } else if (JumpTableArch == Triple::thumb) {
1238     AsmOS << "b.w $" << ArgIndex << "\n";
1239   } else {
1240     report_fatal_error("Unsupported architecture for jump tables");
1241   }
1242 
1243   ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
1244   AsmArgs.push_back(Dest);
1245 }
1246 
getJumpTableEntryType()1247 Type *LowerTypeTestsModule::getJumpTableEntryType() {
1248   return ArrayType::get(Int8Ty, getJumpTableEntrySize());
1249 }
1250 
1251 /// Given a disjoint set of type identifiers and functions, build the bit sets
1252 /// and lower the llvm.type.test calls, architecture dependently.
buildBitSetsFromFunctions(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1253 void LowerTypeTestsModule::buildBitSetsFromFunctions(
1254     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1255   if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
1256       Arch == Triple::thumb || Arch == Triple::aarch64)
1257     buildBitSetsFromFunctionsNative(TypeIds, Functions);
1258   else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
1259     buildBitSetsFromFunctionsWASM(TypeIds, Functions);
1260   else
1261     report_fatal_error("Unsupported architecture for jump tables");
1262 }
1263 
moveInitializerToModuleConstructor(GlobalVariable * GV)1264 void LowerTypeTestsModule::moveInitializerToModuleConstructor(
1265     GlobalVariable *GV) {
1266   if (WeakInitializerFn == nullptr) {
1267     WeakInitializerFn = Function::Create(
1268         FunctionType::get(Type::getVoidTy(M.getContext()),
1269                           /* IsVarArg */ false),
1270         GlobalValue::InternalLinkage,
1271         M.getDataLayout().getProgramAddressSpace(),
1272         "__cfi_global_var_init", &M);
1273     BasicBlock *BB =
1274         BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
1275     ReturnInst::Create(M.getContext(), BB);
1276     WeakInitializerFn->setSection(
1277         ObjectFormat == Triple::MachO
1278             ? "__TEXT,__StaticInit,regular,pure_instructions"
1279             : ".text.startup");
1280     // This code is equivalent to relocation application, and should run at the
1281     // earliest possible time (i.e. with the highest priority).
1282     appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
1283   }
1284 
1285   IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
1286   GV->setConstant(false);
1287   IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlign());
1288   GV->setInitializer(Constant::getNullValue(GV->getValueType()));
1289 }
1290 
findGlobalVariableUsersOf(Constant * C,SmallSetVector<GlobalVariable *,8> & Out)1291 void LowerTypeTestsModule::findGlobalVariableUsersOf(
1292     Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
1293   for (auto *U : C->users()){
1294     if (auto *GV = dyn_cast<GlobalVariable>(U))
1295       Out.insert(GV);
1296     else if (auto *C2 = dyn_cast<Constant>(U))
1297       findGlobalVariableUsersOf(C2, Out);
1298   }
1299 }
1300 
1301 // Replace all uses of F with (F ? JT : 0).
replaceWeakDeclarationWithJumpTablePtr(Function * F,Constant * JT,bool IsJumpTableCanonical)1302 void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
1303     Function *F, Constant *JT, bool IsJumpTableCanonical) {
1304   // The target expression can not appear in a constant initializer on most
1305   // (all?) targets. Switch to a runtime initializer.
1306   SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
1307   findGlobalVariableUsersOf(F, GlobalVarUsers);
1308   for (auto GV : GlobalVarUsers)
1309     moveInitializerToModuleConstructor(GV);
1310 
1311   // Can not RAUW F with an expression that uses F. Replace with a temporary
1312   // placeholder first.
1313   Function *PlaceholderFn =
1314       Function::Create(cast<FunctionType>(F->getValueType()),
1315                        GlobalValue::ExternalWeakLinkage,
1316                        F->getAddressSpace(), "", &M);
1317   replaceCfiUses(F, PlaceholderFn, IsJumpTableCanonical);
1318 
1319   Constant *Target = ConstantExpr::getSelect(
1320       ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
1321                             Constant::getNullValue(F->getType())),
1322       JT, Constant::getNullValue(F->getType()));
1323   PlaceholderFn->replaceAllUsesWith(Target);
1324   PlaceholderFn->eraseFromParent();
1325 }
1326 
isThumbFunction(Function * F,Triple::ArchType ModuleArch)1327 static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
1328   Attribute TFAttr = F->getFnAttribute("target-features");
1329   if (!TFAttr.hasAttribute(Attribute::None)) {
1330     SmallVector<StringRef, 6> Features;
1331     TFAttr.getValueAsString().split(Features, ',');
1332     for (StringRef Feature : Features) {
1333       if (Feature == "-thumb-mode")
1334         return false;
1335       else if (Feature == "+thumb-mode")
1336         return true;
1337     }
1338   }
1339 
1340   return ModuleArch == Triple::thumb;
1341 }
1342 
1343 // Each jump table must be either ARM or Thumb as a whole for the bit-test math
1344 // to work. Pick one that matches the majority of members to minimize interop
1345 // veneers inserted by the linker.
1346 static Triple::ArchType
selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember * > Functions,Triple::ArchType ModuleArch)1347 selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
1348                            Triple::ArchType ModuleArch) {
1349   if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
1350     return ModuleArch;
1351 
1352   unsigned ArmCount = 0, ThumbCount = 0;
1353   for (const auto GTM : Functions) {
1354     if (!GTM->isJumpTableCanonical()) {
1355       // PLT stubs are always ARM.
1356       // FIXME: This is the wrong heuristic for non-canonical jump tables.
1357       ++ArmCount;
1358       continue;
1359     }
1360 
1361     Function *F = cast<Function>(GTM->getGlobal());
1362     ++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
1363   }
1364 
1365   return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
1366 }
1367 
createJumpTable(Function * F,ArrayRef<GlobalTypeMember * > Functions)1368 void LowerTypeTestsModule::createJumpTable(
1369     Function *F, ArrayRef<GlobalTypeMember *> Functions) {
1370   std::string AsmStr, ConstraintStr;
1371   raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
1372   SmallVector<Value *, 16> AsmArgs;
1373   AsmArgs.reserve(Functions.size() * 2);
1374 
1375   Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);
1376 
1377   for (unsigned I = 0; I != Functions.size(); ++I)
1378     createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
1379                          cast<Function>(Functions[I]->getGlobal()));
1380 
1381   // Align the whole table by entry size.
1382   F->setAlignment(Align(getJumpTableEntrySize()));
1383   // Skip prologue.
1384   // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
1385   // Luckily, this function does not get any prologue even without the
1386   // attribute.
1387   if (OS != Triple::Win32)
1388     F->addFnAttr(Attribute::Naked);
1389   if (JumpTableArch == Triple::arm)
1390     F->addFnAttr("target-features", "-thumb-mode");
1391   if (JumpTableArch == Triple::thumb) {
1392     F->addFnAttr("target-features", "+thumb-mode");
1393     // Thumb jump table assembly needs Thumb2. The following attribute is added
1394     // by Clang for -march=armv7.
1395     F->addFnAttr("target-cpu", "cortex-a8");
1396   }
1397   // Make sure we don't emit .eh_frame for this function.
1398   F->addFnAttr(Attribute::NoUnwind);
1399 
1400   BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
1401   IRBuilder<> IRB(BB);
1402 
1403   SmallVector<Type *, 16> ArgTypes;
1404   ArgTypes.reserve(AsmArgs.size());
1405   for (const auto &Arg : AsmArgs)
1406     ArgTypes.push_back(Arg->getType());
1407   InlineAsm *JumpTableAsm =
1408       InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
1409                      AsmOS.str(), ConstraintOS.str(),
1410                      /*hasSideEffects=*/true);
1411 
1412   IRB.CreateCall(JumpTableAsm, AsmArgs);
1413   IRB.CreateUnreachable();
1414 }
1415 
1416 /// Given a disjoint set of type identifiers and functions, build a jump table
1417 /// for the functions, build the bit sets and lower the llvm.type.test calls.
buildBitSetsFromFunctionsNative(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1418 void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
1419     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1420   // Unlike the global bitset builder, the function bitset builder cannot
1421   // re-arrange functions in a particular order and base its calculations on the
1422   // layout of the functions' entry points, as we have no idea how large a
1423   // particular function will end up being (the size could even depend on what
1424   // this pass does!) Instead, we build a jump table, which is a block of code
1425   // consisting of one branch instruction for each of the functions in the bit
1426   // set that branches to the target function, and redirect any taken function
1427   // addresses to the corresponding jump table entry. In the object file's
1428   // symbol table, the symbols for the target functions also refer to the jump
1429   // table entries, so that addresses taken outside the module will pass any
1430   // verification done inside the module.
1431   //
1432   // In more concrete terms, suppose we have three functions f, g, h which are
1433   // of the same type, and a function foo that returns their addresses:
1434   //
1435   // f:
1436   // mov 0, %eax
1437   // ret
1438   //
1439   // g:
1440   // mov 1, %eax
1441   // ret
1442   //
1443   // h:
1444   // mov 2, %eax
1445   // ret
1446   //
1447   // foo:
1448   // mov f, %eax
1449   // mov g, %edx
1450   // mov h, %ecx
1451   // ret
1452   //
1453   // We output the jump table as module-level inline asm string. The end result
1454   // will (conceptually) look like this:
1455   //
1456   // f = .cfi.jumptable
1457   // g = .cfi.jumptable + 4
1458   // h = .cfi.jumptable + 8
1459   // .cfi.jumptable:
1460   // jmp f.cfi  ; 5 bytes
1461   // int3       ; 1 byte
1462   // int3       ; 1 byte
1463   // int3       ; 1 byte
1464   // jmp g.cfi  ; 5 bytes
1465   // int3       ; 1 byte
1466   // int3       ; 1 byte
1467   // int3       ; 1 byte
1468   // jmp h.cfi  ; 5 bytes
1469   // int3       ; 1 byte
1470   // int3       ; 1 byte
1471   // int3       ; 1 byte
1472   //
1473   // f.cfi:
1474   // mov 0, %eax
1475   // ret
1476   //
1477   // g.cfi:
1478   // mov 1, %eax
1479   // ret
1480   //
1481   // h.cfi:
1482   // mov 2, %eax
1483   // ret
1484   //
1485   // foo:
1486   // mov f, %eax
1487   // mov g, %edx
1488   // mov h, %ecx
1489   // ret
1490   //
1491   // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
1492   // normal case the check can be carried out using the same kind of simple
1493   // arithmetic that we normally use for globals.
1494 
1495   // FIXME: find a better way to represent the jumptable in the IR.
1496   assert(!Functions.empty());
1497 
1498   // Build a simple layout based on the regular layout of jump tables.
1499   DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1500   unsigned EntrySize = getJumpTableEntrySize();
1501   for (unsigned I = 0; I != Functions.size(); ++I)
1502     GlobalLayout[Functions[I]] = I * EntrySize;
1503 
1504   Function *JumpTableFn =
1505       Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
1506                                          /* IsVarArg */ false),
1507                        GlobalValue::PrivateLinkage,
1508                        M.getDataLayout().getProgramAddressSpace(),
1509                        ".cfi.jumptable", &M);
1510   ArrayType *JumpTableType =
1511       ArrayType::get(getJumpTableEntryType(), Functions.size());
1512   auto JumpTable =
1513       ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));
1514 
1515   lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
1516 
1517   {
1518     ScopedSaveAliaseesAndUsed S(M);
1519 
1520     // Build aliases pointing to offsets into the jump table, and replace
1521     // references to the original functions with references to the aliases.
1522     for (unsigned I = 0; I != Functions.size(); ++I) {
1523       Function *F = cast<Function>(Functions[I]->getGlobal());
1524       bool IsJumpTableCanonical = Functions[I]->isJumpTableCanonical();
1525 
1526       Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
1527           ConstantExpr::getInBoundsGetElementPtr(
1528               JumpTableType, JumpTable,
1529               ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
1530                                    ConstantInt::get(IntPtrTy, I)}),
1531           F->getType());
1532       if (Functions[I]->isExported()) {
1533         if (IsJumpTableCanonical) {
1534           ExportSummary->cfiFunctionDefs().insert(std::string(F->getName()));
1535         } else {
1536           GlobalAlias *JtAlias = GlobalAlias::create(
1537               F->getValueType(), 0, GlobalValue::ExternalLinkage,
1538               F->getName() + ".cfi_jt", CombinedGlobalElemPtr, &M);
1539           JtAlias->setVisibility(GlobalValue::HiddenVisibility);
1540           ExportSummary->cfiFunctionDecls().insert(std::string(F->getName()));
1541         }
1542       }
1543       if (!IsJumpTableCanonical) {
1544         if (F->hasExternalWeakLinkage())
1545           replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr,
1546                                                  IsJumpTableCanonical);
1547         else
1548           replaceCfiUses(F, CombinedGlobalElemPtr, IsJumpTableCanonical);
1549       } else {
1550         assert(F->getType()->getAddressSpace() == 0);
1551 
1552         GlobalAlias *FAlias =
1553             GlobalAlias::create(F->getValueType(), 0, F->getLinkage(), "",
1554                                 CombinedGlobalElemPtr, &M);
1555         FAlias->setVisibility(F->getVisibility());
1556         FAlias->takeName(F);
1557         if (FAlias->hasName())
1558           F->setName(FAlias->getName() + ".cfi");
1559         replaceCfiUses(F, FAlias, IsJumpTableCanonical);
1560         if (!F->hasLocalLinkage())
1561           F->setVisibility(GlobalVariable::HiddenVisibility);
1562       }
1563     }
1564   }
1565 
1566   createJumpTable(JumpTableFn, Functions);
1567 }
1568 
1569 /// Assign a dummy layout using an incrementing counter, tag each function
1570 /// with its index represented as metadata, and lower each type test to an
1571 /// integer range comparison. During generation of the indirect function call
1572 /// table in the backend, it will assign the given indexes.
1573 /// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
1574 /// been finalized.
buildBitSetsFromFunctionsWASM(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1575 void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
1576     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1577   assert(!Functions.empty());
1578 
1579   // Build consecutive monotonic integer ranges for each call target set
1580   DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1581 
1582   for (GlobalTypeMember *GTM : Functions) {
1583     Function *F = cast<Function>(GTM->getGlobal());
1584 
1585     // Skip functions that are not address taken, to avoid bloating the table
1586     if (!F->hasAddressTaken())
1587       continue;
1588 
1589     // Store metadata with the index for each function
1590     MDNode *MD = MDNode::get(F->getContext(),
1591                              ArrayRef<Metadata *>(ConstantAsMetadata::get(
1592                                  ConstantInt::get(Int64Ty, IndirectIndex))));
1593     F->setMetadata("wasm.index", MD);
1594 
1595     // Assign the counter value
1596     GlobalLayout[GTM] = IndirectIndex++;
1597   }
1598 
1599   // The indirect function table index space starts at zero, so pass a NULL
1600   // pointer as the subtracted "jump table" offset.
1601   lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
1602                      GlobalLayout);
1603 }
1604 
buildBitSetsFromDisjointSet(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Globals,ArrayRef<ICallBranchFunnel * > ICallBranchFunnels)1605 void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
1606     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals,
1607     ArrayRef<ICallBranchFunnel *> ICallBranchFunnels) {
1608   DenseMap<Metadata *, uint64_t> TypeIdIndices;
1609   for (unsigned I = 0; I != TypeIds.size(); ++I)
1610     TypeIdIndices[TypeIds[I]] = I;
1611 
1612   // For each type identifier, build a set of indices that refer to members of
1613   // the type identifier.
1614   std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
1615   unsigned GlobalIndex = 0;
1616   DenseMap<GlobalTypeMember *, uint64_t> GlobalIndices;
1617   for (GlobalTypeMember *GTM : Globals) {
1618     for (MDNode *Type : GTM->types()) {
1619       // Type = { offset, type identifier }
1620       auto I = TypeIdIndices.find(Type->getOperand(1));
1621       if (I != TypeIdIndices.end())
1622         TypeMembers[I->second].insert(GlobalIndex);
1623     }
1624     GlobalIndices[GTM] = GlobalIndex;
1625     GlobalIndex++;
1626   }
1627 
1628   for (ICallBranchFunnel *JT : ICallBranchFunnels) {
1629     TypeMembers.emplace_back();
1630     std::set<uint64_t> &TMSet = TypeMembers.back();
1631     for (GlobalTypeMember *T : JT->targets())
1632       TMSet.insert(GlobalIndices[T]);
1633   }
1634 
1635   // Order the sets of indices by size. The GlobalLayoutBuilder works best
1636   // when given small index sets first.
1637   llvm::stable_sort(TypeMembers, [](const std::set<uint64_t> &O1,
1638                                     const std::set<uint64_t> &O2) {
1639     return O1.size() < O2.size();
1640   });
1641 
1642   // Create a GlobalLayoutBuilder and provide it with index sets as layout
1643   // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
1644   // close together as possible.
1645   GlobalLayoutBuilder GLB(Globals.size());
1646   for (auto &&MemSet : TypeMembers)
1647     GLB.addFragment(MemSet);
1648 
1649   // Build a vector of globals with the computed layout.
1650   bool IsGlobalSet =
1651       Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
1652   std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
1653   auto OGTMI = OrderedGTMs.begin();
1654   for (auto &&F : GLB.Fragments) {
1655     for (auto &&Offset : F) {
1656       if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
1657         report_fatal_error("Type identifier may not contain both global "
1658                            "variables and functions");
1659       *OGTMI++ = Globals[Offset];
1660     }
1661   }
1662 
1663   // Build the bitsets from this disjoint set.
1664   if (IsGlobalSet)
1665     buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
1666   else
1667     buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
1668 }
1669 
1670 /// Lower all type tests in this module.
LowerTypeTestsModule(Module & M,ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary,bool DropTypeTests)1671 LowerTypeTestsModule::LowerTypeTestsModule(
1672     Module &M, ModuleSummaryIndex *ExportSummary,
1673     const ModuleSummaryIndex *ImportSummary, bool DropTypeTests)
1674     : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary),
1675       DropTypeTests(DropTypeTests) {
1676   assert(!(ExportSummary && ImportSummary));
1677   Triple TargetTriple(M.getTargetTriple());
1678   Arch = TargetTriple.getArch();
1679   OS = TargetTriple.getOS();
1680   ObjectFormat = TargetTriple.getObjectFormat();
1681 }
1682 
runForTesting(Module & M)1683 bool LowerTypeTestsModule::runForTesting(Module &M) {
1684   ModuleSummaryIndex Summary(/*HaveGVs=*/false);
1685 
1686   // Handle the command-line summary arguments. This code is for testing
1687   // purposes only, so we handle errors directly.
1688   if (!ClReadSummary.empty()) {
1689     ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
1690                           ": ");
1691     auto ReadSummaryFile =
1692         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
1693 
1694     yaml::Input In(ReadSummaryFile->getBuffer());
1695     In >> Summary;
1696     ExitOnErr(errorCodeToError(In.error()));
1697   }
1698 
1699   bool Changed =
1700       LowerTypeTestsModule(
1701           M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
1702           ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr,
1703           /*DropTypeTests*/ false)
1704           .lower();
1705 
1706   if (!ClWriteSummary.empty()) {
1707     ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
1708                           ": ");
1709     std::error_code EC;
1710     raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
1711     ExitOnErr(errorCodeToError(EC));
1712 
1713     yaml::Output Out(OS);
1714     Out << Summary;
1715   }
1716 
1717   return Changed;
1718 }
1719 
isDirectCall(Use & U)1720 static bool isDirectCall(Use& U) {
1721   auto *Usr = dyn_cast<CallInst>(U.getUser());
1722   if (Usr) {
1723     auto *CB = dyn_cast<CallBase>(Usr);
1724     if (CB && CB->isCallee(&U))
1725       return true;
1726   }
1727   return false;
1728 }
1729 
replaceCfiUses(Function * Old,Value * New,bool IsJumpTableCanonical)1730 void LowerTypeTestsModule::replaceCfiUses(Function *Old, Value *New,
1731                                           bool IsJumpTableCanonical) {
1732   SmallSetVector<Constant *, 4> Constants;
1733   auto UI = Old->use_begin(), E = Old->use_end();
1734   for (; UI != E;) {
1735     Use &U = *UI;
1736     ++UI;
1737 
1738     // Skip block addresses
1739     if (isa<BlockAddress>(U.getUser()))
1740       continue;
1741 
1742     // Skip direct calls to externally defined or non-dso_local functions
1743     if (isDirectCall(U) && (Old->isDSOLocal() || !IsJumpTableCanonical))
1744       continue;
1745 
1746     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
1747     // constant because they are uniqued.
1748     if (auto *C = dyn_cast<Constant>(U.getUser())) {
1749       if (!isa<GlobalValue>(C)) {
1750         // Save unique users to avoid processing operand replacement
1751         // more than once.
1752         Constants.insert(C);
1753         continue;
1754       }
1755     }
1756 
1757     U.set(New);
1758   }
1759 
1760   // Process operand replacement of saved constants.
1761   for (auto *C : Constants)
1762     C->handleOperandChange(Old, New);
1763 }
1764 
replaceDirectCalls(Value * Old,Value * New)1765 void LowerTypeTestsModule::replaceDirectCalls(Value *Old, Value *New) {
1766   Old->replaceUsesWithIf(New, [](Use &U) { return isDirectCall(U); });
1767 }
1768 
lower()1769 bool LowerTypeTestsModule::lower() {
1770   Function *TypeTestFunc =
1771       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1772 
1773   if (DropTypeTests && TypeTestFunc) {
1774     for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
1775          UI != UE;) {
1776       auto *CI = cast<CallInst>((*UI++).getUser());
1777       // Find and erase llvm.assume intrinsics for this llvm.type.test call.
1778       for (auto CIU = CI->use_begin(), CIUE = CI->use_end(); CIU != CIUE;) {
1779         if (auto *AssumeCI = dyn_cast<CallInst>((*CIU++).getUser())) {
1780           Function *F = AssumeCI->getCalledFunction();
1781           if (F && F->getIntrinsicID() == Intrinsic::assume)
1782             AssumeCI->eraseFromParent();
1783         }
1784       }
1785       CI->eraseFromParent();
1786     }
1787 
1788     // We have deleted the type intrinsics, so we no longer have enough
1789     // information to reason about the liveness of virtual function pointers
1790     // in GlobalDCE.
1791     for (GlobalVariable &GV : M.globals())
1792       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1793 
1794     return true;
1795   }
1796 
1797   // If only some of the modules were split, we cannot correctly perform
1798   // this transformation. We already checked for the presense of type tests
1799   // with partially split modules during the thin link, and would have emitted
1800   // an error if any were found, so here we can simply return.
1801   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1802       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1803     return false;
1804 
1805   Function *ICallBranchFunnelFunc =
1806       M.getFunction(Intrinsic::getName(Intrinsic::icall_branch_funnel));
1807   if ((!TypeTestFunc || TypeTestFunc->use_empty()) &&
1808       (!ICallBranchFunnelFunc || ICallBranchFunnelFunc->use_empty()) &&
1809       !ExportSummary && !ImportSummary)
1810     return false;
1811 
1812   if (ImportSummary) {
1813     if (TypeTestFunc) {
1814       for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
1815            UI != UE;) {
1816         auto *CI = cast<CallInst>((*UI++).getUser());
1817         importTypeTest(CI);
1818       }
1819     }
1820 
1821     if (ICallBranchFunnelFunc && !ICallBranchFunnelFunc->use_empty())
1822       report_fatal_error(
1823           "unexpected call to llvm.icall.branch.funnel during import phase");
1824 
1825     SmallVector<Function *, 8> Defs;
1826     SmallVector<Function *, 8> Decls;
1827     for (auto &F : M) {
1828       // CFI functions are either external, or promoted. A local function may
1829       // have the same name, but it's not the one we are looking for.
1830       if (F.hasLocalLinkage())
1831         continue;
1832       if (ImportSummary->cfiFunctionDefs().count(std::string(F.getName())))
1833         Defs.push_back(&F);
1834       else if (ImportSummary->cfiFunctionDecls().count(
1835                    std::string(F.getName())))
1836         Decls.push_back(&F);
1837     }
1838 
1839     std::vector<GlobalAlias *> AliasesToErase;
1840     {
1841       ScopedSaveAliaseesAndUsed S(M);
1842       for (auto F : Defs)
1843         importFunction(F, /*isJumpTableCanonical*/ true, AliasesToErase);
1844       for (auto F : Decls)
1845         importFunction(F, /*isJumpTableCanonical*/ false, AliasesToErase);
1846     }
1847     for (GlobalAlias *GA : AliasesToErase)
1848       GA->eraseFromParent();
1849 
1850     return true;
1851   }
1852 
1853   // Equivalence class set containing type identifiers and the globals that
1854   // reference them. This is used to partition the set of type identifiers in
1855   // the module into disjoint sets.
1856   using GlobalClassesTy = EquivalenceClasses<
1857       PointerUnion<GlobalTypeMember *, Metadata *, ICallBranchFunnel *>>;
1858   GlobalClassesTy GlobalClasses;
1859 
1860   // Verify the type metadata and build a few data structures to let us
1861   // efficiently enumerate the type identifiers associated with a global:
1862   // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
1863   // of associated type metadata) and a mapping from type identifiers to their
1864   // list of GlobalTypeMembers and last observed index in the list of globals.
1865   // The indices will be used later to deterministically order the list of type
1866   // identifiers.
1867   BumpPtrAllocator Alloc;
1868   struct TIInfo {
1869     unsigned UniqueId;
1870     std::vector<GlobalTypeMember *> RefGlobals;
1871   };
1872   DenseMap<Metadata *, TIInfo> TypeIdInfo;
1873   unsigned CurUniqueId = 0;
1874   SmallVector<MDNode *, 2> Types;
1875 
1876   // Cross-DSO CFI emits jumptable entries for exported functions as well as
1877   // address taken functions in case they are address taken in other modules.
1878   const bool CrossDsoCfi = M.getModuleFlag("Cross-DSO CFI") != nullptr;
1879 
1880   struct ExportedFunctionInfo {
1881     CfiFunctionLinkage Linkage;
1882     MDNode *FuncMD; // {name, linkage, type[, type...]}
1883   };
1884   DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
1885   if (ExportSummary) {
1886     // A set of all functions that are address taken by a live global object.
1887     DenseSet<GlobalValue::GUID> AddressTaken;
1888     for (auto &I : *ExportSummary)
1889       for (auto &GVS : I.second.SummaryList)
1890         if (GVS->isLive())
1891           for (auto &Ref : GVS->refs())
1892             AddressTaken.insert(Ref.getGUID());
1893 
1894     NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
1895     if (CfiFunctionsMD) {
1896       for (auto FuncMD : CfiFunctionsMD->operands()) {
1897         assert(FuncMD->getNumOperands() >= 2);
1898         StringRef FunctionName =
1899             cast<MDString>(FuncMD->getOperand(0))->getString();
1900         CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
1901             cast<ConstantAsMetadata>(FuncMD->getOperand(1))
1902                 ->getValue()
1903                 ->getUniqueInteger()
1904                 .getZExtValue());
1905         const GlobalValue::GUID GUID = GlobalValue::getGUID(
1906                 GlobalValue::dropLLVMManglingEscape(FunctionName));
1907         // Do not emit jumptable entries for functions that are not-live and
1908         // have no live references (and are not exported with cross-DSO CFI.)
1909         if (!ExportSummary->isGUIDLive(GUID))
1910           continue;
1911         if (!AddressTaken.count(GUID)) {
1912           if (!CrossDsoCfi || Linkage != CFL_Definition)
1913             continue;
1914 
1915           bool Exported = false;
1916           if (auto VI = ExportSummary->getValueInfo(GUID))
1917             for (auto &GVS : VI.getSummaryList())
1918               if (GVS->isLive() && !GlobalValue::isLocalLinkage(GVS->linkage()))
1919                 Exported = true;
1920 
1921           if (!Exported)
1922             continue;
1923         }
1924         auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
1925         if (!P.second && P.first->second.Linkage != CFL_Definition)
1926           P.first->second = {Linkage, FuncMD};
1927       }
1928 
1929       for (const auto &P : ExportedFunctions) {
1930         StringRef FunctionName = P.first;
1931         CfiFunctionLinkage Linkage = P.second.Linkage;
1932         MDNode *FuncMD = P.second.FuncMD;
1933         Function *F = M.getFunction(FunctionName);
1934         if (F && F->hasLocalLinkage()) {
1935           // Locally defined function that happens to have the same name as a
1936           // function defined in a ThinLTO module. Rename it to move it out of
1937           // the way of the external reference that we're about to create.
1938           // Note that setName will find a unique name for the function, so even
1939           // if there is an existing function with the suffix there won't be a
1940           // name collision.
1941           F->setName(F->getName() + ".1");
1942           F = nullptr;
1943         }
1944 
1945         if (!F)
1946           F = Function::Create(
1947               FunctionType::get(Type::getVoidTy(M.getContext()), false),
1948               GlobalVariable::ExternalLinkage,
1949               M.getDataLayout().getProgramAddressSpace(), FunctionName, &M);
1950 
1951         // If the function is available_externally, remove its definition so
1952         // that it is handled the same way as a declaration. Later we will try
1953         // to create an alias using this function's linkage, which will fail if
1954         // the linkage is available_externally. This will also result in us
1955         // following the code path below to replace the type metadata.
1956         if (F->hasAvailableExternallyLinkage()) {
1957           F->setLinkage(GlobalValue::ExternalLinkage);
1958           F->deleteBody();
1959           F->setComdat(nullptr);
1960           F->clearMetadata();
1961         }
1962 
1963         // Update the linkage for extern_weak declarations when a definition
1964         // exists.
1965         if (Linkage == CFL_Definition && F->hasExternalWeakLinkage())
1966           F->setLinkage(GlobalValue::ExternalLinkage);
1967 
1968         // If the function in the full LTO module is a declaration, replace its
1969         // type metadata with the type metadata we found in cfi.functions. That
1970         // metadata is presumed to be more accurate than the metadata attached
1971         // to the declaration.
1972         if (F->isDeclaration()) {
1973           if (Linkage == CFL_WeakDeclaration)
1974             F->setLinkage(GlobalValue::ExternalWeakLinkage);
1975 
1976           F->eraseMetadata(LLVMContext::MD_type);
1977           for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
1978             F->addMetadata(LLVMContext::MD_type,
1979                            *cast<MDNode>(FuncMD->getOperand(I).get()));
1980         }
1981       }
1982     }
1983   }
1984 
1985   DenseMap<GlobalObject *, GlobalTypeMember *> GlobalTypeMembers;
1986   for (GlobalObject &GO : M.global_objects()) {
1987     if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
1988       continue;
1989 
1990     Types.clear();
1991     GO.getMetadata(LLVMContext::MD_type, Types);
1992 
1993     bool IsJumpTableCanonical = false;
1994     bool IsExported = false;
1995     if (Function *F = dyn_cast<Function>(&GO)) {
1996       IsJumpTableCanonical = isJumpTableCanonical(F);
1997       if (ExportedFunctions.count(F->getName())) {
1998         IsJumpTableCanonical |=
1999             ExportedFunctions[F->getName()].Linkage == CFL_Definition;
2000         IsExported = true;
2001       // TODO: The logic here checks only that the function is address taken,
2002       // not that the address takers are live. This can be updated to check
2003       // their liveness and emit fewer jumptable entries once monolithic LTO
2004       // builds also emit summaries.
2005       } else if (!F->hasAddressTaken()) {
2006         if (!CrossDsoCfi || !IsJumpTableCanonical || F->hasLocalLinkage())
2007           continue;
2008       }
2009     }
2010 
2011     auto *GTM = GlobalTypeMember::create(Alloc, &GO, IsJumpTableCanonical,
2012                                          IsExported, Types);
2013     GlobalTypeMembers[&GO] = GTM;
2014     for (MDNode *Type : Types) {
2015       verifyTypeMDNode(&GO, Type);
2016       auto &Info = TypeIdInfo[Type->getOperand(1)];
2017       Info.UniqueId = ++CurUniqueId;
2018       Info.RefGlobals.push_back(GTM);
2019     }
2020   }
2021 
2022   auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
2023     // Add the call site to the list of call sites for this type identifier. We
2024     // also use TypeIdUsers to keep track of whether we have seen this type
2025     // identifier before. If we have, we don't need to re-add the referenced
2026     // globals to the equivalence class.
2027     auto Ins = TypeIdUsers.insert({TypeId, {}});
2028     if (Ins.second) {
2029       // Add the type identifier to the equivalence class.
2030       GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
2031       GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
2032 
2033       // Add the referenced globals to the type identifier's equivalence class.
2034       for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
2035         CurSet = GlobalClasses.unionSets(
2036             CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
2037     }
2038 
2039     return Ins.first->second;
2040   };
2041 
2042   if (TypeTestFunc) {
2043     for (const Use &U : TypeTestFunc->uses()) {
2044       auto CI = cast<CallInst>(U.getUser());
2045 
2046       auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
2047       if (!TypeIdMDVal)
2048         report_fatal_error("Second argument of llvm.type.test must be metadata");
2049       auto TypeId = TypeIdMDVal->getMetadata();
2050       AddTypeIdUse(TypeId).CallSites.push_back(CI);
2051     }
2052   }
2053 
2054   if (ICallBranchFunnelFunc) {
2055     for (const Use &U : ICallBranchFunnelFunc->uses()) {
2056       if (Arch != Triple::x86_64)
2057         report_fatal_error(
2058             "llvm.icall.branch.funnel not supported on this target");
2059 
2060       auto CI = cast<CallInst>(U.getUser());
2061 
2062       std::vector<GlobalTypeMember *> Targets;
2063       if (CI->getNumArgOperands() % 2 != 1)
2064         report_fatal_error("number of arguments should be odd");
2065 
2066       GlobalClassesTy::member_iterator CurSet;
2067       for (unsigned I = 1; I != CI->getNumArgOperands(); I += 2) {
2068         int64_t Offset;
2069         auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
2070             CI->getOperand(I), Offset, M.getDataLayout()));
2071         if (!Base)
2072           report_fatal_error(
2073               "Expected branch funnel operand to be global value");
2074 
2075         GlobalTypeMember *GTM = GlobalTypeMembers[Base];
2076         Targets.push_back(GTM);
2077         GlobalClassesTy::member_iterator NewSet =
2078             GlobalClasses.findLeader(GlobalClasses.insert(GTM));
2079         if (I == 1)
2080           CurSet = NewSet;
2081         else
2082           CurSet = GlobalClasses.unionSets(CurSet, NewSet);
2083       }
2084 
2085       GlobalClasses.unionSets(
2086           CurSet, GlobalClasses.findLeader(
2087                       GlobalClasses.insert(ICallBranchFunnel::create(
2088                           Alloc, CI, Targets, ++CurUniqueId))));
2089     }
2090   }
2091 
2092   if (ExportSummary) {
2093     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2094     for (auto &P : TypeIdInfo) {
2095       if (auto *TypeId = dyn_cast<MDString>(P.first))
2096         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2097             TypeId);
2098     }
2099 
2100     for (auto &P : *ExportSummary) {
2101       for (auto &S : P.second.SummaryList) {
2102         if (!ExportSummary->isGlobalValueLive(S.get()))
2103           continue;
2104         if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
2105           for (GlobalValue::GUID G : FS->type_tests())
2106             for (Metadata *MD : MetadataByGUID[G])
2107               AddTypeIdUse(MD).IsExported = true;
2108       }
2109     }
2110   }
2111 
2112   if (GlobalClasses.empty())
2113     return false;
2114 
2115   // Build a list of disjoint sets ordered by their maximum global index for
2116   // determinism.
2117   std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
2118   for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
2119                                  E = GlobalClasses.end();
2120        I != E; ++I) {
2121     if (!I->isLeader())
2122       continue;
2123     ++NumTypeIdDisjointSets;
2124 
2125     unsigned MaxUniqueId = 0;
2126     for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
2127          MI != GlobalClasses.member_end(); ++MI) {
2128       if (auto *MD = MI->dyn_cast<Metadata *>())
2129         MaxUniqueId = std::max(MaxUniqueId, TypeIdInfo[MD].UniqueId);
2130       else if (auto *BF = MI->dyn_cast<ICallBranchFunnel *>())
2131         MaxUniqueId = std::max(MaxUniqueId, BF->UniqueId);
2132     }
2133     Sets.emplace_back(I, MaxUniqueId);
2134   }
2135   llvm::sort(Sets,
2136              [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
2137                 const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
2138                return S1.second < S2.second;
2139              });
2140 
2141   // For each disjoint set we found...
2142   for (const auto &S : Sets) {
2143     // Build the list of type identifiers in this disjoint set.
2144     std::vector<Metadata *> TypeIds;
2145     std::vector<GlobalTypeMember *> Globals;
2146     std::vector<ICallBranchFunnel *> ICallBranchFunnels;
2147     for (GlobalClassesTy::member_iterator MI =
2148              GlobalClasses.member_begin(S.first);
2149          MI != GlobalClasses.member_end(); ++MI) {
2150       if (MI->is<Metadata *>())
2151         TypeIds.push_back(MI->get<Metadata *>());
2152       else if (MI->is<GlobalTypeMember *>())
2153         Globals.push_back(MI->get<GlobalTypeMember *>());
2154       else
2155         ICallBranchFunnels.push_back(MI->get<ICallBranchFunnel *>());
2156     }
2157 
2158     // Order type identifiers by unique ID for determinism. This ordering is
2159     // stable as there is a one-to-one mapping between metadata and unique IDs.
2160     llvm::sort(TypeIds, [&](Metadata *M1, Metadata *M2) {
2161       return TypeIdInfo[M1].UniqueId < TypeIdInfo[M2].UniqueId;
2162     });
2163 
2164     // Same for the branch funnels.
2165     llvm::sort(ICallBranchFunnels,
2166                [&](ICallBranchFunnel *F1, ICallBranchFunnel *F2) {
2167                  return F1->UniqueId < F2->UniqueId;
2168                });
2169 
2170     // Build bitsets for this disjoint set.
2171     buildBitSetsFromDisjointSet(TypeIds, Globals, ICallBranchFunnels);
2172   }
2173 
2174   allocateByteArrays();
2175 
2176   // Parse alias data to replace stand-in function declarations for aliases
2177   // with an alias to the intended target.
2178   if (ExportSummary) {
2179     if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
2180       for (auto AliasMD : AliasesMD->operands()) {
2181         assert(AliasMD->getNumOperands() >= 4);
2182         StringRef AliasName =
2183             cast<MDString>(AliasMD->getOperand(0))->getString();
2184         StringRef Aliasee = cast<MDString>(AliasMD->getOperand(1))->getString();
2185 
2186         if (!ExportedFunctions.count(Aliasee) ||
2187             ExportedFunctions[Aliasee].Linkage != CFL_Definition ||
2188             !M.getNamedAlias(Aliasee))
2189           continue;
2190 
2191         GlobalValue::VisibilityTypes Visibility =
2192             static_cast<GlobalValue::VisibilityTypes>(
2193                 cast<ConstantAsMetadata>(AliasMD->getOperand(2))
2194                     ->getValue()
2195                     ->getUniqueInteger()
2196                     .getZExtValue());
2197         bool Weak =
2198             static_cast<bool>(cast<ConstantAsMetadata>(AliasMD->getOperand(3))
2199                                   ->getValue()
2200                                   ->getUniqueInteger()
2201                                   .getZExtValue());
2202 
2203         auto *Alias = GlobalAlias::create("", M.getNamedAlias(Aliasee));
2204         Alias->setVisibility(Visibility);
2205         if (Weak)
2206           Alias->setLinkage(GlobalValue::WeakAnyLinkage);
2207 
2208         if (auto *F = M.getFunction(AliasName)) {
2209           Alias->takeName(F);
2210           F->replaceAllUsesWith(Alias);
2211           F->eraseFromParent();
2212         } else {
2213           Alias->setName(AliasName);
2214         }
2215       }
2216     }
2217   }
2218 
2219   // Emit .symver directives for exported functions, if they exist.
2220   if (ExportSummary) {
2221     if (NamedMDNode *SymversMD = M.getNamedMetadata("symvers")) {
2222       for (auto Symver : SymversMD->operands()) {
2223         assert(Symver->getNumOperands() >= 2);
2224         StringRef SymbolName =
2225             cast<MDString>(Symver->getOperand(0))->getString();
2226         StringRef Alias = cast<MDString>(Symver->getOperand(1))->getString();
2227 
2228         if (!ExportedFunctions.count(SymbolName))
2229           continue;
2230 
2231         M.appendModuleInlineAsm(
2232             (llvm::Twine(".symver ") + SymbolName + ", " + Alias).str());
2233       }
2234     }
2235   }
2236 
2237   return true;
2238 }
2239 
run(Module & M,ModuleAnalysisManager & AM)2240 PreservedAnalyses LowerTypeTestsPass::run(Module &M,
2241                                           ModuleAnalysisManager &AM) {
2242   bool Changed =
2243       LowerTypeTestsModule(M, ExportSummary, ImportSummary, DropTypeTests)
2244           .lower();
2245   if (!Changed)
2246     return PreservedAnalyses::all();
2247   return PreservedAnalyses::none();
2248 }
2249