1.. role:: raw-html(raw)
2   :format: html
3
4========================
5LLVM Bitcode File Format
6========================
7
8.. contents::
9   :local:
10
11Abstract
12========
13
14This document describes the LLVM bitstream file format and the encoding of the
15LLVM IR into it.
16
17Overview
18========
19
20What is commonly known as the LLVM bitcode file format (also, sometimes
21anachronistically known as bytecode) is actually two things: a `bitstream
22container format`_ and an `encoding of LLVM IR`_ into the container format.
23
24The bitstream format is an abstract encoding of structured data, very similar to
25XML in some ways.  Like XML, bitstream files contain tags, and nested
26structures, and you can parse the file without having to understand the tags.
27Unlike XML, the bitstream format is a binary encoding, and unlike XML it
28provides a mechanism for the file to self-describe "abbreviations", which are
29effectively size optimizations for the content.
30
31LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a
32`native object file`_. Both of these mechanisms make it easy to embed extra
33data along with LLVM IR files.
34
35This document first describes the LLVM bitstream format, describes the wrapper
36format, then describes the record structure used by LLVM IR files.
37
38.. _bitstream container format:
39
40Bitstream Format
41================
42
43The bitstream format is literally a stream of bits, with a very simple
44structure.  This structure consists of the following concepts:
45
46* A "`magic number`_" that identifies the contents of the stream.
47
48* Encoding `primitives`_ like variable bit-rate integers.
49
50* `Blocks`_, which define nested content.
51
52* `Data Records`_, which describe entities within the file.
53
54* Abbreviations, which specify compression optimizations for the file.
55
56Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be
57used to dump and inspect arbitrary bitstreams, which is very useful for
58understanding the encoding.
59
60.. _magic number:
61
62Magic Numbers
63-------------
64
65The first four bytes of a bitstream are used as an application-specific magic
66number.  Generic bitcode tools may look at the first four bytes to determine
67whether the stream is a known stream type.  However, these tools should *not*
68determine whether a bitstream is valid based on its magic number alone.  New
69application-specific bitstream formats are being developed all the time; tools
70should not reject them just because they have a hitherto unseen magic number.
71
72.. _primitives:
73
74Primitives
75----------
76
77A bitstream literally consists of a stream of bits, which are read in order
78starting with the least significant bit of each byte.  The stream is made up of
79a number of primitive values that encode a stream of unsigned integer values.
80These integers are encoded in two ways: either as `Fixed Width Integers`_ or as
81`Variable Width Integers`_.
82
83.. _Fixed Width Integers:
84.. _fixed-width value:
85
86Fixed Width Integers
87^^^^^^^^^^^^^^^^^^^^
88
89Fixed-width integer values have their low bits emitted directly to the file.
90For example, a 3-bit integer value encodes 1 as 001.  Fixed width integers are
91used when there are a well-known number of options for a field.  For example,
92boolean values are usually encoded with a 1-bit wide integer.
93
94.. _Variable Width Integers:
95.. _Variable Width Integer:
96.. _variable-width value:
97
98Variable Width Integers
99^^^^^^^^^^^^^^^^^^^^^^^
100
101Variable-width integer (VBR) values encode values of arbitrary size, optimizing
102for the case where the values are small.  Given a 4-bit VBR field, any 3-bit
103value (0 through 7) is encoded directly, with the high bit set to zero.  Values
104larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all
105but the last set the high bit.
106
107For example, the value 30 (0x1E) is encoded as 62 (0b0011'1110) when emitted as
108a vbr4 value.  The first set of four bits starting from the least significant
109indicates the value 6 (110) with a continuation piece (indicated by a high bit
110of 1).  The next set of four bits indicates a value of 24 (011 << 3) with no
111continuation.  The sum (6+24) yields the value 30.
112
113.. _char6-encoded value:
114
1156-bit characters
116^^^^^^^^^^^^^^^^
117
1186-bit characters encode common characters into a fixed 6-bit field.  They
119represent the following characters with the following 6-bit values:
120
121::
122
123  'a' .. 'z' ---  0 .. 25
124  'A' .. 'Z' --- 26 .. 51
125  '0' .. '9' --- 52 .. 61
126         '.' --- 62
127         '_' --- 63
128
129This encoding is only suitable for encoding characters and strings that consist
130only of the above characters.  It is completely incapable of encoding characters
131not in the set.
132
133Word Alignment
134^^^^^^^^^^^^^^
135
136Occasionally, it is useful to emit zero bits until the bitstream is a multiple
137of 32 bits.  This ensures that the bit position in the stream can be represented
138as a multiple of 32-bit words.
139
140Abbreviation IDs
141----------------
142
143A bitstream is a sequential series of `Blocks`_ and `Data Records`_.  Both of
144these start with an abbreviation ID encoded as a fixed-bitwidth field.  The
145width is specified by the current block, as described below.  The value of the
146abbreviation ID specifies either a builtin ID (which have special meanings,
147defined below) or one of the abbreviation IDs defined for the current block by
148the stream itself.
149
150The set of builtin abbrev IDs is:
151
152* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block.
153
154* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new
155  block.
156
157* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation.
158
159* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an
160  unabbreviated record.
161
162Abbreviation IDs 4 and above are defined by the stream itself, and specify an
163`abbreviated record encoding`_.
164
165.. _Blocks:
166
167Blocks
168------
169
170Blocks in a bitstream denote nested regions of the stream, and are identified by
171a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
172function bodies).  Block IDs 0-7 are reserved for `standard blocks`_ whose
173meaning is defined by Bitcode; block IDs 8 and greater are application
174specific. Nested blocks capture the hierarchical structure of the data encoded
175in it, and various properties are associated with blocks as the file is parsed.
176Block definitions allow the reader to efficiently skip blocks in constant time
177if the reader wants a summary of blocks, or if it wants to efficiently skip data
178it does not understand.  The LLVM IR reader uses this mechanism to skip function
179bodies, lazily reading them on demand.
180
181When reading and encoding the stream, several properties are maintained for the
182block.  In particular, each block maintains:
183
184#. A current abbrev id width.  This value starts at 2 at the beginning of the
185   stream, and is set every time a block record is entered.  The block entry
186   specifies the abbrev id width for the body of the block.
187
188#. A set of abbreviations.  Abbreviations may be defined within a block, in
189   which case they are only defined in that block (neither subblocks nor
190   enclosing blocks see the abbreviation).  Abbreviations can also be defined
191   inside a `BLOCKINFO`_ block, in which case they are defined in all blocks
192   that match the ID that the ``BLOCKINFO`` block is describing.
193
194As sub blocks are entered, these properties are saved and the new sub-block has
195its own set of abbreviations, and its own abbrev id width.  When a sub-block is
196popped, the saved values are restored.
197
198.. _ENTER_SUBBLOCK:
199
200ENTER_SUBBLOCK Encoding
201^^^^^^^^^^^^^^^^^^^^^^^
202
203:raw-html:`<tt>`
204[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32]
205:raw-html:`</tt>`
206
207The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block
208record.  The ``blockid`` value is encoded as an 8-bit VBR identifier, and
209indicates the type of block being entered, which can be a `standard block`_ or
210an application-specific block.  The ``newabbrevlen`` value is a 4-bit VBR, which
211specifies the abbrev id width for the sub-block.  The ``blocklen`` value is a
21232-bit aligned value that specifies the size of the subblock in 32-bit
213words. This value allows the reader to skip over the entire block in one jump.
214
215.. _END_BLOCK:
216
217END_BLOCK Encoding
218^^^^^^^^^^^^^^^^^^
219
220``[END_BLOCK, <align32bits>]``
221
222The ``END_BLOCK`` abbreviation ID specifies the end of the current block record.
223Its end is aligned to 32-bits to ensure that the size of the block is an even
224multiple of 32-bits.
225
226.. _Data Records:
227
228Data Records
229------------
230
231Data records consist of a record code and a number of (up to) 64-bit integer
232values.  The interpretation of the code and values is application specific and
233may vary between different block types.  Records can be encoded either using an
234unabbrev record, or with an abbreviation.  In the LLVM IR format, for example,
235there is a record which encodes the target triple of a module.  The code is
236``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the
237characters in the string.
238
239.. _UNABBREV_RECORD:
240
241UNABBREV_RECORD Encoding
242^^^^^^^^^^^^^^^^^^^^^^^^
243
244:raw-html:`<tt>`
245[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...]
246:raw-html:`</tt>`
247
248An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both
249completely general and extremely inefficient.  It can describe an arbitrary
250record by emitting the code and operands as VBRs.
251
252For example, emitting an LLVM IR target triple as an unabbreviated record
253requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the
254``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal
255to the number of operands, and a vbr6 for each character.  Because there are no
256letters with values less than 32, each letter would need to be emitted as at
257least a two-part VBR, which means that each letter would require at least 12
258bits.  This is not an efficient encoding, but it is fully general.
259
260.. _abbreviated record encoding:
261
262Abbreviated Record Encoding
263^^^^^^^^^^^^^^^^^^^^^^^^^^^
264
265``[<abbrevid>, fields...]``
266
267An abbreviated record is an abbreviation id followed by a set of fields that are
268encoded according to the `abbreviation definition`_.  This allows records to be
269encoded significantly more densely than records encoded with the
270`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in
271the stream itself, which allows the files to be completely self describing.  The
272actual encoding of abbreviations is defined below.
273
274The record code, which is the first field of an abbreviated record, may be
275encoded in the abbreviation definition (as a literal operand) or supplied in the
276abbreviated record (as a Fixed or VBR operand value).
277
278.. _abbreviation definition:
279
280Abbreviations
281-------------
282
283Abbreviations are an important form of compression for bitstreams.  The idea is
284to specify a dense encoding for a class of records once, then use that encoding
285to emit many records.  It takes space to emit the encoding into the file, but
286the space is recouped (hopefully plus some) when the records that use it are
287emitted.
288
289Abbreviations can be determined dynamically per client, per file. Because the
290abbreviations are stored in the bitstream itself, different streams of the same
291format can contain different sets of abbreviations according to the needs of the
292specific stream.  As a concrete example, LLVM IR files usually emit an
293abbreviation for binary operators.  If a specific LLVM module contained no or
294few binary operators, the abbreviation does not need to be emitted.
295
296.. _DEFINE_ABBREV:
297
298DEFINE_ABBREV Encoding
299^^^^^^^^^^^^^^^^^^^^^^
300
301:raw-html:`<tt>`
302[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...]
303:raw-html:`</tt>`
304
305A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined
306abbreviations in the scope of this block.  This definition only exists inside
307this immediate block --- it is not visible in subblocks or enclosing blocks.
308Abbreviations are implicitly assigned IDs sequentially starting from 4 (the
309first application-defined abbreviation ID).  Any abbreviations defined in a
310``BLOCKINFO`` record for the particular block type receive IDs first, in order,
311followed by any abbreviations defined within the block itself.  Abbreviated data
312records reference this ID to indicate what abbreviation they are invoking.
313
314An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed
315by a VBR that specifies the number of abbrev operands, then the abbrev operands
316themselves.  Abbreviation operands come in three forms.  They all start with a
317single bit that indicates whether the abbrev operand is a literal operand (when
318the bit is 1) or an encoding operand (when the bit is 0).
319
320#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\
321   :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in
322   the result is always a single specific value.  This specific value is emitted
323   as a vbr8 after the bit indicating that it is a literal operand.
324
325#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
326   :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data
327   are just emitted as their code.
328
329#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
330   :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do
331   have extra data are emitted as their code, followed by the extra data.
332
333The possible operand encodings are:
334
335* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose
336  width is specified by the operand's extra data.
337
338* VBR (code 2): The field should be emitted as a `variable-width value`_, whose
339  width is specified by the operand's extra data.
340
341* Array (code 3): This field is an array of values.  The array operand has no
342  extra data, but expects another operand to follow it, indicating the element
343  type of the array.  When reading an array in an abbreviated record, the first
344  integer is a vbr6 that indicates the array length, followed by the encoded
345  elements of the array.  An array may only occur as the last operand of an
346  abbreviation (except for the one final operand that gives the array's
347  type).
348
349* Char6 (code 4): This field should be emitted as a `char6-encoded value`_.
350  This operand type takes no extra data. Char6 encoding is normally used as an
351  array element type.
352
353* Blob (code 5): This field is emitted as a vbr6, followed by padding to a
354  32-bit boundary (for alignment) and an array of 8-bit objects.  The array of
355  bytes is further followed by tail padding to ensure that its total length is a
356  multiple of 4 bytes.  This makes it very efficient for the reader to decode
357  the data without having to make a copy of it: it can use a pointer to the data
358  in the mapped in file and poke directly at it.  A blob may only occur as the
359  last operand of an abbreviation.
360
361For example, target triples in LLVM modules are encoded as a record of the form
362``[TRIPLE, 'a', 'b', 'c', 'd']``.  Consider if the bitstream emitted the
363following abbrev entry:
364
365::
366
367  [0, Fixed, 4]
368  [0, Array]
369  [0, Char6]
370
371When emitting a record with this abbreviation, the above entry would be emitted
372as:
373
374:raw-html:`<tt><blockquote>`
375[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`]
376:raw-html:`</blockquote></tt>`
377
378These values are:
379
380#. The first value, 4, is the abbreviation ID for this abbreviation.
381
382#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR
383   file ``MODULE_BLOCK`` blocks.
384
385#. The third value, 4, is the length of the array.
386
387#. The rest of the values are the char6 encoded values for ``"abcd"``.
388
389With this abbreviation, the triple is emitted with only 37 bits (assuming a
390abbrev id width of 3).  Without the abbreviation, significantly more space would
391be required to emit the target triple.  Also, because the ``TRIPLE`` value is
392not emitted as a literal in the abbreviation, the abbreviation can also be used
393for any other string value.
394
395.. _standard blocks:
396.. _standard block:
397
398Standard Blocks
399---------------
400
401In addition to the basic block structure and record encodings, the bitstream
402also defines specific built-in block types.  These block types specify how the
403stream is to be decoded or other metadata.  In the future, new standard blocks
404may be added.  Block IDs 0-7 are reserved for standard blocks.
405
406.. _BLOCKINFO:
407
408#0 - BLOCKINFO Block
409^^^^^^^^^^^^^^^^^^^^
410
411The ``BLOCKINFO`` block allows the description of metadata for other blocks.
412The currently specified records are:
413
414::
415
416  [SETBID (#1), blockid]
417  [DEFINE_ABBREV, ...]
418  [BLOCKNAME, ...name...]
419  [SETRECORDNAME, RecordID, ...name...]
420
421The ``SETBID`` record (code 1) indicates which block ID is being described.
422``SETBID`` records can occur multiple times throughout the block to change which
423block ID is being described.  There must be a ``SETBID`` record prior to any
424other records.
425
426Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but
427unlike their occurrence in normal blocks, the abbreviation is defined for blocks
428matching the block ID we are describing, *not* the ``BLOCKINFO`` block
429itself.  The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation
430IDs as described in `DEFINE_ABBREV`_.
431
432The ``BLOCKNAME`` record (code 2) can optionally occur in this block.  The
433elements of the record are the bytes of the string name of the block.
434llvm-bcanalyzer can use this to dump out bitcode files symbolically.
435
436The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block.
437The first operand value is a record ID number, and the rest of the elements of
438the record are the bytes for the string name of the record.  llvm-bcanalyzer can
439use this to dump out bitcode files symbolically.
440
441Note that although the data in ``BLOCKINFO`` blocks is described as "metadata,"
442the abbreviations they contain are essential for parsing records from the
443corresponding blocks.  It is not safe to skip them.
444
445.. _wrapper:
446
447Bitcode Wrapper Format
448======================
449
450Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
451structure.  This structure contains a simple header that indicates the offset
452and size of the embedded BC file.  This allows additional information to be
453stored alongside the BC file.  The structure of this file header is:
454
455:raw-html:`<tt><blockquote>`
456[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`]
457:raw-html:`</blockquote></tt>`
458
459Each of the fields are 32-bit fields stored in little endian form (as with the
460rest of the bitcode file fields).  The Magic number is always ``0x0B17C0DE`` and
461the version is currently always ``0``.  The Offset field is the offset in bytes
462to the start of the bitcode stream in the file, and the Size field is the size
463in bytes of the stream. CPUType is a target-specific value that can be used to
464encode the CPU of the target.
465
466.. _native object file:
467
468Native Object File Wrapper Format
469=================================
470
471Bitcode files for LLVM IR may also be wrapped in a native object file
472(i.e. ELF, COFF, Mach-O).  The bitcode must be stored in a section of the object
473file named ``__LLVM,__bitcode`` for MachO and ``.llvmbc`` for the other object
474formats.  This wrapper format is useful for accommodating LTO in compilation
475pipelines where intermediate objects must be native object files which contain
476metadata in other sections.
477
478Not all tools support this format.
479
480.. _encoding of LLVM IR:
481
482LLVM IR Encoding
483================
484
485LLVM IR is encoded into a bitstream by defining blocks and records.  It uses
486blocks for things like constant pools, functions, symbol tables, etc.  It uses
487records for things like instructions, global variable descriptors, type
488descriptions, etc.  This document does not describe the set of abbreviations
489that the writer uses, as these are fully self-described in the file, and the
490reader is not allowed to build in any knowledge of this.
491
492Basics
493------
494
495LLVM IR Magic Number
496^^^^^^^^^^^^^^^^^^^^
497
498The magic number for LLVM IR files is:
499
500:raw-html:`<tt><blockquote>`
501['B'\ :sub:`8`, 'C'\ :sub:`8`, 0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`]
502:raw-html:`</blockquote></tt>`
503
504.. _Signed VBRs:
505
506Signed VBRs
507^^^^^^^^^^^
508
509`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized
510unsigned values, but is an extremely inefficient for encoding signed values, as
511signed values are otherwise treated as maximally large unsigned values.
512
513As such, signed VBR values of a specific width are emitted as follows:
514
515* Positive values are emitted as VBRs of the specified width, but with their
516  value shifted left by one.
517
518* Negative values are emitted as VBRs of the specified width, but the negated
519  value is shifted left by one, and the low bit is set.
520
521With this encoding, small positive and small negative values can both be emitted
522efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and
523``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks.
524It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1.
525
526LLVM IR Blocks
527^^^^^^^^^^^^^^
528
529LLVM IR is defined with the following blocks:
530
531* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire
532  module, and describes a variety of per-module information.
533
534* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes.
535
536* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table.
537
538* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or
539  function.
540
541* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body.
542
543* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table.
544
545* 15 --- `METADATA_BLOCK`_ --- This describes metadata items.
546
547* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata
548  with function instruction values.
549
550* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module.
551
552* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table.
553
554.. _MODULE_BLOCK:
555
556MODULE_BLOCK Contents
557---------------------
558
559The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files,
560and each bitcode file must contain exactly one. In addition to records
561(described below) containing information about the module, a ``MODULE_BLOCK``
562block may contain the following sub-blocks:
563
564* `BLOCKINFO`_
565* `PARAMATTR_BLOCK`_
566* `PARAMATTR_GROUP_BLOCK`_
567* `TYPE_BLOCK`_
568* `VALUE_SYMTAB_BLOCK`_
569* `CONSTANTS_BLOCK`_
570* `FUNCTION_BLOCK`_
571* `METADATA_BLOCK`_
572
573.. _MODULE_CODE_VERSION:
574
575MODULE_CODE_VERSION Record
576^^^^^^^^^^^^^^^^^^^^^^^^^^
577
578``[VERSION, version#]``
579
580The ``VERSION`` record (code 1) contains a single value indicating the format
581version. Versions 0, 1 and 2 are supported at this time. The difference between
582version 0 and 1 is in the encoding of instruction operands in
583each `FUNCTION_BLOCK`_.
584
585In version 0, each value defined by an instruction is assigned an ID
586unique to the function. Function-level value IDs are assigned starting from
587``NumModuleValues`` since they share the same namespace as module-level
588values. The value enumerator resets after each function. When a value is
589an operand of an instruction, the value ID is used to represent the operand.
590For large functions or large modules, these operand values can be large.
591
592The encoding in version 1 attempts to avoid large operand values
593in common cases. Instead of using the value ID directly, operands are
594encoded as relative to the current instruction. Thus, if an operand
595is the value defined by the previous instruction, the operand
596will be encoded as 1.
597
598For example, instead of
599
600.. code-block:: none
601
602  #n = load #n-1
603  #n+1 = icmp eq #n, #const0
604  br #n+1, label #(bb1), label #(bb2)
605
606version 1 will encode the instructions as
607
608.. code-block:: none
609
610  #n = load #1
611  #n+1 = icmp eq #1, (#n+1)-#const0
612  br #1, label #(bb1), label #(bb2)
613
614Note in the example that operands which are constants also use
615the relative encoding, while operands like basic block labels
616do not use the relative encoding.
617
618Forward references will result in a negative value.
619This can be inefficient, as operands are normally encoded
620as unsigned VBRs. However, forward references are rare, except in the
621case of phi instructions. For phi instructions, operands are encoded as
622`Signed VBRs`_ to deal with forward references.
623
624In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``,
625``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands
626specify an offset and size of a string in a string table (see `STRTAB_BLOCK
627Contents`_), the function name is removed from the ``FNENTRY`` record in the
628value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain
629``FNENTRY`` records.
630
631MODULE_CODE_TRIPLE Record
632^^^^^^^^^^^^^^^^^^^^^^^^^
633
634``[TRIPLE, ...string...]``
635
636The ``TRIPLE`` record (code 2) contains a variable number of values representing
637the bytes of the ``target triple`` specification string.
638
639MODULE_CODE_DATALAYOUT Record
640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
641
642``[DATALAYOUT, ...string...]``
643
644The ``DATALAYOUT`` record (code 3) contains a variable number of values
645representing the bytes of the ``target datalayout`` specification string.
646
647MODULE_CODE_ASM Record
648^^^^^^^^^^^^^^^^^^^^^^
649
650``[ASM, ...string...]``
651
652The ``ASM`` record (code 4) contains a variable number of values representing
653the bytes of ``module asm`` strings, with individual assembly blocks separated
654by newline (ASCII 10) characters.
655
656.. _MODULE_CODE_SECTIONNAME:
657
658MODULE_CODE_SECTIONNAME Record
659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
660
661``[SECTIONNAME, ...string...]``
662
663The ``SECTIONNAME`` record (code 5) contains a variable number of values
664representing the bytes of a single section name string. There should be one
665``SECTIONNAME`` record for each section name referenced (e.g., in global
666variable or function ``section`` attributes) within the module. These records
667can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR``
668or ``FUNCTION`` records.
669
670MODULE_CODE_DEPLIB Record
671^^^^^^^^^^^^^^^^^^^^^^^^^
672
673``[DEPLIB, ...string...]``
674
675The ``DEPLIB`` record (code 6) contains a variable number of values representing
676the bytes of a single dependent library name string, one of the libraries
677mentioned in a ``deplibs`` declaration.  There should be one ``DEPLIB`` record
678for each library name referenced.
679
680MODULE_CODE_GLOBALVAR Record
681^^^^^^^^^^^^^^^^^^^^^^^^^^^^
682
683``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat, attributes, preemptionspecifier]``
684
685The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a
686global variable. The operand fields are:
687
688* *strtab offset*, *strtab size*: Specifies the name of the global variable.
689  See `STRTAB_BLOCK Contents`_.
690
691* *pointer type*: The type index of the pointer type used to point to this
692  global variable
693
694* *isconst*: Non-zero if the variable is treated as constant within the module,
695  or zero if it is not
696
697* *initid*: If non-zero, the value index of the initializer for this variable,
698  plus 1.
699
700.. _linkage type:
701
702* *linkage*: An encoding of the linkage type for this variable:
703
704  * ``external``: code 0
705  * ``weak``: code 1
706  * ``appending``: code 2
707  * ``internal``: code 3
708  * ``linkonce``: code 4
709  * ``dllimport``: code 5
710  * ``dllexport``: code 6
711  * ``extern_weak``: code 7
712  * ``common``: code 8
713  * ``private``: code 9
714  * ``weak_odr``: code 10
715  * ``linkonce_odr``: code 11
716  * ``available_externally``: code 12
717  * deprecated : code 13
718  * deprecated : code 14
719
720* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1
721
722* *section*: If non-zero, the 1-based section index in the table of
723  `MODULE_CODE_SECTIONNAME`_ entries.
724
725.. _visibility:
726
727* *visibility*: If present, an encoding of the visibility of this variable:
728
729  * ``default``: code 0
730  * ``hidden``: code 1
731  * ``protected``: code 2
732
733.. _bcthreadlocal:
734
735* *threadlocal*: If present, an encoding of the thread local storage mode of the
736  variable:
737
738  * ``not thread local``: code 0
739  * ``thread local; default TLS model``: code 1
740  * ``localdynamic``: code 2
741  * ``initialexec``: code 3
742  * ``localexec``: code 4
743
744.. _bcunnamedaddr:
745
746* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this
747  variable:
748
749  * not ``unnamed_addr``: code 0
750  * ``unnamed_addr``: code 1
751  * ``local_unnamed_addr``: code 2
752
753.. _bcdllstorageclass:
754
755* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable:
756
757  * ``default``: code 0
758  * ``dllimport``: code 1
759  * ``dllexport``: code 2
760
761* *comdat*: An encoding of the COMDAT of this function
762
763* *attributes*: If nonzero, the 1-based index into the table of AttributeLists.
764
765.. _bcpreemptionspecifier:
766
767* *preemptionspecifier*: If present, an encoding of the runtime preemption specifier of this variable:
768
769  * ``dso_preemptable``: code 0
770  * ``dso_local``: code 1
771
772.. _FUNCTION:
773
774MODULE_CODE_FUNCTION Record
775^^^^^^^^^^^^^^^^^^^^^^^^^^^
776
777``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn, preemptionspecifier]``
778
779The ``FUNCTION`` record (code 8) marks the declaration or definition of a
780function. The operand fields are:
781
782* *strtab offset*, *strtab size*: Specifies the name of the function.
783  See `STRTAB_BLOCK Contents`_.
784
785* *type*: The type index of the function type describing this function
786
787* *callingconv*: The calling convention number:
788  * ``ccc``: code 0
789  * ``fastcc``: code 8
790  * ``coldcc``: code 9
791  * ``webkit_jscc``: code 12
792  * ``anyregcc``: code 13
793  * ``preserve_mostcc``: code 14
794  * ``preserve_allcc``: code 15
795  * ``swiftcc`` : code 16
796  * ``cxx_fast_tlscc``: code 17
797  * ``tailcc`` : code 18
798  * ``cfguard_checkcc`` : code 19
799  * ``swifttailcc`` : code 20
800  * ``x86_stdcallcc``: code 64
801  * ``x86_fastcallcc``: code 65
802  * ``arm_apcscc``: code 66
803  * ``arm_aapcscc``: code 67
804  * ``arm_aapcs_vfpcc``: code 68
805
806* isproto*: Non-zero if this entry represents a declaration rather than a
807  definition
808
809* *linkage*: An encoding of the `linkage type`_ for this function
810
811* *paramattr*: If nonzero, the 1-based parameter attribute index into the table
812  of `PARAMATTR_CODE_ENTRY`_ entries.
813
814* *alignment*: The logarithm base 2 of the function's requested alignment, plus
815  1
816
817* *section*: If non-zero, the 1-based section index in the table of
818  `MODULE_CODE_SECTIONNAME`_ entries.
819
820* *visibility*: An encoding of the `visibility`_ of this function
821
822* *gc*: If present and nonzero, the 1-based garbage collector index in the table
823  of `MODULE_CODE_GCNAME`_ entries.
824
825* *unnamed_addr*: If present, an encoding of the
826  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function
827
828* *prologuedata*: If non-zero, the value index of the prologue data for this function,
829  plus 1.
830
831* *dllstorageclass*: An encoding of the
832  :ref:`dllstorageclass<bcdllstorageclass>` of this function
833
834* *comdat*: An encoding of the COMDAT of this function
835
836* *prefixdata*: If non-zero, the value index of the prefix data for this function,
837  plus 1.
838
839* *personalityfn*: If non-zero, the value index of the personality function for this function,
840  plus 1.
841
842* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>`  of this function.
843
844MODULE_CODE_ALIAS Record
845^^^^^^^^^^^^^^^^^^^^^^^^
846
847``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr, preemptionspecifier]``
848
849The ``ALIAS`` record (code 9) marks the definition of an alias. The operand
850fields are
851
852* *strtab offset*, *strtab size*: Specifies the name of the alias.
853  See `STRTAB_BLOCK Contents`_.
854
855* *alias type*: The type index of the alias
856
857* *aliasee val#*: The value index of the aliased value
858
859* *linkage*: An encoding of the `linkage type`_ for this alias
860
861* *visibility*: If present, an encoding of the `visibility`_ of the alias
862
863* *dllstorageclass*: If present, an encoding of the
864  :ref:`dllstorageclass<bcdllstorageclass>` of the alias
865
866* *threadlocal*: If present, an encoding of the
867  :ref:`thread local property<bcthreadlocal>` of the alias
868
869* *unnamed_addr*: If present, an encoding of the
870  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias
871
872* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>`  of this alias.
873
874.. _MODULE_CODE_GCNAME:
875
876MODULE_CODE_GCNAME Record
877^^^^^^^^^^^^^^^^^^^^^^^^^
878
879``[GCNAME, ...string...]``
880
881The ``GCNAME`` record (code 11) contains a variable number of values
882representing the bytes of a single garbage collector name string. There should
883be one ``GCNAME`` record for each garbage collector name referenced in function
884``gc`` attributes within the module. These records can be referenced by 1-based
885index in the *gc* fields of ``FUNCTION`` records.
886
887.. _PARAMATTR_BLOCK:
888
889PARAMATTR_BLOCK Contents
890------------------------
891
892The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the
893attributes of function parameters. These entries are referenced by 1-based index
894in the *paramattr* field of module block `FUNCTION`_ records, or within the
895*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records.
896
897Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique
898(i.e., no two indices represent equivalent attribute lists).
899
900.. _PARAMATTR_CODE_ENTRY:
901
902PARAMATTR_CODE_ENTRY Record
903^^^^^^^^^^^^^^^^^^^^^^^^^^^
904
905``[ENTRY, attrgrp0, attrgrp1, ...]``
906
907The ``ENTRY`` record (code 2) contains a variable number of values describing a
908unique set of function parameter attributes. Each *attrgrp* value is used as a
909key with which to look up an entry in the attribute group table described
910in the ``PARAMATTR_GROUP_BLOCK`` block.
911
912.. _PARAMATTR_CODE_ENTRY_OLD:
913
914PARAMATTR_CODE_ENTRY_OLD Record
915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
916
917.. note::
918  This is a legacy encoding for attributes, produced by LLVM versions 3.2 and
919  earlier. It is guaranteed to be understood by the current LLVM version, as
920  specified in the :ref:`IR backwards compatibility` policy.
921
922``[ENTRY, paramidx0, attr0, paramidx1, attr1...]``
923
924The ``ENTRY`` record (code 1) contains an even number of values describing a
925unique set of function parameter attributes. Each *paramidx* value indicates
926which set of attributes is represented, with 0 representing the return value
927attributes, 0xFFFFFFFF representing function attributes, and other values
928representing 1-based function parameters. Each *attr* value is a bitmap with the
929following interpretation:
930
931* bit 0: ``zeroext``
932* bit 1: ``signext``
933* bit 2: ``noreturn``
934* bit 3: ``inreg``
935* bit 4: ``sret``
936* bit 5: ``nounwind``
937* bit 6: ``noalias``
938* bit 7: ``byval``
939* bit 8: ``nest``
940* bit 9: ``readnone``
941* bit 10: ``readonly``
942* bit 11: ``noinline``
943* bit 12: ``alwaysinline``
944* bit 13: ``optsize``
945* bit 14: ``ssp``
946* bit 15: ``sspreq``
947* bits 16-31: ``align n``
948* bit 32: ``nocapture``
949* bit 33: ``noredzone``
950* bit 34: ``noimplicitfloat``
951* bit 35: ``naked``
952* bit 36: ``inlinehint``
953* bits 37-39: ``alignstack n``, represented as the logarithm
954  base 2 of the requested alignment, plus 1
955
956.. _PARAMATTR_GROUP_BLOCK:
957
958PARAMATTR_GROUP_BLOCK Contents
959------------------------------
960
961The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries
962describing the attribute groups present in the module. These entries can be
963referenced within ``PARAMATTR_CODE_ENTRY`` entries.
964
965.. _PARAMATTR_GRP_CODE_ENTRY:
966
967PARAMATTR_GRP_CODE_ENTRY Record
968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
969
970``[ENTRY, grpid, paramidx, attr0, attr1, ...]``
971
972The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed
973by a variable number of values describing a unique group of attributes. The
974*grpid* value is a unique key for the attribute group, which can be referenced
975within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which
976set of attributes is represented, with 0 representing the return value
977attributes, 0xFFFFFFFF representing function attributes, and other values
978representing 1-based function parameters.
979
980Each *attr* is itself represented as a variable number of values:
981
982``kind, key [, ...], [value [, ...]]``
983
984Each attribute is either a well-known LLVM attribute (possibly with an integer
985value associated with it), or an arbitrary string (possibly with an arbitrary
986string value associated with it). The *kind* value is an integer code
987distinguishing between these possibilities:
988
989* code 0: well-known attribute
990* code 1: well-known attribute with an integer value
991* code 3: string attribute
992* code 4: string attribute with a string value
993
994For well-known attributes (code 0 or 1), the *key* value is an integer code
995identifying the attribute. For attributes with an integer argument (code 1),
996the *value* value indicates the argument.
997
998For string attributes (code 3 or 4), the *key* value is actually a variable
999number of values representing the bytes of a null-terminated string. For
1000attributes with a string argument (code 4), the *value* value is similarly a
1001variable number of values representing the bytes of a null-terminated string.
1002
1003The integer codes are mapped to well-known attributes as follows.
1004
1005* code 1: ``align(<n>)``
1006* code 2: ``alwaysinline``
1007* code 3: ``byval``
1008* code 4: ``inlinehint``
1009* code 5: ``inreg``
1010* code 6: ``minsize``
1011* code 7: ``naked``
1012* code 8: ``nest``
1013* code 9: ``noalias``
1014* code 10: ``nobuiltin``
1015* code 11: ``nocapture``
1016* code 12: ``nodeduplicate``
1017* code 13: ``noimplicitfloat``
1018* code 14: ``noinline``
1019* code 15: ``nonlazybind``
1020* code 16: ``noredzone``
1021* code 17: ``noreturn``
1022* code 18: ``nounwind``
1023* code 19: ``optsize``
1024* code 20: ``readnone``
1025* code 21: ``readonly``
1026* code 22: ``returned``
1027* code 23: ``returns_twice``
1028* code 24: ``signext``
1029* code 25: ``alignstack(<n>)``
1030* code 26: ``ssp``
1031* code 27: ``sspreq``
1032* code 28: ``sspstrong``
1033* code 29: ``sret``
1034* code 30: ``sanitize_address``
1035* code 31: ``sanitize_thread``
1036* code 32: ``sanitize_memory``
1037* code 33: ``uwtable``
1038* code 34: ``zeroext``
1039* code 35: ``builtin``
1040* code 36: ``cold``
1041* code 37: ``optnone``
1042* code 38: ``inalloca``
1043* code 39: ``nonnull``
1044* code 40: ``jumptable``
1045* code 41: ``dereferenceable(<n>)``
1046* code 42: ``dereferenceable_or_null(<n>)``
1047* code 43: ``convergent``
1048* code 44: ``safestack``
1049* code 45: ``argmemonly``
1050* code 46: ``swiftself``
1051* code 47: ``swifterror``
1052* code 48: ``norecurse``
1053* code 49: ``inaccessiblememonly``
1054* code 50: ``inaccessiblememonly_or_argmemonly``
1055* code 51: ``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1056* code 52: ``writeonly``
1057* code 53: ``speculatable``
1058* code 54: ``strictfp``
1059* code 55: ``sanitize_hwaddress``
1060* code 56: ``nocf_check``
1061* code 57: ``optforfuzzing``
1062* code 58: ``shadowcallstack``
1063* code 59: ``speculative_load_hardening``
1064* code 60: ``immarg``
1065* code 61: ``willreturn``
1066* code 62: ``nofree``
1067* code 63: ``nosync``
1068* code 64: ``sanitize_memtag``
1069* code 65: ``preallocated``
1070* code 66: ``no_merge``
1071* code 67: ``null_pointer_is_valid``
1072* code 68: ``noundef``
1073* code 69: ``byref``
1074* code 70: ``mustprogress``
1075* code 74: ``vscale_range(<Min>[, <Max>])``
1076* code 75: ``swiftasync``
1077* code 76: ``nosanitize_coverage``
1078* code 77: ``elementtype``
1079* code 78: ``disable_sanitizer_instrumentation``
1080
1081.. note::
1082  The ``allocsize`` attribute has a special encoding for its arguments. Its two
1083  arguments, which are 32-bit integers, are packed into one 64-bit integer value
1084  (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on
1085  the sentinel value -1 if it is not specified.
1086
1087.. note::
1088  The ``vscale_range`` attribute has a special encoding for its arguments. Its two
1089  arguments, which are 32-bit integers, are packed into one 64-bit integer value
1090  (i.e. ``(Min << 32) | Max``), with ``Max`` taking on the value of ``Min`` if
1091  it is not specified.
1092
1093.. _TYPE_BLOCK:
1094
1095TYPE_BLOCK Contents
1096-------------------
1097
1098The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of
1099type operator entries used to represent types referenced within an LLVM
1100module. Each record (with the exception of `NUMENTRY`_) generates a single type
1101table entry, which may be referenced by 0-based index from instructions,
1102constants, metadata, type symbol table entries, or other type operator records.
1103
1104Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is
1105unique (i.e., no two indices represent structurally equivalent types).
1106
1107.. _TYPE_CODE_NUMENTRY:
1108.. _NUMENTRY:
1109
1110TYPE_CODE_NUMENTRY Record
1111^^^^^^^^^^^^^^^^^^^^^^^^^
1112
1113``[NUMENTRY, numentries]``
1114
1115The ``NUMENTRY`` record (code 1) contains a single value which indicates the
1116total number of type code entries in the type table of the module. If present,
1117``NUMENTRY`` should be the first record in the block.
1118
1119TYPE_CODE_VOID Record
1120^^^^^^^^^^^^^^^^^^^^^
1121
1122``[VOID]``
1123
1124The ``VOID`` record (code 2) adds a ``void`` type to the type table.
1125
1126TYPE_CODE_HALF Record
1127^^^^^^^^^^^^^^^^^^^^^
1128
1129``[HALF]``
1130
1131The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to
1132the type table.
1133
1134TYPE_CODE_BFLOAT Record
1135^^^^^^^^^^^^^^^^^^^^^^^
1136
1137``[BFLOAT]``
1138
1139The ``BFLOAT`` record (code 23) adds a ``bfloat`` (16-bit brain floating point)
1140type to the type table.
1141
1142TYPE_CODE_FLOAT Record
1143^^^^^^^^^^^^^^^^^^^^^^
1144
1145``[FLOAT]``
1146
1147The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to
1148the type table.
1149
1150TYPE_CODE_DOUBLE Record
1151^^^^^^^^^^^^^^^^^^^^^^^
1152
1153``[DOUBLE]``
1154
1155The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to
1156the type table.
1157
1158TYPE_CODE_LABEL Record
1159^^^^^^^^^^^^^^^^^^^^^^
1160
1161``[LABEL]``
1162
1163The ``LABEL`` record (code 5) adds a ``label`` type to the type table.
1164
1165TYPE_CODE_OPAQUE Record
1166^^^^^^^^^^^^^^^^^^^^^^^
1167
1168``[OPAQUE]``
1169
1170The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with
1171a name defined by a previously encountered ``STRUCT_NAME`` record. Note that
1172distinct ``opaque`` types are not unified.
1173
1174TYPE_CODE_INTEGER Record
1175^^^^^^^^^^^^^^^^^^^^^^^^
1176
1177``[INTEGER, width]``
1178
1179The ``INTEGER`` record (code 7) adds an integer type to the type table. The
1180single *width* field indicates the width of the integer type.
1181
1182TYPE_CODE_POINTER Record
1183^^^^^^^^^^^^^^^^^^^^^^^^
1184
1185``[POINTER, pointee type, address space]``
1186
1187The ``POINTER`` record (code 8) adds a pointer type to the type table. The
1188operand fields are
1189
1190* *pointee type*: The type index of the pointed-to type
1191
1192* *address space*: If supplied, the target-specific numbered address space where
1193  the pointed-to object resides. Otherwise, the default address space is zero.
1194
1195TYPE_CODE_FUNCTION_OLD Record
1196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1197
1198.. note::
1199  This is a legacy encoding for functions, produced by LLVM versions 3.0 and
1200  earlier. It is guaranteed to be understood by the current LLVM version, as
1201  specified in the :ref:`IR backwards compatibility` policy.
1202
1203``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]``
1204
1205The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table.
1206The operand fields are
1207
1208* *vararg*: Non-zero if the type represents a varargs function
1209
1210* *ignored*: This value field is present for backward compatibility only, and is
1211  ignored
1212
1213* *retty*: The type index of the function's return type
1214
1215* *paramty*: Zero or more type indices representing the parameter types of the
1216  function
1217
1218TYPE_CODE_ARRAY Record
1219^^^^^^^^^^^^^^^^^^^^^^
1220
1221``[ARRAY, numelts, eltty]``
1222
1223The ``ARRAY`` record (code 11) adds an array type to the type table.  The
1224operand fields are
1225
1226* *numelts*: The number of elements in arrays of this type
1227
1228* *eltty*: The type index of the array element type
1229
1230TYPE_CODE_VECTOR Record
1231^^^^^^^^^^^^^^^^^^^^^^^
1232
1233``[VECTOR, numelts, eltty]``
1234
1235The ``VECTOR`` record (code 12) adds a vector type to the type table.  The
1236operand fields are
1237
1238* *numelts*: The number of elements in vectors of this type
1239
1240* *eltty*: The type index of the vector element type
1241
1242TYPE_CODE_X86_FP80 Record
1243^^^^^^^^^^^^^^^^^^^^^^^^^
1244
1245``[X86_FP80]``
1246
1247The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point)
1248type to the type table.
1249
1250TYPE_CODE_FP128 Record
1251^^^^^^^^^^^^^^^^^^^^^^
1252
1253``[FP128]``
1254
1255The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type
1256to the type table.
1257
1258TYPE_CODE_PPC_FP128 Record
1259^^^^^^^^^^^^^^^^^^^^^^^^^^
1260
1261``[PPC_FP128]``
1262
1263The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point)
1264type to the type table.
1265
1266TYPE_CODE_METADATA Record
1267^^^^^^^^^^^^^^^^^^^^^^^^^
1268
1269``[METADATA]``
1270
1271The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table.
1272
1273TYPE_CODE_X86_MMX Record
1274^^^^^^^^^^^^^^^^^^^^^^^^
1275
1276``[X86_MMX]``
1277
1278The ``X86_MMX`` record (code 17) adds an ``x86_mmx`` type to the type table.
1279
1280TYPE_CODE_STRUCT_ANON Record
1281^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1282
1283``[STRUCT_ANON, ispacked, ...eltty...]``
1284
1285The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type
1286table. The operand fields are
1287
1288* *ispacked*: Non-zero if the type represents a packed structure
1289
1290* *eltty*: Zero or more type indices representing the element types of the
1291  structure
1292
1293TYPE_CODE_STRUCT_NAME Record
1294^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1295
1296``[STRUCT_NAME, ...string...]``
1297
1298The ``STRUCT_NAME`` record (code 19) contains a variable number of values
1299representing the bytes of a struct name. The next ``OPAQUE`` or
1300``STRUCT_NAMED`` record will use this name.
1301
1302TYPE_CODE_STRUCT_NAMED Record
1303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1304
1305``[STRUCT_NAMED, ispacked, ...eltty...]``
1306
1307The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the
1308type table, with a name defined by a previously encountered ``STRUCT_NAME``
1309record. The operand fields are
1310
1311* *ispacked*: Non-zero if the type represents a packed structure
1312
1313* *eltty*: Zero or more type indices representing the element types of the
1314  structure
1315
1316TYPE_CODE_FUNCTION Record
1317^^^^^^^^^^^^^^^^^^^^^^^^^
1318
1319``[FUNCTION, vararg, retty, ...paramty... ]``
1320
1321The ``FUNCTION`` record (code 21) adds a function type to the type table. The
1322operand fields are
1323
1324* *vararg*: Non-zero if the type represents a varargs function
1325
1326* *retty*: The type index of the function's return type
1327
1328* *paramty*: Zero or more type indices representing the parameter types of the
1329  function
1330
1331TYPE_CODE_X86_AMX Record
1332^^^^^^^^^^^^^^^^^^^^^^^^
1333
1334``[X86_AMX]``
1335
1336The ``X86_AMX`` record (code 24) adds an ``x86_amx`` type to the type table.
1337
1338.. _CONSTANTS_BLOCK:
1339
1340CONSTANTS_BLOCK Contents
1341------------------------
1342
1343The ``CONSTANTS_BLOCK`` block (id 11) ...
1344
1345.. _FUNCTION_BLOCK:
1346
1347FUNCTION_BLOCK Contents
1348-----------------------
1349
1350The ``FUNCTION_BLOCK`` block (id 12) ...
1351
1352In addition to the record types described below, a ``FUNCTION_BLOCK`` block may
1353contain the following sub-blocks:
1354
1355* `CONSTANTS_BLOCK`_
1356* `VALUE_SYMTAB_BLOCK`_
1357* `METADATA_ATTACHMENT`_
1358
1359.. _VALUE_SYMTAB_BLOCK:
1360
1361VALUE_SYMTAB_BLOCK Contents
1362---------------------------
1363
1364The ``VALUE_SYMTAB_BLOCK`` block (id 14) ...
1365
1366.. _METADATA_BLOCK:
1367
1368METADATA_BLOCK Contents
1369-----------------------
1370
1371The ``METADATA_BLOCK`` block (id 15) ...
1372
1373.. _METADATA_ATTACHMENT:
1374
1375METADATA_ATTACHMENT Contents
1376----------------------------
1377
1378The ``METADATA_ATTACHMENT`` block (id 16) ...
1379
1380.. _STRTAB_BLOCK:
1381
1382STRTAB_BLOCK Contents
1383---------------------
1384
1385The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1)
1386with a single blob operand containing the bitcode file's string table.
1387
1388Strings in the string table are not null terminated. A record's *strtab
1389offset* and *strtab size* operands specify the byte offset and size of a
1390string within the string table.
1391
1392The string table is used by all preceding blocks in the bitcode file that are
1393not succeeded by another intervening ``STRTAB`` block. Normally a bitcode
1394file will have a single string table, but it may have more than one if it
1395was created by binary concatenation of multiple bitcode files.
1396