1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "LinkerScript.h"
46 #include "OutputSections.h"
47 #include "SymbolTable.h"
48 #include "Symbols.h"
49 #include "SyntheticSections.h"
50 #include "Target.h"
51 #include "Thunks.h"
52 #include "lld/Common/ErrorHandler.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
67 
getLinkerScriptLocation(const Symbol & sym)68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69   for (BaseCommand *base : script->sectionCommands)
70     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71       if (cmd->sym == &sym)
72         return cmd->location;
73   return None;
74 }
75 
getDefinedLocation(const Symbol & sym)76 static std::string getDefinedLocation(const Symbol &sym) {
77   const char msg[] = "\n>>> defined in ";
78   if (sym.file)
79     return msg + toString(sym.file);
80   if (Optional<std::string> loc = getLinkerScriptLocation(sym))
81     return msg + *loc;
82   return "";
83 }
84 
85 // Construct a message in the following format.
86 //
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>>               /home/alice/src/bar.o:(.text+0x1)
getLocation(InputSectionBase & s,const Symbol & sym,uint64_t off)90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91                                uint64_t off) {
92   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93   std::string src = s.getSrcMsg(sym, off);
94   if (!src.empty())
95     msg += src + "\n>>>               ";
96   return msg + s.getObjMsg(off);
97 }
98 
reportRangeError(uint8_t * loc,const Relocation & rel,const Twine & v,int64_t min,uint64_t max)99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100                            int64_t min, uint64_t max) {
101   ErrorPlace errPlace = getErrorPlace(loc);
102   std::string hint;
103   if (rel.sym && !rel.sym->isLocal())
104     hint = "; references " + lld::toString(*rel.sym) +
105            getDefinedLocation(*rel.sym);
106 
107   if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
108     hint += "; consider recompiling with -fdebug-types-section to reduce size "
109             "of debug sections";
110 
111   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
112               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
113               ", " + Twine(max).str() + "]" + hint);
114 }
115 
reportRangeError(uint8_t * loc,int64_t v,int n,const Symbol & sym,const Twine & msg)116 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
117                            const Twine &msg) {
118   ErrorPlace errPlace = getErrorPlace(loc);
119   std::string hint;
120   if (!sym.getName().empty())
121     hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
122   errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
123               " is not in [" + Twine(llvm::minIntN(n)) + ", " +
124               Twine(llvm::maxIntN(n)) + "]" + hint);
125 }
126 
127 namespace {
128 // Build a bitmask with one bit set for each RelExpr.
129 //
130 // Constexpr function arguments can't be used in static asserts, so we
131 // use template arguments to build the mask.
132 // But function template partial specializations don't exist (needed
133 // for base case of the recursion), so we need a dummy struct.
134 template <RelExpr... Exprs> struct RelExprMaskBuilder {
build__anonbcc024ed0111::RelExprMaskBuilder135   static inline uint64_t build() { return 0; }
136 };
137 
138 // Specialization for recursive case.
139 template <RelExpr Head, RelExpr... Tail>
140 struct RelExprMaskBuilder<Head, Tail...> {
build__anonbcc024ed0111::RelExprMaskBuilder141   static inline uint64_t build() {
142     static_assert(0 <= Head && Head < 64,
143                   "RelExpr is too large for 64-bit mask!");
144     return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
145   }
146 };
147 } // namespace
148 
149 // Return true if `Expr` is one of `Exprs`.
150 // There are fewer than 64 RelExpr's, so we can represent any set of
151 // RelExpr's as a constant bit mask and test for membership with a
152 // couple cheap bitwise operations.
oneof(RelExpr expr)153 template <RelExpr... Exprs> bool oneof(RelExpr expr) {
154   assert(0 <= expr && (int)expr < 64 &&
155          "RelExpr is too large for 64-bit mask!");
156   return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
157 }
158 
getMipsPairType(RelType type,bool isLocal)159 static RelType getMipsPairType(RelType type, bool isLocal) {
160   switch (type) {
161   case R_MIPS_HI16:
162     return R_MIPS_LO16;
163   case R_MIPS_GOT16:
164     // In case of global symbol, the R_MIPS_GOT16 relocation does not
165     // have a pair. Each global symbol has a unique entry in the GOT
166     // and a corresponding instruction with help of the R_MIPS_GOT16
167     // relocation loads an address of the symbol. In case of local
168     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
169     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
170     // relocations handle low 16 bits of the address. That allows
171     // to allocate only one GOT entry for every 64 KBytes of local data.
172     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
173   case R_MICROMIPS_GOT16:
174     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
175   case R_MIPS_PCHI16:
176     return R_MIPS_PCLO16;
177   case R_MICROMIPS_HI16:
178     return R_MICROMIPS_LO16;
179   default:
180     return R_MIPS_NONE;
181   }
182 }
183 
184 // True if non-preemptable symbol always has the same value regardless of where
185 // the DSO is loaded.
isAbsolute(const Symbol & sym)186 static bool isAbsolute(const Symbol &sym) {
187   if (sym.isUndefWeak())
188     return true;
189   if (const auto *dr = dyn_cast<Defined>(&sym))
190     return dr->section == nullptr; // Absolute symbol.
191   return false;
192 }
193 
isAbsoluteValue(const Symbol & sym)194 static bool isAbsoluteValue(const Symbol &sym) {
195   return isAbsolute(sym) || sym.isTls();
196 }
197 
198 // Returns true if Expr refers a PLT entry.
needsPlt(RelExpr expr)199 static bool needsPlt(RelExpr expr) {
200   return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
201 }
202 
203 // Returns true if Expr refers a GOT entry. Note that this function
204 // returns false for TLS variables even though they need GOT, because
205 // TLS variables uses GOT differently than the regular variables.
needsGot(RelExpr expr)206 static bool needsGot(RelExpr expr) {
207   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
208                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
209                R_AARCH64_GOT_PAGE>(expr);
210 }
211 
212 // True if this expression is of the form Sym - X, where X is a position in the
213 // file (PC, or GOT for example).
isRelExpr(RelExpr expr)214 static bool isRelExpr(RelExpr expr) {
215   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
216                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
217                R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
218 }
219 
220 // Returns true if a given relocation can be computed at link-time.
221 //
222 // For instance, we know the offset from a relocation to its target at
223 // link-time if the relocation is PC-relative and refers a
224 // non-interposable function in the same executable. This function
225 // will return true for such relocation.
226 //
227 // If this function returns false, that means we need to emit a
228 // dynamic relocation so that the relocation will be fixed at load-time.
isStaticLinkTimeConstant(RelExpr e,RelType type,const Symbol & sym,InputSectionBase & s,uint64_t relOff)229 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
230                                      InputSectionBase &s, uint64_t relOff) {
231   // These expressions always compute a constant
232   if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
233             R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
234             R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
235             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
236             R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
237             R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
238             R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT,
239             R_AARCH64_GOT_PAGE>(
240           e))
241     return true;
242 
243   // These never do, except if the entire file is position dependent or if
244   // only the low bits are used.
245   if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
246     return target->usesOnlyLowPageBits(type) || !config->isPic;
247 
248   if (sym.isPreemptible)
249     return false;
250   if (!config->isPic)
251     return true;
252 
253   // The size of a non preemptible symbol is a constant.
254   if (e == R_SIZE)
255     return true;
256 
257   // For the target and the relocation, we want to know if they are
258   // absolute or relative.
259   bool absVal = isAbsoluteValue(sym);
260   bool relE = isRelExpr(e);
261   if (absVal && !relE)
262     return true;
263   if (!absVal && relE)
264     return true;
265   if (!absVal && !relE)
266     return target->usesOnlyLowPageBits(type);
267 
268   assert(absVal && relE);
269 
270   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
271   // in PIC mode. This is a little strange, but it allows us to link function
272   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
273   // Normally such a call will be guarded with a comparison, which will load a
274   // zero from the GOT.
275   if (sym.isUndefWeak())
276     return true;
277 
278   // We set the final symbols values for linker script defined symbols later.
279   // They always can be computed as a link time constant.
280   if (sym.scriptDefined)
281       return true;
282 
283   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
284         toString(sym) + getLocation(s, sym, relOff));
285   return true;
286 }
287 
toPlt(RelExpr expr)288 static RelExpr toPlt(RelExpr expr) {
289   switch (expr) {
290   case R_PPC64_CALL:
291     return R_PPC64_CALL_PLT;
292   case R_PC:
293     return R_PLT_PC;
294   case R_ABS:
295     return R_PLT;
296   default:
297     return expr;
298   }
299 }
300 
fromPlt(RelExpr expr)301 static RelExpr fromPlt(RelExpr expr) {
302   // We decided not to use a plt. Optimize a reference to the plt to a
303   // reference to the symbol itself.
304   switch (expr) {
305   case R_PLT_PC:
306   case R_PPC32_PLTREL:
307     return R_PC;
308   case R_PPC64_CALL_PLT:
309     return R_PPC64_CALL;
310   case R_PLT:
311     return R_ABS;
312   default:
313     return expr;
314   }
315 }
316 
317 // Returns true if a given shared symbol is in a read-only segment in a DSO.
isReadOnly(SharedSymbol & ss)318 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
319   using Elf_Phdr = typename ELFT::Phdr;
320 
321   // Determine if the symbol is read-only by scanning the DSO's program headers.
322   const SharedFile &file = ss.getFile();
323   for (const Elf_Phdr &phdr :
324        check(file.template getObj<ELFT>().program_headers()))
325     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
326         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
327         ss.value < phdr.p_vaddr + phdr.p_memsz)
328       return true;
329   return false;
330 }
331 
332 // Returns symbols at the same offset as a given symbol, including SS itself.
333 //
334 // If two or more symbols are at the same offset, and at least one of
335 // them are copied by a copy relocation, all of them need to be copied.
336 // Otherwise, they would refer to different places at runtime.
337 template <class ELFT>
getSymbolsAt(SharedSymbol & ss)338 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
339   using Elf_Sym = typename ELFT::Sym;
340 
341   SharedFile &file = ss.getFile();
342 
343   SmallSet<SharedSymbol *, 4> ret;
344   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
345     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
346         s.getType() == STT_TLS || s.st_value != ss.value)
347       continue;
348     StringRef name = check(s.getName(file.getStringTable()));
349     Symbol *sym = symtab->find(name);
350     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
351       ret.insert(alias);
352   }
353 
354   // The loop does not check SHT_GNU_verneed, so ret does not contain
355   // non-default version symbols. If ss has a non-default version, ret won't
356   // contain ss. Just add ss unconditionally. If a non-default version alias is
357   // separately copy relocated, it and ss will have different addresses.
358   // Fortunately this case is impractical and fails with GNU ld as well.
359   ret.insert(&ss);
360   return ret;
361 }
362 
363 // When a symbol is copy relocated or we create a canonical plt entry, it is
364 // effectively a defined symbol. In the case of copy relocation the symbol is
365 // in .bss and in the case of a canonical plt entry it is in .plt. This function
366 // replaces the existing symbol with a Defined pointing to the appropriate
367 // location.
replaceWithDefined(Symbol & sym,SectionBase * sec,uint64_t value,uint64_t size)368 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
369                                uint64_t size) {
370   Symbol old = sym;
371 
372   sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
373                       sym.type, value, size, sec});
374 
375   sym.pltIndex = old.pltIndex;
376   sym.gotIndex = old.gotIndex;
377   sym.verdefIndex = old.verdefIndex;
378   sym.exportDynamic = true;
379   sym.isUsedInRegularObj = true;
380 }
381 
382 // Reserve space in .bss or .bss.rel.ro for copy relocation.
383 //
384 // The copy relocation is pretty much a hack. If you use a copy relocation
385 // in your program, not only the symbol name but the symbol's size, RW/RO
386 // bit and alignment become part of the ABI. In addition to that, if the
387 // symbol has aliases, the aliases become part of the ABI. That's subtle,
388 // but if you violate that implicit ABI, that can cause very counter-
389 // intuitive consequences.
390 //
391 // So, what is the copy relocation? It's for linking non-position
392 // independent code to DSOs. In an ideal world, all references to data
393 // exported by DSOs should go indirectly through GOT. But if object files
394 // are compiled as non-PIC, all data references are direct. There is no
395 // way for the linker to transform the code to use GOT, as machine
396 // instructions are already set in stone in object files. This is where
397 // the copy relocation takes a role.
398 //
399 // A copy relocation instructs the dynamic linker to copy data from a DSO
400 // to a specified address (which is usually in .bss) at load-time. If the
401 // static linker (that's us) finds a direct data reference to a DSO
402 // symbol, it creates a copy relocation, so that the symbol can be
403 // resolved as if it were in .bss rather than in a DSO.
404 //
405 // As you can see in this function, we create a copy relocation for the
406 // dynamic linker, and the relocation contains not only symbol name but
407 // various other information about the symbol. So, such attributes become a
408 // part of the ABI.
409 //
410 // Note for application developers: I can give you a piece of advice if
411 // you are writing a shared library. You probably should export only
412 // functions from your library. You shouldn't export variables.
413 //
414 // As an example what can happen when you export variables without knowing
415 // the semantics of copy relocations, assume that you have an exported
416 // variable of type T. It is an ABI-breaking change to add new members at
417 // end of T even though doing that doesn't change the layout of the
418 // existing members. That's because the space for the new members are not
419 // reserved in .bss unless you recompile the main program. That means they
420 // are likely to overlap with other data that happens to be laid out next
421 // to the variable in .bss. This kind of issue is sometimes very hard to
422 // debug. What's a solution? Instead of exporting a variable V from a DSO,
423 // define an accessor getV().
addCopyRelSymbol(SharedSymbol & ss)424 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
425   // Copy relocation against zero-sized symbol doesn't make sense.
426   uint64_t symSize = ss.getSize();
427   if (symSize == 0 || ss.alignment == 0)
428     fatal("cannot create a copy relocation for symbol " + toString(ss));
429 
430   // See if this symbol is in a read-only segment. If so, preserve the symbol's
431   // memory protection by reserving space in the .bss.rel.ro section.
432   bool isRO = isReadOnly<ELFT>(ss);
433   BssSection *sec =
434       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
435   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
436 
437   // At this point, sectionBases has been migrated to sections. Append sec to
438   // sections.
439   if (osec->sectionCommands.empty() ||
440       !isa<InputSectionDescription>(osec->sectionCommands.back()))
441     osec->sectionCommands.push_back(make<InputSectionDescription>(""));
442   auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
443   isd->sections.push_back(sec);
444   osec->commitSection(sec);
445 
446   // Look through the DSO's dynamic symbol table for aliases and create a
447   // dynamic symbol for each one. This causes the copy relocation to correctly
448   // interpose any aliases.
449   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
450     replaceWithDefined(*sym, sec, 0, sym->size);
451 
452   mainPart->relaDyn->addSymbolReloc(target->copyRel, sec, 0, ss);
453 }
454 
455 // MIPS has an odd notion of "paired" relocations to calculate addends.
456 // For example, if a relocation is of R_MIPS_HI16, there must be a
457 // R_MIPS_LO16 relocation after that, and an addend is calculated using
458 // the two relocations.
459 template <class ELFT, class RelTy>
computeMipsAddend(const RelTy & rel,const RelTy * end,InputSectionBase & sec,RelExpr expr,bool isLocal)460 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
461                                  InputSectionBase &sec, RelExpr expr,
462                                  bool isLocal) {
463   if (expr == R_MIPS_GOTREL && isLocal)
464     return sec.getFile<ELFT>()->mipsGp0;
465 
466   // The ABI says that the paired relocation is used only for REL.
467   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
468   if (RelTy::IsRela)
469     return 0;
470 
471   RelType type = rel.getType(config->isMips64EL);
472   uint32_t pairTy = getMipsPairType(type, isLocal);
473   if (pairTy == R_MIPS_NONE)
474     return 0;
475 
476   const uint8_t *buf = sec.data().data();
477   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
478 
479   // To make things worse, paired relocations might not be contiguous in
480   // the relocation table, so we need to do linear search. *sigh*
481   for (const RelTy *ri = &rel; ri != end; ++ri)
482     if (ri->getType(config->isMips64EL) == pairTy &&
483         ri->getSymbol(config->isMips64EL) == symIndex)
484       return target->getImplicitAddend(buf + ri->r_offset, pairTy);
485 
486   warn("can't find matching " + toString(pairTy) + " relocation for " +
487        toString(type));
488   return 0;
489 }
490 
491 // Returns an addend of a given relocation. If it is RELA, an addend
492 // is in a relocation itself. If it is REL, we need to read it from an
493 // input section.
494 template <class ELFT, class RelTy>
computeAddend(const RelTy & rel,const RelTy * end,InputSectionBase & sec,RelExpr expr,bool isLocal)495 static int64_t computeAddend(const RelTy &rel, const RelTy *end,
496                              InputSectionBase &sec, RelExpr expr,
497                              bool isLocal) {
498   int64_t addend;
499   RelType type = rel.getType(config->isMips64EL);
500 
501   if (RelTy::IsRela) {
502     addend = getAddend<ELFT>(rel);
503   } else {
504     const uint8_t *buf = sec.data().data();
505     addend = target->getImplicitAddend(buf + rel.r_offset, type);
506   }
507 
508   if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
509     addend += getPPC64TocBase();
510   if (config->emachine == EM_MIPS)
511     addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
512 
513   return addend;
514 }
515 
516 // Custom error message if Sym is defined in a discarded section.
517 template <class ELFT>
maybeReportDiscarded(Undefined & sym)518 static std::string maybeReportDiscarded(Undefined &sym) {
519   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
520   if (!file || !sym.discardedSecIdx ||
521       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
522     return "";
523   ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
524       CHECK(file->getObj().sections(), file);
525 
526   std::string msg;
527   if (sym.type == ELF::STT_SECTION) {
528     msg = "relocation refers to a discarded section: ";
529     msg += CHECK(
530         file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
531   } else {
532     msg = "relocation refers to a symbol in a discarded section: " +
533           toString(sym);
534   }
535   msg += "\n>>> defined in " + toString(file);
536 
537   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
538   if (elfSec.sh_type != SHT_GROUP)
539     return msg;
540 
541   // If the discarded section is a COMDAT.
542   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
543   if (const InputFile *prevailing =
544           symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
545     msg += "\n>>> section group signature: " + signature.str() +
546            "\n>>> prevailing definition is in " + toString(prevailing);
547   return msg;
548 }
549 
550 // Undefined diagnostics are collected in a vector and emitted once all of
551 // them are known, so that some postprocessing on the list of undefined symbols
552 // can happen before lld emits diagnostics.
553 struct UndefinedDiag {
554   Symbol *sym;
555   struct Loc {
556     InputSectionBase *sec;
557     uint64_t offset;
558   };
559   std::vector<Loc> locs;
560   bool isWarning;
561 };
562 
563 static std::vector<UndefinedDiag> undefs;
564 
565 // Check whether the definition name def is a mangled function name that matches
566 // the reference name ref.
canSuggestExternCForCXX(StringRef ref,StringRef def)567 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
568   llvm::ItaniumPartialDemangler d;
569   std::string name = def.str();
570   if (d.partialDemangle(name.c_str()))
571     return false;
572   char *buf = d.getFunctionName(nullptr, nullptr);
573   if (!buf)
574     return false;
575   bool ret = ref == buf;
576   free(buf);
577   return ret;
578 }
579 
580 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
581 // the suggested symbol, which is either in the symbol table, or in the same
582 // file of sym.
583 template <class ELFT>
getAlternativeSpelling(const Undefined & sym,std::string & pre_hint,std::string & post_hint)584 static const Symbol *getAlternativeSpelling(const Undefined &sym,
585                                             std::string &pre_hint,
586                                             std::string &post_hint) {
587   DenseMap<StringRef, const Symbol *> map;
588   if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
589     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
590     // will give an error. Don't suggest an alternative spelling.
591     if (file && sym.discardedSecIdx != 0 &&
592         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
593       return nullptr;
594 
595     // Build a map of local defined symbols.
596     for (const Symbol *s : sym.file->getSymbols())
597       if (s->isLocal() && s->isDefined() && !s->getName().empty())
598         map.try_emplace(s->getName(), s);
599   }
600 
601   auto suggest = [&](StringRef newName) -> const Symbol * {
602     // If defined locally.
603     if (const Symbol *s = map.lookup(newName))
604       return s;
605 
606     // If in the symbol table and not undefined.
607     if (const Symbol *s = symtab->find(newName))
608       if (!s->isUndefined())
609         return s;
610 
611     return nullptr;
612   };
613 
614   // This loop enumerates all strings of Levenshtein distance 1 as typo
615   // correction candidates and suggests the one that exists as a non-undefined
616   // symbol.
617   StringRef name = sym.getName();
618   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
619     // Insert a character before name[i].
620     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
621     for (char c = '0'; c <= 'z'; ++c) {
622       newName[i] = c;
623       if (const Symbol *s = suggest(newName))
624         return s;
625     }
626     if (i == e)
627       break;
628 
629     // Substitute name[i].
630     newName = std::string(name);
631     for (char c = '0'; c <= 'z'; ++c) {
632       newName[i] = c;
633       if (const Symbol *s = suggest(newName))
634         return s;
635     }
636 
637     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
638     // common.
639     if (i + 1 < e) {
640       newName[i] = name[i + 1];
641       newName[i + 1] = name[i];
642       if (const Symbol *s = suggest(newName))
643         return s;
644     }
645 
646     // Delete name[i].
647     newName = (name.substr(0, i) + name.substr(i + 1)).str();
648     if (const Symbol *s = suggest(newName))
649       return s;
650   }
651 
652   // Case mismatch, e.g. Foo vs FOO.
653   for (auto &it : map)
654     if (name.equals_insensitive(it.first))
655       return it.second;
656   for (Symbol *sym : symtab->symbols())
657     if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
658       return sym;
659 
660   // The reference may be a mangled name while the definition is not. Suggest a
661   // missing extern "C".
662   if (name.startswith("_Z")) {
663     std::string buf = name.str();
664     llvm::ItaniumPartialDemangler d;
665     if (!d.partialDemangle(buf.c_str()))
666       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
667         const Symbol *s = suggest(buf);
668         free(buf);
669         if (s) {
670           pre_hint = ": extern \"C\" ";
671           return s;
672         }
673       }
674   } else {
675     const Symbol *s = nullptr;
676     for (auto &it : map)
677       if (canSuggestExternCForCXX(name, it.first)) {
678         s = it.second;
679         break;
680       }
681     if (!s)
682       for (Symbol *sym : symtab->symbols())
683         if (canSuggestExternCForCXX(name, sym->getName())) {
684           s = sym;
685           break;
686         }
687     if (s) {
688       pre_hint = " to declare ";
689       post_hint = " as extern \"C\"?";
690       return s;
691     }
692   }
693 
694   return nullptr;
695 }
696 
697 template <class ELFT>
reportUndefinedSymbol(const UndefinedDiag & undef,bool correctSpelling)698 static void reportUndefinedSymbol(const UndefinedDiag &undef,
699                                   bool correctSpelling) {
700   Symbol &sym = *undef.sym;
701 
702   auto visibility = [&]() -> std::string {
703     switch (sym.visibility) {
704     case STV_INTERNAL:
705       return "internal ";
706     case STV_HIDDEN:
707       return "hidden ";
708     case STV_PROTECTED:
709       return "protected ";
710     default:
711       return "";
712     }
713   };
714 
715   std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
716   if (msg.empty())
717     msg = "undefined " + visibility() + "symbol: " + toString(sym);
718 
719   const size_t maxUndefReferences = 3;
720   size_t i = 0;
721   for (UndefinedDiag::Loc l : undef.locs) {
722     if (i >= maxUndefReferences)
723       break;
724     InputSectionBase &sec = *l.sec;
725     uint64_t offset = l.offset;
726 
727     msg += "\n>>> referenced by ";
728     std::string src = sec.getSrcMsg(sym, offset);
729     if (!src.empty())
730       msg += src + "\n>>>               ";
731     msg += sec.getObjMsg(offset);
732     i++;
733   }
734 
735   if (i < undef.locs.size())
736     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
737                .str();
738 
739   if (correctSpelling) {
740     std::string pre_hint = ": ", post_hint;
741     if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
742             cast<Undefined>(sym), pre_hint, post_hint)) {
743       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
744       if (corrected->file)
745         msg += "\n>>> defined in: " + toString(corrected->file);
746     }
747   }
748 
749   if (sym.getName().startswith("_ZTV"))
750     msg +=
751         "\n>>> the vtable symbol may be undefined because the class is missing "
752         "its key function (see https://lld.llvm.org/missingkeyfunction)";
753 
754   if (undef.isWarning)
755     warn(msg);
756   else
757     error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
758 }
759 
reportUndefinedSymbols()760 template <class ELFT> void elf::reportUndefinedSymbols() {
761   // Find the first "undefined symbol" diagnostic for each diagnostic, and
762   // collect all "referenced from" lines at the first diagnostic.
763   DenseMap<Symbol *, UndefinedDiag *> firstRef;
764   for (UndefinedDiag &undef : undefs) {
765     assert(undef.locs.size() == 1);
766     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
767       canon->locs.push_back(undef.locs[0]);
768       undef.locs.clear();
769     } else
770       firstRef[undef.sym] = &undef;
771   }
772 
773   // Enable spell corrector for the first 2 diagnostics.
774   for (auto it : enumerate(undefs))
775     if (!it.value().locs.empty())
776       reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
777   undefs.clear();
778 }
779 
780 // Report an undefined symbol if necessary.
781 // Returns true if the undefined symbol will produce an error message.
maybeReportUndefined(Symbol & sym,InputSectionBase & sec,uint64_t offset)782 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
783                                  uint64_t offset) {
784   if (!sym.isUndefined())
785     return false;
786   // If versioned, issue an error (even if the symbol is weak) because we don't
787   // know the defining filename which is required to construct a Verneed entry.
788   if (*sym.getVersionSuffix() == '@') {
789     undefs.push_back({&sym, {{&sec, offset}}, false});
790     return true;
791   }
792   if (sym.isWeak())
793     return false;
794 
795   bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
796   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
797     return false;
798 
799   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
800   // which references a switch table in a discarded .rodata/.text section. The
801   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
802   // spec says references from outside the group to a STB_LOCAL symbol are not
803   // allowed. Work around the bug.
804   //
805   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
806   // because .LC0-.LTOC is not representable if the two labels are in different
807   // .got2
808   if (cast<Undefined>(sym).discardedSecIdx != 0 &&
809       (sec.name == ".got2" || sec.name == ".toc"))
810     return false;
811 
812   bool isWarning =
813       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
814       config->noinhibitExec;
815   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
816   return !isWarning;
817 }
818 
819 // MIPS N32 ABI treats series of successive relocations with the same offset
820 // as a single relocation. The similar approach used by N64 ABI, but this ABI
821 // packs all relocations into the single relocation record. Here we emulate
822 // this for the N32 ABI. Iterate over relocation with the same offset and put
823 // theirs types into the single bit-set.
getMipsN32RelType(RelTy * & rel,RelTy * end)824 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
825   RelType type = 0;
826   uint64_t offset = rel->r_offset;
827 
828   int n = 0;
829   while (rel != end && rel->r_offset == offset)
830     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
831   return type;
832 }
833 
834 // .eh_frame sections are mergeable input sections, so their input
835 // offsets are not linearly mapped to output section. For each input
836 // offset, we need to find a section piece containing the offset and
837 // add the piece's base address to the input offset to compute the
838 // output offset. That isn't cheap.
839 //
840 // This class is to speed up the offset computation. When we process
841 // relocations, we access offsets in the monotonically increasing
842 // order. So we can optimize for that access pattern.
843 //
844 // For sections other than .eh_frame, this class doesn't do anything.
845 namespace {
846 class OffsetGetter {
847 public:
OffsetGetter(InputSectionBase & sec)848   explicit OffsetGetter(InputSectionBase &sec) {
849     if (auto *eh = dyn_cast<EhInputSection>(&sec))
850       pieces = eh->pieces;
851   }
852 
853   // Translates offsets in input sections to offsets in output sections.
854   // Given offset must increase monotonically. We assume that Piece is
855   // sorted by inputOff.
get(uint64_t off)856   uint64_t get(uint64_t off) {
857     if (pieces.empty())
858       return off;
859 
860     while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
861       ++i;
862     if (i == pieces.size())
863       fatal(".eh_frame: relocation is not in any piece");
864 
865     // Pieces must be contiguous, so there must be no holes in between.
866     assert(pieces[i].inputOff <= off && "Relocation not in any piece");
867 
868     // Offset -1 means that the piece is dead (i.e. garbage collected).
869     if (pieces[i].outputOff == -1)
870       return -1;
871     return pieces[i].outputOff + off - pieces[i].inputOff;
872   }
873 
874 private:
875   ArrayRef<EhSectionPiece> pieces;
876   size_t i = 0;
877 };
878 } // namespace
879 
addRelativeReloc(InputSectionBase * isec,uint64_t offsetInSec,Symbol & sym,int64_t addend,RelExpr expr,RelType type)880 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
881                              Symbol &sym, int64_t addend, RelExpr expr,
882                              RelType type) {
883   Partition &part = isec->getPartition();
884 
885   // Add a relative relocation. If relrDyn section is enabled, and the
886   // relocation offset is guaranteed to be even, add the relocation to
887   // the relrDyn section, otherwise add it to the relaDyn section.
888   // relrDyn sections don't support odd offsets. Also, relrDyn sections
889   // don't store the addend values, so we must write it to the relocated
890   // address.
891   if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
892     isec->relocations.push_back({expr, type, offsetInSec, addend, &sym});
893     part.relrDyn->relocs.push_back({isec, offsetInSec});
894     return;
895   }
896   part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
897                                  addend, type, expr);
898 }
899 
900 template <class PltSection, class GotPltSection>
addPltEntry(PltSection * plt,GotPltSection * gotPlt,RelocationBaseSection * rel,RelType type,Symbol & sym)901 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
902                         RelocationBaseSection *rel, RelType type, Symbol &sym) {
903   plt->addEntry(sym);
904   gotPlt->addEntry(sym);
905   rel->addReloc({type, gotPlt, sym.getGotPltOffset(),
906                  sym.isPreemptible ? DynamicReloc::AgainstSymbol
907                                    : DynamicReloc::AddendOnlyWithTargetVA,
908                  sym, 0, R_ABS});
909 }
910 
addGotEntry(Symbol & sym)911 static void addGotEntry(Symbol &sym) {
912   in.got->addEntry(sym);
913   uint64_t off = sym.getGotOffset();
914 
915   // If preemptible, emit a GLOB_DAT relocation.
916   if (sym.isPreemptible) {
917     mainPart->relaDyn->addReloc({target->gotRel, in.got, off,
918                                  DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
919     return;
920   }
921 
922   // Otherwise, the value is either a link-time constant or the load base
923   // plus a constant.
924   if (!config->isPic || isAbsolute(sym))
925     in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym});
926   else
927     addRelativeReloc(in.got, off, sym, 0, R_ABS, target->symbolicRel);
928 }
929 
addTpOffsetGotEntry(Symbol & sym)930 static void addTpOffsetGotEntry(Symbol &sym) {
931   in.got->addEntry(sym);
932   uint64_t off = sym.getGotOffset();
933   if (!sym.isPreemptible && !config->isPic) {
934     in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym});
935     return;
936   }
937   mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
938       target->tlsGotRel, in.got, off, sym, target->symbolicRel);
939 }
940 
941 // Return true if we can define a symbol in the executable that
942 // contains the value/function of a symbol defined in a shared
943 // library.
canDefineSymbolInExecutable(Symbol & sym)944 static bool canDefineSymbolInExecutable(Symbol &sym) {
945   // If the symbol has default visibility the symbol defined in the
946   // executable will preempt it.
947   // Note that we want the visibility of the shared symbol itself, not
948   // the visibility of the symbol in the output file we are producing. That is
949   // why we use Sym.stOther.
950   if ((sym.stOther & 0x3) == STV_DEFAULT)
951     return true;
952 
953   // If we are allowed to break address equality of functions, defining
954   // a plt entry will allow the program to call the function in the
955   // .so, but the .so and the executable will no agree on the address
956   // of the function. Similar logic for objects.
957   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
958           (sym.isObject() && config->ignoreDataAddressEquality));
959 }
960 
961 // The reason we have to do this early scan is as follows
962 // * To mmap the output file, we need to know the size
963 // * For that, we need to know how many dynamic relocs we will have.
964 // It might be possible to avoid this by outputting the file with write:
965 // * Write the allocated output sections, computing addresses.
966 // * Apply relocations, recording which ones require a dynamic reloc.
967 // * Write the dynamic relocations.
968 // * Write the rest of the file.
969 // This would have some drawbacks. For example, we would only know if .rela.dyn
970 // is needed after applying relocations. If it is, it will go after rw and rx
971 // sections. Given that it is ro, we will need an extra PT_LOAD. This
972 // complicates things for the dynamic linker and means we would have to reserve
973 // space for the extra PT_LOAD even if we end up not using it.
974 template <class ELFT>
processRelocAux(InputSectionBase & sec,RelExpr expr,RelType type,uint64_t offset,Symbol & sym,int64_t addend)975 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
976                             uint64_t offset, Symbol &sym, int64_t addend) {
977   // If the relocation is known to be a link-time constant, we know no dynamic
978   // relocation will be created, pass the control to relocateAlloc() or
979   // relocateNonAlloc() to resolve it.
980   //
981   // The behavior of an undefined weak reference is implementation defined. For
982   // non-link-time constants, we resolve relocations statically (let
983   // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
984   // relocations for -pie and -shared.
985   //
986   // The general expectation of -no-pie static linking is that there is no
987   // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
988   // -shared matches the spirit of its -z undefs default. -pie has freedom on
989   // choices, and we choose dynamic relocations to be consistent with the
990   // handling of GOT-generating relocations.
991   if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
992       (!config->isPic && sym.isUndefWeak())) {
993     sec.relocations.push_back({expr, type, offset, addend, &sym});
994     return;
995   }
996 
997   bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
998   if (canWrite) {
999     RelType rel = target->getDynRel(type);
1000     if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1001       addRelativeReloc(&sec, offset, sym, addend, expr, type);
1002       return;
1003     } else if (rel != 0) {
1004       if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1005         rel = target->relativeRel;
1006       sec.getPartition().relaDyn->addSymbolReloc(rel, &sec, offset, sym, addend,
1007                                                  type);
1008 
1009       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1010       // While regular ABI uses dynamic relocations to fill up GOT entries
1011       // MIPS ABI requires dynamic linker to fills up GOT entries using
1012       // specially sorted dynamic symbol table. This affects even dynamic
1013       // relocations against symbols which do not require GOT entries
1014       // creation explicitly, i.e. do not have any GOT-relocations. So if
1015       // a preemptible symbol has a dynamic relocation we anyway have
1016       // to create a GOT entry for it.
1017       // If a non-preemptible symbol has a dynamic relocation against it,
1018       // dynamic linker takes it st_value, adds offset and writes down
1019       // result of the dynamic relocation. In case of preemptible symbol
1020       // dynamic linker performs symbol resolution, writes the symbol value
1021       // to the GOT entry and reads the GOT entry when it needs to perform
1022       // a dynamic relocation.
1023       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1024       if (config->emachine == EM_MIPS)
1025         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1026       return;
1027     }
1028   }
1029 
1030   // When producing an executable, we can perform copy relocations (for
1031   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1032   if (!config->shared) {
1033     if (!canDefineSymbolInExecutable(sym)) {
1034       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1035                   getLocation(sec, sym, offset));
1036       return;
1037     }
1038 
1039     if (sym.isObject()) {
1040       // Produce a copy relocation.
1041       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1042         if (!config->zCopyreloc)
1043           error("unresolvable relocation " + toString(type) +
1044                 " against symbol '" + toString(*ss) +
1045                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1046                 getLocation(sec, sym, offset));
1047         addCopyRelSymbol<ELFT>(*ss);
1048       }
1049       sec.relocations.push_back({expr, type, offset, addend, &sym});
1050       return;
1051     }
1052 
1053     // This handles a non PIC program call to function in a shared library. In
1054     // an ideal world, we could just report an error saying the relocation can
1055     // overflow at runtime. In the real world with glibc, crt1.o has a
1056     // R_X86_64_PC32 pointing to libc.so.
1057     //
1058     // The general idea on how to handle such cases is to create a PLT entry and
1059     // use that as the function value.
1060     //
1061     // For the static linking part, we just return a plt expr and everything
1062     // else will use the PLT entry as the address.
1063     //
1064     // The remaining problem is making sure pointer equality still works. We
1065     // need the help of the dynamic linker for that. We let it know that we have
1066     // a direct reference to a so symbol by creating an undefined symbol with a
1067     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1068     // the value of the symbol we created. This is true even for got entries, so
1069     // pointer equality is maintained. To avoid an infinite loop, the only entry
1070     // that points to the real function is a dedicated got entry used by the
1071     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1072     // R_386_JMP_SLOT, etc).
1073 
1074     // For position independent executable on i386, the plt entry requires ebx
1075     // to be set. This causes two problems:
1076     // * If some code has a direct reference to a function, it was probably
1077     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1078     // * If a library definition gets preempted to the executable, it will have
1079     //   the wrong ebx value.
1080     if (sym.isFunc()) {
1081       if (config->pie && config->emachine == EM_386)
1082         errorOrWarn("symbol '" + toString(sym) +
1083                     "' cannot be preempted; recompile with -fPIE" +
1084                     getLocation(sec, sym, offset));
1085       if (!sym.isInPlt())
1086         addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1087       if (!sym.isDefined()) {
1088         replaceWithDefined(
1089             sym, in.plt,
1090             target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1091         if (config->emachine == EM_PPC) {
1092           // PPC32 canonical PLT entries are at the beginning of .glink
1093           cast<Defined>(sym).value = in.plt->headerSize;
1094           in.plt->headerSize += 16;
1095           cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
1096         }
1097       }
1098       sym.needsPltAddr = true;
1099       sec.relocations.push_back({expr, type, offset, addend, &sym});
1100       return;
1101     }
1102   }
1103 
1104   if (config->isPic) {
1105     if (!canWrite && !isRelExpr(expr))
1106       errorOrWarn(
1107           "can't create dynamic relocation " + toString(type) + " against " +
1108           (sym.getName().empty() ? "local symbol"
1109                                  : "symbol: " + toString(sym)) +
1110           " in readonly segment; recompile object files with -fPIC "
1111           "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1112           getLocation(sec, sym, offset));
1113     else
1114       errorOrWarn(
1115           "relocation " + toString(type) + " cannot be used against " +
1116           (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1117           "; recompile with -fPIC" + getLocation(sec, sym, offset));
1118     return;
1119   }
1120 
1121   errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1122               getLocation(sec, sym, offset));
1123 }
1124 
1125 // This function is similar to the `handleTlsRelocation`. MIPS does not
1126 // support any relaxations for TLS relocations so by factoring out MIPS
1127 // handling in to the separate function we can simplify the code and do not
1128 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1129 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1130 // without dynamic relocations.
handleMipsTlsRelocation(RelType type,Symbol & sym,InputSectionBase & c,uint64_t offset,int64_t addend,RelExpr expr)1131 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1132                                         InputSectionBase &c, uint64_t offset,
1133                                         int64_t addend, RelExpr expr) {
1134   if (expr == R_MIPS_TLSLD) {
1135     in.mipsGot->addTlsIndex(*c.file);
1136     c.relocations.push_back({expr, type, offset, addend, &sym});
1137     return 1;
1138   }
1139   if (expr == R_MIPS_TLSGD) {
1140     in.mipsGot->addDynTlsEntry(*c.file, sym);
1141     c.relocations.push_back({expr, type, offset, addend, &sym});
1142     return 1;
1143   }
1144   return 0;
1145 }
1146 
1147 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1148 // require the generation of a pair of GOT entries that have associated dynamic
1149 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1150 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1151 // symbol in TLS block.
1152 //
1153 // Returns the number of relocations processed.
1154 template <class ELFT>
1155 static unsigned
handleTlsRelocation(RelType type,Symbol & sym,InputSectionBase & c,typename ELFT::uint offset,int64_t addend,RelExpr expr)1156 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
1157                     typename ELFT::uint offset, int64_t addend, RelExpr expr) {
1158   if (!sym.isTls())
1159     return 0;
1160 
1161   if (config->emachine == EM_MIPS)
1162     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1163 
1164   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
1165           expr) &&
1166       config->shared) {
1167     if (in.got->addDynTlsEntry(sym)) {
1168       uint64_t off = in.got->getGlobalDynOffset(sym);
1169       mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1170           target->tlsDescRel, in.got, off, sym, target->tlsDescRel);
1171     }
1172     if (expr != R_TLSDESC_CALL)
1173       c.relocations.push_back({expr, type, offset, addend, &sym});
1174     return 1;
1175   }
1176 
1177   // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation.  For
1178   // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1179   // relaxation as well.
1180   bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1181                      config->emachine != EM_HEXAGON &&
1182                      config->emachine != EM_RISCV &&
1183                      !c.file->ppc64DisableTLSRelax;
1184 
1185   // If we are producing an executable and the symbol is non-preemptable, it
1186   // must be defined and the code sequence can be relaxed to use Local-Exec.
1187   //
1188   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1189   // we can omit the DTPMOD dynamic relocations and resolve them at link time
1190   // because them are always 1. This may be necessary for static linking as
1191   // DTPMOD may not be expected at load time.
1192   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1193 
1194   // Local Dynamic is for access to module local TLS variables, while still
1195   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1196   // module index, with a special value of 0 for the current module. GOT[e1] is
1197   // unused. There only needs to be one module index entry.
1198   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
1199           expr)) {
1200     // Local-Dynamic relocs can be relaxed to Local-Exec.
1201     if (toExecRelax) {
1202       c.relocations.push_back(
1203           {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
1204            addend, &sym});
1205       return target->getTlsGdRelaxSkip(type);
1206     }
1207     if (expr == R_TLSLD_HINT)
1208       return 1;
1209     if (in.got->addTlsIndex()) {
1210       if (isLocalInExecutable)
1211         in.got->relocations.push_back(
1212             {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
1213       else
1214         mainPart->relaDyn->addReloc(
1215             {target->tlsModuleIndexRel, in.got, in.got->getTlsIndexOff()});
1216     }
1217     c.relocations.push_back({expr, type, offset, addend, &sym});
1218     return 1;
1219   }
1220 
1221   // Local-Dynamic relocs can be relaxed to Local-Exec.
1222   if (expr == R_DTPREL && toExecRelax) {
1223     c.relocations.push_back({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE),
1224                              type, offset, addend, &sym});
1225     return 1;
1226   }
1227 
1228   // Local-Dynamic sequence where offset of tls variable relative to dynamic
1229   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1230   if (expr == R_TLSLD_GOT_OFF) {
1231     if (!sym.isInGot()) {
1232       in.got->addEntry(sym);
1233       uint64_t off = sym.getGotOffset();
1234       in.got->relocations.push_back(
1235           {R_ABS, target->tlsOffsetRel, off, 0, &sym});
1236     }
1237     c.relocations.push_back({expr, type, offset, addend, &sym});
1238     return 1;
1239   }
1240 
1241   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1242             R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
1243     if (!toExecRelax) {
1244       if (in.got->addDynTlsEntry(sym)) {
1245         uint64_t off = in.got->getGlobalDynOffset(sym);
1246 
1247         if (isLocalInExecutable)
1248           // Write one to the GOT slot.
1249           in.got->relocations.push_back(
1250               {R_ADDEND, target->symbolicRel, off, 1, &sym});
1251         else
1252           mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, in.got,
1253                                             off, sym);
1254 
1255         // If the symbol is preemptible we need the dynamic linker to write
1256         // the offset too.
1257         uint64_t offsetOff = off + config->wordsize;
1258         if (sym.isPreemptible)
1259           mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, in.got,
1260                                             offsetOff, sym);
1261         else
1262           in.got->relocations.push_back(
1263               {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1264       }
1265       c.relocations.push_back({expr, type, offset, addend, &sym});
1266       return 1;
1267     }
1268 
1269     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1270     // depending on the symbol being locally defined or not.
1271     if (sym.isPreemptible) {
1272       c.relocations.push_back(
1273           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
1274            addend, &sym});
1275       if (!sym.isInGot()) {
1276         in.got->addEntry(sym);
1277         mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, in.got,
1278                                           sym.getGotOffset(), sym);
1279       }
1280     } else {
1281       c.relocations.push_back(
1282           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
1283            addend, &sym});
1284     }
1285     return target->getTlsGdRelaxSkip(type);
1286   }
1287 
1288   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
1289             R_TLSIE_HINT>(expr)) {
1290     // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1291     // defined.
1292     if (toExecRelax && isLocalInExecutable) {
1293       c.relocations.push_back(
1294           {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1295     } else if (expr != R_TLSIE_HINT) {
1296       if (!sym.isInGot())
1297         addTpOffsetGotEntry(sym);
1298       // R_GOT may not be a link-time constant.
1299       processRelocAux<ELFT>(c, expr, type, offset, sym, addend);
1300     }
1301     return 1;
1302   }
1303 
1304   return 0;
1305 }
1306 
1307 template <class ELFT, class RelTy>
scanReloc(InputSectionBase & sec,OffsetGetter & getOffset,RelTy * & i,RelTy * start,RelTy * end)1308 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1309                       RelTy *start, RelTy *end) {
1310   const RelTy &rel = *i;
1311   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1312   Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1313   RelType type;
1314 
1315   // Deal with MIPS oddity.
1316   if (config->mipsN32Abi) {
1317     type = getMipsN32RelType(i, end);
1318   } else {
1319     type = rel.getType(config->isMips64EL);
1320     ++i;
1321   }
1322 
1323   // Get an offset in an output section this relocation is applied to.
1324   uint64_t offset = getOffset.get(rel.r_offset);
1325   if (offset == uint64_t(-1))
1326     return;
1327 
1328   // Error if the target symbol is undefined. Symbol index 0 may be used by
1329   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1330   if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
1331     return;
1332 
1333   const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1334   RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1335 
1336   // Ignore R_*_NONE and other marker relocations.
1337   if (expr == R_NONE)
1338     return;
1339 
1340   // Read an addend.
1341   int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1342 
1343   if (config->emachine == EM_PPC64) {
1344     // We can separate the small code model relocations into 2 categories:
1345     // 1) Those that access the compiler generated .toc sections.
1346     // 2) Those that access the linker allocated got entries.
1347     // lld allocates got entries to symbols on demand. Since we don't try to
1348     // sort the got entries in any way, we don't have to track which objects
1349     // have got-based small code model relocs. The .toc sections get placed
1350     // after the end of the linker allocated .got section and we do sort those
1351     // so sections addressed with small code model relocations come first.
1352     if (isPPC64SmallCodeModelTocReloc(type))
1353       sec.file->ppc64SmallCodeModelTocRelocs = true;
1354 
1355     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1356     // InputSectionBase::relocateAlloc().
1357     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1358         cast<Defined>(sym).section->name == ".toc")
1359       ppc64noTocRelax.insert({&sym, addend});
1360 
1361     if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1362         (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1363       if (i == end) {
1364         errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1365                     "relocation" +
1366                     getLocation(sec, sym, offset));
1367         return;
1368       }
1369 
1370       // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1371       // so we can discern it later from the toc-case.
1372       if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1373         ++offset;
1374     }
1375   }
1376 
1377   // Relax relocations.
1378   //
1379   // If we know that a PLT entry will be resolved within the same ELF module, we
1380   // can skip PLT access and directly jump to the destination function. For
1381   // example, if we are linking a main executable, all dynamic symbols that can
1382   // be resolved within the executable will actually be resolved that way at
1383   // runtime, because the main executable is always at the beginning of a search
1384   // list. We can leverage that fact.
1385   if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1386     if (expr != R_GOT_PC) {
1387       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1388       // stub type. It should be ignored if optimized to R_PC.
1389       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1390         addend &= ~0x8000;
1391       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1392       // call __tls_get_addr even if the symbol is non-preemptible.
1393       if (!(config->emachine == EM_HEXAGON &&
1394            (type == R_HEX_GD_PLT_B22_PCREL ||
1395             type == R_HEX_GD_PLT_B22_PCREL_X ||
1396             type == R_HEX_GD_PLT_B32_PCREL_X)))
1397       expr = fromPlt(expr);
1398     } else if (!isAbsoluteValue(sym)) {
1399       expr = target->adjustGotPcExpr(type, addend, relocatedAddr);
1400     }
1401   }
1402 
1403   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1404   // uses their addresses, we need GOT or GOTPLT to be created.
1405   //
1406   // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1407   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1408     in.gotPlt->hasGotPltOffRel = true;
1409   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
1410                  expr)) {
1411     in.got->hasGotOffRel = true;
1412   }
1413 
1414   // Process TLS relocations, including relaxing TLS relocations. Note that
1415   // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux.
1416   if (expr == R_TPREL || expr == R_TPREL_NEG) {
1417     if (config->shared) {
1418       errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1419                   " cannot be used with -shared" +
1420                   getLocation(sec, sym, offset));
1421       return;
1422     }
1423   } else if (unsigned processed = handleTlsRelocation<ELFT>(
1424                  type, sym, sec, offset, addend, expr)) {
1425     i += (processed - 1);
1426     return;
1427   }
1428 
1429   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1430   // direct relocation on through.
1431   if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1432     sym.exportDynamic = true;
1433     mainPart->relaDyn->addSymbolReloc(type, &sec, offset, sym, addend, type);
1434     return;
1435   }
1436 
1437   // Non-preemptible ifuncs require special handling. First, handle the usual
1438   // case where the symbol isn't one of these.
1439   if (!sym.isGnuIFunc() || sym.isPreemptible) {
1440     // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1441     if (needsPlt(expr) && !sym.isInPlt())
1442       addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1443 
1444     // Create a GOT slot if a relocation needs GOT.
1445     if (needsGot(expr)) {
1446       if (config->emachine == EM_MIPS) {
1447         // MIPS ABI has special rules to process GOT entries and doesn't
1448         // require relocation entries for them. A special case is TLS
1449         // relocations. In that case dynamic loader applies dynamic
1450         // relocations to initialize TLS GOT entries.
1451         // See "Global Offset Table" in Chapter 5 in the following document
1452         // for detailed description:
1453         // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1454         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1455       } else if (!sym.isInGot()) {
1456         addGotEntry(sym);
1457       }
1458     }
1459   } else {
1460     // Handle a reference to a non-preemptible ifunc. These are special in a
1461     // few ways:
1462     //
1463     // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1464     //   a fixed value. But assuming that all references to the ifunc are
1465     //   GOT-generating or PLT-generating, the handling of an ifunc is
1466     //   relatively straightforward. We create a PLT entry in Iplt, which is
1467     //   usually at the end of .plt, which makes an indirect call using a
1468     //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1469     //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1470     //   which is usually at the end of .rela.plt. Unlike most relocations in
1471     //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1472     //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1473     //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1474     //   .got.plt without requiring a separate GOT entry.
1475     //
1476     // - Despite the fact that an ifunc does not have a fixed value, compilers
1477     //   that are not passed -fPIC will assume that they do, and will emit
1478     //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1479     //   symbol. This means that if a direct relocation to the symbol is
1480     //   seen, the linker must set a value for the symbol, and this value must
1481     //   be consistent no matter what type of reference is made to the symbol.
1482     //   This can be done by creating a PLT entry for the symbol in the way
1483     //   described above and making it canonical, that is, making all references
1484     //   point to the PLT entry instead of the resolver. In lld we also store
1485     //   the address of the PLT entry in the dynamic symbol table, which means
1486     //   that the symbol will also have the same value in other modules.
1487     //   Because the value loaded from the GOT needs to be consistent with
1488     //   the value computed using a direct relocation, a non-preemptible ifunc
1489     //   may end up with two GOT entries, one in .got.plt that points to the
1490     //   address returned by the resolver and is used only by the PLT entry,
1491     //   and another in .got that points to the PLT entry and is used by
1492     //   GOT-generating relocations.
1493     //
1494     // - The fact that these symbols do not have a fixed value makes them an
1495     //   exception to the general rule that a statically linked executable does
1496     //   not require any form of dynamic relocation. To handle these relocations
1497     //   correctly, the IRELATIVE relocations are stored in an array which a
1498     //   statically linked executable's startup code must enumerate using the
1499     //   linker-defined symbols __rela?_iplt_{start,end}.
1500     if (!sym.isInPlt()) {
1501       // Create PLT and GOTPLT slots for the symbol.
1502       sym.isInIplt = true;
1503 
1504       // Create a copy of the symbol to use as the target of the IRELATIVE
1505       // relocation in the igotPlt. This is in case we make the PLT canonical
1506       // later, which would overwrite the original symbol.
1507       //
1508       // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1509       // that's really needed to create the IRELATIVE is the section and value,
1510       // so ideally we should just need to copy those.
1511       auto *directSym = make<Defined>(cast<Defined>(sym));
1512       addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1513                   *directSym);
1514       sym.pltIndex = directSym->pltIndex;
1515     }
1516     if (needsGot(expr)) {
1517       // Redirect GOT accesses to point to the Igot.
1518       //
1519       // This field is also used to keep track of whether we ever needed a GOT
1520       // entry. If we did and we make the PLT canonical later, we'll need to
1521       // create a GOT entry pointing to the PLT entry for Sym.
1522       sym.gotInIgot = true;
1523     } else if (!needsPlt(expr)) {
1524       // Make the ifunc's PLT entry canonical by changing the value of its
1525       // symbol to redirect all references to point to it.
1526       auto &d = cast<Defined>(sym);
1527       d.section = in.iplt;
1528       d.value = sym.pltIndex * target->ipltEntrySize;
1529       d.size = 0;
1530       // It's important to set the symbol type here so that dynamic loaders
1531       // don't try to call the PLT as if it were an ifunc resolver.
1532       d.type = STT_FUNC;
1533 
1534       if (sym.gotInIgot) {
1535         // We previously encountered a GOT generating reference that we
1536         // redirected to the Igot. Now that the PLT entry is canonical we must
1537         // clear the redirection to the Igot and add a GOT entry. As we've
1538         // changed the symbol type to STT_FUNC future GOT generating references
1539         // will naturally use this GOT entry.
1540         //
1541         // We don't need to worry about creating a MIPS GOT here because ifuncs
1542         // aren't a thing on MIPS.
1543         sym.gotInIgot = false;
1544         addGotEntry(sym);
1545       }
1546     }
1547   }
1548 
1549   processRelocAux<ELFT>(sec, expr, type, offset, sym, addend);
1550 }
1551 
1552 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1553 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1554 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1555 // instructions are generated by very old IBM XL compilers. Work around the
1556 // issue by disabling GD/LD to IE/LE relaxation.
1557 template <class RelTy>
checkPPC64TLSRelax(InputSectionBase & sec,ArrayRef<RelTy> rels)1558 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1559   // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1560   if (!sec.file || sec.file->ppc64DisableTLSRelax)
1561     return;
1562   bool hasGDLD = false;
1563   for (const RelTy &rel : rels) {
1564     RelType type = rel.getType(false);
1565     switch (type) {
1566     case R_PPC64_TLSGD:
1567     case R_PPC64_TLSLD:
1568       return; // Found a marker
1569     case R_PPC64_GOT_TLSGD16:
1570     case R_PPC64_GOT_TLSGD16_HA:
1571     case R_PPC64_GOT_TLSGD16_HI:
1572     case R_PPC64_GOT_TLSGD16_LO:
1573     case R_PPC64_GOT_TLSLD16:
1574     case R_PPC64_GOT_TLSLD16_HA:
1575     case R_PPC64_GOT_TLSLD16_HI:
1576     case R_PPC64_GOT_TLSLD16_LO:
1577       hasGDLD = true;
1578       break;
1579     }
1580   }
1581   if (hasGDLD) {
1582     sec.file->ppc64DisableTLSRelax = true;
1583     warn(toString(sec.file) +
1584          ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1585          "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1586   }
1587 }
1588 
1589 template <class ELFT, class RelTy>
scanRelocs(InputSectionBase & sec,ArrayRef<RelTy> rels)1590 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1591   OffsetGetter getOffset(sec);
1592 
1593   // Not all relocations end up in Sec.Relocations, but a lot do.
1594   sec.relocations.reserve(rels.size());
1595 
1596   if (config->emachine == EM_PPC64)
1597     checkPPC64TLSRelax<RelTy>(sec, rels);
1598 
1599   // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1600   // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1601   // script), the relocations may be unordered.
1602   SmallVector<RelTy, 0> storage;
1603   if (isa<EhInputSection>(sec))
1604     rels = sortRels(rels, storage);
1605 
1606   for (auto i = rels.begin(), end = rels.end(); i != end;)
1607     scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end);
1608 
1609   // Sort relocations by offset for more efficient searching for
1610   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1611   if (config->emachine == EM_RISCV ||
1612       (config->emachine == EM_PPC64 && sec.name == ".toc"))
1613     llvm::stable_sort(sec.relocations,
1614                       [](const Relocation &lhs, const Relocation &rhs) {
1615                         return lhs.offset < rhs.offset;
1616                       });
1617 }
1618 
scanRelocations(InputSectionBase & s)1619 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1620   if (s.areRelocsRela)
1621     scanRelocs<ELFT>(s, s.relas<ELFT>());
1622   else
1623     scanRelocs<ELFT>(s, s.rels<ELFT>());
1624 }
1625 
mergeCmp(const InputSection * a,const InputSection * b)1626 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1627   // std::merge requires a strict weak ordering.
1628   if (a->outSecOff < b->outSecOff)
1629     return true;
1630 
1631   if (a->outSecOff == b->outSecOff) {
1632     auto *ta = dyn_cast<ThunkSection>(a);
1633     auto *tb = dyn_cast<ThunkSection>(b);
1634 
1635     // Check if Thunk is immediately before any specific Target
1636     // InputSection for example Mips LA25 Thunks.
1637     if (ta && ta->getTargetInputSection() == b)
1638       return true;
1639 
1640     // Place Thunk Sections without specific targets before
1641     // non-Thunk Sections.
1642     if (ta && !tb && !ta->getTargetInputSection())
1643       return true;
1644   }
1645 
1646   return false;
1647 }
1648 
1649 // Call Fn on every executable InputSection accessed via the linker script
1650 // InputSectionDescription::Sections.
forEachInputSectionDescription(ArrayRef<OutputSection * > outputSections,llvm::function_ref<void (OutputSection *,InputSectionDescription *)> fn)1651 static void forEachInputSectionDescription(
1652     ArrayRef<OutputSection *> outputSections,
1653     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1654   for (OutputSection *os : outputSections) {
1655     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1656       continue;
1657     for (BaseCommand *bc : os->sectionCommands)
1658       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1659         fn(os, isd);
1660   }
1661 }
1662 
1663 // Thunk Implementation
1664 //
1665 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1666 // of code that the linker inserts inbetween a caller and a callee. The thunks
1667 // are added at link time rather than compile time as the decision on whether
1668 // a thunk is needed, such as the caller and callee being out of range, can only
1669 // be made at link time.
1670 //
1671 // It is straightforward to tell given the current state of the program when a
1672 // thunk is needed for a particular call. The more difficult part is that
1673 // the thunk needs to be placed in the program such that the caller can reach
1674 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1675 // the program alters addresses, which can mean more thunks etc.
1676 //
1677 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1678 // The decision to have a ThunkSection act as a container means that we can
1679 // more easily handle the most common case of a single block of contiguous
1680 // Thunks by inserting just a single ThunkSection.
1681 //
1682 // The implementation of Thunks in lld is split across these areas
1683 // Relocations.cpp : Framework for creating and placing thunks
1684 // Thunks.cpp : The code generated for each supported thunk
1685 // Target.cpp : Target specific hooks that the framework uses to decide when
1686 //              a thunk is used
1687 // Synthetic.cpp : Implementation of ThunkSection
1688 // Writer.cpp : Iteratively call framework until no more Thunks added
1689 //
1690 // Thunk placement requirements:
1691 // Mips LA25 thunks. These must be placed immediately before the callee section
1692 // We can assume that the caller is in range of the Thunk. These are modelled
1693 // by Thunks that return the section they must precede with
1694 // getTargetInputSection().
1695 //
1696 // ARM interworking and range extension thunks. These thunks must be placed
1697 // within range of the caller. All implemented ARM thunks can always reach the
1698 // callee as they use an indirect jump via a register that has no range
1699 // restrictions.
1700 //
1701 // Thunk placement algorithm:
1702 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1703 // getTargetInputSection().
1704 //
1705 // For thunks that must be placed within range of the caller there are many
1706 // possible choices given that the maximum range from the caller is usually
1707 // much larger than the average InputSection size. Desirable properties include:
1708 // - Maximize reuse of thunks by multiple callers
1709 // - Minimize number of ThunkSections to simplify insertion
1710 // - Handle impact of already added Thunks on addresses
1711 // - Simple to understand and implement
1712 //
1713 // In lld for the first pass, we pre-create one or more ThunkSections per
1714 // InputSectionDescription at Target specific intervals. A ThunkSection is
1715 // placed so that the estimated end of the ThunkSection is within range of the
1716 // start of the InputSectionDescription or the previous ThunkSection. For
1717 // example:
1718 // InputSectionDescription
1719 // Section 0
1720 // ...
1721 // Section N
1722 // ThunkSection 0
1723 // Section N + 1
1724 // ...
1725 // Section N + K
1726 // Thunk Section 1
1727 //
1728 // The intention is that we can add a Thunk to a ThunkSection that is well
1729 // spaced enough to service a number of callers without having to do a lot
1730 // of work. An important principle is that it is not an error if a Thunk cannot
1731 // be placed in a pre-created ThunkSection; when this happens we create a new
1732 // ThunkSection placed next to the caller. This allows us to handle the vast
1733 // majority of thunks simply, but also handle rare cases where the branch range
1734 // is smaller than the target specific spacing.
1735 //
1736 // The algorithm is expected to create all the thunks that are needed in a
1737 // single pass, with a small number of programs needing a second pass due to
1738 // the insertion of thunks in the first pass increasing the offset between
1739 // callers and callees that were only just in range.
1740 //
1741 // A consequence of allowing new ThunkSections to be created outside of the
1742 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1743 // range in pass K, are out of range in some pass > K due to the insertion of
1744 // more Thunks in between the caller and callee. When this happens we retarget
1745 // the relocation back to the original target and create another Thunk.
1746 
1747 // Remove ThunkSections that are empty, this should only be the initial set
1748 // precreated on pass 0.
1749 
1750 // Insert the Thunks for OutputSection OS into their designated place
1751 // in the Sections vector, and recalculate the InputSection output section
1752 // offsets.
1753 // This may invalidate any output section offsets stored outside of InputSection
mergeThunks(ArrayRef<OutputSection * > outputSections)1754 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1755   forEachInputSectionDescription(
1756       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1757         if (isd->thunkSections.empty())
1758           return;
1759 
1760         // Remove any zero sized precreated Thunks.
1761         llvm::erase_if(isd->thunkSections,
1762                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1763                          return ts.first->getSize() == 0;
1764                        });
1765 
1766         // ISD->ThunkSections contains all created ThunkSections, including
1767         // those inserted in previous passes. Extract the Thunks created this
1768         // pass and order them in ascending outSecOff.
1769         std::vector<ThunkSection *> newThunks;
1770         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1771           if (ts.second == pass)
1772             newThunks.push_back(ts.first);
1773         llvm::stable_sort(newThunks,
1774                           [](const ThunkSection *a, const ThunkSection *b) {
1775                             return a->outSecOff < b->outSecOff;
1776                           });
1777 
1778         // Merge sorted vectors of Thunks and InputSections by outSecOff
1779         std::vector<InputSection *> tmp;
1780         tmp.reserve(isd->sections.size() + newThunks.size());
1781 
1782         std::merge(isd->sections.begin(), isd->sections.end(),
1783                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1784                    mergeCmp);
1785 
1786         isd->sections = std::move(tmp);
1787       });
1788 }
1789 
1790 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1791 // is in range of Src. An ISD maps to a range of InputSections described by a
1792 // linker script section pattern such as { .text .text.* }.
getISDThunkSec(OutputSection * os,InputSection * isec,InputSectionDescription * isd,const Relocation & rel,uint64_t src)1793 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1794                                            InputSection *isec,
1795                                            InputSectionDescription *isd,
1796                                            const Relocation &rel,
1797                                            uint64_t src) {
1798   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1799     ThunkSection *ts = tp.first;
1800     uint64_t tsBase = os->addr + ts->outSecOff + rel.addend;
1801     uint64_t tsLimit = tsBase + ts->getSize() + rel.addend;
1802     if (target->inBranchRange(rel.type, src,
1803                               (src > tsLimit) ? tsBase : tsLimit))
1804       return ts;
1805   }
1806 
1807   // No suitable ThunkSection exists. This can happen when there is a branch
1808   // with lower range than the ThunkSection spacing or when there are too
1809   // many Thunks. Create a new ThunkSection as close to the InputSection as
1810   // possible. Error if InputSection is so large we cannot place ThunkSection
1811   // anywhere in Range.
1812   uint64_t thunkSecOff = isec->outSecOff;
1813   if (!target->inBranchRange(rel.type, src,
1814                              os->addr + thunkSecOff + rel.addend)) {
1815     thunkSecOff = isec->outSecOff + isec->getSize();
1816     if (!target->inBranchRange(rel.type, src,
1817                                os->addr + thunkSecOff + rel.addend))
1818       fatal("InputSection too large for range extension thunk " +
1819             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1820   }
1821   return addThunkSection(os, isd, thunkSecOff);
1822 }
1823 
1824 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1825 // precedes its Target.
getISThunkSec(InputSection * isec)1826 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1827   ThunkSection *ts = thunkedSections.lookup(isec);
1828   if (ts)
1829     return ts;
1830 
1831   // Find InputSectionRange within Target Output Section (TOS) that the
1832   // InputSection (IS) that we need to precede is in.
1833   OutputSection *tos = isec->getParent();
1834   for (BaseCommand *bc : tos->sectionCommands) {
1835     auto *isd = dyn_cast<InputSectionDescription>(bc);
1836     if (!isd || isd->sections.empty())
1837       continue;
1838 
1839     InputSection *first = isd->sections.front();
1840     InputSection *last = isd->sections.back();
1841 
1842     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1843       continue;
1844 
1845     ts = addThunkSection(tos, isd, isec->outSecOff);
1846     thunkedSections[isec] = ts;
1847     return ts;
1848   }
1849 
1850   return nullptr;
1851 }
1852 
1853 // Create one or more ThunkSections per OS that can be used to place Thunks.
1854 // We attempt to place the ThunkSections using the following desirable
1855 // properties:
1856 // - Within range of the maximum number of callers
1857 // - Minimise the number of ThunkSections
1858 //
1859 // We follow a simple but conservative heuristic to place ThunkSections at
1860 // offsets that are multiples of a Target specific branch range.
1861 // For an InputSectionDescription that is smaller than the range, a single
1862 // ThunkSection at the end of the range will do.
1863 //
1864 // For an InputSectionDescription that is more than twice the size of the range,
1865 // we place the last ThunkSection at range bytes from the end of the
1866 // InputSectionDescription in order to increase the likelihood that the
1867 // distance from a thunk to its target will be sufficiently small to
1868 // allow for the creation of a short thunk.
createInitialThunkSections(ArrayRef<OutputSection * > outputSections)1869 void ThunkCreator::createInitialThunkSections(
1870     ArrayRef<OutputSection *> outputSections) {
1871   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1872 
1873   forEachInputSectionDescription(
1874       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1875         if (isd->sections.empty())
1876           return;
1877 
1878         uint32_t isdBegin = isd->sections.front()->outSecOff;
1879         uint32_t isdEnd =
1880             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1881         uint32_t lastThunkLowerBound = -1;
1882         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1883           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1884 
1885         uint32_t isecLimit;
1886         uint32_t prevIsecLimit = isdBegin;
1887         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1888 
1889         for (const InputSection *isec : isd->sections) {
1890           isecLimit = isec->outSecOff + isec->getSize();
1891           if (isecLimit > thunkUpperBound) {
1892             addThunkSection(os, isd, prevIsecLimit);
1893             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1894           }
1895           if (isecLimit > lastThunkLowerBound)
1896             break;
1897           prevIsecLimit = isecLimit;
1898         }
1899         addThunkSection(os, isd, isecLimit);
1900       });
1901 }
1902 
addThunkSection(OutputSection * os,InputSectionDescription * isd,uint64_t off)1903 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1904                                             InputSectionDescription *isd,
1905                                             uint64_t off) {
1906   auto *ts = make<ThunkSection>(os, off);
1907   ts->partition = os->partition;
1908   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1909       !isd->sections.empty()) {
1910     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1911     // thunks we disturb the base addresses of sections placed after the thunks
1912     // this makes patches we have generated redundant, and may cause us to
1913     // generate more patches as different instructions are now in sensitive
1914     // locations. When we generate more patches we may force more branches to
1915     // go out of range, causing more thunks to be generated. In pathological
1916     // cases this can cause the address dependent content pass not to converge.
1917     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1918     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1919     // which means that adding Thunks to the section does not invalidate
1920     // errata patches for following code.
1921     // Rounding up the size to 4KiB has consequences for code-size and can
1922     // trip up linker script defined assertions. For example the linux kernel
1923     // has an assertion that what LLD represents as an InputSectionDescription
1924     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1925     // We use the heuristic of rounding up the size when both of the following
1926     // conditions are true:
1927     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
1928     //     accounts for the case where no single InputSectionDescription is
1929     //     larger than the OutputSection size. This is conservative but simple.
1930     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
1931     //     any assertion failures that an InputSectionDescription is < 4 KiB
1932     //     in size.
1933     uint64_t isdSize = isd->sections.back()->outSecOff +
1934                        isd->sections.back()->getSize() -
1935                        isd->sections.front()->outSecOff;
1936     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
1937       ts->roundUpSizeForErrata = true;
1938   }
1939   isd->thunkSections.push_back({ts, pass});
1940   return ts;
1941 }
1942 
isThunkSectionCompatible(InputSection * source,SectionBase * target)1943 static bool isThunkSectionCompatible(InputSection *source,
1944                                      SectionBase *target) {
1945   // We can't reuse thunks in different loadable partitions because they might
1946   // not be loaded. But partition 1 (the main partition) will always be loaded.
1947   if (source->partition != target->partition)
1948     return target->partition == 1;
1949   return true;
1950 }
1951 
getPCBias(RelType type)1952 static int64_t getPCBias(RelType type) {
1953   if (config->emachine != EM_ARM)
1954     return 0;
1955   switch (type) {
1956   case R_ARM_THM_JUMP19:
1957   case R_ARM_THM_JUMP24:
1958   case R_ARM_THM_CALL:
1959     return 4;
1960   default:
1961     return 8;
1962   }
1963 }
1964 
getThunk(InputSection * isec,Relocation & rel,uint64_t src)1965 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1966                                                 Relocation &rel, uint64_t src) {
1967   std::vector<Thunk *> *thunkVec = nullptr;
1968   // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
1969   // out in the relocation addend. We compensate for the PC bias so that
1970   // an Arm and Thumb relocation to the same destination get the same keyAddend,
1971   // which is usually 0.
1972   int64_t keyAddend = rel.addend + getPCBias(rel.type);
1973 
1974   // We use a ((section, offset), addend) pair to find the thunk position if
1975   // possible so that we create only one thunk for aliased symbols or ICFed
1976   // sections. There may be multiple relocations sharing the same (section,
1977   // offset + addend) pair. We may revert the relocation back to its original
1978   // non-Thunk target, so we cannot fold offset + addend.
1979   if (auto *d = dyn_cast<Defined>(rel.sym))
1980     if (!d->isInPlt() && d->section)
1981       thunkVec = &thunkedSymbolsBySectionAndAddend[{
1982           {d->section->repl, d->value}, keyAddend}];
1983   if (!thunkVec)
1984     thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
1985 
1986   // Check existing Thunks for Sym to see if they can be reused
1987   for (Thunk *t : *thunkVec)
1988     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1989         t->isCompatibleWith(*isec, rel) &&
1990         target->inBranchRange(rel.type, src,
1991                               t->getThunkTargetSym()->getVA(rel.addend)))
1992       return std::make_pair(t, false);
1993 
1994   // No existing compatible Thunk in range, create a new one
1995   Thunk *t = addThunk(*isec, rel);
1996   thunkVec->push_back(t);
1997   return std::make_pair(t, true);
1998 }
1999 
2000 // Return true if the relocation target is an in range Thunk.
2001 // Return false if the relocation is not to a Thunk. If the relocation target
2002 // was originally to a Thunk, but is no longer in range we revert the
2003 // relocation back to its original non-Thunk target.
normalizeExistingThunk(Relocation & rel,uint64_t src)2004 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2005   if (Thunk *t = thunks.lookup(rel.sym)) {
2006     if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2007       return true;
2008     rel.sym = &t->destination;
2009     rel.addend = t->addend;
2010     if (rel.sym->isInPlt())
2011       rel.expr = toPlt(rel.expr);
2012   }
2013   return false;
2014 }
2015 
2016 // Process all relocations from the InputSections that have been assigned
2017 // to InputSectionDescriptions and redirect through Thunks if needed. The
2018 // function should be called iteratively until it returns false.
2019 //
2020 // PreConditions:
2021 // All InputSections that may need a Thunk are reachable from
2022 // OutputSectionCommands.
2023 //
2024 // All OutputSections have an address and all InputSections have an offset
2025 // within the OutputSection.
2026 //
2027 // The offsets between caller (relocation place) and callee
2028 // (relocation target) will not be modified outside of createThunks().
2029 //
2030 // PostConditions:
2031 // If return value is true then ThunkSections have been inserted into
2032 // OutputSections. All relocations that needed a Thunk based on the information
2033 // available to createThunks() on entry have been redirected to a Thunk. Note
2034 // that adding Thunks changes offsets between caller and callee so more Thunks
2035 // may be required.
2036 //
2037 // If return value is false then no more Thunks are needed, and createThunks has
2038 // made no changes. If the target requires range extension thunks, currently
2039 // ARM, then any future change in offset between caller and callee risks a
2040 // relocation out of range error.
createThunks(ArrayRef<OutputSection * > outputSections)2041 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
2042   bool addressesChanged = false;
2043 
2044   if (pass == 0 && target->getThunkSectionSpacing())
2045     createInitialThunkSections(outputSections);
2046 
2047   // Create all the Thunks and insert them into synthetic ThunkSections. The
2048   // ThunkSections are later inserted back into InputSectionDescriptions.
2049   // We separate the creation of ThunkSections from the insertion of the
2050   // ThunkSections as ThunkSections are not always inserted into the same
2051   // InputSectionDescription as the caller.
2052   forEachInputSectionDescription(
2053       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2054         for (InputSection *isec : isd->sections)
2055           for (Relocation &rel : isec->relocations) {
2056             uint64_t src = isec->getVA(rel.offset);
2057 
2058             // If we are a relocation to an existing Thunk, check if it is
2059             // still in range. If not then Rel will be altered to point to its
2060             // original target so another Thunk can be generated.
2061             if (pass > 0 && normalizeExistingThunk(rel, src))
2062               continue;
2063 
2064             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2065                                     *rel.sym, rel.addend))
2066               continue;
2067 
2068             Thunk *t;
2069             bool isNew;
2070             std::tie(t, isNew) = getThunk(isec, rel, src);
2071 
2072             if (isNew) {
2073               // Find or create a ThunkSection for the new Thunk
2074               ThunkSection *ts;
2075               if (auto *tis = t->getTargetInputSection())
2076                 ts = getISThunkSec(tis);
2077               else
2078                 ts = getISDThunkSec(os, isec, isd, rel, src);
2079               ts->addThunk(t);
2080               thunks[t->getThunkTargetSym()] = t;
2081             }
2082 
2083             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2084             rel.sym = t->getThunkTargetSym();
2085             rel.expr = fromPlt(rel.expr);
2086 
2087             // On AArch64 and PPC, a jump/call relocation may be encoded as
2088             // STT_SECTION + non-zero addend, clear the addend after
2089             // redirection.
2090             if (config->emachine != EM_MIPS)
2091               rel.addend = -getPCBias(rel.type);
2092           }
2093 
2094         for (auto &p : isd->thunkSections)
2095           addressesChanged |= p.first->assignOffsets();
2096       });
2097 
2098   for (auto &p : thunkedSections)
2099     addressesChanged |= p.second->assignOffsets();
2100 
2101   // Merge all created synthetic ThunkSections back into OutputSection
2102   mergeThunks(outputSections);
2103   ++pass;
2104   return addressesChanged;
2105 }
2106 
2107 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2108 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2109 // __tls_get_addr.
2110 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
hexagonNeedsTLSSymbol(ArrayRef<OutputSection * > outputSections)2111 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2112   bool needTlsSymbol = false;
2113   forEachInputSectionDescription(
2114       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2115         for (InputSection *isec : isd->sections)
2116           for (Relocation &rel : isec->relocations)
2117             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2118               needTlsSymbol = true;
2119               return;
2120             }
2121       });
2122   return needTlsSymbol;
2123 }
2124 
hexagonTLSSymbolUpdate(ArrayRef<OutputSection * > outputSections)2125 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2126   Symbol *sym = symtab->find("__tls_get_addr");
2127   if (!sym)
2128     return;
2129   bool needEntry = true;
2130   forEachInputSectionDescription(
2131       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2132         for (InputSection *isec : isd->sections)
2133           for (Relocation &rel : isec->relocations)
2134             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2135               if (needEntry) {
2136                 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel,
2137                             *sym);
2138                 needEntry = false;
2139               }
2140               rel.sym = sym;
2141             }
2142       });
2143 }
2144 
2145 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2146 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2147 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2148 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2149 template void elf::reportUndefinedSymbols<ELF32LE>();
2150 template void elf::reportUndefinedSymbols<ELF32BE>();
2151 template void elf::reportUndefinedSymbols<ELF64LE>();
2152 template void elf::reportUndefinedSymbols<ELF64BE>();
2153