1 //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements loop fusion.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Analysis/AffineAnalysis.h"
15 #include "mlir/Analysis/AffineStructures.h"
16 #include "mlir/Analysis/LoopAnalysis.h"
17 #include "mlir/Analysis/Utils.h"
18 #include "mlir/Dialect/Affine/IR/AffineOps.h"
19 #include "mlir/IR/AffineExpr.h"
20 #include "mlir/IR/AffineMap.h"
21 #include "mlir/IR/Builders.h"
22 #include "mlir/Transforms/LoopFusionUtils.h"
23 #include "mlir/Transforms/LoopUtils.h"
24 #include "mlir/Transforms/Passes.h"
25 #include "mlir/Transforms/Utils.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <iomanip>
33 #include <sstream>
34 #define DEBUG_TYPE "affine-loop-fusion"
35 
36 using llvm::SetVector;
37 
38 using namespace mlir;
39 
40 namespace {
41 /// Loop fusion pass. This pass currently supports a greedy fusion policy,
42 /// which fuses loop nests with single-writer/single-reader memref dependences
43 /// with the goal of improving locality.
44 
45 // TODO: Support fusion of source loop nests which write to multiple
46 // memrefs, where each memref can have multiple users (if profitable).
47 // TODO: Extend this pass to check for fusion preventing dependences,
48 // and add support for more general loop fusion algorithms.
49 
50 struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
51   LoopFusion() = default;
LoopFusion__anonb2be91030111::LoopFusion52   LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
53              bool maximalFusion) {
54     this->fastMemorySpace = fastMemorySpace;
55     this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
56     this->maximalFusion = maximalFusion;
57   }
58 
59   void runOnFunction() override;
60 };
61 
62 } // end anonymous namespace
63 
64 std::unique_ptr<OperationPass<FuncOp>>
createLoopFusionPass(unsigned fastMemorySpace,uint64_t localBufSizeThreshold,bool maximalFusion)65 mlir::createLoopFusionPass(unsigned fastMemorySpace,
66                            uint64_t localBufSizeThreshold, bool maximalFusion) {
67   return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
68                                       maximalFusion);
69 }
70 
71 // TODO: Replace when this is modeled through side-effects/op traits
isMemRefDereferencingOp(Operation & op)72 static bool isMemRefDereferencingOp(Operation &op) {
73   return isa<AffineReadOpInterface, AffineWriteOpInterface, AffineDmaStartOp,
74              AffineDmaWaitOp>(op);
75 }
76 
77 namespace {
78 
79 // LoopNestStateCollector walks loop nests and collects load and store
80 // operations, and whether or not an IfInst was encountered in the loop nest.
81 struct LoopNestStateCollector {
82   SmallVector<AffineForOp, 4> forOps;
83   SmallVector<Operation *, 4> loadOpInsts;
84   SmallVector<Operation *, 4> storeOpInsts;
85   bool hasNonForRegion = false;
86 
collect__anonb2be91030211::LoopNestStateCollector87   void collect(Operation *opToWalk) {
88     opToWalk->walk([&](Operation *op) {
89       if (isa<AffineForOp>(op))
90         forOps.push_back(cast<AffineForOp>(op));
91       else if (op->getNumRegions() != 0)
92         hasNonForRegion = true;
93       else if (isa<AffineReadOpInterface>(op))
94         loadOpInsts.push_back(op);
95       else if (isa<AffineWriteOpInterface>(op))
96         storeOpInsts.push_back(op);
97     });
98   }
99 };
100 
101 // MemRefDependenceGraph is a graph data structure where graph nodes are
102 // top-level operations in a FuncOp which contain load/store ops, and edges
103 // are memref dependences between the nodes.
104 // TODO: Add a more flexible dependence graph representation.
105 // TODO: Add a depth parameter to dependence graph construction.
106 struct MemRefDependenceGraph {
107 public:
108   // Node represents a node in the graph. A Node is either an entire loop nest
109   // rooted at the top level which contains loads/stores, or a top level
110   // load/store.
111   struct Node {
112     // The unique identifier of this node in the graph.
113     unsigned id;
114     // The top-level statement which is (or contains) a load/store.
115     Operation *op;
116     // List of load operations.
117     SmallVector<Operation *, 4> loads;
118     // List of store op insts.
119     SmallVector<Operation *, 4> stores;
Node__anonb2be91030211::MemRefDependenceGraph::Node120     Node(unsigned id, Operation *op) : id(id), op(op) {}
121 
122     // Returns the load op count for 'memref'.
getLoadOpCount__anonb2be91030211::MemRefDependenceGraph::Node123     unsigned getLoadOpCount(Value memref) {
124       unsigned loadOpCount = 0;
125       for (auto *loadOpInst : loads) {
126         if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
127           ++loadOpCount;
128       }
129       return loadOpCount;
130     }
131 
132     // Returns the store op count for 'memref'.
getStoreOpCount__anonb2be91030211::MemRefDependenceGraph::Node133     unsigned getStoreOpCount(Value memref) {
134       unsigned storeOpCount = 0;
135       for (auto *storeOpInst : stores) {
136         if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
137           ++storeOpCount;
138       }
139       return storeOpCount;
140     }
141 
142     // Returns all store ops in 'storeOps' which access 'memref'.
getStoreOpsForMemref__anonb2be91030211::MemRefDependenceGraph::Node143     void getStoreOpsForMemref(Value memref,
144                               SmallVectorImpl<Operation *> *storeOps) {
145       for (auto *storeOpInst : stores) {
146         if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
147           storeOps->push_back(storeOpInst);
148       }
149     }
150 
151     // Returns all load ops in 'loadOps' which access 'memref'.
getLoadOpsForMemref__anonb2be91030211::MemRefDependenceGraph::Node152     void getLoadOpsForMemref(Value memref,
153                              SmallVectorImpl<Operation *> *loadOps) {
154       for (auto *loadOpInst : loads) {
155         if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
156           loadOps->push_back(loadOpInst);
157       }
158     }
159 
160     // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
161     // has at least one load and store operation.
getLoadAndStoreMemrefSet__anonb2be91030211::MemRefDependenceGraph::Node162     void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
163       llvm::SmallDenseSet<Value, 2> loadMemrefs;
164       for (auto *loadOpInst : loads) {
165         loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
166       }
167       for (auto *storeOpInst : stores) {
168         auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
169         if (loadMemrefs.count(memref) > 0)
170           loadAndStoreMemrefSet->insert(memref);
171       }
172     }
173   };
174 
175   // Edge represents a data dependence between nodes in the graph.
176   struct Edge {
177     // The id of the node at the other end of the edge.
178     // If this edge is stored in Edge = Node.inEdges[i], then
179     // 'Node.inEdges[i].id' is the identifier of the source node of the edge.
180     // If this edge is stored in Edge = Node.outEdges[i], then
181     // 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
182     unsigned id;
183     // The SSA value on which this edge represents a dependence.
184     // If the value is a memref, then the dependence is between graph nodes
185     // which contain accesses to the same memref 'value'. If the value is a
186     // non-memref value, then the dependence is between a graph node which
187     // defines an SSA value and another graph node which uses the SSA value
188     // (e.g. a constant operation defining a value which is used inside a loop
189     // nest).
190     Value value;
191   };
192 
193   // Map from node id to Node.
194   DenseMap<unsigned, Node> nodes;
195   // Map from node id to list of input edges.
196   DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
197   // Map from node id to list of output edges.
198   DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
199   // Map from memref to a count on the dependence edges associated with that
200   // memref.
201   DenseMap<Value, unsigned> memrefEdgeCount;
202   // The next unique identifier to use for newly created graph nodes.
203   unsigned nextNodeId = 0;
204 
MemRefDependenceGraph__anonb2be91030211::MemRefDependenceGraph205   MemRefDependenceGraph() {}
206 
207   // Initializes the dependence graph based on operations in 'f'.
208   // Returns true on success, false otherwise.
209   bool init(FuncOp f);
210 
211   // Returns the graph node for 'id'.
getNode__anonb2be91030211::MemRefDependenceGraph212   Node *getNode(unsigned id) {
213     auto it = nodes.find(id);
214     assert(it != nodes.end());
215     return &it->second;
216   }
217 
218   // Returns the graph node for 'forOp'.
getForOpNode__anonb2be91030211::MemRefDependenceGraph219   Node *getForOpNode(AffineForOp forOp) {
220     for (auto &idAndNode : nodes)
221       if (idAndNode.second.op == forOp.getOperation())
222         return &idAndNode.second;
223     return nullptr;
224   }
225 
226   // Adds a node with 'op' to the graph and returns its unique identifier.
addNode__anonb2be91030211::MemRefDependenceGraph227   unsigned addNode(Operation *op) {
228     Node node(nextNodeId++, op);
229     nodes.insert({node.id, node});
230     return node.id;
231   }
232 
233   // Remove node 'id' (and its associated edges) from graph.
removeNode__anonb2be91030211::MemRefDependenceGraph234   void removeNode(unsigned id) {
235     // Remove each edge in 'inEdges[id]'.
236     if (inEdges.count(id) > 0) {
237       SmallVector<Edge, 2> oldInEdges = inEdges[id];
238       for (auto &inEdge : oldInEdges) {
239         removeEdge(inEdge.id, id, inEdge.value);
240       }
241     }
242     // Remove each edge in 'outEdges[id]'.
243     if (outEdges.count(id) > 0) {
244       SmallVector<Edge, 2> oldOutEdges = outEdges[id];
245       for (auto &outEdge : oldOutEdges) {
246         removeEdge(id, outEdge.id, outEdge.value);
247       }
248     }
249     // Erase remaining node state.
250     inEdges.erase(id);
251     outEdges.erase(id);
252     nodes.erase(id);
253   }
254 
255   // Returns true if node 'id' writes to any memref which escapes (or is an
256   // argument to) the function/block. Returns false otherwise.
writesToLiveInOrEscapingMemrefs__anonb2be91030211::MemRefDependenceGraph257   bool writesToLiveInOrEscapingMemrefs(unsigned id) {
258     Node *node = getNode(id);
259     for (auto *storeOpInst : node->stores) {
260       auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
261       auto *op = memref.getDefiningOp();
262       // Return true if 'memref' is a block argument.
263       if (!op)
264         return true;
265       // Return true if any use of 'memref' escapes the function.
266       for (auto *user : memref.getUsers())
267         if (!isMemRefDereferencingOp(*user))
268           return true;
269     }
270     return false;
271   }
272 
273   // Returns the unique AffineWriteOpInterface in `node` that meets all the
274   // following:
275   //   *) store is the only one that writes to a function-local memref live out
276   //      of `node`,
277   //   *) store is not the source of a self-dependence on `node`.
278   // Otherwise, returns a null AffineWriteOpInterface.
getUniqueOutgoingStore__anonb2be91030211::MemRefDependenceGraph279   AffineWriteOpInterface getUniqueOutgoingStore(Node *node) {
280     AffineWriteOpInterface uniqueStore;
281 
282     // Return null if `node` doesn't have any outgoing edges.
283     auto outEdgeIt = outEdges.find(node->id);
284     if (outEdgeIt == outEdges.end())
285       return nullptr;
286 
287     const auto &nodeOutEdges = outEdgeIt->second;
288     for (auto *op : node->stores) {
289       auto storeOp = cast<AffineWriteOpInterface>(op);
290       auto memref = storeOp.getMemRef();
291       // Skip this store if there are no dependences on its memref. This means
292       // that store either:
293       // *) writes to a memref that is only read within the same loop nest
294       //    (self-dependence edges are not represented in graph at the moment),
295       // *) writes to a function live out memref (function parameter), or
296       // *) is dead.
297       if (llvm::all_of(nodeOutEdges, [=](const Edge &edge) {
298             return (edge.value != memref);
299           }))
300         continue;
301 
302       if (uniqueStore)
303         // Found multiple stores to function-local live-out memrefs.
304         return nullptr;
305       // Found first store to function-local live-out memref.
306       uniqueStore = storeOp;
307     }
308 
309     return uniqueStore;
310   }
311 
312   // Returns true if node 'id' can be removed from the graph. Returns false
313   // otherwise. A node can be removed from the graph iff the following
314   // conditions are met:
315   // *) The node does not write to any memref which escapes (or is a
316   //    function/block argument).
317   // *) The node has no successors in the dependence graph.
canRemoveNode__anonb2be91030211::MemRefDependenceGraph318   bool canRemoveNode(unsigned id) {
319     if (writesToLiveInOrEscapingMemrefs(id))
320       return false;
321     Node *node = getNode(id);
322     for (auto *storeOpInst : node->stores) {
323       // Return false if there exist out edges from 'id' on 'memref'.
324       auto storeMemref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
325       if (getOutEdgeCount(id, storeMemref) > 0)
326         return false;
327     }
328     return true;
329   }
330 
331   // Returns true iff there is an edge from node 'srcId' to node 'dstId' which
332   // is for 'value' if non-null, or for any value otherwise. Returns false
333   // otherwise.
hasEdge__anonb2be91030211::MemRefDependenceGraph334   bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
335     if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
336       return false;
337     }
338     bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
339       return edge.id == dstId && (!value || edge.value == value);
340     });
341     bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
342       return edge.id == srcId && (!value || edge.value == value);
343     });
344     return hasOutEdge && hasInEdge;
345   }
346 
347   // Adds an edge from node 'srcId' to node 'dstId' for 'value'.
addEdge__anonb2be91030211::MemRefDependenceGraph348   void addEdge(unsigned srcId, unsigned dstId, Value value) {
349     if (!hasEdge(srcId, dstId, value)) {
350       outEdges[srcId].push_back({dstId, value});
351       inEdges[dstId].push_back({srcId, value});
352       if (value.getType().isa<MemRefType>())
353         memrefEdgeCount[value]++;
354     }
355   }
356 
357   // Removes an edge from node 'srcId' to node 'dstId' for 'value'.
removeEdge__anonb2be91030211::MemRefDependenceGraph358   void removeEdge(unsigned srcId, unsigned dstId, Value value) {
359     assert(inEdges.count(dstId) > 0);
360     assert(outEdges.count(srcId) > 0);
361     if (value.getType().isa<MemRefType>()) {
362       assert(memrefEdgeCount.count(value) > 0);
363       memrefEdgeCount[value]--;
364     }
365     // Remove 'srcId' from 'inEdges[dstId]'.
366     for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
367       if ((*it).id == srcId && (*it).value == value) {
368         inEdges[dstId].erase(it);
369         break;
370       }
371     }
372     // Remove 'dstId' from 'outEdges[srcId]'.
373     for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
374       if ((*it).id == dstId && (*it).value == value) {
375         outEdges[srcId].erase(it);
376         break;
377       }
378     }
379   }
380 
381   // Returns true if there is a path in the dependence graph from node 'srcId'
382   // to node 'dstId'. Returns false otherwise.
hasDependencePath__anonb2be91030211::MemRefDependenceGraph383   bool hasDependencePath(unsigned srcId, unsigned dstId) {
384     // Worklist state is: <node-id, next-output-edge-index-to-visit>
385     SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
386     worklist.push_back({srcId, 0});
387     // Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
388     while (!worklist.empty()) {
389       auto &idAndIndex = worklist.back();
390       // Return true if we have reached 'dstId'.
391       if (idAndIndex.first == dstId)
392         return true;
393       // Pop and continue if node has no out edges, or if all out edges have
394       // already been visited.
395       if (outEdges.count(idAndIndex.first) == 0 ||
396           idAndIndex.second == outEdges[idAndIndex.first].size()) {
397         worklist.pop_back();
398         continue;
399       }
400       // Get graph edge to traverse.
401       Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
402       // Increment next output edge index for 'idAndIndex'.
403       ++idAndIndex.second;
404       // Add node at 'edge.id' to worklist.
405       worklist.push_back({edge.id, 0});
406     }
407     return false;
408   }
409 
410   // Returns the input edge count for node 'id' and 'memref' from src nodes
411   // which access 'memref' with a store operation.
getIncomingMemRefAccesses__anonb2be91030211::MemRefDependenceGraph412   unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
413     unsigned inEdgeCount = 0;
414     if (inEdges.count(id) > 0)
415       for (auto &inEdge : inEdges[id])
416         if (inEdge.value == memref) {
417           Node *srcNode = getNode(inEdge.id);
418           // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
419           if (srcNode->getStoreOpCount(memref) > 0)
420             ++inEdgeCount;
421         }
422     return inEdgeCount;
423   }
424 
425   // Returns the output edge count for node 'id' and 'memref' (if non-null),
426   // otherwise returns the total output edge count from node 'id'.
getOutEdgeCount__anonb2be91030211::MemRefDependenceGraph427   unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
428     unsigned outEdgeCount = 0;
429     if (outEdges.count(id) > 0)
430       for (auto &outEdge : outEdges[id])
431         if (!memref || outEdge.value == memref)
432           ++outEdgeCount;
433     return outEdgeCount;
434   }
435 
436   // Computes and returns an insertion point operation, before which the
437   // the fused <srcId, dstId> loop nest can be inserted while preserving
438   // dependences. Returns nullptr if no such insertion point is found.
getFusedLoopNestInsertionPoint__anonb2be91030211::MemRefDependenceGraph439   Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
440     if (outEdges.count(srcId) == 0)
441       return getNode(dstId)->op;
442 
443     // Build set of insts in range (srcId, dstId) which depend on 'srcId'.
444     SmallPtrSet<Operation *, 2> srcDepInsts;
445     for (auto &outEdge : outEdges[srcId])
446       if (outEdge.id != dstId)
447         srcDepInsts.insert(getNode(outEdge.id)->op);
448 
449     // Build set of insts in range (srcId, dstId) on which 'dstId' depends.
450     SmallPtrSet<Operation *, 2> dstDepInsts;
451     for (auto &inEdge : inEdges[dstId])
452       if (inEdge.id != srcId)
453         dstDepInsts.insert(getNode(inEdge.id)->op);
454 
455     Operation *srcNodeInst = getNode(srcId)->op;
456     Operation *dstNodeInst = getNode(dstId)->op;
457 
458     // Computing insertion point:
459     // *) Walk all operation positions in Block operation list in the
460     //    range (src, dst). For each operation 'op' visited in this search:
461     //   *) Store in 'firstSrcDepPos' the first position where 'op' has a
462     //      dependence edge from 'srcNode'.
463     //   *) Store in 'lastDstDepPost' the last position where 'op' has a
464     //      dependence edge to 'dstNode'.
465     // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
466     //    operation insertion point (or return null pointer if no such
467     //    insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
468     SmallVector<Operation *, 2> depInsts;
469     Optional<unsigned> firstSrcDepPos;
470     Optional<unsigned> lastDstDepPos;
471     unsigned pos = 0;
472     for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
473          it != Block::iterator(dstNodeInst); ++it) {
474       Operation *op = &(*it);
475       if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
476         firstSrcDepPos = pos;
477       if (dstDepInsts.count(op) > 0)
478         lastDstDepPos = pos;
479       depInsts.push_back(op);
480       ++pos;
481     }
482 
483     if (firstSrcDepPos.hasValue()) {
484       if (lastDstDepPos.hasValue()) {
485         if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
486           // No valid insertion point exists which preserves dependences.
487           return nullptr;
488         }
489       }
490       // Return the insertion point at 'firstSrcDepPos'.
491       return depInsts[firstSrcDepPos.getValue()];
492     }
493     // No dependence targets in range (or only dst deps in range), return
494     // 'dstNodInst' insertion point.
495     return dstNodeInst;
496   }
497 
498   // Updates edge mappings from node 'srcId' to node 'dstId' after 'oldMemRef'
499   // has been replaced in node at 'dstId' by a private memref depending
500   // on the value of 'createPrivateMemRef'.
updateEdges__anonb2be91030211::MemRefDependenceGraph501   void updateEdges(unsigned srcId, unsigned dstId, Value oldMemRef,
502                    bool createPrivateMemRef) {
503     // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
504     if (inEdges.count(srcId) > 0) {
505       SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
506       for (auto &inEdge : oldInEdges) {
507         // Add edge from 'inEdge.id' to 'dstId' if not for 'oldMemRef'.
508         if (inEdge.value != oldMemRef)
509           addEdge(inEdge.id, dstId, inEdge.value);
510       }
511     }
512     // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
513     if (outEdges.count(srcId) > 0) {
514       SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
515       for (auto &outEdge : oldOutEdges) {
516         // Remove any out edges from 'srcId' to 'dstId' across memrefs.
517         if (outEdge.id == dstId)
518           removeEdge(srcId, outEdge.id, outEdge.value);
519       }
520     }
521     // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
522     // replaced by a private memref). These edges could come from nodes
523     // other than 'srcId' which were removed in the previous step.
524     if (inEdges.count(dstId) > 0 && createPrivateMemRef) {
525       SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
526       for (auto &inEdge : oldInEdges)
527         if (inEdge.value == oldMemRef)
528           removeEdge(inEdge.id, dstId, inEdge.value);
529     }
530   }
531 
532   // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
533   // of sibling node 'sidId' into node 'dstId'.
updateEdges__anonb2be91030211::MemRefDependenceGraph534   void updateEdges(unsigned sibId, unsigned dstId) {
535     // For each edge in 'inEdges[sibId]':
536     // *) Add new edge from source node 'inEdge.id' to 'dstNode'.
537     // *) Remove edge from source node 'inEdge.id' to 'sibNode'.
538     if (inEdges.count(sibId) > 0) {
539       SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
540       for (auto &inEdge : oldInEdges) {
541         addEdge(inEdge.id, dstId, inEdge.value);
542         removeEdge(inEdge.id, sibId, inEdge.value);
543       }
544     }
545 
546     // For each edge in 'outEdges[sibId]' to node 'id'
547     // *) Add new edge from 'dstId' to 'outEdge.id'.
548     // *) Remove edge from 'sibId' to 'outEdge.id'.
549     if (outEdges.count(sibId) > 0) {
550       SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
551       for (auto &outEdge : oldOutEdges) {
552         addEdge(dstId, outEdge.id, outEdge.value);
553         removeEdge(sibId, outEdge.id, outEdge.value);
554       }
555     }
556   }
557 
558   // Adds ops in 'loads' and 'stores' to node at 'id'.
addToNode__anonb2be91030211::MemRefDependenceGraph559   void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
560                  const SmallVectorImpl<Operation *> &stores) {
561     Node *node = getNode(id);
562     for (auto *loadOpInst : loads)
563       node->loads.push_back(loadOpInst);
564     for (auto *storeOpInst : stores)
565       node->stores.push_back(storeOpInst);
566   }
567 
clearNodeLoadAndStores__anonb2be91030211::MemRefDependenceGraph568   void clearNodeLoadAndStores(unsigned id) {
569     Node *node = getNode(id);
570     node->loads.clear();
571     node->stores.clear();
572   }
573 
574   // Calls 'callback' for each input edge incident to node 'id' which carries a
575   // memref dependence.
forEachMemRefInputEdge__anonb2be91030211::MemRefDependenceGraph576   void forEachMemRefInputEdge(unsigned id,
577                               const std::function<void(Edge)> &callback) {
578     if (inEdges.count(id) > 0)
579       forEachMemRefEdge(inEdges[id], callback);
580   }
581 
582   // Calls 'callback' for each output edge from node 'id' which carries a
583   // memref dependence.
forEachMemRefOutputEdge__anonb2be91030211::MemRefDependenceGraph584   void forEachMemRefOutputEdge(unsigned id,
585                                const std::function<void(Edge)> &callback) {
586     if (outEdges.count(id) > 0)
587       forEachMemRefEdge(outEdges[id], callback);
588   }
589 
590   // Calls 'callback' for each edge in 'edges' which carries a memref
591   // dependence.
forEachMemRefEdge__anonb2be91030211::MemRefDependenceGraph592   void forEachMemRefEdge(ArrayRef<Edge> edges,
593                          const std::function<void(Edge)> &callback) {
594     for (auto &edge : edges) {
595       // Skip if 'edge' is not a memref dependence edge.
596       if (!edge.value.getType().isa<MemRefType>())
597         continue;
598       assert(nodes.count(edge.id) > 0);
599       // Skip if 'edge.id' is not a loop nest.
600       if (!isa<AffineForOp>(getNode(edge.id)->op))
601         continue;
602       // Visit current input edge 'edge'.
603       callback(edge);
604     }
605   }
606 
print__anonb2be91030211::MemRefDependenceGraph607   void print(raw_ostream &os) const {
608     os << "\nMemRefDependenceGraph\n";
609     os << "\nNodes:\n";
610     for (auto &idAndNode : nodes) {
611       os << "Node: " << idAndNode.first << "\n";
612       auto it = inEdges.find(idAndNode.first);
613       if (it != inEdges.end()) {
614         for (const auto &e : it->second)
615           os << "  InEdge: " << e.id << " " << e.value << "\n";
616       }
617       it = outEdges.find(idAndNode.first);
618       if (it != outEdges.end()) {
619         for (const auto &e : it->second)
620           os << "  OutEdge: " << e.id << " " << e.value << "\n";
621       }
622     }
623   }
dump__anonb2be91030211::MemRefDependenceGraph624   void dump() const { print(llvm::errs()); }
625 };
626 
627 } // end anonymous namespace
628 
629 // Initializes the data dependence graph by walking operations in 'f'.
630 // Assigns each node in the graph a node id based on program order in 'f'.
631 // TODO: Add support for taking a Block arg to construct the
632 // dependence graph at a different depth.
init(FuncOp f)633 bool MemRefDependenceGraph::init(FuncOp f) {
634   DenseMap<Value, SetVector<unsigned>> memrefAccesses;
635 
636   // TODO: support multi-block functions.
637   if (!llvm::hasSingleElement(f))
638     return false;
639 
640   DenseMap<Operation *, unsigned> forToNodeMap;
641   for (auto &op : f.front()) {
642     if (auto forOp = dyn_cast<AffineForOp>(op)) {
643       // Create graph node 'id' to represent top-level 'forOp' and record
644       // all loads and store accesses it contains.
645       LoopNestStateCollector collector;
646       collector.collect(&op);
647       // Return false if a non 'affine.for' region was found (not currently
648       // supported).
649       if (collector.hasNonForRegion)
650         return false;
651       Node node(nextNodeId++, &op);
652       for (auto *opInst : collector.loadOpInsts) {
653         node.loads.push_back(opInst);
654         auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
655         memrefAccesses[memref].insert(node.id);
656       }
657       for (auto *opInst : collector.storeOpInsts) {
658         node.stores.push_back(opInst);
659         auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
660         memrefAccesses[memref].insert(node.id);
661       }
662       forToNodeMap[&op] = node.id;
663       nodes.insert({node.id, node});
664     } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
665       // Create graph node for top-level load op.
666       Node node(nextNodeId++, &op);
667       node.loads.push_back(&op);
668       auto memref = cast<AffineReadOpInterface>(op).getMemRef();
669       memrefAccesses[memref].insert(node.id);
670       nodes.insert({node.id, node});
671     } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
672       // Create graph node for top-level store op.
673       Node node(nextNodeId++, &op);
674       node.stores.push_back(&op);
675       auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
676       memrefAccesses[memref].insert(node.id);
677       nodes.insert({node.id, node});
678     } else if (op.getNumRegions() != 0) {
679       // Return false if another region is found (not currently supported).
680       return false;
681     } else if (op.getNumResults() > 0 && !op.use_empty()) {
682       // Create graph node for top-level producer of SSA values, which
683       // could be used by loop nest nodes.
684       Node node(nextNodeId++, &op);
685       nodes.insert({node.id, node});
686     }
687   }
688 
689   // Add dependence edges between nodes which produce SSA values and their
690   // users.
691   for (auto &idAndNode : nodes) {
692     const Node &node = idAndNode.second;
693     if (!node.loads.empty() || !node.stores.empty())
694       continue;
695     auto *opInst = node.op;
696     for (auto value : opInst->getResults()) {
697       for (auto *user : value.getUsers()) {
698         SmallVector<AffineForOp, 4> loops;
699         getLoopIVs(*user, &loops);
700         if (loops.empty())
701           continue;
702         assert(forToNodeMap.count(loops[0].getOperation()) > 0);
703         unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
704         addEdge(node.id, userLoopNestId, value);
705       }
706     }
707   }
708 
709   // Walk memref access lists and add graph edges between dependent nodes.
710   for (auto &memrefAndList : memrefAccesses) {
711     unsigned n = memrefAndList.second.size();
712     for (unsigned i = 0; i < n; ++i) {
713       unsigned srcId = memrefAndList.second[i];
714       bool srcHasStore =
715           getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
716       for (unsigned j = i + 1; j < n; ++j) {
717         unsigned dstId = memrefAndList.second[j];
718         bool dstHasStore =
719             getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
720         if (srcHasStore || dstHasStore)
721           addEdge(srcId, dstId, memrefAndList.first);
722       }
723     }
724   }
725   return true;
726 }
727 
728 // Removes load operations from 'srcLoads' which operate on 'memref', and
729 // adds them to 'dstLoads'.
moveLoadsAccessingMemrefTo(Value memref,SmallVectorImpl<Operation * > * srcLoads,SmallVectorImpl<Operation * > * dstLoads)730 static void moveLoadsAccessingMemrefTo(Value memref,
731                                        SmallVectorImpl<Operation *> *srcLoads,
732                                        SmallVectorImpl<Operation *> *dstLoads) {
733   dstLoads->clear();
734   SmallVector<Operation *, 4> srcLoadsToKeep;
735   for (auto *load : *srcLoads) {
736     if (cast<AffineReadOpInterface>(load).getMemRef() == memref)
737       dstLoads->push_back(load);
738     else
739       srcLoadsToKeep.push_back(load);
740   }
741   srcLoads->swap(srcLoadsToKeep);
742 }
743 
744 // Returns the innermost common loop depth for the set of operations in 'ops'.
getInnermostCommonLoopDepth(ArrayRef<Operation * > ops)745 static unsigned getInnermostCommonLoopDepth(ArrayRef<Operation *> ops) {
746   unsigned numOps = ops.size();
747   assert(numOps > 0);
748 
749   std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
750   unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
751   for (unsigned i = 0; i < numOps; ++i) {
752     getLoopIVs(*ops[i], &loops[i]);
753     loopDepthLimit =
754         std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
755   }
756 
757   unsigned loopDepth = 0;
758   for (unsigned d = 0; d < loopDepthLimit; ++d) {
759     unsigned i;
760     for (i = 1; i < numOps; ++i) {
761       if (loops[i - 1][d] != loops[i][d])
762         break;
763     }
764     if (i != numOps)
765       break;
766     ++loopDepth;
767   }
768   return loopDepth;
769 }
770 
771 // Returns the maximum loop depth at which no dependences between 'loadOpInsts'
772 // and 'storeOpInsts' are satisfied.
getMaxLoopDepth(ArrayRef<Operation * > loadOpInsts,ArrayRef<Operation * > storeOpInsts)773 static unsigned getMaxLoopDepth(ArrayRef<Operation *> loadOpInsts,
774                                 ArrayRef<Operation *> storeOpInsts) {
775   // Merge loads and stores into the same array.
776   SmallVector<Operation *, 2> ops(loadOpInsts.begin(), loadOpInsts.end());
777   ops.append(storeOpInsts.begin(), storeOpInsts.end());
778 
779   // Compute the innermost common loop depth for loads and stores.
780   unsigned loopDepth = getInnermostCommonLoopDepth(ops);
781 
782   // Return common loop depth for loads if there are no store ops.
783   if (storeOpInsts.empty())
784     return loopDepth;
785 
786   // Check dependences on all pairs of ops in 'ops' and store the minimum
787   // loop depth at which a dependence is satisfied.
788   for (unsigned i = 0, e = ops.size(); i < e; ++i) {
789     auto *srcOpInst = ops[i];
790     MemRefAccess srcAccess(srcOpInst);
791     for (unsigned j = 0; j < e; ++j) {
792       auto *dstOpInst = ops[j];
793       MemRefAccess dstAccess(dstOpInst);
794 
795       unsigned numCommonLoops =
796           getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst);
797       for (unsigned d = 1; d <= numCommonLoops + 1; ++d) {
798         FlatAffineConstraints dependenceConstraints;
799         // TODO: Cache dependence analysis results, check cache here.
800         DependenceResult result = checkMemrefAccessDependence(
801             srcAccess, dstAccess, d, &dependenceConstraints,
802             /*dependenceComponents=*/nullptr);
803         if (hasDependence(result)) {
804           // Store minimum loop depth and break because we want the min 'd' at
805           // which there is a dependence.
806           loopDepth = std::min(loopDepth, d - 1);
807           break;
808         }
809       }
810     }
811   }
812   return loopDepth;
813 }
814 
815 // Sinks all sequential loops to the innermost levels (while preserving
816 // relative order among them) and moves all parallel loops to the
817 // outermost (while again preserving relative order among them).
818 // This can increase the loop depth at which we can fuse a slice, since we are
819 // pushing loop carried dependence to a greater depth in the loop nest.
sinkSequentialLoops(MemRefDependenceGraph::Node * node)820 static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
821   assert(isa<AffineForOp>(node->op));
822   AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
823   node->op = newRootForOp.getOperation();
824 }
825 
826 //  TODO: improve/complete this when we have target data.
getMemRefEltSizeInBytes(MemRefType memRefType)827 static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
828   auto elementType = memRefType.getElementType();
829 
830   unsigned sizeInBits;
831   if (elementType.isIntOrFloat()) {
832     sizeInBits = elementType.getIntOrFloatBitWidth();
833   } else {
834     auto vectorType = elementType.cast<VectorType>();
835     sizeInBits =
836         vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
837   }
838   return llvm::divideCeil(sizeInBits, 8);
839 }
840 
841 // Creates and returns a private (single-user) memref for fused loop rooted
842 // at 'forOp', with (potentially reduced) memref size based on the
843 // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
844 // TODO: consider refactoring the common code from generateDma and
845 // this one.
createPrivateMemRef(AffineForOp forOp,Operation * srcStoreOpInst,unsigned dstLoopDepth,Optional<unsigned> fastMemorySpace,uint64_t localBufSizeThreshold)846 static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
847                                  unsigned dstLoopDepth,
848                                  Optional<unsigned> fastMemorySpace,
849                                  uint64_t localBufSizeThreshold) {
850   auto *forInst = forOp.getOperation();
851 
852   // Create builder to insert alloc op just before 'forOp'.
853   OpBuilder b(forInst);
854   // Builder to create constants at the top level.
855   OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
856   // Create new memref type based on slice bounds.
857   auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
858   auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
859   unsigned rank = oldMemRefType.getRank();
860 
861   // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
862   MemRefRegion region(srcStoreOpInst->getLoc());
863   bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
864   (void)validRegion;
865   assert(validRegion && "unexpected memref region failure");
866   SmallVector<int64_t, 4> newShape;
867   std::vector<SmallVector<int64_t, 4>> lbs;
868   SmallVector<int64_t, 8> lbDivisors;
869   lbs.reserve(rank);
870   // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
871   // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
872   Optional<int64_t> numElements =
873       region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
874   assert(numElements.hasValue() &&
875          "non-constant number of elts in local buffer");
876 
877   const FlatAffineConstraints *cst = region.getConstraints();
878   // 'outerIVs' holds the values that this memory region is symbolic/parametric
879   // on; this would correspond to loop IVs surrounding the level at which the
880   // slice is being materialized.
881   SmallVector<Value, 8> outerIVs;
882   cst->getIdValues(rank, cst->getNumIds(), &outerIVs);
883 
884   // Build 'rank' AffineExprs from MemRefRegion 'lbs'
885   SmallVector<AffineExpr, 4> offsets;
886   offsets.reserve(rank);
887   for (unsigned d = 0; d < rank; ++d) {
888     assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
889 
890     AffineExpr offset = top.getAffineConstantExpr(0);
891     for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
892       offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
893     }
894     assert(lbDivisors[d] > 0);
895     offset =
896         (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
897     offsets.push_back(offset);
898   }
899 
900   // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
901   // by 'srcStoreOpInst'.
902   uint64_t bufSize =
903       getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
904   unsigned newMemSpace;
905   if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
906     newMemSpace = fastMemorySpace.getValue();
907   } else {
908     newMemSpace = oldMemRefType.getMemorySpace();
909   }
910   auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
911                                        {}, newMemSpace);
912 
913   // Create new private memref for fused loop 'forOp'. 'newShape' is always
914   // a constant shape.
915   // TODO: Create/move alloc ops for private memrefs closer to their
916   // consumer loop nests to reduce their live range. Currently they are added
917   // at the beginning of the function, because loop nests can be reordered
918   // during the fusion pass.
919   Value newMemRef = top.create<AllocOp>(forOp.getLoc(), newMemRefType);
920 
921   // Build an AffineMap to remap access functions based on lower bound offsets.
922   SmallVector<AffineExpr, 4> remapExprs;
923   remapExprs.reserve(rank);
924   unsigned zeroOffsetCount = 0;
925   for (unsigned i = 0; i < rank; i++) {
926     if (auto constExpr = offsets[i].dyn_cast<AffineConstantExpr>())
927       if (constExpr.getValue() == 0)
928         ++zeroOffsetCount;
929     auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
930 
931     auto remapExpr =
932         simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
933     remapExprs.push_back(remapExpr);
934   }
935   auto indexRemap = zeroOffsetCount == rank
936                         ? AffineMap()
937                         : AffineMap::get(outerIVs.size() + rank, 0, remapExprs,
938                                          forOp.getContext());
939   // Replace all users of 'oldMemRef' with 'newMemRef'.
940   LogicalResult res =
941       replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
942                                /*extraOperands=*/outerIVs,
943                                /*symbolOperands=*/{},
944                                /*domInstFilter=*/&*forOp.getBody()->begin());
945   assert(succeeded(res) &&
946          "replaceAllMemrefUsesWith should always succeed here");
947   (void)res;
948   return newMemRef;
949 }
950 
951 /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
952 /// 'dstId'), if there is any non-affine operation accessing 'memref', return
953 /// false. Otherwise, return true.
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,Value memref,MemRefDependenceGraph * mdg)954 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
955                                        Value memref,
956                                        MemRefDependenceGraph *mdg) {
957   auto *srcNode = mdg->getNode(srcId);
958   auto *dstNode = mdg->getNode(dstId);
959   Value::user_range users = memref.getUsers();
960   // For each MemRefDependenceGraph's node that is between 'srcNode' and
961   // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
962   // non-affine operation in the node accesses the 'memref'.
963   for (auto &idAndNode : mdg->nodes) {
964     Operation *op = idAndNode.second.op;
965     // Take care of operations between 'srcNode' and 'dstNode'.
966     if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
967       // Walk inside the operation to find any use of the memref.
968       // Interrupt the walk if found.
969       auto walkResult = op->walk([&](Operation *user) {
970         // Skip affine ops.
971         if (isMemRefDereferencingOp(*user))
972           return WalkResult::advance();
973         // Find a non-affine op that uses the memref.
974         if (llvm::is_contained(users, user))
975           return WalkResult::interrupt();
976         return WalkResult::advance();
977       });
978       if (walkResult.wasInterrupted())
979         return true;
980     }
981   }
982   return false;
983 }
984 
985 /// Check whether a memref value in node 'srcId' has a non-affine that
986 /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
987 /// 'dstNode').
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg)988 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
989                                        MemRefDependenceGraph *mdg) {
990   // Collect memref values in node 'srcId'.
991   auto *srcNode = mdg->getNode(srcId);
992   llvm::SmallDenseSet<Value, 2> memRefValues;
993   srcNode->op->walk([&](Operation *op) {
994     // Skip affine ops.
995     if (isa<AffineForOp>(op))
996       return WalkResult::advance();
997     for (Value v : op->getOperands())
998       // Collect memref values only.
999       if (v.getType().isa<MemRefType>())
1000         memRefValues.insert(v);
1001     return WalkResult::advance();
1002   });
1003   // Looking for users between node 'srcId' and node 'dstId'.
1004   for (Value memref : memRefValues)
1005     if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
1006       return true;
1007   return false;
1008 }
1009 
1010 // Checks if node 'srcId' can be safely fused into node 'dstId'. Node 'srcId'
1011 // may write to multiple memrefs but it is required that only one of them,
1012 // 'srcLiveOutStoreOp', has output edges.
1013 // Returns true if 'dstNode's read/write region to 'memref' is a super set of
1014 // 'srcNode's write region to 'memref' and 'srcId' has only one output edge.
1015 // TODO: Generalize this to handle more live in/out cases.
1016 static bool
canFuseSrcWhichWritesToLiveOut(unsigned srcId,unsigned dstId,AffineWriteOpInterface srcLiveOutStoreOp,MemRefDependenceGraph * mdg)1017 canFuseSrcWhichWritesToLiveOut(unsigned srcId, unsigned dstId,
1018                                AffineWriteOpInterface srcLiveOutStoreOp,
1019                                MemRefDependenceGraph *mdg) {
1020   assert(srcLiveOutStoreOp && "Expected a valid store op");
1021   auto *dstNode = mdg->getNode(dstId);
1022   Value memref = srcLiveOutStoreOp.getMemRef();
1023   // Return false if 'srcNode' has more than one output edge on 'memref'.
1024   if (mdg->getOutEdgeCount(srcId, memref) > 1)
1025     return false;
1026 
1027   // Compute MemRefRegion 'srcWriteRegion' for 'srcStoreOp' on 'memref'.
1028   MemRefRegion srcWriteRegion(srcLiveOutStoreOp.getLoc());
1029   if (failed(srcWriteRegion.compute(srcLiveOutStoreOp, /*loopDepth=*/0))) {
1030     LLVM_DEBUG(llvm::dbgs()
1031                << "Unable to compute MemRefRegion for source operation\n.");
1032     return false;
1033   }
1034   SmallVector<int64_t, 4> srcShape;
1035   // Query 'srcWriteRegion' for 'srcShape' and 'srcNumElements'.
1036   // by 'srcStoreOp' at depth 'dstLoopDepth'.
1037   Optional<int64_t> srcNumElements =
1038       srcWriteRegion.getConstantBoundingSizeAndShape(&srcShape);
1039   if (!srcNumElements.hasValue())
1040     return false;
1041 
1042   // Compute MemRefRegion 'dstRegion' for 'dstStore/LoadOpInst' on 'memref'.
1043   // TODO: Compute 'unionboundingbox' of all write regions (one for
1044   // each store op in 'dstStoreOps').
1045   SmallVector<Operation *, 2> dstStoreOps;
1046   dstNode->getStoreOpsForMemref(memref, &dstStoreOps);
1047   SmallVector<Operation *, 2> dstLoadOps;
1048   dstNode->getLoadOpsForMemref(memref, &dstLoadOps);
1049 
1050   auto *dstOpInst = dstStoreOps.empty() ? dstLoadOps[0] : dstStoreOps[0];
1051   MemRefRegion dstRegion(dstOpInst->getLoc());
1052   if (failed(dstRegion.compute(dstOpInst, /*loopDepth=*/0))) {
1053     LLVM_DEBUG(llvm::dbgs()
1054                << "Unable to compute MemRefRegion for dest operation\n.");
1055     return false;
1056   }
1057   SmallVector<int64_t, 4> dstShape;
1058   // Query 'dstRegion' for 'dstShape' and 'dstNumElements'.
1059   // by 'dstOpInst' at depth 'dstLoopDepth'.
1060   Optional<int64_t> dstNumElements =
1061       dstRegion.getConstantBoundingSizeAndShape(&dstShape);
1062   if (!dstNumElements.hasValue())
1063     return false;
1064 
1065   // Return false if write region is not a superset of 'srcNodes' write
1066   // region to 'memref'.
1067   // TODO: Check the shape and lower bounds here too.
1068   if (srcNumElements != dstNumElements)
1069     return false;
1070 
1071   // Return false if 'memref' is used by a non-affine operation that is
1072   // between node 'srcId' and node 'dstId'.
1073   if (hasNonAffineUsersOnThePath(srcId, dstId, mdg))
1074     return false;
1075 
1076   return true;
1077 }
1078 
1079 // Checks the profitability of fusing a backwards slice of the loop nest
1080 // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
1081 // The argument 'srcStoreOpInst' is used to calculate the storage reduction on
1082 // the memref being produced and consumed, which is an input to the cost model.
1083 // For producer-consumer fusion, 'srcStoreOpInst' will be the same as
1084 // 'srcOpInst', as we are slicing w.r.t to that producer.
1085 // For input-reuse fusion, 'srcOpInst' will be the src loop nest LoadOp which
1086 // reads from the same memref as dst loop nest load ops, and 'srcStoreOpInst'
1087 // will be the unique store op in the src node, which will be used to check
1088 // that the write region is the same after input-reuse fusion.
1089 // Returns true if it is profitable to fuse the candidate loop nests. Returns
1090 // false otherwise. `dstLoopDepth` is set to the most profitable depth at which
1091 // to materialize the source loop nest slice.
1092 // The profitability model executes the following steps:
1093 // *) Computes the backward computation slice at 'srcOpInst'. This
1094 //    computation slice of the loop nest surrounding 'srcOpInst' is
1095 //    represented by modified src loop bounds in 'sliceState', which are
1096 //    functions of loop IVs in the loop nest surrounding 'srcOpInst'.
1097 // *) Computes the cost of unfused src/dst loop nests (currently the cost of a
1098 //    loop nest is the total number of dynamic operation instances in the loop
1099 //    nest).
1100 // *) Computes the cost of fusing a slice of the src loop nest into the dst
1101 //    loop nest at various values of dst loop depth, attempting to fuse
1102 //    the largest computation slice at the maximal dst loop depth (closest to
1103 //    the load) to minimize reuse distance and potentially enable subsequent
1104 //    load/store forwarding.
1105 //    NOTE: If the dst loop nest includes multiple loads in 'dstLoadOpInsts' for
1106 //    the same memref as is written by 'srcOpInst', then the union of slice
1107 //    loop bounds is used to compute the slice and associated slice cost.
1108 //    NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
1109 //    nest, at which the src computation slice is inserted/fused.
1110 //    NOTE: We attempt to maximize the dst loop depth, but there are cases
1111 //    where a particular setting for 'dstLoopNest' might fuse an unsliced
1112 //    loop (within the src computation slice) at a depth which results in
1113 //    excessive recomputation (see unit tests for examples).
1114 // *) Compares the total cost of the unfused loop nests to the min cost fused
1115 //    loop nest computed in the previous step, and returns true if the latter
1116 //    is lower.
isFusionProfitable(Operation * srcOpInst,Operation * srcStoreOpInst,ArrayRef<Operation * > dstLoadOpInsts,ArrayRef<Operation * > dstStoreOpInsts,ComputationSliceState * sliceState,unsigned * dstLoopDepth,bool maximalFusion,double computeToleranceThreshold)1117 static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
1118                                ArrayRef<Operation *> dstLoadOpInsts,
1119                                ArrayRef<Operation *> dstStoreOpInsts,
1120                                ComputationSliceState *sliceState,
1121                                unsigned *dstLoopDepth, bool maximalFusion,
1122                                double computeToleranceThreshold) {
1123   LLVM_DEBUG({
1124     llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
1125     llvm::dbgs() << ' ' << *srcOpInst << " and destination op(s)\n";
1126     for (auto dstOpInst : dstLoadOpInsts) {
1127       llvm::dbgs() << " " << *dstOpInst << "\n";
1128     };
1129   });
1130 
1131   // Compute cost of sliced and unsliced src loop nest.
1132   SmallVector<AffineForOp, 4> srcLoopIVs;
1133   getLoopIVs(*srcOpInst, &srcLoopIVs);
1134   unsigned numSrcLoopIVs = srcLoopIVs.size();
1135 
1136   // Walk src loop nest and collect stats.
1137   LoopNestStats srcLoopNestStats;
1138   if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
1139     return false;
1140 
1141   // Compute cost of dst loop nest.
1142   SmallVector<AffineForOp, 4> dstLoopIVs;
1143   getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
1144 
1145   LoopNestStats dstLoopNestStats;
1146   if (!getLoopNestStats(dstLoopIVs[0], &dstLoopNestStats))
1147     return false;
1148 
1149   // Compute the maximum loop depth at which we can can insert the src slice
1150   // and still satisfy dest loop nest dependences, for producer-consumer fusion.
1151   unsigned maxDstLoopDepth =
1152       (srcOpInst == srcStoreOpInst)
1153           ? getMaxLoopDepth(dstLoadOpInsts, dstStoreOpInsts)
1154           : dstLoopIVs.size();
1155   if (maxDstLoopDepth == 0) {
1156     LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxDstLoopDepth == 0 .\n");
1157     return false;
1158   }
1159 
1160   // Search for min cost value for 'dstLoopDepth'. At each value of
1161   // 'dstLoopDepth' from 'maxDstLoopDepth' to '1', compute computation slice
1162   // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
1163   // of these bounds). Next the union slice bounds are used to calculate
1164   // the cost of the slice and the cost of the slice inserted into the dst
1165   // loop nest at 'dstLoopDepth'.
1166   uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
1167   double maxStorageReduction = 0.0;
1168   Optional<uint64_t> sliceMemEstimate = None;
1169 
1170   SmallVector<ComputationSliceState, 4> sliceStates;
1171   sliceStates.resize(maxDstLoopDepth);
1172   // The best loop depth at which to materialize the slice.
1173   Optional<unsigned> bestDstLoopDepth = None;
1174 
1175   // Compute op instance count for the src loop nest without iteration slicing.
1176   uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
1177 
1178   // Compute src loop nest write region size.
1179   MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
1180   if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
1181     LLVM_DEBUG(llvm::dbgs()
1182                << "Unable to compute MemRefRegion for source operation\n.");
1183     return false;
1184   }
1185 
1186   Optional<int64_t> maybeSrcWriteRegionSizeBytes =
1187       srcWriteRegion.getRegionSize();
1188   if (!maybeSrcWriteRegionSizeBytes.hasValue())
1189     return false;
1190   int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();
1191 
1192   // Compute op instance count for the src loop nest.
1193   uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], dstLoopNestStats);
1194 
1195   // Evaluate all depth choices for materializing the slice in the destination
1196   // loop nest.
1197   for (unsigned i = maxDstLoopDepth; i >= 1; --i) {
1198     // Compute the union of slice bounds of all ops in 'dstLoadOpInsts'.
1199     if (failed(mlir::computeSliceUnion({srcOpInst}, dstLoadOpInsts,
1200                                        /*loopDepth=*/i,
1201                                        /*numCommonLoops=*/0,
1202                                        /*isBackwardSlice=*/true,
1203                                        &sliceStates[i - 1]))) {
1204       LLVM_DEBUG(llvm::dbgs()
1205                  << "computeSliceUnion failed for loopDepth: " << i << "\n");
1206       continue;
1207     }
1208 
1209     int64_t fusedLoopNestComputeCost;
1210     if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstLoopIVs[0],
1211                               dstLoopNestStats, &sliceStates[i - 1],
1212                               &fusedLoopNestComputeCost)) {
1213       LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
1214       continue;
1215     }
1216 
1217     double additionalComputeFraction =
1218         fusedLoopNestComputeCost /
1219             (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1220         1;
1221 
1222     // Determine what the slice write MemRefRegion would be, if the src loop
1223     // nest slice 'sliceStates[i - 1]' were to be inserted into the dst loop
1224     // nest at loop depth 'i'
1225     MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
1226     if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
1227                                         &sliceStates[i - 1]))) {
1228       LLVM_DEBUG(llvm::dbgs()
1229                  << "Failed to compute slice write region at loopDepth: " << i
1230                  << "\n");
1231       continue;
1232     }
1233 
1234     Optional<int64_t> maybeSliceWriteRegionSizeBytes =
1235         sliceWriteRegion.getRegionSize();
1236     if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
1237         maybeSliceWriteRegionSizeBytes.getValue() == 0) {
1238       LLVM_DEBUG(llvm::dbgs()
1239                  << "Failed to get slice write region size at loopDepth: " << i
1240                  << "\n");
1241       continue;
1242     }
1243     int64_t sliceWriteRegionSizeBytes =
1244         maybeSliceWriteRegionSizeBytes.getValue();
1245 
1246     // If we are fusing for reuse, check that write regions remain the same.
1247     // TODO: Write region check should check sizes and offsets in
1248     // each dimension, so that we are sure they are covering the same memref
1249     // region. Also, move this out to a isMemRefRegionSuperSet helper function.
1250     if (srcOpInst != srcStoreOpInst &&
1251         sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
1252       continue;
1253 
1254     double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
1255                               static_cast<double>(sliceWriteRegionSizeBytes);
1256 
1257     LLVM_DEBUG({
1258       std::stringstream msg;
1259       msg << "  evaluating fusion profitability at depth : " << i << "\n"
1260           << std::fixed << std::setprecision(2)
1261           << "   additional compute fraction: "
1262           << 100.0 * additionalComputeFraction << "%\n"
1263           << "   storage reduction factor: " << storageReduction << "x\n"
1264           << "   fused nest cost: " << fusedLoopNestComputeCost << "\n"
1265           << "   src write region size: " << srcWriteRegionSizeBytes << "\n"
1266           << "   slice write region size: " << sliceWriteRegionSizeBytes
1267           << "\n";
1268       llvm::dbgs() << msg.str();
1269     });
1270 
1271     // TODO: This is a placeholder cost model.
1272     // Among all choices that add an acceptable amount of redundant computation
1273     // (as per computeToleranceThreshold), we will simply pick the one that
1274     // reduces the intermediary size the most.
1275     if ((storageReduction > maxStorageReduction) &&
1276         (maximalFusion ||
1277          (additionalComputeFraction < computeToleranceThreshold))) {
1278       maxStorageReduction = storageReduction;
1279       bestDstLoopDepth = i;
1280       minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
1281       sliceMemEstimate = sliceWriteRegionSizeBytes;
1282     }
1283   }
1284 
1285   // A simple cost model: fuse if it reduces the memory footprint. If
1286   // -maximal-fusion is set, fuse nevertheless.
1287 
1288   if (!maximalFusion && !bestDstLoopDepth.hasValue()) {
1289     LLVM_DEBUG(
1290         llvm::dbgs()
1291         << "All fusion choices involve more than the threshold amount of "
1292            "redundant computation; NOT fusing.\n");
1293     return false;
1294   }
1295 
1296   if (!bestDstLoopDepth.hasValue()) {
1297     LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
1298     return false;
1299   }
1300 
1301   // Set dstLoopDepth based on best values from search.
1302   *dstLoopDepth = bestDstLoopDepth.getValue();
1303 
1304   LLVM_DEBUG(
1305       llvm::dbgs() << " LoopFusion fusion stats:"
1306                    << "\n  best loop depth: " << bestDstLoopDepth
1307                    << "\n  src loop nest compute cost: " << srcLoopNestCost
1308                    << "\n  dst loop nest compute cost: " << dstLoopNestCost
1309                    << "\n  fused loop nest compute cost: "
1310                    << minFusedLoopNestComputeCost << "\n");
1311 
1312   auto dstMemSize = getMemoryFootprintBytes(dstLoopIVs[0]);
1313   auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
1314 
1315   Optional<double> storageReduction = None;
1316 
1317   if (!maximalFusion) {
1318     if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
1319       LLVM_DEBUG(
1320           llvm::dbgs()
1321           << "  fusion memory benefit cannot be evaluated; NOT fusing.\n");
1322       return false;
1323     }
1324 
1325     auto srcMemSizeVal = srcMemSize.getValue();
1326     auto dstMemSizeVal = dstMemSize.getValue();
1327 
1328     assert(sliceMemEstimate.hasValue() && "expected value");
1329     auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
1330 
1331     LLVM_DEBUG(llvm::dbgs() << "   src mem: " << srcMemSizeVal << "\n"
1332                             << "   dst mem: " << dstMemSizeVal << "\n"
1333                             << "   fused mem: " << fusedMem << "\n"
1334                             << "   slice mem: " << sliceMemEstimate << "\n");
1335 
1336     if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
1337       LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
1338       return false;
1339     }
1340     storageReduction =
1341         100.0 *
1342         (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
1343   }
1344 
1345   double additionalComputeFraction =
1346       100.0 * (minFusedLoopNestComputeCost /
1347                    (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1348                1);
1349   (void)additionalComputeFraction;
1350   LLVM_DEBUG({
1351     std::stringstream msg;
1352     msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
1353         << std::setprecision(2) << additionalComputeFraction
1354         << "% redundant computation and a ";
1355     msg << (storageReduction.hasValue()
1356                 ? std::to_string(storageReduction.getValue())
1357                 : "<unknown>");
1358     msg << "% storage reduction.\n";
1359     llvm::dbgs() << msg.str();
1360   });
1361 
1362   // Update return parameter 'sliceState' with 'bestSliceState'.
1363   ComputationSliceState *bestSliceState = &sliceStates[*dstLoopDepth - 1];
1364   sliceState->lbs = bestSliceState->lbs;
1365   sliceState->ubs = bestSliceState->ubs;
1366   sliceState->lbOperands = bestSliceState->lbOperands;
1367   sliceState->ubOperands = bestSliceState->ubOperands;
1368 
1369   // Canonicalize slice bound affine maps.
1370   for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
1371     if (sliceState->lbs[i] != AffineMap()) {
1372       canonicalizeMapAndOperands(&sliceState->lbs[i],
1373                                  &sliceState->lbOperands[i]);
1374     }
1375     if (sliceState->ubs[i] != AffineMap()) {
1376       canonicalizeMapAndOperands(&sliceState->ubs[i],
1377                                  &sliceState->ubOperands[i]);
1378     }
1379   }
1380   return true;
1381 }
1382 
1383 namespace {
1384 
1385 // GreedyFusion greedily fuses loop nests which have a producer/consumer or
1386 // input-reuse relationship on a memref, with the goal of improving locality.
1387 //
1388 // The steps of the producer-consumer fusion algorithm are as follows:
1389 //
1390 // *) A worklist is initialized with node ids from the dependence graph.
1391 // *) For each node id in the worklist:
1392 //   *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
1393 //      candidate destination AffineForOp into which fusion will be attempted.
1394 //   *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
1395 //   *) For each LoadOp in 'dstLoadOps' do:
1396 //      *) Look up dependent loop nests which have a single store op to the same
1397 //         memref.
1398 //      *) Check if dependences would be violated by the fusion.
1399 //      *) Get a computation slice of 'srcLoopNest', which adjusts its loop
1400 //         bounds to be functions of 'dstLoopNest' IVs and symbols.
1401 //      *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
1402 //         at a loop depth determined by the cost model in 'isFusionProfitable'.
1403 //      *) Add the newly fused load/store operations to the state,
1404 //         and also add newly fused load ops to 'dstLoopOps' to be considered
1405 //         as fusion dst load ops in another iteration.
1406 //      *) Remove old src loop nest and its associated state.
1407 //
1408 // The steps of the input-reuse fusion algorithm are as follows:
1409 //
1410 // *) Initialize 'worklist' with node ids from the dependence graph.
1411 // *) For each 'dstNode' in the worklist:
1412 //   *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
1413 //      loads from the same memref, but which has no dependence paths to/from.
1414 //   *) Get a computation slice of 'sibLoopNest', which adjusts its loop
1415 //      bounds to be functions of 'dstLoopNest' IVs and symbols.
1416 //   *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
1417 //      at a loop depth determined by the cost model in 'isFusionProfitable'.
1418 //      This function also checks that the memref write region of 'sibLoopNest',
1419 //      is preserved in the fused loop nest.
1420 //   *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
1421 //
1422 // Given a graph where top-level operations are vertices in the set 'V' and
1423 // edges in the set 'E' are dependences between vertices, this algorithm
1424 // takes O(V) time for initialization, and has runtime O(V + E).
1425 //
1426 // This greedy algorithm is not 'maximal' due to the current restriction of
1427 // fusing along single producer consumer edges, but there is a TODO: to fix
1428 // this.
1429 //
1430 // TODO: Experiment with other fusion policies.
1431 struct GreedyFusion {
1432 public:
1433   // The data dependence graph to traverse during fusion.
1434   MemRefDependenceGraph *mdg;
1435   // Worklist of graph nodes visited during the fusion pass.
1436   SmallVector<unsigned, 8> worklist;
1437   // Set of graph nodes which are present on the worklist.
1438   llvm::SmallDenseSet<unsigned, 16> worklistSet;
1439   // Parameter for local buffer size threshold.
1440   unsigned localBufSizeThreshold;
1441   // Parameter for fast memory space.
1442   Optional<unsigned> fastMemorySpace;
1443   // If true, ignore any additional (redundant) computation tolerance threshold
1444   // that would have prevented fusion.
1445   bool maximalFusion;
1446   // The amount of additional computation that is tolerated while fusing
1447   // pair-wise as a fraction of the total computation.
1448   double computeToleranceThreshold;
1449 
1450   using Node = MemRefDependenceGraph::Node;
1451 
GreedyFusion__anonb2be91030911::GreedyFusion1452   GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
1453                Optional<unsigned> fastMemorySpace, bool maximalFusion,
1454                double computeToleranceThreshold)
1455       : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
1456         fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
1457         computeToleranceThreshold(computeToleranceThreshold) {}
1458 
1459   // Initializes 'worklist' with nodes from 'mdg'
init__anonb2be91030911::GreedyFusion1460   void init() {
1461     // TODO: Add a priority queue for prioritizing nodes by different
1462     // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
1463     worklist.clear();
1464     worklistSet.clear();
1465     for (auto &idAndNode : mdg->nodes) {
1466       const Node &node = idAndNode.second;
1467       worklist.push_back(node.id);
1468       worklistSet.insert(node.id);
1469     }
1470   }
1471 
1472   // Run the GreedyFusion pass.
1473   // *) First pass through the nodes fuses single-use producer nodes into their
1474   //    unique consumer.
1475   // *) Second pass fuses sibling nodes which share no dependence edges.
1476   // *) Third pass fuses any remaining producer nodes into their users.
run__anonb2be91030911::GreedyFusion1477   void run() {
1478     // TODO: Run this repeatedly until a fixed-point is reached.
1479     fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
1480     fuseSiblingNodes();
1481     fuseProducerConsumerNodes(
1482         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1483     eraseUnusedMemRefAllocations();
1484   }
1485 
fuseProducerConsumerNodes__anonb2be91030911::GreedyFusion1486   void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1487     init();
1488     while (!worklist.empty()) {
1489       unsigned dstId = worklist.back();
1490       worklist.pop_back();
1491       worklistSet.erase(dstId);
1492 
1493       // Skip if this node was removed (fused into another node).
1494       if (mdg->nodes.count(dstId) == 0)
1495         continue;
1496       // Get 'dstNode' into which to attempt fusion.
1497       auto *dstNode = mdg->getNode(dstId);
1498       // Skip if 'dstNode' is not a loop nest.
1499       if (!isa<AffineForOp>(dstNode->op))
1500         continue;
1501       // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
1502       // while preserving relative order. This can increase the maximum loop
1503       // depth at which we can fuse a slice of a producer loop nest into a
1504       // consumer loop nest.
1505       sinkSequentialLoops(dstNode);
1506 
1507       SmallVector<Operation *, 4> loads = dstNode->loads;
1508       SmallVector<Operation *, 4> dstLoadOpInsts;
1509       DenseSet<Value> visitedMemrefs;
1510       while (!loads.empty()) {
1511         // Get memref of load on top of the stack.
1512         auto memref = cast<AffineReadOpInterface>(loads.back()).getMemRef();
1513         if (visitedMemrefs.count(memref) > 0)
1514           continue;
1515         visitedMemrefs.insert(memref);
1516         // Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'.
1517         moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts);
1518         // Skip if no input edges along which to fuse.
1519         if (mdg->inEdges.count(dstId) == 0)
1520           continue;
1521         // Iterate through in-edges for 'dstId' and src node id for any
1522         // edges on 'memref'.
1523         SmallVector<unsigned, 2> srcNodeIds;
1524         for (auto &srcEdge : mdg->inEdges[dstId]) {
1525           // Skip 'srcEdge' if not for 'memref'.
1526           if (srcEdge.value != memref)
1527             continue;
1528           srcNodeIds.push_back(srcEdge.id);
1529         }
1530         for (unsigned srcId : srcNodeIds) {
1531           // Skip if this node was removed (fused into another node).
1532           if (mdg->nodes.count(srcId) == 0)
1533             continue;
1534           // Get 'srcNode' from which to attempt fusion into 'dstNode'.
1535           auto *srcNode = mdg->getNode(srcId);
1536           // Skip if 'srcNode' is not a loop nest.
1537           if (!isa<AffineForOp>(srcNode->op))
1538             continue;
1539           // Skip if 'srcNode' has more than one live-out store to a
1540           // function-local memref.
1541           // TODO: Support more generic multi-output src loop nests
1542           // fusion.
1543           auto srcStoreOp = mdg->getUniqueOutgoingStore(srcNode);
1544           if (!srcStoreOp) {
1545             // Get the src store op at the deepest loop depth.
1546             // We will use 'LoopFusionUtils::canFuseLoops' to check fusion
1547             // feasibility for loops with multiple stores.
1548             unsigned maxLoopDepth = 0;
1549             for (auto *op : srcNode->stores) {
1550               auto storeOp = cast<AffineWriteOpInterface>(op);
1551               if (storeOp.getMemRef() != memref) {
1552                 srcStoreOp = nullptr;
1553                 break;
1554               }
1555               unsigned loopDepth = getNestingDepth(storeOp);
1556               if (loopDepth > maxLoopDepth) {
1557                 maxLoopDepth = loopDepth;
1558                 srcStoreOp = storeOp;
1559               }
1560             }
1561             if (!srcStoreOp)
1562               continue;
1563           }
1564 
1565           // Unique outgoing store found must write to 'memref' since 'memref'
1566           // is the one that established the producer-consumer relationship
1567           // between 'srcNode' and 'dstNode'.
1568           assert(srcStoreOp.getMemRef() == memref &&
1569                  "Found store to unexpected memref");
1570 
1571           // Skip if 'srcNode' writes to any live in or escaping memrefs,
1572           // and cannot be fused.
1573           bool writesToLiveInOrOut =
1574               mdg->writesToLiveInOrEscapingMemrefs(srcNode->id);
1575           if (writesToLiveInOrOut &&
1576               !canFuseSrcWhichWritesToLiveOut(srcId, dstId, srcStoreOp, mdg))
1577             continue;
1578 
1579           // Don't create a private memref if 'writesToLiveInOrOut'.
1580           bool createPrivateMemref = !writesToLiveInOrOut;
1581           // Don't create a private memref if 'srcNode' has in edges on
1582           // 'memref', or if 'dstNode' has out edges on 'memref'.
1583           if (mdg->getIncomingMemRefAccesses(srcNode->id, memref) > 0 ||
1584               mdg->getOutEdgeCount(dstNode->id, memref) > 0) {
1585             createPrivateMemref = false;
1586           }
1587 
1588           // Skip if 'srcNode' out edge count on 'memref' > 'maxSrcUserCount'.
1589           if (mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount)
1590             continue;
1591 
1592           // Compute an operation list insertion point for the fused loop
1593           // nest which preserves dependences.
1594           Operation *insertPointInst =
1595               mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
1596           if (insertPointInst == nullptr)
1597             continue;
1598 
1599           // Compute the innermost common loop depth for dstNode loads/stores.
1600           SmallVector<Operation *, 2> dstOps(dstNode->loads.begin(),
1601                                              dstNode->loads.end());
1602           dstOps.append(dstNode->stores.begin(), dstNode->stores.end());
1603           unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstOps);
1604           // Check the feasibility of fusing src loop nest into dst loop nest
1605           // at loop depths in range [1, dstLoopDepthTest].
1606           // TODO: Use slice union computation and union of memref
1607           // read/write regions to cost model and fusion.
1608           bool canFuse = false;
1609           for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1610             ComputationSliceState sliceUnion;
1611             FusionResult result = mlir::canFuseLoops(
1612                 cast<AffineForOp>(srcNode->op), cast<AffineForOp>(dstNode->op),
1613                 /*dstLoopDepth=*/i, &sliceUnion);
1614             if (result.value == FusionResult::Success)
1615               canFuse = true;
1616           }
1617 
1618           // Skip if fusion is not feasible at all loop depths.
1619           if (!canFuse)
1620             continue;
1621 
1622           // Gather 'dstNode' store ops to 'memref'.
1623           SmallVector<Operation *, 2> dstStoreOpInsts;
1624           for (auto *storeOpInst : dstNode->stores)
1625             if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() == memref)
1626               dstStoreOpInsts.push_back(storeOpInst);
1627 
1628           unsigned bestDstLoopDepth;
1629           mlir::ComputationSliceState sliceState;
1630           // Check if fusion would be profitable.
1631           if (!isFusionProfitable(srcStoreOp, srcStoreOp, dstLoadOpInsts,
1632                                   dstStoreOpInsts, &sliceState,
1633                                   &bestDstLoopDepth, maximalFusion,
1634                                   computeToleranceThreshold))
1635             continue;
1636 
1637           // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
1638           auto sliceLoopNest = mlir::insertBackwardComputationSlice(
1639               srcStoreOp, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
1640           if (sliceLoopNest) {
1641             LLVM_DEBUG(llvm::dbgs() << "\tslice loop nest:\n"
1642                                     << *sliceLoopNest.getOperation() << "\n");
1643             // Move 'dstAffineForOp' before 'insertPointInst' if needed.
1644             auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1645             if (insertPointInst != dstAffineForOp.getOperation()) {
1646               dstAffineForOp.getOperation()->moveBefore(insertPointInst);
1647             }
1648             // Update edges between 'srcNode' and 'dstNode'.
1649             mdg->updateEdges(srcNode->id, dstNode->id, memref,
1650                              createPrivateMemref);
1651 
1652             // Collect slice loop stats.
1653             LoopNestStateCollector sliceCollector;
1654             sliceCollector.collect(sliceLoopNest.getOperation());
1655             // Promote single iteration slice loops to single IV value.
1656             for (auto forOp : sliceCollector.forOps) {
1657               promoteIfSingleIteration(forOp);
1658             }
1659             if (createPrivateMemref) {
1660               // Create private memref for 'memref' in 'dstAffineForOp'.
1661               SmallVector<Operation *, 4> storesForMemref;
1662               for (auto *storeOpInst : sliceCollector.storeOpInsts) {
1663                 if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() ==
1664                     memref)
1665                   storesForMemref.push_back(storeOpInst);
1666               }
1667               // TODO: Use union of memref write regions to compute
1668               // private memref footprint.
1669               auto newMemRef = createPrivateMemRef(
1670                   dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1671                   fastMemorySpace, localBufSizeThreshold);
1672               visitedMemrefs.insert(newMemRef);
1673               // Create new node in dependence graph for 'newMemRef' alloc op.
1674               unsigned newMemRefNodeId =
1675                   mdg->addNode(newMemRef.getDefiningOp());
1676               // Add edge from 'newMemRef' node to dstNode.
1677               mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
1678             }
1679 
1680             // Collect dst loop stats after memref privatization transformation.
1681             LoopNestStateCollector dstLoopCollector;
1682             dstLoopCollector.collect(dstAffineForOp.getOperation());
1683 
1684             // Add new load ops to current Node load op list 'loads' to
1685             // continue fusing based on new operands.
1686             for (auto *loadOpInst : dstLoopCollector.loadOpInsts) {
1687               // NOTE: Change 'loads' to a hash set in case efficiency is an
1688               // issue. We still use a vector since it's expected to be small.
1689               if (!llvm::is_contained(loads, loadOpInst))
1690                 loads.push_back(loadOpInst);
1691             }
1692             // Clear visited memrefs after fusion so that previously visited src
1693             // nodes are considered for fusion again in the context of the new
1694             // fused node.
1695             // TODO: This shouldn't be necessary if we visited candidates in the
1696             // dependence graph in post-order or once we fully support
1697             // multi-store producers. Currently, in a multi-store producer
1698             // scenario such as A->B, A->C, B->C, we fail to fuse A+B due to the
1699             // multiple outgoing edges. However, after fusing B+C, A has a
1700             // single outgoing edge and can be fused if we revisit it in the
1701             // context of the new fused B+C node.
1702             visitedMemrefs.clear();
1703 
1704             // Clear and add back loads and stores.
1705             mdg->clearNodeLoadAndStores(dstNode->id);
1706             mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1707                            dstLoopCollector.storeOpInsts);
1708             // Remove old src loop nest if it no longer has outgoing dependence
1709             // edges, and if it does not write to a memref which escapes the
1710             // function. If 'writesToLiveInOrOut' is true, then 'srcNode' has
1711             // been fused into 'dstNode' and write region of 'dstNode' covers
1712             // the write region of 'srcNode', and 'srcNode' has no other users
1713             // so it is safe to remove.
1714             if (writesToLiveInOrOut || mdg->canRemoveNode(srcNode->id)) {
1715               mdg->removeNode(srcNode->id);
1716               srcNode->op->erase();
1717             } else {
1718               // Add remaining users of 'oldMemRef' back on the worklist (if not
1719               // already there), as its replacement with a local/private memref
1720               // has reduced dependences on 'oldMemRef' which may have created
1721               // new fusion opportunities.
1722               if (mdg->outEdges.count(srcNode->id) > 0) {
1723                 SmallVector<MemRefDependenceGraph::Edge, 2> oldOutEdges =
1724                     mdg->outEdges[srcNode->id];
1725                 for (auto &outEdge : oldOutEdges) {
1726                   if (outEdge.value == memref &&
1727                       worklistSet.count(outEdge.id) == 0) {
1728                     worklist.push_back(outEdge.id);
1729                     worklistSet.insert(outEdge.id);
1730                   }
1731                 }
1732               }
1733             }
1734           }
1735         }
1736       }
1737     }
1738   }
1739 
1740   // Visits each node in the graph, and for each node, attempts to fuse it with
1741   // its sibling nodes (nodes which share a parent, but no dependence edges).
fuseSiblingNodes__anonb2be91030911::GreedyFusion1742   void fuseSiblingNodes() {
1743     init();
1744     while (!worklist.empty()) {
1745       unsigned dstId = worklist.back();
1746       worklist.pop_back();
1747       worklistSet.erase(dstId);
1748 
1749       // Skip if this node was removed (fused into another node).
1750       if (mdg->nodes.count(dstId) == 0)
1751         continue;
1752       // Get 'dstNode' into which to attempt fusion.
1753       auto *dstNode = mdg->getNode(dstId);
1754       // Skip if 'dstNode' is not a loop nest.
1755       if (!isa<AffineForOp>(dstNode->op))
1756         continue;
1757       // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1758       fuseWithSiblingNodes(dstNode);
1759     }
1760   }
1761 
1762   // Attempt to fuse 'dstNode' with sibling nodes in the graph.
fuseWithSiblingNodes__anonb2be91030911::GreedyFusion1763   void fuseWithSiblingNodes(Node *dstNode) {
1764     DenseSet<unsigned> visitedSibNodeIds;
1765     std::pair<unsigned, Value> idAndMemref;
1766     while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1767       unsigned sibId = idAndMemref.first;
1768       Value memref = idAndMemref.second;
1769       // TODO: Check that 'sibStoreOpInst' post-dominates all other
1770       // stores to the same memref in 'sibNode' loop nest.
1771       auto *sibNode = mdg->getNode(sibId);
1772       // Compute an operation list insertion point for the fused loop
1773       // nest which preserves dependences.
1774       assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1775       Operation *insertPointInst =
1776           sibNode->op->isBeforeInBlock(dstNode->op)
1777               ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1778               : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1779       if (insertPointInst == nullptr)
1780         continue;
1781 
1782       // Check if fusion would be profitable and at what depth.
1783 
1784       // Get unique 'sibNode' load op to 'memref'.
1785       SmallVector<Operation *, 2> sibLoadOpInsts;
1786       sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1787       // Currently findSiblingNodeToFuse searches for siblings with one load.
1788       assert(sibLoadOpInsts.size() == 1);
1789       Operation *sibLoadOpInst = sibLoadOpInsts[0];
1790       assert(!sibNode->stores.empty());
1791       // TODO: Choose the store which postdominates all other stores.
1792       auto *sibStoreOpInst = sibNode->stores.back();
1793 
1794       // Gather 'dstNode' load ops to 'memref'.
1795       SmallVector<Operation *, 2> dstLoadOpInsts;
1796       dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1797 
1798       // Gather 'dstNode' store ops to 'memref'.
1799       SmallVector<Operation *, 2> dstStoreOpInsts;
1800       dstNode->getStoreOpsForMemref(memref, &dstStoreOpInsts);
1801 
1802       unsigned bestDstLoopDepth;
1803       mlir::ComputationSliceState sliceState;
1804 
1805       // Check if fusion would be profitable.
1806       if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstLoadOpInsts,
1807                               dstStoreOpInsts, &sliceState, &bestDstLoopDepth,
1808                               maximalFusion, computeToleranceThreshold))
1809         continue;
1810 
1811       // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1812       auto sliceLoopNest = mlir::insertBackwardComputationSlice(
1813           sibLoadOpInst, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
1814       if (sliceLoopNest != nullptr) {
1815         auto dstForInst = cast<AffineForOp>(dstNode->op);
1816         // Update operation position of fused loop nest (if needed).
1817         if (insertPointInst != dstForInst.getOperation()) {
1818           dstForInst.getOperation()->moveBefore(insertPointInst);
1819         }
1820         // Update data dependence graph state post fusion.
1821         updateStateAfterSiblingFusion(sliceLoopNest, sibNode, dstNode);
1822       }
1823     }
1824   }
1825 
1826   // Searches function argument uses and the graph from 'dstNode' looking for a
1827   // fusion candidate sibling node which shares no dependences with 'dstNode'
1828   // but which loads from the same memref. Returns true and sets
1829   // 'idAndMemrefToFuse' on success. Returns false otherwise.
findSiblingNodeToFuse__anonb2be91030911::GreedyFusion1830   bool findSiblingNodeToFuse(Node *dstNode,
1831                              DenseSet<unsigned> *visitedSibNodeIds,
1832                              std::pair<unsigned, Value> *idAndMemrefToFuse) {
1833     // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1834     // on 'memref'.
1835     auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
1836       // Skip if 'outEdge' is not a read-after-write dependence.
1837       // TODO: Remove restrict to single load op restriction.
1838       if (sibNode->getLoadOpCount(memref) != 1)
1839         return false;
1840       // Skip if there exists a path of dependent edges between
1841       // 'sibNode' and 'dstNode'.
1842       if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1843           mdg->hasDependencePath(dstNode->id, sibNode->id))
1844         return false;
1845       // Skip sib node if it loads to (and stores from) the same memref on
1846       // which it also has an input dependence edge.
1847       DenseSet<Value> loadAndStoreMemrefSet;
1848       sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
1849       if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
1850             return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1851           }))
1852         return false;
1853 
1854       // Check that all stores are to the same memref.
1855       DenseSet<Value> storeMemrefs;
1856       for (auto *storeOpInst : sibNode->stores) {
1857         storeMemrefs.insert(
1858             cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
1859       }
1860       if (storeMemrefs.size() != 1)
1861         return false;
1862 
1863       // Skip if a memref value in one node is used by a non-affine memref
1864       // access that lies between 'dstNode' and 'sibNode'.
1865       if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
1866           hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
1867         return false;
1868       return true;
1869     };
1870 
1871     // Search for siblings which load the same memref function argument.
1872     auto fn = dstNode->op->getParentOfType<FuncOp>();
1873     for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
1874       for (auto *user : fn.getArgument(i).getUsers()) {
1875         if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
1876           // Gather loops surrounding 'use'.
1877           SmallVector<AffineForOp, 4> loops;
1878           getLoopIVs(*user, &loops);
1879           // Skip 'use' if it is not within a loop nest.
1880           if (loops.empty())
1881             continue;
1882           Node *sibNode = mdg->getForOpNode(loops[0]);
1883           assert(sibNode != nullptr);
1884           // Skip 'use' if it not a sibling to 'dstNode'.
1885           if (sibNode->id == dstNode->id)
1886             continue;
1887           // Skip 'use' if it has been visited.
1888           if (visitedSibNodeIds->count(sibNode->id) > 0)
1889             continue;
1890           // Skip 'use' if it does not load from the same memref as 'dstNode'.
1891           auto memref = loadOp.getMemRef();
1892           if (dstNode->getLoadOpCount(memref) == 0)
1893             continue;
1894           // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1895           if (canFuseWithSibNode(sibNode, memref)) {
1896             visitedSibNodeIds->insert(sibNode->id);
1897             idAndMemrefToFuse->first = sibNode->id;
1898             idAndMemrefToFuse->second = memref;
1899             return true;
1900           }
1901         }
1902       }
1903     }
1904 
1905     // Search for siblings by following edges through an intermediate src node.
1906     // Collect candidate 'dstNode' input edges in 'inEdges'.
1907     SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1908     mdg->forEachMemRefInputEdge(
1909         dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1910           // Add 'inEdge' if it is a read-after-write dependence.
1911           if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1912               mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1913             inEdges.push_back(inEdge);
1914         });
1915 
1916     // Search for sibling nodes to fuse by visiting output edges from each input
1917     // edge in 'inEdges'.
1918     for (auto &inEdge : inEdges) {
1919       // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1920       SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1921       mdg->forEachMemRefOutputEdge(
1922           inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1923             unsigned sibNodeId = outEdge.id;
1924             if (visitedSibNodeIds->count(sibNodeId) > 0)
1925               return;
1926             // Skip output edge if not a sibling using the same memref.
1927             if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1928               return;
1929             auto *sibNode = mdg->getNode(sibNodeId);
1930             if (!isa<AffineForOp>(sibNode->op))
1931               return;
1932             // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1933             if (canFuseWithSibNode(sibNode, outEdge.value)) {
1934               // Add candidate 'outEdge' to sibling node.
1935               outEdges.push_back(outEdge);
1936             }
1937           });
1938 
1939       // Add first candidate if any were returned.
1940       if (!outEdges.empty()) {
1941         visitedSibNodeIds->insert(outEdges[0].id);
1942         idAndMemrefToFuse->first = outEdges[0].id;
1943         idAndMemrefToFuse->second = outEdges[0].value;
1944         return true;
1945       }
1946     }
1947     return false;
1948   }
1949 
updateStateAfterSiblingFusion__anonb2be91030911::GreedyFusion1950   void updateStateAfterSiblingFusion(AffineForOp sliceLoopNest, Node *sibNode,
1951                                      Node *dstNode) {
1952     // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1953     mdg->updateEdges(sibNode->id, dstNode->id);
1954 
1955     // Collect slice loop stats.
1956     LoopNestStateCollector sliceCollector;
1957     sliceCollector.collect(sliceLoopNest.getOperation());
1958     // Promote single iteration slice loops to single IV value.
1959     for (auto forOp : sliceCollector.forOps) {
1960       promoteIfSingleIteration(forOp);
1961     }
1962 
1963     // Collect dst loop stats after memref privatization transformation.
1964     auto dstForInst = cast<AffineForOp>(dstNode->op);
1965     LoopNestStateCollector dstLoopCollector;
1966     dstLoopCollector.collect(dstForInst.getOperation());
1967     // Clear and add back loads and stores
1968     mdg->clearNodeLoadAndStores(dstNode->id);
1969     mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1970                    dstLoopCollector.storeOpInsts);
1971     // Remove old sibling loop nest if it no longer has outgoing dependence
1972     // edges, and it does not write to a memref which escapes the
1973     // function.
1974     if (mdg->getOutEdgeCount(sibNode->id) == 0) {
1975       mdg->removeNode(sibNode->id);
1976       sibNode->op->erase();
1977     }
1978   }
1979 
1980   // Clean up any allocs with no users.
eraseUnusedMemRefAllocations__anonb2be91030911::GreedyFusion1981   void eraseUnusedMemRefAllocations() {
1982     for (auto &pair : mdg->memrefEdgeCount) {
1983       if (pair.second > 0)
1984         continue;
1985       auto memref = pair.first;
1986       // Skip if there exist other uses (return operation or function calls).
1987       if (!memref.use_empty())
1988         continue;
1989       // Use list expected to match the dep graph info.
1990       auto *op = memref.getDefiningOp();
1991       if (isa_and_nonnull<AllocOp>(op))
1992         op->erase();
1993     }
1994   }
1995 };
1996 
1997 } // end anonymous namespace
1998 
runOnFunction()1999 void LoopFusion::runOnFunction() {
2000   MemRefDependenceGraph g;
2001   if (!g.init(getFunction()))
2002     return;
2003 
2004   Optional<unsigned> fastMemorySpaceOpt;
2005   if (fastMemorySpace.hasValue())
2006     fastMemorySpaceOpt = fastMemorySpace;
2007   unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
2008   GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
2009                       maximalFusion, computeToleranceThreshold);
2010   fusion.run();
2011 }
2012