1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 #include <utility>
42 
43 using namespace llvm;
44 using namespace PatternMatch;
45 
46 #define DEBUG_TYPE "instcombine"
47 
48 /// Return true if the value is cheaper to scalarize than it is to leave as a
49 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
50 /// one known element from a vector constant.
51 ///
52 /// FIXME: It's possible to create more instructions than previously existed.
cheapToScalarize(Value * V,bool IsConstantExtractIndex)53 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
54   // If we can pick a scalar constant value out of a vector, that is free.
55   if (auto *C = dyn_cast<Constant>(V))
56     return IsConstantExtractIndex || C->getSplatValue();
57 
58   // An insertelement to the same constant index as our extract will simplify
59   // to the scalar inserted element. An insertelement to a different constant
60   // index is irrelevant to our extract.
61   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
62     return IsConstantExtractIndex;
63 
64   if (match(V, m_OneUse(m_Load(m_Value()))))
65     return true;
66 
67   if (match(V, m_OneUse(m_UnOp())))
68     return true;
69 
70   Value *V0, *V1;
71   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
72     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
73         cheapToScalarize(V1, IsConstantExtractIndex))
74       return true;
75 
76   CmpInst::Predicate UnusedPred;
77   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
78     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
79         cheapToScalarize(V1, IsConstantExtractIndex))
80       return true;
81 
82   return false;
83 }
84 
85 // If we have a PHI node with a vector type that is only used to feed
86 // itself and be an operand of extractelement at a constant location,
87 // try to replace the PHI of the vector type with a PHI of a scalar type.
scalarizePHI(ExtractElementInst & EI,PHINode * PN)88 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
89   SmallVector<Instruction *, 2> Extracts;
90   // The users we want the PHI to have are:
91   // 1) The EI ExtractElement (we already know this)
92   // 2) Possibly more ExtractElements with the same index.
93   // 3) Another operand, which will feed back into the PHI.
94   Instruction *PHIUser = nullptr;
95   for (auto U : PN->users()) {
96     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
97       if (EI.getIndexOperand() == EU->getIndexOperand())
98         Extracts.push_back(EU);
99       else
100         return nullptr;
101     } else if (!PHIUser) {
102       PHIUser = cast<Instruction>(U);
103     } else {
104       return nullptr;
105     }
106   }
107 
108   if (!PHIUser)
109     return nullptr;
110 
111   // Verify that this PHI user has one use, which is the PHI itself,
112   // and that it is a binary operation which is cheap to scalarize.
113   // otherwise return nullptr.
114   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
115       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
116     return nullptr;
117 
118   // Create a scalar PHI node that will replace the vector PHI node
119   // just before the current PHI node.
120   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
121       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
122   // Scalarize each PHI operand.
123   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
124     Value *PHIInVal = PN->getIncomingValue(i);
125     BasicBlock *inBB = PN->getIncomingBlock(i);
126     Value *Elt = EI.getIndexOperand();
127     // If the operand is the PHI induction variable:
128     if (PHIInVal == PHIUser) {
129       // Scalarize the binary operation. Its first operand is the
130       // scalar PHI, and the second operand is extracted from the other
131       // vector operand.
132       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
133       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
134       Value *Op = InsertNewInstWith(
135           ExtractElementInst::Create(B0->getOperand(opId), Elt,
136                                      B0->getOperand(opId)->getName() + ".Elt"),
137           *B0);
138       Value *newPHIUser = InsertNewInstWith(
139           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
140                                                 scalarPHI, Op, B0), *B0);
141       scalarPHI->addIncoming(newPHIUser, inBB);
142     } else {
143       // Scalarize PHI input:
144       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
145       // Insert the new instruction into the predecessor basic block.
146       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
147       BasicBlock::iterator InsertPos;
148       if (pos && !isa<PHINode>(pos)) {
149         InsertPos = ++pos->getIterator();
150       } else {
151         InsertPos = inBB->getFirstInsertionPt();
152       }
153 
154       InsertNewInstWith(newEI, *InsertPos);
155 
156       scalarPHI->addIncoming(newEI, inBB);
157     }
158   }
159 
160   for (auto E : Extracts)
161     replaceInstUsesWith(*E, scalarPHI);
162 
163   return &EI;
164 }
165 
foldBitcastExtElt(ExtractElementInst & Ext,InstCombiner::BuilderTy & Builder,bool IsBigEndian)166 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
167                                       InstCombiner::BuilderTy &Builder,
168                                       bool IsBigEndian) {
169   Value *X;
170   uint64_t ExtIndexC;
171   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
172       !X->getType()->isVectorTy() ||
173       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
174     return nullptr;
175 
176   // If this extractelement is using a bitcast from a vector of the same number
177   // of elements, see if we can find the source element from the source vector:
178   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
179   auto *SrcTy = cast<VectorType>(X->getType());
180   Type *DestTy = Ext.getType();
181   unsigned NumSrcElts = SrcTy->getNumElements();
182   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
183   if (NumSrcElts == NumElts)
184     if (Value *Elt = findScalarElement(X, ExtIndexC))
185       return new BitCastInst(Elt, DestTy);
186 
187   // If the source elements are wider than the destination, try to shift and
188   // truncate a subset of scalar bits of an insert op.
189   if (NumSrcElts < NumElts) {
190     Value *Scalar;
191     uint64_t InsIndexC;
192     if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
193                               m_ConstantInt(InsIndexC))))
194       return nullptr;
195 
196     // The extract must be from the subset of vector elements that we inserted
197     // into. Example: if we inserted element 1 of a <2 x i64> and we are
198     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
199     // of elements 4-7 of the bitcasted vector.
200     unsigned NarrowingRatio = NumElts / NumSrcElts;
201     if (ExtIndexC / NarrowingRatio != InsIndexC)
202       return nullptr;
203 
204     // We are extracting part of the original scalar. How that scalar is
205     // inserted into the vector depends on the endian-ness. Example:
206     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
207     //                                       +--+--+--+--+--+--+--+--+
208     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
209     // extelt <4 x i16> V', 3:               |                 |S2|S3|
210     //                                       +--+--+--+--+--+--+--+--+
211     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
212     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
213     // In this example, we must right-shift little-endian. Big-endian is just a
214     // truncate.
215     unsigned Chunk = ExtIndexC % NarrowingRatio;
216     if (IsBigEndian)
217       Chunk = NarrowingRatio - 1 - Chunk;
218 
219     // Bail out if this is an FP vector to FP vector sequence. That would take
220     // more instructions than we started with unless there is no shift, and it
221     // may not be handled as well in the backend.
222     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
223     bool NeedDestBitcast = DestTy->isFloatingPointTy();
224     if (NeedSrcBitcast && NeedDestBitcast)
225       return nullptr;
226 
227     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
228     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
229     unsigned ShAmt = Chunk * DestWidth;
230 
231     // TODO: This limitation is more strict than necessary. We could sum the
232     // number of new instructions and subtract the number eliminated to know if
233     // we can proceed.
234     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
235       if (NeedSrcBitcast || NeedDestBitcast)
236         return nullptr;
237 
238     if (NeedSrcBitcast) {
239       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
240       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
241     }
242 
243     if (ShAmt) {
244       // Bail out if we could end with more instructions than we started with.
245       if (!Ext.getVectorOperand()->hasOneUse())
246         return nullptr;
247       Scalar = Builder.CreateLShr(Scalar, ShAmt);
248     }
249 
250     if (NeedDestBitcast) {
251       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
252       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
253     }
254     return new TruncInst(Scalar, DestTy);
255   }
256 
257   return nullptr;
258 }
259 
260 /// Find elements of V demanded by UserInstr.
findDemandedEltsBySingleUser(Value * V,Instruction * UserInstr)261 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
262   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
263 
264   // Conservatively assume that all elements are needed.
265   APInt UsedElts(APInt::getAllOnesValue(VWidth));
266 
267   switch (UserInstr->getOpcode()) {
268   case Instruction::ExtractElement: {
269     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
270     assert(EEI->getVectorOperand() == V);
271     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
272     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
273       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
274     }
275     break;
276   }
277   case Instruction::ShuffleVector: {
278     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
279     unsigned MaskNumElts =
280         cast<VectorType>(UserInstr->getType())->getNumElements();
281 
282     UsedElts = APInt(VWidth, 0);
283     for (unsigned i = 0; i < MaskNumElts; i++) {
284       unsigned MaskVal = Shuffle->getMaskValue(i);
285       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
286         continue;
287       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
288         UsedElts.setBit(MaskVal);
289       if (Shuffle->getOperand(1) == V &&
290           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
291         UsedElts.setBit(MaskVal - VWidth);
292     }
293     break;
294   }
295   default:
296     break;
297   }
298   return UsedElts;
299 }
300 
301 /// Find union of elements of V demanded by all its users.
302 /// If it is known by querying findDemandedEltsBySingleUser that
303 /// no user demands an element of V, then the corresponding bit
304 /// remains unset in the returned value.
findDemandedEltsByAllUsers(Value * V)305 static APInt findDemandedEltsByAllUsers(Value *V) {
306   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
307 
308   APInt UnionUsedElts(VWidth, 0);
309   for (const Use &U : V->uses()) {
310     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
311       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
312     } else {
313       UnionUsedElts = APInt::getAllOnesValue(VWidth);
314       break;
315     }
316 
317     if (UnionUsedElts.isAllOnesValue())
318       break;
319   }
320 
321   return UnionUsedElts;
322 }
323 
visitExtractElementInst(ExtractElementInst & EI)324 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
325   Value *SrcVec = EI.getVectorOperand();
326   Value *Index = EI.getIndexOperand();
327   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
328                                             SQ.getWithInstruction(&EI)))
329     return replaceInstUsesWith(EI, V);
330 
331   // If extracting a specified index from the vector, see if we can recursively
332   // find a previously computed scalar that was inserted into the vector.
333   auto *IndexC = dyn_cast<ConstantInt>(Index);
334   if (IndexC) {
335     ElementCount EC = EI.getVectorOperandType()->getElementCount();
336     unsigned NumElts = EC.Min;
337 
338     // InstSimplify should handle cases where the index is invalid.
339     // For fixed-length vector, it's invalid to extract out-of-range element.
340     if (!EC.Scalable && IndexC->getValue().uge(NumElts))
341       return nullptr;
342 
343     // This instruction only demands the single element from the input vector.
344     // Skip for scalable type, the number of elements is unknown at
345     // compile-time.
346     if (!EC.Scalable && NumElts != 1) {
347       // If the input vector has a single use, simplify it based on this use
348       // property.
349       if (SrcVec->hasOneUse()) {
350         APInt UndefElts(NumElts, 0);
351         APInt DemandedElts(NumElts, 0);
352         DemandedElts.setBit(IndexC->getZExtValue());
353         if (Value *V =
354                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
355           return replaceOperand(EI, 0, V);
356       } else {
357         // If the input vector has multiple uses, simplify it based on a union
358         // of all elements used.
359         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
360         if (!DemandedElts.isAllOnesValue()) {
361           APInt UndefElts(NumElts, 0);
362           if (Value *V = SimplifyDemandedVectorElts(
363                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
364                   true /* AllowMultipleUsers */)) {
365             if (V != SrcVec) {
366               SrcVec->replaceAllUsesWith(V);
367               return &EI;
368             }
369           }
370         }
371       }
372     }
373     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
374       return I;
375 
376     // If there's a vector PHI feeding a scalar use through this extractelement
377     // instruction, try to scalarize the PHI.
378     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
379       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
380         return ScalarPHI;
381   }
382 
383   // TODO come up with a n-ary matcher that subsumes both unary and
384   // binary matchers.
385   UnaryOperator *UO;
386   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
387     // extelt (unop X), Index --> unop (extelt X, Index)
388     Value *X = UO->getOperand(0);
389     Value *E = Builder.CreateExtractElement(X, Index);
390     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
391   }
392 
393   BinaryOperator *BO;
394   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
395     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
396     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
397     Value *E0 = Builder.CreateExtractElement(X, Index);
398     Value *E1 = Builder.CreateExtractElement(Y, Index);
399     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
400   }
401 
402   Value *X, *Y;
403   CmpInst::Predicate Pred;
404   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
405       cheapToScalarize(SrcVec, IndexC)) {
406     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
407     Value *E0 = Builder.CreateExtractElement(X, Index);
408     Value *E1 = Builder.CreateExtractElement(Y, Index);
409     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
410   }
411 
412   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
413     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
414       // Extracting the inserted element?
415       if (IE->getOperand(2) == Index)
416         return replaceInstUsesWith(EI, IE->getOperand(1));
417       // If the inserted and extracted elements are constants, they must not
418       // be the same value, extract from the pre-inserted value instead.
419       if (isa<Constant>(IE->getOperand(2)) && IndexC)
420         return replaceOperand(EI, 0, IE->getOperand(0));
421     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
422       // If this is extracting an element from a shufflevector, figure out where
423       // it came from and extract from the appropriate input element instead.
424       // Restrict the following transformation to fixed-length vector.
425       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
426         int SrcIdx =
427             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
428         Value *Src;
429         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
430                                 ->getNumElements();
431 
432         if (SrcIdx < 0)
433           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
434         if (SrcIdx < (int)LHSWidth)
435           Src = SVI->getOperand(0);
436         else {
437           SrcIdx -= LHSWidth;
438           Src = SVI->getOperand(1);
439         }
440         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
441         return ExtractElementInst::Create(
442             Src, ConstantInt::get(Int32Ty, SrcIdx, false));
443       }
444     } else if (auto *CI = dyn_cast<CastInst>(I)) {
445       // Canonicalize extractelement(cast) -> cast(extractelement).
446       // Bitcasts can change the number of vector elements, and they cost
447       // nothing.
448       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
449         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
450         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
451       }
452     }
453   }
454   return nullptr;
455 }
456 
457 /// If V is a shuffle of values that ONLY returns elements from either LHS or
458 /// RHS, return the shuffle mask and true. Otherwise, return false.
collectSingleShuffleElements(Value * V,Value * LHS,Value * RHS,SmallVectorImpl<int> & Mask)459 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
460                                          SmallVectorImpl<int> &Mask) {
461   assert(LHS->getType() == RHS->getType() &&
462          "Invalid CollectSingleShuffleElements");
463   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
464 
465   if (isa<UndefValue>(V)) {
466     Mask.assign(NumElts, -1);
467     return true;
468   }
469 
470   if (V == LHS) {
471     for (unsigned i = 0; i != NumElts; ++i)
472       Mask.push_back(i);
473     return true;
474   }
475 
476   if (V == RHS) {
477     for (unsigned i = 0; i != NumElts; ++i)
478       Mask.push_back(i + NumElts);
479     return true;
480   }
481 
482   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
483     // If this is an insert of an extract from some other vector, include it.
484     Value *VecOp    = IEI->getOperand(0);
485     Value *ScalarOp = IEI->getOperand(1);
486     Value *IdxOp    = IEI->getOperand(2);
487 
488     if (!isa<ConstantInt>(IdxOp))
489       return false;
490     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
491 
492     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
493       // We can handle this if the vector we are inserting into is
494       // transitively ok.
495       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
496         // If so, update the mask to reflect the inserted undef.
497         Mask[InsertedIdx] = -1;
498         return true;
499       }
500     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
501       if (isa<ConstantInt>(EI->getOperand(1))) {
502         unsigned ExtractedIdx =
503         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
504         unsigned NumLHSElts =
505             cast<VectorType>(LHS->getType())->getNumElements();
506 
507         // This must be extracting from either LHS or RHS.
508         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
509           // We can handle this if the vector we are inserting into is
510           // transitively ok.
511           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
512             // If so, update the mask to reflect the inserted value.
513             if (EI->getOperand(0) == LHS) {
514               Mask[InsertedIdx % NumElts] = ExtractedIdx;
515             } else {
516               assert(EI->getOperand(0) == RHS);
517               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
518             }
519             return true;
520           }
521         }
522       }
523     }
524   }
525 
526   return false;
527 }
528 
529 /// If we have insertion into a vector that is wider than the vector that we
530 /// are extracting from, try to widen the source vector to allow a single
531 /// shufflevector to replace one or more insert/extract pairs.
replaceExtractElements(InsertElementInst * InsElt,ExtractElementInst * ExtElt,InstCombiner & IC)532 static void replaceExtractElements(InsertElementInst *InsElt,
533                                    ExtractElementInst *ExtElt,
534                                    InstCombiner &IC) {
535   VectorType *InsVecType = InsElt->getType();
536   VectorType *ExtVecType = ExtElt->getVectorOperandType();
537   unsigned NumInsElts = InsVecType->getNumElements();
538   unsigned NumExtElts = ExtVecType->getNumElements();
539 
540   // The inserted-to vector must be wider than the extracted-from vector.
541   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
542       NumExtElts >= NumInsElts)
543     return;
544 
545   // Create a shuffle mask to widen the extended-from vector using undefined
546   // values. The mask selects all of the values of the original vector followed
547   // by as many undefined values as needed to create a vector of the same length
548   // as the inserted-to vector.
549   SmallVector<int, 16> ExtendMask;
550   for (unsigned i = 0; i < NumExtElts; ++i)
551     ExtendMask.push_back(i);
552   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
553     ExtendMask.push_back(-1);
554 
555   Value *ExtVecOp = ExtElt->getVectorOperand();
556   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
557   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
558                                    ? ExtVecOpInst->getParent()
559                                    : ExtElt->getParent();
560 
561   // TODO: This restriction matches the basic block check below when creating
562   // new extractelement instructions. If that limitation is removed, this one
563   // could also be removed. But for now, we just bail out to ensure that we
564   // will replace the extractelement instruction that is feeding our
565   // insertelement instruction. This allows the insertelement to then be
566   // replaced by a shufflevector. If the insertelement is not replaced, we can
567   // induce infinite looping because there's an optimization for extractelement
568   // that will delete our widening shuffle. This would trigger another attempt
569   // here to create that shuffle, and we spin forever.
570   if (InsertionBlock != InsElt->getParent())
571     return;
572 
573   // TODO: This restriction matches the check in visitInsertElementInst() and
574   // prevents an infinite loop caused by not turning the extract/insert pair
575   // into a shuffle. We really should not need either check, but we're lacking
576   // folds for shufflevectors because we're afraid to generate shuffle masks
577   // that the backend can't handle.
578   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
579     return;
580 
581   auto *WideVec =
582       new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask);
583 
584   // Insert the new shuffle after the vector operand of the extract is defined
585   // (as long as it's not a PHI) or at the start of the basic block of the
586   // extract, so any subsequent extracts in the same basic block can use it.
587   // TODO: Insert before the earliest ExtractElementInst that is replaced.
588   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
589     WideVec->insertAfter(ExtVecOpInst);
590   else
591     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
592 
593   // Replace extracts from the original narrow vector with extracts from the new
594   // wide vector.
595   for (User *U : ExtVecOp->users()) {
596     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
597     if (!OldExt || OldExt->getParent() != WideVec->getParent())
598       continue;
599     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
600     NewExt->insertAfter(OldExt);
601     IC.replaceInstUsesWith(*OldExt, NewExt);
602   }
603 }
604 
605 /// We are building a shuffle to create V, which is a sequence of insertelement,
606 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
607 /// not rely on the second vector source. Return a std::pair containing the
608 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
609 /// parameter as required.
610 ///
611 /// Note: we intentionally don't try to fold earlier shuffles since they have
612 /// often been chosen carefully to be efficiently implementable on the target.
613 using ShuffleOps = std::pair<Value *, Value *>;
614 
collectShuffleElements(Value * V,SmallVectorImpl<int> & Mask,Value * PermittedRHS,InstCombiner & IC)615 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
616                                          Value *PermittedRHS,
617                                          InstCombiner &IC) {
618   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
619   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
620 
621   if (isa<UndefValue>(V)) {
622     Mask.assign(NumElts, -1);
623     return std::make_pair(
624         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
625   }
626 
627   if (isa<ConstantAggregateZero>(V)) {
628     Mask.assign(NumElts, 0);
629     return std::make_pair(V, nullptr);
630   }
631 
632   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
633     // If this is an insert of an extract from some other vector, include it.
634     Value *VecOp    = IEI->getOperand(0);
635     Value *ScalarOp = IEI->getOperand(1);
636     Value *IdxOp    = IEI->getOperand(2);
637 
638     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
639       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
640         unsigned ExtractedIdx =
641           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
642         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
643 
644         // Either the extracted from or inserted into vector must be RHSVec,
645         // otherwise we'd end up with a shuffle of three inputs.
646         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
647           Value *RHS = EI->getOperand(0);
648           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
649           assert(LR.second == nullptr || LR.second == RHS);
650 
651           if (LR.first->getType() != RHS->getType()) {
652             // Although we are giving up for now, see if we can create extracts
653             // that match the inserts for another round of combining.
654             replaceExtractElements(IEI, EI, IC);
655 
656             // We tried our best, but we can't find anything compatible with RHS
657             // further up the chain. Return a trivial shuffle.
658             for (unsigned i = 0; i < NumElts; ++i)
659               Mask[i] = i;
660             return std::make_pair(V, nullptr);
661           }
662 
663           unsigned NumLHSElts =
664               cast<VectorType>(RHS->getType())->getNumElements();
665           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
666           return std::make_pair(LR.first, RHS);
667         }
668 
669         if (VecOp == PermittedRHS) {
670           // We've gone as far as we can: anything on the other side of the
671           // extractelement will already have been converted into a shuffle.
672           unsigned NumLHSElts =
673               cast<VectorType>(EI->getOperand(0)->getType())->getNumElements();
674           for (unsigned i = 0; i != NumElts; ++i)
675             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
676           return std::make_pair(EI->getOperand(0), PermittedRHS);
677         }
678 
679         // If this insertelement is a chain that comes from exactly these two
680         // vectors, return the vector and the effective shuffle.
681         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
682             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
683                                          Mask))
684           return std::make_pair(EI->getOperand(0), PermittedRHS);
685       }
686     }
687   }
688 
689   // Otherwise, we can't do anything fancy. Return an identity vector.
690   for (unsigned i = 0; i != NumElts; ++i)
691     Mask.push_back(i);
692   return std::make_pair(V, nullptr);
693 }
694 
695 /// Try to find redundant insertvalue instructions, like the following ones:
696 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
697 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
698 /// Here the second instruction inserts values at the same indices, as the
699 /// first one, making the first one redundant.
700 /// It should be transformed to:
701 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
visitInsertValueInst(InsertValueInst & I)702 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
703   bool IsRedundant = false;
704   ArrayRef<unsigned int> FirstIndices = I.getIndices();
705 
706   // If there is a chain of insertvalue instructions (each of them except the
707   // last one has only one use and it's another insertvalue insn from this
708   // chain), check if any of the 'children' uses the same indices as the first
709   // instruction. In this case, the first one is redundant.
710   Value *V = &I;
711   unsigned Depth = 0;
712   while (V->hasOneUse() && Depth < 10) {
713     User *U = V->user_back();
714     auto UserInsInst = dyn_cast<InsertValueInst>(U);
715     if (!UserInsInst || U->getOperand(0) != V)
716       break;
717     if (UserInsInst->getIndices() == FirstIndices) {
718       IsRedundant = true;
719       break;
720     }
721     V = UserInsInst;
722     Depth++;
723   }
724 
725   if (IsRedundant)
726     return replaceInstUsesWith(I, I.getOperand(0));
727   return nullptr;
728 }
729 
isShuffleEquivalentToSelect(ShuffleVectorInst & Shuf)730 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
731   // Can not analyze scalable type, the number of elements is not a compile-time
732   // constant.
733   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
734     return false;
735 
736   int MaskSize = Shuf.getShuffleMask().size();
737   int VecSize =
738       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
739 
740   // A vector select does not change the size of the operands.
741   if (MaskSize != VecSize)
742     return false;
743 
744   // Each mask element must be undefined or choose a vector element from one of
745   // the source operands without crossing vector lanes.
746   for (int i = 0; i != MaskSize; ++i) {
747     int Elt = Shuf.getMaskValue(i);
748     if (Elt != -1 && Elt != i && Elt != i + VecSize)
749       return false;
750   }
751 
752   return true;
753 }
754 
755 /// Turn a chain of inserts that splats a value into an insert + shuffle:
756 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
757 /// shufflevector(insertelt(X, %k, 0), undef, zero)
foldInsSequenceIntoSplat(InsertElementInst & InsElt)758 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
759   // We are interested in the last insert in a chain. So if this insert has a
760   // single user and that user is an insert, bail.
761   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
762     return nullptr;
763 
764   VectorType *VecTy = InsElt.getType();
765   // Can not handle scalable type, the number of elements is not a compile-time
766   // constant.
767   if (isa<ScalableVectorType>(VecTy))
768     return nullptr;
769   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
770 
771   // Do not try to do this for a one-element vector, since that's a nop,
772   // and will cause an inf-loop.
773   if (NumElements == 1)
774     return nullptr;
775 
776   Value *SplatVal = InsElt.getOperand(1);
777   InsertElementInst *CurrIE = &InsElt;
778   SmallBitVector ElementPresent(NumElements, false);
779   InsertElementInst *FirstIE = nullptr;
780 
781   // Walk the chain backwards, keeping track of which indices we inserted into,
782   // until we hit something that isn't an insert of the splatted value.
783   while (CurrIE) {
784     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
785     if (!Idx || CurrIE->getOperand(1) != SplatVal)
786       return nullptr;
787 
788     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
789     // Check none of the intermediate steps have any additional uses, except
790     // for the root insertelement instruction, which can be re-used, if it
791     // inserts at position 0.
792     if (CurrIE != &InsElt &&
793         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
794       return nullptr;
795 
796     ElementPresent[Idx->getZExtValue()] = true;
797     FirstIE = CurrIE;
798     CurrIE = NextIE;
799   }
800 
801   // If this is just a single insertelement (not a sequence), we are done.
802   if (FirstIE == &InsElt)
803     return nullptr;
804 
805   // If we are not inserting into an undef vector, make sure we've seen an
806   // insert into every element.
807   // TODO: If the base vector is not undef, it might be better to create a splat
808   //       and then a select-shuffle (blend) with the base vector.
809   if (!isa<UndefValue>(FirstIE->getOperand(0)))
810     if (!ElementPresent.all())
811       return nullptr;
812 
813   // Create the insert + shuffle.
814   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
815   UndefValue *UndefVec = UndefValue::get(VecTy);
816   Constant *Zero = ConstantInt::get(Int32Ty, 0);
817   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
818     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
819 
820   // Splat from element 0, but replace absent elements with undef in the mask.
821   SmallVector<int, 16> Mask(NumElements, 0);
822   for (unsigned i = 0; i != NumElements; ++i)
823     if (!ElementPresent[i])
824       Mask[i] = -1;
825 
826   return new ShuffleVectorInst(FirstIE, UndefVec, Mask);
827 }
828 
829 /// Try to fold an insert element into an existing splat shuffle by changing
830 /// the shuffle's mask to include the index of this insert element.
foldInsEltIntoSplat(InsertElementInst & InsElt)831 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
832   // Check if the vector operand of this insert is a canonical splat shuffle.
833   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
834   if (!Shuf || !Shuf->isZeroEltSplat())
835     return nullptr;
836 
837   // Bail out early if shuffle is scalable type. The number of elements in
838   // shuffle mask is unknown at compile-time.
839   if (isa<ScalableVectorType>(Shuf->getType()))
840     return nullptr;
841 
842   // Check for a constant insertion index.
843   uint64_t IdxC;
844   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
845     return nullptr;
846 
847   // Check if the splat shuffle's input is the same as this insert's scalar op.
848   Value *X = InsElt.getOperand(1);
849   Value *Op0 = Shuf->getOperand(0);
850   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
851     return nullptr;
852 
853   // Replace the shuffle mask element at the index of this insert with a zero.
854   // For example:
855   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
856   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
857   unsigned NumMaskElts = Shuf->getType()->getNumElements();
858   SmallVector<int, 16> NewMask(NumMaskElts);
859   for (unsigned i = 0; i != NumMaskElts; ++i)
860     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
861 
862   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
863 }
864 
865 /// Try to fold an extract+insert element into an existing identity shuffle by
866 /// changing the shuffle's mask to include the index of this insert element.
foldInsEltIntoIdentityShuffle(InsertElementInst & InsElt)867 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
868   // Check if the vector operand of this insert is an identity shuffle.
869   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
870   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
871       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
872     return nullptr;
873 
874   // Bail out early if shuffle is scalable type. The number of elements in
875   // shuffle mask is unknown at compile-time.
876   if (isa<ScalableVectorType>(Shuf->getType()))
877     return nullptr;
878 
879   // Check for a constant insertion index.
880   uint64_t IdxC;
881   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
882     return nullptr;
883 
884   // Check if this insert's scalar op is extracted from the identity shuffle's
885   // input vector.
886   Value *Scalar = InsElt.getOperand(1);
887   Value *X = Shuf->getOperand(0);
888   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
889     return nullptr;
890 
891   // Replace the shuffle mask element at the index of this extract+insert with
892   // that same index value.
893   // For example:
894   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
895   unsigned NumMaskElts = Shuf->getType()->getNumElements();
896   SmallVector<int, 16> NewMask(NumMaskElts);
897   ArrayRef<int> OldMask = Shuf->getShuffleMask();
898   for (unsigned i = 0; i != NumMaskElts; ++i) {
899     if (i != IdxC) {
900       // All mask elements besides the inserted element remain the same.
901       NewMask[i] = OldMask[i];
902     } else if (OldMask[i] == (int)IdxC) {
903       // If the mask element was already set, there's nothing to do
904       // (demanded elements analysis may unset it later).
905       return nullptr;
906     } else {
907       assert(OldMask[i] == UndefMaskElem &&
908              "Unexpected shuffle mask element for identity shuffle");
909       NewMask[i] = IdxC;
910     }
911   }
912 
913   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
914 }
915 
916 /// If we have an insertelement instruction feeding into another insertelement
917 /// and the 2nd is inserting a constant into the vector, canonicalize that
918 /// constant insertion before the insertion of a variable:
919 ///
920 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
921 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
922 ///
923 /// This has the potential of eliminating the 2nd insertelement instruction
924 /// via constant folding of the scalar constant into a vector constant.
hoistInsEltConst(InsertElementInst & InsElt2,InstCombiner::BuilderTy & Builder)925 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
926                                      InstCombiner::BuilderTy &Builder) {
927   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
928   if (!InsElt1 || !InsElt1->hasOneUse())
929     return nullptr;
930 
931   Value *X, *Y;
932   Constant *ScalarC;
933   ConstantInt *IdxC1, *IdxC2;
934   if (match(InsElt1->getOperand(0), m_Value(X)) &&
935       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
936       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
937       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
938       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
939     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
940     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
941   }
942 
943   return nullptr;
944 }
945 
946 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
947 /// --> shufflevector X, CVec', Mask'
foldConstantInsEltIntoShuffle(InsertElementInst & InsElt)948 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
949   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
950   // Bail out if the parent has more than one use. In that case, we'd be
951   // replacing the insertelt with a shuffle, and that's not a clear win.
952   if (!Inst || !Inst->hasOneUse())
953     return nullptr;
954   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
955     // The shuffle must have a constant vector operand. The insertelt must have
956     // a constant scalar being inserted at a constant position in the vector.
957     Constant *ShufConstVec, *InsEltScalar;
958     uint64_t InsEltIndex;
959     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
960         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
961         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
962       return nullptr;
963 
964     // Adding an element to an arbitrary shuffle could be expensive, but a
965     // shuffle that selects elements from vectors without crossing lanes is
966     // assumed cheap.
967     // If we're just adding a constant into that shuffle, it will still be
968     // cheap.
969     if (!isShuffleEquivalentToSelect(*Shuf))
970       return nullptr;
971 
972     // From the above 'select' check, we know that the mask has the same number
973     // of elements as the vector input operands. We also know that each constant
974     // input element is used in its lane and can not be used more than once by
975     // the shuffle. Therefore, replace the constant in the shuffle's constant
976     // vector with the insertelt constant. Replace the constant in the shuffle's
977     // mask vector with the insertelt index plus the length of the vector
978     // (because the constant vector operand of a shuffle is always the 2nd
979     // operand).
980     ArrayRef<int> Mask = Shuf->getShuffleMask();
981     unsigned NumElts = Mask.size();
982     SmallVector<Constant *, 16> NewShufElts(NumElts);
983     SmallVector<int, 16> NewMaskElts(NumElts);
984     for (unsigned I = 0; I != NumElts; ++I) {
985       if (I == InsEltIndex) {
986         NewShufElts[I] = InsEltScalar;
987         NewMaskElts[I] = InsEltIndex + NumElts;
988       } else {
989         // Copy over the existing values.
990         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
991         NewMaskElts[I] = Mask[I];
992       }
993     }
994 
995     // Create new operands for a shuffle that includes the constant of the
996     // original insertelt. The old shuffle will be dead now.
997     return new ShuffleVectorInst(Shuf->getOperand(0),
998                                  ConstantVector::get(NewShufElts), NewMaskElts);
999   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1000     // Transform sequences of insertelements ops with constant data/indexes into
1001     // a single shuffle op.
1002     // Can not handle scalable type, the number of elements needed to create
1003     // shuffle mask is not a compile-time constant.
1004     if (isa<ScalableVectorType>(InsElt.getType()))
1005       return nullptr;
1006     unsigned NumElts =
1007         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1008 
1009     uint64_t InsertIdx[2];
1010     Constant *Val[2];
1011     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1012         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1013         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1014         !match(IEI->getOperand(1), m_Constant(Val[1])))
1015       return nullptr;
1016     SmallVector<Constant *, 16> Values(NumElts);
1017     SmallVector<int, 16> Mask(NumElts);
1018     auto ValI = std::begin(Val);
1019     // Generate new constant vector and mask.
1020     // We have 2 values/masks from the insertelements instructions. Insert them
1021     // into new value/mask vectors.
1022     for (uint64_t I : InsertIdx) {
1023       if (!Values[I]) {
1024         Values[I] = *ValI;
1025         Mask[I] = NumElts + I;
1026       }
1027       ++ValI;
1028     }
1029     // Remaining values are filled with 'undef' values.
1030     for (unsigned I = 0; I < NumElts; ++I) {
1031       if (!Values[I]) {
1032         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1033         Mask[I] = I;
1034       }
1035     }
1036     // Create new operands for a shuffle that includes the constant of the
1037     // original insertelt.
1038     return new ShuffleVectorInst(IEI->getOperand(0),
1039                                  ConstantVector::get(Values), Mask);
1040   }
1041   return nullptr;
1042 }
1043 
visitInsertElementInst(InsertElementInst & IE)1044 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1045   Value *VecOp    = IE.getOperand(0);
1046   Value *ScalarOp = IE.getOperand(1);
1047   Value *IdxOp    = IE.getOperand(2);
1048 
1049   if (auto *V = SimplifyInsertElementInst(
1050           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1051     return replaceInstUsesWith(IE, V);
1052 
1053   // If the scalar is bitcast and inserted into undef, do the insert in the
1054   // source type followed by bitcast.
1055   // TODO: Generalize for insert into any constant, not just undef?
1056   Value *ScalarSrc;
1057   if (match(VecOp, m_Undef()) &&
1058       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1059       (ScalarSrc->getType()->isIntegerTy() ||
1060        ScalarSrc->getType()->isFloatingPointTy())) {
1061     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1062     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1063     Type *ScalarTy = ScalarSrc->getType();
1064     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1065     UndefValue *NewUndef = UndefValue::get(VecTy);
1066     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1067     return new BitCastInst(NewInsElt, IE.getType());
1068   }
1069 
1070   // If the vector and scalar are both bitcast from the same element type, do
1071   // the insert in that source type followed by bitcast.
1072   Value *VecSrc;
1073   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1074       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1075       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1076       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1077       cast<VectorType>(VecSrc->getType())->getElementType() ==
1078           ScalarSrc->getType()) {
1079     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1080     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1081     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1082     return new BitCastInst(NewInsElt, IE.getType());
1083   }
1084 
1085   // If the inserted element was extracted from some other fixed-length vector
1086   // and both indexes are valid constants, try to turn this into a shuffle.
1087   // Can not handle scalable vector type, the number of elements needed to
1088   // create shuffle mask is not a compile-time constant.
1089   uint64_t InsertedIdx, ExtractedIdx;
1090   Value *ExtVecOp;
1091   if (isa<FixedVectorType>(IE.getType()) &&
1092       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1093       match(ScalarOp,
1094             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1095       isa<FixedVectorType>(ExtVecOp->getType()) &&
1096       ExtractedIdx <
1097           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1098     // TODO: Looking at the user(s) to determine if this insert is a
1099     // fold-to-shuffle opportunity does not match the usual instcombine
1100     // constraints. We should decide if the transform is worthy based only
1101     // on this instruction and its operands, but that may not work currently.
1102     //
1103     // Here, we are trying to avoid creating shuffles before reaching
1104     // the end of a chain of extract-insert pairs. This is complicated because
1105     // we do not generally form arbitrary shuffle masks in instcombine
1106     // (because those may codegen poorly), but collectShuffleElements() does
1107     // exactly that.
1108     //
1109     // The rules for determining what is an acceptable target-independent
1110     // shuffle mask are fuzzy because they evolve based on the backend's
1111     // capabilities and real-world impact.
1112     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1113       if (!Insert.hasOneUse())
1114         return true;
1115       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1116       if (!InsertUser)
1117         return true;
1118       return false;
1119     };
1120 
1121     // Try to form a shuffle from a chain of extract-insert ops.
1122     if (isShuffleRootCandidate(IE)) {
1123       SmallVector<int, 16> Mask;
1124       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1125 
1126       // The proposed shuffle may be trivial, in which case we shouldn't
1127       // perform the combine.
1128       if (LR.first != &IE && LR.second != &IE) {
1129         // We now have a shuffle of LHS, RHS, Mask.
1130         if (LR.second == nullptr)
1131           LR.second = UndefValue::get(LR.first->getType());
1132         return new ShuffleVectorInst(LR.first, LR.second, Mask);
1133       }
1134     }
1135   }
1136 
1137   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1138     unsigned VWidth = VecTy->getNumElements();
1139     APInt UndefElts(VWidth, 0);
1140     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1141     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1142       if (V != &IE)
1143         return replaceInstUsesWith(IE, V);
1144       return &IE;
1145     }
1146   }
1147 
1148   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1149     return Shuf;
1150 
1151   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1152     return NewInsElt;
1153 
1154   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1155     return Broadcast;
1156 
1157   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1158     return Splat;
1159 
1160   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1161     return IdentityShuf;
1162 
1163   return nullptr;
1164 }
1165 
1166 /// Return true if we can evaluate the specified expression tree if the vector
1167 /// elements were shuffled in a different order.
canEvaluateShuffled(Value * V,ArrayRef<int> Mask,unsigned Depth=5)1168 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1169                                 unsigned Depth = 5) {
1170   // We can always reorder the elements of a constant.
1171   if (isa<Constant>(V))
1172     return true;
1173 
1174   // We won't reorder vector arguments. No IPO here.
1175   Instruction *I = dyn_cast<Instruction>(V);
1176   if (!I) return false;
1177 
1178   // Two users may expect different orders of the elements. Don't try it.
1179   if (!I->hasOneUse())
1180     return false;
1181 
1182   if (Depth == 0) return false;
1183 
1184   switch (I->getOpcode()) {
1185     case Instruction::UDiv:
1186     case Instruction::SDiv:
1187     case Instruction::URem:
1188     case Instruction::SRem:
1189       // Propagating an undefined shuffle mask element to integer div/rem is not
1190       // allowed because those opcodes can create immediate undefined behavior
1191       // from an undefined element in an operand.
1192       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1193         return false;
1194       LLVM_FALLTHROUGH;
1195     case Instruction::Add:
1196     case Instruction::FAdd:
1197     case Instruction::Sub:
1198     case Instruction::FSub:
1199     case Instruction::Mul:
1200     case Instruction::FMul:
1201     case Instruction::FDiv:
1202     case Instruction::FRem:
1203     case Instruction::Shl:
1204     case Instruction::LShr:
1205     case Instruction::AShr:
1206     case Instruction::And:
1207     case Instruction::Or:
1208     case Instruction::Xor:
1209     case Instruction::ICmp:
1210     case Instruction::FCmp:
1211     case Instruction::Trunc:
1212     case Instruction::ZExt:
1213     case Instruction::SExt:
1214     case Instruction::FPToUI:
1215     case Instruction::FPToSI:
1216     case Instruction::UIToFP:
1217     case Instruction::SIToFP:
1218     case Instruction::FPTrunc:
1219     case Instruction::FPExt:
1220     case Instruction::GetElementPtr: {
1221       // Bail out if we would create longer vector ops. We could allow creating
1222       // longer vector ops, but that may result in more expensive codegen.
1223       Type *ITy = I->getType();
1224       if (ITy->isVectorTy() &&
1225           Mask.size() > cast<VectorType>(ITy)->getNumElements())
1226         return false;
1227       for (Value *Operand : I->operands()) {
1228         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1229           return false;
1230       }
1231       return true;
1232     }
1233     case Instruction::InsertElement: {
1234       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1235       if (!CI) return false;
1236       int ElementNumber = CI->getLimitedValue();
1237 
1238       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1239       // can't put an element into multiple indices.
1240       bool SeenOnce = false;
1241       for (int i = 0, e = Mask.size(); i != e; ++i) {
1242         if (Mask[i] == ElementNumber) {
1243           if (SeenOnce)
1244             return false;
1245           SeenOnce = true;
1246         }
1247       }
1248       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1249     }
1250   }
1251   return false;
1252 }
1253 
1254 /// Rebuild a new instruction just like 'I' but with the new operands given.
1255 /// In the event of type mismatch, the type of the operands is correct.
buildNew(Instruction * I,ArrayRef<Value * > NewOps)1256 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1257   // We don't want to use the IRBuilder here because we want the replacement
1258   // instructions to appear next to 'I', not the builder's insertion point.
1259   switch (I->getOpcode()) {
1260     case Instruction::Add:
1261     case Instruction::FAdd:
1262     case Instruction::Sub:
1263     case Instruction::FSub:
1264     case Instruction::Mul:
1265     case Instruction::FMul:
1266     case Instruction::UDiv:
1267     case Instruction::SDiv:
1268     case Instruction::FDiv:
1269     case Instruction::URem:
1270     case Instruction::SRem:
1271     case Instruction::FRem:
1272     case Instruction::Shl:
1273     case Instruction::LShr:
1274     case Instruction::AShr:
1275     case Instruction::And:
1276     case Instruction::Or:
1277     case Instruction::Xor: {
1278       BinaryOperator *BO = cast<BinaryOperator>(I);
1279       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1280       BinaryOperator *New =
1281           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1282                                  NewOps[0], NewOps[1], "", BO);
1283       if (isa<OverflowingBinaryOperator>(BO)) {
1284         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1285         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1286       }
1287       if (isa<PossiblyExactOperator>(BO)) {
1288         New->setIsExact(BO->isExact());
1289       }
1290       if (isa<FPMathOperator>(BO))
1291         New->copyFastMathFlags(I);
1292       return New;
1293     }
1294     case Instruction::ICmp:
1295       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1296       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1297                           NewOps[0], NewOps[1]);
1298     case Instruction::FCmp:
1299       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1300       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1301                           NewOps[0], NewOps[1]);
1302     case Instruction::Trunc:
1303     case Instruction::ZExt:
1304     case Instruction::SExt:
1305     case Instruction::FPToUI:
1306     case Instruction::FPToSI:
1307     case Instruction::UIToFP:
1308     case Instruction::SIToFP:
1309     case Instruction::FPTrunc:
1310     case Instruction::FPExt: {
1311       // It's possible that the mask has a different number of elements from
1312       // the original cast. We recompute the destination type to match the mask.
1313       Type *DestTy = VectorType::get(
1314           I->getType()->getScalarType(),
1315           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1316       assert(NewOps.size() == 1 && "cast with #ops != 1");
1317       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1318                               "", I);
1319     }
1320     case Instruction::GetElementPtr: {
1321       Value *Ptr = NewOps[0];
1322       ArrayRef<Value*> Idx = NewOps.slice(1);
1323       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1324           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1325       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1326       return GEP;
1327     }
1328   }
1329   llvm_unreachable("failed to rebuild vector instructions");
1330 }
1331 
evaluateInDifferentElementOrder(Value * V,ArrayRef<int> Mask)1332 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1333   // Mask.size() does not need to be equal to the number of vector elements.
1334 
1335   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1336   Type *EltTy = V->getType()->getScalarType();
1337   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1338   if (isa<UndefValue>(V))
1339     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1340 
1341   if (isa<ConstantAggregateZero>(V))
1342     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1343 
1344   if (Constant *C = dyn_cast<Constant>(V))
1345     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1346                                           Mask);
1347 
1348   Instruction *I = cast<Instruction>(V);
1349   switch (I->getOpcode()) {
1350     case Instruction::Add:
1351     case Instruction::FAdd:
1352     case Instruction::Sub:
1353     case Instruction::FSub:
1354     case Instruction::Mul:
1355     case Instruction::FMul:
1356     case Instruction::UDiv:
1357     case Instruction::SDiv:
1358     case Instruction::FDiv:
1359     case Instruction::URem:
1360     case Instruction::SRem:
1361     case Instruction::FRem:
1362     case Instruction::Shl:
1363     case Instruction::LShr:
1364     case Instruction::AShr:
1365     case Instruction::And:
1366     case Instruction::Or:
1367     case Instruction::Xor:
1368     case Instruction::ICmp:
1369     case Instruction::FCmp:
1370     case Instruction::Trunc:
1371     case Instruction::ZExt:
1372     case Instruction::SExt:
1373     case Instruction::FPToUI:
1374     case Instruction::FPToSI:
1375     case Instruction::UIToFP:
1376     case Instruction::SIToFP:
1377     case Instruction::FPTrunc:
1378     case Instruction::FPExt:
1379     case Instruction::Select:
1380     case Instruction::GetElementPtr: {
1381       SmallVector<Value*, 8> NewOps;
1382       bool NeedsRebuild =
1383           (Mask.size() != cast<VectorType>(I->getType())->getNumElements());
1384       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1385         Value *V;
1386         // Recursively call evaluateInDifferentElementOrder on vector arguments
1387         // as well. E.g. GetElementPtr may have scalar operands even if the
1388         // return value is a vector, so we need to examine the operand type.
1389         if (I->getOperand(i)->getType()->isVectorTy())
1390           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1391         else
1392           V = I->getOperand(i);
1393         NewOps.push_back(V);
1394         NeedsRebuild |= (V != I->getOperand(i));
1395       }
1396       if (NeedsRebuild) {
1397         return buildNew(I, NewOps);
1398       }
1399       return I;
1400     }
1401     case Instruction::InsertElement: {
1402       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1403 
1404       // The insertelement was inserting at Element. Figure out which element
1405       // that becomes after shuffling. The answer is guaranteed to be unique
1406       // by CanEvaluateShuffled.
1407       bool Found = false;
1408       int Index = 0;
1409       for (int e = Mask.size(); Index != e; ++Index) {
1410         if (Mask[Index] == Element) {
1411           Found = true;
1412           break;
1413         }
1414       }
1415 
1416       // If element is not in Mask, no need to handle the operand 1 (element to
1417       // be inserted). Just evaluate values in operand 0 according to Mask.
1418       if (!Found)
1419         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1420 
1421       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1422       return InsertElementInst::Create(V, I->getOperand(1),
1423                                        ConstantInt::get(I32Ty, Index), "", I);
1424     }
1425   }
1426   llvm_unreachable("failed to reorder elements of vector instruction!");
1427 }
1428 
1429 // Returns true if the shuffle is extracting a contiguous range of values from
1430 // LHS, for example:
1431 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1432 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1433 //   Shuffles to:  |EE|FF|GG|HH|
1434 //                 +--+--+--+--+
isShuffleExtractingFromLHS(ShuffleVectorInst & SVI,ArrayRef<int> Mask)1435 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1436                                        ArrayRef<int> Mask) {
1437   unsigned LHSElems =
1438       cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
1439   unsigned MaskElems = Mask.size();
1440   unsigned BegIdx = Mask.front();
1441   unsigned EndIdx = Mask.back();
1442   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1443     return false;
1444   for (unsigned I = 0; I != MaskElems; ++I)
1445     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1446       return false;
1447   return true;
1448 }
1449 
1450 /// These are the ingredients in an alternate form binary operator as described
1451 /// below.
1452 struct BinopElts {
1453   BinaryOperator::BinaryOps Opcode;
1454   Value *Op0;
1455   Value *Op1;
BinopEltsBinopElts1456   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1457             Value *V0 = nullptr, Value *V1 = nullptr) :
1458       Opcode(Opc), Op0(V0), Op1(V1) {}
operator boolBinopElts1459   operator bool() const { return Opcode != 0; }
1460 };
1461 
1462 /// Binops may be transformed into binops with different opcodes and operands.
1463 /// Reverse the usual canonicalization to enable folds with the non-canonical
1464 /// form of the binop. If a transform is possible, return the elements of the
1465 /// new binop. If not, return invalid elements.
getAlternateBinop(BinaryOperator * BO,const DataLayout & DL)1466 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1467   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1468   Type *Ty = BO->getType();
1469   switch (BO->getOpcode()) {
1470     case Instruction::Shl: {
1471       // shl X, C --> mul X, (1 << C)
1472       Constant *C;
1473       if (match(BO1, m_Constant(C))) {
1474         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1475         return { Instruction::Mul, BO0, ShlOne };
1476       }
1477       break;
1478     }
1479     case Instruction::Or: {
1480       // or X, C --> add X, C (when X and C have no common bits set)
1481       const APInt *C;
1482       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1483         return { Instruction::Add, BO0, BO1 };
1484       break;
1485     }
1486     default:
1487       break;
1488   }
1489   return {};
1490 }
1491 
foldSelectShuffleWith1Binop(ShuffleVectorInst & Shuf)1492 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1493   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1494 
1495   // Are we shuffling together some value and that same value after it has been
1496   // modified by a binop with a constant?
1497   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1498   Constant *C;
1499   bool Op0IsBinop;
1500   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1501     Op0IsBinop = true;
1502   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1503     Op0IsBinop = false;
1504   else
1505     return nullptr;
1506 
1507   // The identity constant for a binop leaves a variable operand unchanged. For
1508   // a vector, this is a splat of something like 0, -1, or 1.
1509   // If there's no identity constant for this binop, we're done.
1510   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1511   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1512   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1513   if (!IdC)
1514     return nullptr;
1515 
1516   // Shuffle identity constants into the lanes that return the original value.
1517   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1518   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1519   // The existing binop constant vector remains in the same operand position.
1520   ArrayRef<int> Mask = Shuf.getShuffleMask();
1521   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1522                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1523 
1524   bool MightCreatePoisonOrUB =
1525       is_contained(Mask, UndefMaskElem) &&
1526       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1527   if (MightCreatePoisonOrUB)
1528     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1529 
1530   // shuf (bop X, C), X, M --> bop X, C'
1531   // shuf X, (bop X, C), M --> bop X, C'
1532   Value *X = Op0IsBinop ? Op1 : Op0;
1533   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1534   NewBO->copyIRFlags(BO);
1535 
1536   // An undef shuffle mask element may propagate as an undef constant element in
1537   // the new binop. That would produce poison where the original code might not.
1538   // If we already made a safe constant, then there's no danger.
1539   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1540     NewBO->dropPoisonGeneratingFlags();
1541   return NewBO;
1542 }
1543 
1544 /// If we have an insert of a scalar to a non-zero element of an undefined
1545 /// vector and then shuffle that value, that's the same as inserting to the zero
1546 /// element and shuffling. Splatting from the zero element is recognized as the
1547 /// canonical form of splat.
canonicalizeInsertSplat(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)1548 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1549                                             InstCombiner::BuilderTy &Builder) {
1550   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1551   ArrayRef<int> Mask = Shuf.getShuffleMask();
1552   Value *X;
1553   uint64_t IndexC;
1554 
1555   // Match a shuffle that is a splat to a non-zero element.
1556   if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
1557                                        m_ConstantInt(IndexC)))) ||
1558       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1559     return nullptr;
1560 
1561   // Insert into element 0 of an undef vector.
1562   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1563   Constant *Zero = Builder.getInt32(0);
1564   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1565 
1566   // Splat from element 0. Any mask element that is undefined remains undefined.
1567   // For example:
1568   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1569   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1570   unsigned NumMaskElts = Shuf.getType()->getNumElements();
1571   SmallVector<int, 16> NewMask(NumMaskElts, 0);
1572   for (unsigned i = 0; i != NumMaskElts; ++i)
1573     if (Mask[i] == UndefMaskElem)
1574       NewMask[i] = Mask[i];
1575 
1576   return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
1577 }
1578 
1579 /// Try to fold shuffles that are the equivalent of a vector select.
foldSelectShuffle(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder,const DataLayout & DL)1580 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1581                                       InstCombiner::BuilderTy &Builder,
1582                                       const DataLayout &DL) {
1583   if (!Shuf.isSelect())
1584     return nullptr;
1585 
1586   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1587   // Commuting undef to operand 0 conflicts with another canonicalization.
1588   unsigned NumElts = Shuf.getType()->getNumElements();
1589   if (!isa<UndefValue>(Shuf.getOperand(1)) &&
1590       Shuf.getMaskValue(0) >= (int)NumElts) {
1591     // TODO: Can we assert that both operands of a shuffle-select are not undef
1592     // (otherwise, it would have been folded by instsimplify?
1593     Shuf.commute();
1594     return &Shuf;
1595   }
1596 
1597   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1598     return I;
1599 
1600   BinaryOperator *B0, *B1;
1601   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1602       !match(Shuf.getOperand(1), m_BinOp(B1)))
1603     return nullptr;
1604 
1605   Value *X, *Y;
1606   Constant *C0, *C1;
1607   bool ConstantsAreOp1;
1608   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1609       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1610     ConstantsAreOp1 = true;
1611   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1612            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1613     ConstantsAreOp1 = false;
1614   else
1615     return nullptr;
1616 
1617   // We need matching binops to fold the lanes together.
1618   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1619   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1620   bool DropNSW = false;
1621   if (ConstantsAreOp1 && Opc0 != Opc1) {
1622     // TODO: We drop "nsw" if shift is converted into multiply because it may
1623     // not be correct when the shift amount is BitWidth - 1. We could examine
1624     // each vector element to determine if it is safe to keep that flag.
1625     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1626       DropNSW = true;
1627     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1628       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1629       Opc0 = AltB0.Opcode;
1630       C0 = cast<Constant>(AltB0.Op1);
1631     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1632       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1633       Opc1 = AltB1.Opcode;
1634       C1 = cast<Constant>(AltB1.Op1);
1635     }
1636   }
1637 
1638   if (Opc0 != Opc1)
1639     return nullptr;
1640 
1641   // The opcodes must be the same. Use a new name to make that clear.
1642   BinaryOperator::BinaryOps BOpc = Opc0;
1643 
1644   // Select the constant elements needed for the single binop.
1645   ArrayRef<int> Mask = Shuf.getShuffleMask();
1646   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1647 
1648   // We are moving a binop after a shuffle. When a shuffle has an undefined
1649   // mask element, the result is undefined, but it is not poison or undefined
1650   // behavior. That is not necessarily true for div/rem/shift.
1651   bool MightCreatePoisonOrUB =
1652       is_contained(Mask, UndefMaskElem) &&
1653       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1654   if (MightCreatePoisonOrUB)
1655     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1656 
1657   Value *V;
1658   if (X == Y) {
1659     // Remove a binop and the shuffle by rearranging the constant:
1660     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1661     // shuffle (op C0, V), (op C1, V), M --> op C', V
1662     V = X;
1663   } else {
1664     // If there are 2 different variable operands, we must create a new shuffle
1665     // (select) first, so check uses to ensure that we don't end up with more
1666     // instructions than we started with.
1667     if (!B0->hasOneUse() && !B1->hasOneUse())
1668       return nullptr;
1669 
1670     // If we use the original shuffle mask and op1 is *variable*, we would be
1671     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1672     // poison. We do not have to guard against UB when *constants* are op1
1673     // because safe constants guarantee that we do not overflow sdiv/srem (and
1674     // there's no danger for other opcodes).
1675     // TODO: To allow this case, create a new shuffle mask with no undefs.
1676     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1677       return nullptr;
1678 
1679     // Note: In general, we do not create new shuffles in InstCombine because we
1680     // do not know if a target can lower an arbitrary shuffle optimally. In this
1681     // case, the shuffle uses the existing mask, so there is no additional risk.
1682 
1683     // Select the variable vectors first, then perform the binop:
1684     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1685     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1686     V = Builder.CreateShuffleVector(X, Y, Mask);
1687   }
1688 
1689   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1690                                          BinaryOperator::Create(BOpc, NewC, V);
1691 
1692   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1693   // 1. If we changed an opcode, poison conditions might have changed.
1694   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1695   //    where the original code did not. But if we already made a safe constant,
1696   //    then there's no danger.
1697   NewBO->copyIRFlags(B0);
1698   NewBO->andIRFlags(B1);
1699   if (DropNSW)
1700     NewBO->setHasNoSignedWrap(false);
1701   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1702     NewBO->dropPoisonGeneratingFlags();
1703   return NewBO;
1704 }
1705 
1706 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
1707 /// Example (little endian):
1708 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
foldTruncShuffle(ShuffleVectorInst & Shuf,bool IsBigEndian)1709 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
1710                                      bool IsBigEndian) {
1711   // This must be a bitcasted shuffle of 1 vector integer operand.
1712   Type *DestType = Shuf.getType();
1713   Value *X;
1714   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
1715       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
1716     return nullptr;
1717 
1718   // The source type must have the same number of elements as the shuffle,
1719   // and the source element type must be larger than the shuffle element type.
1720   Type *SrcType = X->getType();
1721   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
1722       cast<VectorType>(SrcType)->getNumElements() !=
1723           cast<VectorType>(DestType)->getNumElements() ||
1724       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
1725     return nullptr;
1726 
1727   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
1728          "Expected a shuffle that decreases length");
1729 
1730   // Last, check that the mask chooses the correct low bits for each narrow
1731   // element in the result.
1732   uint64_t TruncRatio =
1733       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
1734   ArrayRef<int> Mask = Shuf.getShuffleMask();
1735   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1736     if (Mask[i] == UndefMaskElem)
1737       continue;
1738     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
1739     assert(LSBIndex <= std::numeric_limits<int32_t>::max() &&
1740            "Overflowed 32-bits");
1741     if (Mask[i] != (int)LSBIndex)
1742       return nullptr;
1743   }
1744 
1745   return new TruncInst(X, DestType);
1746 }
1747 
1748 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1749 /// narrowing (concatenating with undef and extracting back to the original
1750 /// length). This allows replacing the wide select with a narrow select.
narrowVectorSelect(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)1751 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1752                                        InstCombiner::BuilderTy &Builder) {
1753   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1754   // of the 1st vector operand of a shuffle.
1755   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1756     return nullptr;
1757 
1758   // The vector being shuffled must be a vector select that we can eliminate.
1759   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1760   Value *Cond, *X, *Y;
1761   if (!match(Shuf.getOperand(0),
1762              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1763     return nullptr;
1764 
1765   // We need a narrow condition value. It must be extended with undef elements
1766   // and have the same number of elements as this shuffle.
1767   unsigned NarrowNumElts = Shuf.getType()->getNumElements();
1768   Value *NarrowCond;
1769   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
1770       cast<VectorType>(NarrowCond->getType())->getNumElements() !=
1771           NarrowNumElts ||
1772       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1773     return nullptr;
1774 
1775   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1776   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1777   Value *Undef = UndefValue::get(X->getType());
1778   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask());
1779   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask());
1780   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1781 }
1782 
1783 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
foldIdentityExtractShuffle(ShuffleVectorInst & Shuf)1784 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1785   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1786   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1787     return nullptr;
1788 
1789   Value *X, *Y;
1790   ArrayRef<int> Mask;
1791   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
1792     return nullptr;
1793 
1794   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1795   // then combining may result in worse codegen.
1796   if (!Op0->hasOneUse())
1797     return nullptr;
1798 
1799   // We are extracting a subvector from a shuffle. Remove excess elements from
1800   // the 1st shuffle mask to eliminate the extract.
1801   //
1802   // This transform is conservatively limited to identity extracts because we do
1803   // not allow arbitrary shuffle mask creation as a target-independent transform
1804   // (because we can't guarantee that will lower efficiently).
1805   //
1806   // If the extracting shuffle has an undef mask element, it transfers to the
1807   // new shuffle mask. Otherwise, copy the original mask element. Example:
1808   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1809   //   shuf X, Y, <C0, undef, C2, undef>
1810   unsigned NumElts = Shuf.getType()->getNumElements();
1811   SmallVector<int, 16> NewMask(NumElts);
1812   assert(NumElts < Mask.size() &&
1813          "Identity with extract must have less elements than its inputs");
1814 
1815   for (unsigned i = 0; i != NumElts; ++i) {
1816     int ExtractMaskElt = Shuf.getMaskValue(i);
1817     int MaskElt = Mask[i];
1818     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
1819   }
1820   return new ShuffleVectorInst(X, Y, NewMask);
1821 }
1822 
1823 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
1824 /// operand with the operand of an insertelement.
foldShuffleWithInsert(ShuffleVectorInst & Shuf,InstCombiner & IC)1825 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
1826                                           InstCombiner &IC) {
1827   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1828   SmallVector<int, 16> Mask;
1829   Shuf.getShuffleMask(Mask);
1830 
1831   // The shuffle must not change vector sizes.
1832   // TODO: This restriction could be removed if the insert has only one use
1833   //       (because the transform would require a new length-changing shuffle).
1834   int NumElts = Mask.size();
1835   if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements()))
1836     return nullptr;
1837 
1838   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
1839   // not be able to handle it there if the insertelement has >1 use.
1840   // If the shuffle has an insertelement operand but does not choose the
1841   // inserted scalar element from that value, then we can replace that shuffle
1842   // operand with the source vector of the insertelement.
1843   Value *X;
1844   uint64_t IdxC;
1845   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1846     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
1847     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1848       return IC.replaceOperand(Shuf, 0, X);
1849   }
1850   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1851     // Offset the index constant by the vector width because we are checking for
1852     // accesses to the 2nd vector input of the shuffle.
1853     IdxC += NumElts;
1854     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
1855     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1856       return IC.replaceOperand(Shuf, 1, X);
1857   }
1858 
1859   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1860   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1861     // We need an insertelement with a constant index.
1862     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
1863                                m_ConstantInt(IndexC))))
1864       return false;
1865 
1866     // Test the shuffle mask to see if it splices the inserted scalar into the
1867     // operand 1 vector of the shuffle.
1868     int NewInsIndex = -1;
1869     for (int i = 0; i != NumElts; ++i) {
1870       // Ignore undef mask elements.
1871       if (Mask[i] == -1)
1872         continue;
1873 
1874       // The shuffle takes elements of operand 1 without lane changes.
1875       if (Mask[i] == NumElts + i)
1876         continue;
1877 
1878       // The shuffle must choose the inserted scalar exactly once.
1879       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1880         return false;
1881 
1882       // The shuffle is placing the inserted scalar into element i.
1883       NewInsIndex = i;
1884     }
1885 
1886     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1887 
1888     // Index is updated to the potentially translated insertion lane.
1889     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1890     return true;
1891   };
1892 
1893   // If the shuffle is unnecessary, insert the scalar operand directly into
1894   // operand 1 of the shuffle. Example:
1895   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1896   Value *Scalar;
1897   ConstantInt *IndexC;
1898   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1899     return InsertElementInst::Create(V1, Scalar, IndexC);
1900 
1901   // Try again after commuting shuffle. Example:
1902   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1903   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1904   std::swap(V0, V1);
1905   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1906   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1907     return InsertElementInst::Create(V1, Scalar, IndexC);
1908 
1909   return nullptr;
1910 }
1911 
foldIdentityPaddedShuffles(ShuffleVectorInst & Shuf)1912 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1913   // Match the operands as identity with padding (also known as concatenation
1914   // with undef) shuffles of the same source type. The backend is expected to
1915   // recreate these concatenations from a shuffle of narrow operands.
1916   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1917   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1918   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1919       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1920     return nullptr;
1921 
1922   // We limit this transform to power-of-2 types because we expect that the
1923   // backend can convert the simplified IR patterns to identical nodes as the
1924   // original IR.
1925   // TODO: If we can verify the same behavior for arbitrary types, the
1926   //       power-of-2 checks can be removed.
1927   Value *X = Shuffle0->getOperand(0);
1928   Value *Y = Shuffle1->getOperand(0);
1929   if (X->getType() != Y->getType() ||
1930       !isPowerOf2_32(Shuf.getType()->getNumElements()) ||
1931       !isPowerOf2_32(Shuffle0->getType()->getNumElements()) ||
1932       !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) ||
1933       isa<UndefValue>(X) || isa<UndefValue>(Y))
1934     return nullptr;
1935   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1936          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1937          "Unexpected operand for identity shuffle");
1938 
1939   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1940   // operands directly by adjusting the shuffle mask to account for the narrower
1941   // types:
1942   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1943   int NarrowElts = cast<VectorType>(X->getType())->getNumElements();
1944   int WideElts = Shuffle0->getType()->getNumElements();
1945   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1946 
1947   ArrayRef<int> Mask = Shuf.getShuffleMask();
1948   SmallVector<int, 16> NewMask(Mask.size(), -1);
1949   for (int i = 0, e = Mask.size(); i != e; ++i) {
1950     if (Mask[i] == -1)
1951       continue;
1952 
1953     // If this shuffle is choosing an undef element from 1 of the sources, that
1954     // element is undef.
1955     if (Mask[i] < WideElts) {
1956       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1957         continue;
1958     } else {
1959       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1960         continue;
1961     }
1962 
1963     // If this shuffle is choosing from the 1st narrow op, the mask element is
1964     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1965     // element is offset down to adjust for the narrow vector widths.
1966     if (Mask[i] < WideElts) {
1967       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1968       NewMask[i] = Mask[i];
1969     } else {
1970       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1971       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
1972     }
1973   }
1974   return new ShuffleVectorInst(X, Y, NewMask);
1975 }
1976 
visitShuffleVectorInst(ShuffleVectorInst & SVI)1977 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1978   Value *LHS = SVI.getOperand(0);
1979   Value *RHS = SVI.getOperand(1);
1980   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
1981   if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
1982                                           SVI.getType(), ShufQuery))
1983     return replaceInstUsesWith(SVI, V);
1984 
1985   // shuffle x, x, mask --> shuffle x, undef, mask'
1986   unsigned VWidth = SVI.getType()->getNumElements();
1987   unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
1988   ArrayRef<int> Mask = SVI.getShuffleMask();
1989   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1990 
1991   // Peek through a bitcasted shuffle operand by scaling the mask. If the
1992   // simulated shuffle can simplify, then this shuffle is unnecessary:
1993   // shuf (bitcast X), undef, Mask --> bitcast X'
1994   // TODO: This could be extended to allow length-changing shuffles.
1995   //       The transform might also be obsoleted if we allowed canonicalization
1996   //       of bitcasted shuffles.
1997   Value *X;
1998   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
1999       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2000     // Try to create a scaled mask constant.
2001     auto *XType = cast<VectorType>(X->getType());
2002     unsigned XNumElts = XType->getNumElements();
2003     SmallVector<int, 16> ScaledMask;
2004     if (XNumElts >= VWidth) {
2005       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2006       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2007     } else {
2008       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2009       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2010         ScaledMask.clear();
2011     }
2012     if (!ScaledMask.empty()) {
2013       // If the shuffled source vector simplifies, cast that value to this
2014       // shuffle's type.
2015       if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
2016                                               ScaledMask, XType, ShufQuery))
2017         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2018     }
2019   }
2020 
2021   if (LHS == RHS) {
2022     assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
2023     // Remap any references to RHS to use LHS.
2024     SmallVector<int, 16> Elts;
2025     for (unsigned i = 0; i != VWidth; ++i) {
2026       // Propagate undef elements or force mask to LHS.
2027       if (Mask[i] < 0)
2028         Elts.push_back(UndefMaskElem);
2029       else
2030         Elts.push_back(Mask[i] % LHSWidth);
2031     }
2032     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
2033   }
2034 
2035   // shuffle undef, x, mask --> shuffle x, undef, mask'
2036   if (isa<UndefValue>(LHS)) {
2037     SVI.commute();
2038     return &SVI;
2039   }
2040 
2041   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2042     return I;
2043 
2044   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
2045     return I;
2046 
2047   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2048     return I;
2049 
2050   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2051     return I;
2052 
2053   APInt UndefElts(VWidth, 0);
2054   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2055   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2056     if (V != &SVI)
2057       return replaceInstUsesWith(SVI, V);
2058     return &SVI;
2059   }
2060 
2061   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2062     return I;
2063 
2064   // These transforms have the potential to lose undef knowledge, so they are
2065   // intentionally placed after SimplifyDemandedVectorElts().
2066   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2067     return I;
2068   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2069     return I;
2070 
2071   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
2072     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2073     return replaceInstUsesWith(SVI, V);
2074   }
2075 
2076   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2077   // a non-vector type. We can instead bitcast the original vector followed by
2078   // an extract of the desired element:
2079   //
2080   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2081   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2082   //   %1 = bitcast <4 x i8> %sroa to i32
2083   // Becomes:
2084   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2085   //   %ext = extractelement <4 x i32> %bc, i32 0
2086   //
2087   // If the shuffle is extracting a contiguous range of values from the input
2088   // vector then each use which is a bitcast of the extracted size can be
2089   // replaced. This will work if the vector types are compatible, and the begin
2090   // index is aligned to a value in the casted vector type. If the begin index
2091   // isn't aligned then we can shuffle the original vector (keeping the same
2092   // vector type) before extracting.
2093   //
2094   // This code will bail out if the target type is fundamentally incompatible
2095   // with vectors of the source type.
2096   //
2097   // Example of <16 x i8>, target type i32:
2098   // Index range [4,8):         v-----------v Will work.
2099   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2100   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2101   //     <4 x i32>: |           |           |           |           |
2102   //                +-----------+-----------+-----------+-----------+
2103   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2104   // Target type i40:           ^--------------^ Won't work, bail.
2105   bool MadeChange = false;
2106   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2107     Value *V = LHS;
2108     unsigned MaskElems = Mask.size();
2109     VectorType *SrcTy = cast<VectorType>(V->getType());
2110     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2111     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2112     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2113     unsigned SrcNumElems = SrcTy->getNumElements();
2114     SmallVector<BitCastInst *, 8> BCs;
2115     DenseMap<Type *, Value *> NewBCs;
2116     for (User *U : SVI.users())
2117       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2118         if (!BC->use_empty())
2119           // Only visit bitcasts that weren't previously handled.
2120           BCs.push_back(BC);
2121     for (BitCastInst *BC : BCs) {
2122       unsigned BegIdx = Mask.front();
2123       Type *TgtTy = BC->getDestTy();
2124       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2125       if (!TgtElemBitWidth)
2126         continue;
2127       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2128       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2129       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2130       if (!VecBitWidthsEqual)
2131         continue;
2132       if (!VectorType::isValidElementType(TgtTy))
2133         continue;
2134       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2135       if (!BegIsAligned) {
2136         // Shuffle the input so [0,NumElements) contains the output, and
2137         // [NumElems,SrcNumElems) is undef.
2138         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2139         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2140           ShuffleMask[I] = Idx;
2141         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2142                                         ShuffleMask,
2143                                         SVI.getName() + ".extract");
2144         BegIdx = 0;
2145       }
2146       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2147       assert(SrcElemsPerTgtElem);
2148       BegIdx /= SrcElemsPerTgtElem;
2149       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2150       auto *NewBC =
2151           BCAlreadyExists
2152               ? NewBCs[CastSrcTy]
2153               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2154       if (!BCAlreadyExists)
2155         NewBCs[CastSrcTy] = NewBC;
2156       auto *Ext = Builder.CreateExtractElement(
2157           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2158       // The shufflevector isn't being replaced: the bitcast that used it
2159       // is. InstCombine will visit the newly-created instructions.
2160       replaceInstUsesWith(*BC, Ext);
2161       MadeChange = true;
2162     }
2163   }
2164 
2165   // If the LHS is a shufflevector itself, see if we can combine it with this
2166   // one without producing an unusual shuffle.
2167   // Cases that might be simplified:
2168   // 1.
2169   // x1=shuffle(v1,v2,mask1)
2170   //  x=shuffle(x1,undef,mask)
2171   //        ==>
2172   //  x=shuffle(v1,undef,newMask)
2173   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2174   // 2.
2175   // x1=shuffle(v1,undef,mask1)
2176   //  x=shuffle(x1,x2,mask)
2177   // where v1.size() == mask1.size()
2178   //        ==>
2179   //  x=shuffle(v1,x2,newMask)
2180   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2181   // 3.
2182   // x2=shuffle(v2,undef,mask2)
2183   //  x=shuffle(x1,x2,mask)
2184   // where v2.size() == mask2.size()
2185   //        ==>
2186   //  x=shuffle(x1,v2,newMask)
2187   // newMask[i] = (mask[i] < x1.size())
2188   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2189   // 4.
2190   // x1=shuffle(v1,undef,mask1)
2191   // x2=shuffle(v2,undef,mask2)
2192   //  x=shuffle(x1,x2,mask)
2193   // where v1.size() == v2.size()
2194   //        ==>
2195   //  x=shuffle(v1,v2,newMask)
2196   // newMask[i] = (mask[i] < x1.size())
2197   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2198   //
2199   // Here we are really conservative:
2200   // we are absolutely afraid of producing a shuffle mask not in the input
2201   // program, because the code gen may not be smart enough to turn a merged
2202   // shuffle into two specific shuffles: it may produce worse code.  As such,
2203   // we only merge two shuffles if the result is either a splat or one of the
2204   // input shuffle masks.  In this case, merging the shuffles just removes
2205   // one instruction, which we know is safe.  This is good for things like
2206   // turning: (splat(splat)) -> splat, or
2207   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2208   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2209   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2210   if (LHSShuffle)
2211     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2212       LHSShuffle = nullptr;
2213   if (RHSShuffle)
2214     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2215       RHSShuffle = nullptr;
2216   if (!LHSShuffle && !RHSShuffle)
2217     return MadeChange ? &SVI : nullptr;
2218 
2219   Value* LHSOp0 = nullptr;
2220   Value* LHSOp1 = nullptr;
2221   Value* RHSOp0 = nullptr;
2222   unsigned LHSOp0Width = 0;
2223   unsigned RHSOp0Width = 0;
2224   if (LHSShuffle) {
2225     LHSOp0 = LHSShuffle->getOperand(0);
2226     LHSOp1 = LHSShuffle->getOperand(1);
2227     LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
2228   }
2229   if (RHSShuffle) {
2230     RHSOp0 = RHSShuffle->getOperand(0);
2231     RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
2232   }
2233   Value* newLHS = LHS;
2234   Value* newRHS = RHS;
2235   if (LHSShuffle) {
2236     // case 1
2237     if (isa<UndefValue>(RHS)) {
2238       newLHS = LHSOp0;
2239       newRHS = LHSOp1;
2240     }
2241     // case 2 or 4
2242     else if (LHSOp0Width == LHSWidth) {
2243       newLHS = LHSOp0;
2244     }
2245   }
2246   // case 3 or 4
2247   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2248     newRHS = RHSOp0;
2249   }
2250   // case 4
2251   if (LHSOp0 == RHSOp0) {
2252     newLHS = LHSOp0;
2253     newRHS = nullptr;
2254   }
2255 
2256   if (newLHS == LHS && newRHS == RHS)
2257     return MadeChange ? &SVI : nullptr;
2258 
2259   ArrayRef<int> LHSMask;
2260   ArrayRef<int> RHSMask;
2261   if (newLHS != LHS)
2262     LHSMask = LHSShuffle->getShuffleMask();
2263   if (RHSShuffle && newRHS != RHS)
2264     RHSMask = RHSShuffle->getShuffleMask();
2265 
2266   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2267   SmallVector<int, 16> newMask;
2268   bool isSplat = true;
2269   int SplatElt = -1;
2270   // Create a new mask for the new ShuffleVectorInst so that the new
2271   // ShuffleVectorInst is equivalent to the original one.
2272   for (unsigned i = 0; i < VWidth; ++i) {
2273     int eltMask;
2274     if (Mask[i] < 0) {
2275       // This element is an undef value.
2276       eltMask = -1;
2277     } else if (Mask[i] < (int)LHSWidth) {
2278       // This element is from left hand side vector operand.
2279       //
2280       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2281       // new mask value for the element.
2282       if (newLHS != LHS) {
2283         eltMask = LHSMask[Mask[i]];
2284         // If the value selected is an undef value, explicitly specify it
2285         // with a -1 mask value.
2286         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2287           eltMask = -1;
2288       } else
2289         eltMask = Mask[i];
2290     } else {
2291       // This element is from right hand side vector operand
2292       //
2293       // If the value selected is an undef value, explicitly specify it
2294       // with a -1 mask value. (case 1)
2295       if (isa<UndefValue>(RHS))
2296         eltMask = -1;
2297       // If RHS is going to be replaced (case 3 or 4), calculate the
2298       // new mask value for the element.
2299       else if (newRHS != RHS) {
2300         eltMask = RHSMask[Mask[i]-LHSWidth];
2301         // If the value selected is an undef value, explicitly specify it
2302         // with a -1 mask value.
2303         if (eltMask >= (int)RHSOp0Width) {
2304           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2305                  && "should have been check above");
2306           eltMask = -1;
2307         }
2308       } else
2309         eltMask = Mask[i]-LHSWidth;
2310 
2311       // If LHS's width is changed, shift the mask value accordingly.
2312       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2313       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2314       // If newRHS == newLHS, we want to remap any references from newRHS to
2315       // newLHS so that we can properly identify splats that may occur due to
2316       // obfuscation across the two vectors.
2317       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2318         eltMask += newLHSWidth;
2319     }
2320 
2321     // Check if this could still be a splat.
2322     if (eltMask >= 0) {
2323       if (SplatElt >= 0 && SplatElt != eltMask)
2324         isSplat = false;
2325       SplatElt = eltMask;
2326     }
2327 
2328     newMask.push_back(eltMask);
2329   }
2330 
2331   // If the result mask is equal to one of the original shuffle masks,
2332   // or is a splat, do the replacement.
2333   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2334     SmallVector<Constant*, 16> Elts;
2335     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2336       if (newMask[i] < 0) {
2337         Elts.push_back(UndefValue::get(Int32Ty));
2338       } else {
2339         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2340       }
2341     }
2342     if (!newRHS)
2343       newRHS = UndefValue::get(newLHS->getType());
2344     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2345   }
2346 
2347   return MadeChange ? &SVI : nullptr;
2348 }
2349