1.. role:: raw-html(raw) 2 :format: html 3 4======================== 5LLVM Bitcode File Format 6======================== 7 8.. contents:: 9 :local: 10 11Abstract 12======== 13 14This document describes the LLVM bitstream file format and the encoding of the 15LLVM IR into it. 16 17Overview 18======== 19 20What is commonly known as the LLVM bitcode file format (also, sometimes 21anachronistically known as bytecode) is actually two things: a `bitstream 22container format`_ and an `encoding of LLVM IR`_ into the container format. 23 24The bitstream format is an abstract encoding of structured data, very similar to 25XML in some ways. Like XML, bitstream files contain tags, and nested 26structures, and you can parse the file without having to understand the tags. 27Unlike XML, the bitstream format is a binary encoding, and unlike XML it 28provides a mechanism for the file to self-describe "abbreviations", which are 29effectively size optimizations for the content. 30 31LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a 32`native object file`_. Both of these mechanisms make it easy to embed extra 33data along with LLVM IR files. 34 35This document first describes the LLVM bitstream format, describes the wrapper 36format, then describes the record structure used by LLVM IR files. 37 38.. _bitstream container format: 39 40Bitstream Format 41================ 42 43The bitstream format is literally a stream of bits, with a very simple 44structure. This structure consists of the following concepts: 45 46* A "`magic number`_" that identifies the contents of the stream. 47 48* Encoding `primitives`_ like variable bit-rate integers. 49 50* `Blocks`_, which define nested content. 51 52* `Data Records`_, which describe entities within the file. 53 54* Abbreviations, which specify compression optimizations for the file. 55 56Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be 57used to dump and inspect arbitrary bitstreams, which is very useful for 58understanding the encoding. 59 60.. _magic number: 61 62Magic Numbers 63------------- 64 65The first four bytes of a bitstream are used as an application-specific magic 66number. Generic bitcode tools may look at the first four bytes to determine 67whether the stream is a known stream type. However, these tools should *not* 68determine whether a bitstream is valid based on its magic number alone. New 69application-specific bitstream formats are being developed all the time; tools 70should not reject them just because they have a hitherto unseen magic number. 71 72.. _primitives: 73 74Primitives 75---------- 76 77A bitstream literally consists of a stream of bits, which are read in order 78starting with the least significant bit of each byte. The stream is made up of 79a number of primitive values that encode a stream of unsigned integer values. 80These integers are encoded in two ways: either as `Fixed Width Integers`_ or as 81`Variable Width Integers`_. 82 83.. _Fixed Width Integers: 84.. _fixed-width value: 85 86Fixed Width Integers 87^^^^^^^^^^^^^^^^^^^^ 88 89Fixed-width integer values have their low bits emitted directly to the file. 90For example, a 3-bit integer value encodes 1 as 001. Fixed width integers are 91used when there are a well-known number of options for a field. For example, 92boolean values are usually encoded with a 1-bit wide integer. 93 94.. _Variable Width Integers: 95.. _Variable Width Integer: 96.. _variable-width value: 97 98Variable Width Integers 99^^^^^^^^^^^^^^^^^^^^^^^ 100 101Variable-width integer (VBR) values encode values of arbitrary size, optimizing 102for the case where the values are small. Given a 4-bit VBR field, any 3-bit 103value (0 through 7) is encoded directly, with the high bit set to zero. Values 104larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all 105but the last set the high bit. 106 107For example, the value 30 (0x1E) is encoded as 62 (0b0011'1110) when emitted as 108a vbr4 value. The first set of four bits starting from the least significant 109indicates the value 6 (110) with a continuation piece (indicated by a high bit 110of 1). The next set of four bits indicates a value of 24 (011 << 3) with no 111continuation. The sum (6+24) yields the value 30. 112 113.. _char6-encoded value: 114 1156-bit characters 116^^^^^^^^^^^^^^^^ 117 1186-bit characters encode common characters into a fixed 6-bit field. They 119represent the following characters with the following 6-bit values: 120 121:: 122 123 'a' .. 'z' --- 0 .. 25 124 'A' .. 'Z' --- 26 .. 51 125 '0' .. '9' --- 52 .. 61 126 '.' --- 62 127 '_' --- 63 128 129This encoding is only suitable for encoding characters and strings that consist 130only of the above characters. It is completely incapable of encoding characters 131not in the set. 132 133Word Alignment 134^^^^^^^^^^^^^^ 135 136Occasionally, it is useful to emit zero bits until the bitstream is a multiple 137of 32 bits. This ensures that the bit position in the stream can be represented 138as a multiple of 32-bit words. 139 140Abbreviation IDs 141---------------- 142 143A bitstream is a sequential series of `Blocks`_ and `Data Records`_. Both of 144these start with an abbreviation ID encoded as a fixed-bitwidth field. The 145width is specified by the current block, as described below. The value of the 146abbreviation ID specifies either a builtin ID (which have special meanings, 147defined below) or one of the abbreviation IDs defined for the current block by 148the stream itself. 149 150The set of builtin abbrev IDs is: 151 152* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block. 153 154* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new 155 block. 156 157* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation. 158 159* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an 160 unabbreviated record. 161 162Abbreviation IDs 4 and above are defined by the stream itself, and specify an 163`abbreviated record encoding`_. 164 165.. _Blocks: 166 167Blocks 168------ 169 170Blocks in a bitstream denote nested regions of the stream, and are identified by 171a content-specific id number (for example, LLVM IR uses an ID of 12 to represent 172function bodies). Block IDs 0-7 are reserved for `standard blocks`_ whose 173meaning is defined by Bitcode; block IDs 8 and greater are application 174specific. Nested blocks capture the hierarchical structure of the data encoded 175in it, and various properties are associated with blocks as the file is parsed. 176Block definitions allow the reader to efficiently skip blocks in constant time 177if the reader wants a summary of blocks, or if it wants to efficiently skip data 178it does not understand. The LLVM IR reader uses this mechanism to skip function 179bodies, lazily reading them on demand. 180 181When reading and encoding the stream, several properties are maintained for the 182block. In particular, each block maintains: 183 184#. A current abbrev id width. This value starts at 2 at the beginning of the 185 stream, and is set every time a block record is entered. The block entry 186 specifies the abbrev id width for the body of the block. 187 188#. A set of abbreviations. Abbreviations may be defined within a block, in 189 which case they are only defined in that block (neither subblocks nor 190 enclosing blocks see the abbreviation). Abbreviations can also be defined 191 inside a `BLOCKINFO`_ block, in which case they are defined in all blocks 192 that match the ID that the ``BLOCKINFO`` block is describing. 193 194As sub blocks are entered, these properties are saved and the new sub-block has 195its own set of abbreviations, and its own abbrev id width. When a sub-block is 196popped, the saved values are restored. 197 198.. _ENTER_SUBBLOCK: 199 200ENTER_SUBBLOCK Encoding 201^^^^^^^^^^^^^^^^^^^^^^^ 202 203:raw-html:`<tt>` 204[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32] 205:raw-html:`</tt>` 206 207The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block 208record. The ``blockid`` value is encoded as an 8-bit VBR identifier, and 209indicates the type of block being entered, which can be a `standard block`_ or 210an application-specific block. The ``newabbrevlen`` value is a 4-bit VBR, which 211specifies the abbrev id width for the sub-block. The ``blocklen`` value is a 21232-bit aligned value that specifies the size of the subblock in 32-bit 213words. This value allows the reader to skip over the entire block in one jump. 214 215.. _END_BLOCK: 216 217END_BLOCK Encoding 218^^^^^^^^^^^^^^^^^^ 219 220``[END_BLOCK, <align32bits>]`` 221 222The ``END_BLOCK`` abbreviation ID specifies the end of the current block record. 223Its end is aligned to 32-bits to ensure that the size of the block is an even 224multiple of 32-bits. 225 226.. _Data Records: 227 228Data Records 229------------ 230 231Data records consist of a record code and a number of (up to) 64-bit integer 232values. The interpretation of the code and values is application specific and 233may vary between different block types. Records can be encoded either using an 234unabbrev record, or with an abbreviation. In the LLVM IR format, for example, 235there is a record which encodes the target triple of a module. The code is 236``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the 237characters in the string. 238 239.. _UNABBREV_RECORD: 240 241UNABBREV_RECORD Encoding 242^^^^^^^^^^^^^^^^^^^^^^^^ 243 244:raw-html:`<tt>` 245[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...] 246:raw-html:`</tt>` 247 248An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both 249completely general and extremely inefficient. It can describe an arbitrary 250record by emitting the code and operands as VBRs. 251 252For example, emitting an LLVM IR target triple as an unabbreviated record 253requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the 254``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal 255to the number of operands, and a vbr6 for each character. Because there are no 256letters with values less than 32, each letter would need to be emitted as at 257least a two-part VBR, which means that each letter would require at least 12 258bits. This is not an efficient encoding, but it is fully general. 259 260.. _abbreviated record encoding: 261 262Abbreviated Record Encoding 263^^^^^^^^^^^^^^^^^^^^^^^^^^^ 264 265``[<abbrevid>, fields...]`` 266 267An abbreviated record is an abbreviation id followed by a set of fields that are 268encoded according to the `abbreviation definition`_. This allows records to be 269encoded significantly more densely than records encoded with the 270`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in 271the stream itself, which allows the files to be completely self describing. The 272actual encoding of abbreviations is defined below. 273 274The record code, which is the first field of an abbreviated record, may be 275encoded in the abbreviation definition (as a literal operand) or supplied in the 276abbreviated record (as a Fixed or VBR operand value). 277 278.. _abbreviation definition: 279 280Abbreviations 281------------- 282 283Abbreviations are an important form of compression for bitstreams. The idea is 284to specify a dense encoding for a class of records once, then use that encoding 285to emit many records. It takes space to emit the encoding into the file, but 286the space is recouped (hopefully plus some) when the records that use it are 287emitted. 288 289Abbreviations can be determined dynamically per client, per file. Because the 290abbreviations are stored in the bitstream itself, different streams of the same 291format can contain different sets of abbreviations according to the needs of the 292specific stream. As a concrete example, LLVM IR files usually emit an 293abbreviation for binary operators. If a specific LLVM module contained no or 294few binary operators, the abbreviation does not need to be emitted. 295 296.. _DEFINE_ABBREV: 297 298DEFINE_ABBREV Encoding 299^^^^^^^^^^^^^^^^^^^^^^ 300 301:raw-html:`<tt>` 302[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...] 303:raw-html:`</tt>` 304 305A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined 306abbreviations in the scope of this block. This definition only exists inside 307this immediate block --- it is not visible in subblocks or enclosing blocks. 308Abbreviations are implicitly assigned IDs sequentially starting from 4 (the 309first application-defined abbreviation ID). Any abbreviations defined in a 310``BLOCKINFO`` record for the particular block type receive IDs first, in order, 311followed by any abbreviations defined within the block itself. Abbreviated data 312records reference this ID to indicate what abbreviation they are invoking. 313 314An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed 315by a VBR that specifies the number of abbrev operands, then the abbrev operands 316themselves. Abbreviation operands come in three forms. They all start with a 317single bit that indicates whether the abbrev operand is a literal operand (when 318the bit is 1) or an encoding operand (when the bit is 0). 319 320#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\ 321 :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in 322 the result is always a single specific value. This specific value is emitted 323 as a vbr8 after the bit indicating that it is a literal operand. 324 325#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\ 326 :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data 327 are just emitted as their code. 328 329#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\ 330 :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do 331 have extra data are emitted as their code, followed by the extra data. 332 333The possible operand encodings are: 334 335* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose 336 width is specified by the operand's extra data. 337 338* VBR (code 2): The field should be emitted as a `variable-width value`_, whose 339 width is specified by the operand's extra data. 340 341* Array (code 3): This field is an array of values. The array operand has no 342 extra data, but expects another operand to follow it, indicating the element 343 type of the array. When reading an array in an abbreviated record, the first 344 integer is a vbr6 that indicates the array length, followed by the encoded 345 elements of the array. An array may only occur as the last operand of an 346 abbreviation (except for the one final operand that gives the array's 347 type). 348 349* Char6 (code 4): This field should be emitted as a `char6-encoded value`_. 350 This operand type takes no extra data. Char6 encoding is normally used as an 351 array element type. 352 353* Blob (code 5): This field is emitted as a vbr6, followed by padding to a 354 32-bit boundary (for alignment) and an array of 8-bit objects. The array of 355 bytes is further followed by tail padding to ensure that its total length is a 356 multiple of 4 bytes. This makes it very efficient for the reader to decode 357 the data without having to make a copy of it: it can use a pointer to the data 358 in the mapped in file and poke directly at it. A blob may only occur as the 359 last operand of an abbreviation. 360 361For example, target triples in LLVM modules are encoded as a record of the form 362``[TRIPLE, 'a', 'b', 'c', 'd']``. Consider if the bitstream emitted the 363following abbrev entry: 364 365:: 366 367 [0, Fixed, 4] 368 [0, Array] 369 [0, Char6] 370 371When emitting a record with this abbreviation, the above entry would be emitted 372as: 373 374:raw-html:`<tt><blockquote>` 375[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`] 376:raw-html:`</blockquote></tt>` 377 378These values are: 379 380#. The first value, 4, is the abbreviation ID for this abbreviation. 381 382#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR 383 file ``MODULE_BLOCK`` blocks. 384 385#. The third value, 4, is the length of the array. 386 387#. The rest of the values are the char6 encoded values for ``"abcd"``. 388 389With this abbreviation, the triple is emitted with only 37 bits (assuming a 390abbrev id width of 3). Without the abbreviation, significantly more space would 391be required to emit the target triple. Also, because the ``TRIPLE`` value is 392not emitted as a literal in the abbreviation, the abbreviation can also be used 393for any other string value. 394 395.. _standard blocks: 396.. _standard block: 397 398Standard Blocks 399--------------- 400 401In addition to the basic block structure and record encodings, the bitstream 402also defines specific built-in block types. These block types specify how the 403stream is to be decoded or other metadata. In the future, new standard blocks 404may be added. Block IDs 0-7 are reserved for standard blocks. 405 406.. _BLOCKINFO: 407 408#0 - BLOCKINFO Block 409^^^^^^^^^^^^^^^^^^^^ 410 411The ``BLOCKINFO`` block allows the description of metadata for other blocks. 412The currently specified records are: 413 414:: 415 416 [SETBID (#1), blockid] 417 [DEFINE_ABBREV, ...] 418 [BLOCKNAME, ...name...] 419 [SETRECORDNAME, RecordID, ...name...] 420 421The ``SETBID`` record (code 1) indicates which block ID is being described. 422``SETBID`` records can occur multiple times throughout the block to change which 423block ID is being described. There must be a ``SETBID`` record prior to any 424other records. 425 426Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but 427unlike their occurrence in normal blocks, the abbreviation is defined for blocks 428matching the block ID we are describing, *not* the ``BLOCKINFO`` block 429itself. The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation 430IDs as described in `DEFINE_ABBREV`_. 431 432The ``BLOCKNAME`` record (code 2) can optionally occur in this block. The 433elements of the record are the bytes of the string name of the block. 434llvm-bcanalyzer can use this to dump out bitcode files symbolically. 435 436The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block. 437The first operand value is a record ID number, and the rest of the elements of 438the record are the bytes for the string name of the record. llvm-bcanalyzer can 439use this to dump out bitcode files symbolically. 440 441Note that although the data in ``BLOCKINFO`` blocks is described as "metadata," 442the abbreviations they contain are essential for parsing records from the 443corresponding blocks. It is not safe to skip them. 444 445.. _wrapper: 446 447Bitcode Wrapper Format 448====================== 449 450Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper 451structure. This structure contains a simple header that indicates the offset 452and size of the embedded BC file. This allows additional information to be 453stored alongside the BC file. The structure of this file header is: 454 455:raw-html:`<tt><blockquote>` 456[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`] 457:raw-html:`</blockquote></tt>` 458 459Each of the fields are 32-bit fields stored in little endian form (as with the 460rest of the bitcode file fields). The Magic number is always ``0x0B17C0DE`` and 461the version is currently always ``0``. The Offset field is the offset in bytes 462to the start of the bitcode stream in the file, and the Size field is the size 463in bytes of the stream. CPUType is a target-specific value that can be used to 464encode the CPU of the target. 465 466.. _native object file: 467 468Native Object File Wrapper Format 469================================= 470 471Bitcode files for LLVM IR may also be wrapped in a native object file 472(i.e. ELF, COFF, Mach-O). The bitcode must be stored in a section of the object 473file named ``__LLVM,__bitcode`` for MachO and ``.llvmbc`` for the other object 474formats. This wrapper format is useful for accommodating LTO in compilation 475pipelines where intermediate objects must be native object files which contain 476metadata in other sections. 477 478Not all tools support this format. 479 480.. _encoding of LLVM IR: 481 482LLVM IR Encoding 483================ 484 485LLVM IR is encoded into a bitstream by defining blocks and records. It uses 486blocks for things like constant pools, functions, symbol tables, etc. It uses 487records for things like instructions, global variable descriptors, type 488descriptions, etc. This document does not describe the set of abbreviations 489that the writer uses, as these are fully self-described in the file, and the 490reader is not allowed to build in any knowledge of this. 491 492Basics 493------ 494 495LLVM IR Magic Number 496^^^^^^^^^^^^^^^^^^^^ 497 498The magic number for LLVM IR files is: 499 500:raw-html:`<tt><blockquote>` 501['B'\ :sub:`8`, 'C'\ :sub:`8`, 0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`] 502:raw-html:`</blockquote></tt>` 503 504.. _Signed VBRs: 505 506Signed VBRs 507^^^^^^^^^^^ 508 509`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized 510unsigned values, but is an extremely inefficient for encoding signed values, as 511signed values are otherwise treated as maximally large unsigned values. 512 513As such, signed VBR values of a specific width are emitted as follows: 514 515* Positive values are emitted as VBRs of the specified width, but with their 516 value shifted left by one. 517 518* Negative values are emitted as VBRs of the specified width, but the negated 519 value is shifted left by one, and the low bit is set. 520 521With this encoding, small positive and small negative values can both be emitted 522efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and 523``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks. 524It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1. 525 526LLVM IR Blocks 527^^^^^^^^^^^^^^ 528 529LLVM IR is defined with the following blocks: 530 531* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire 532 module, and describes a variety of per-module information. 533 534* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes. 535 536* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table. 537 538* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or 539 function. 540 541* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body. 542 543* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table. 544 545* 15 --- `METADATA_BLOCK`_ --- This describes metadata items. 546 547* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata 548 with function instruction values. 549 550* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module. 551 552* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table. 553 554.. _MODULE_BLOCK: 555 556MODULE_BLOCK Contents 557--------------------- 558 559The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files, 560and each bitcode file must contain exactly one. In addition to records 561(described below) containing information about the module, a ``MODULE_BLOCK`` 562block may contain the following sub-blocks: 563 564* `BLOCKINFO`_ 565* `PARAMATTR_BLOCK`_ 566* `PARAMATTR_GROUP_BLOCK`_ 567* `TYPE_BLOCK`_ 568* `VALUE_SYMTAB_BLOCK`_ 569* `CONSTANTS_BLOCK`_ 570* `FUNCTION_BLOCK`_ 571* `METADATA_BLOCK`_ 572 573.. _MODULE_CODE_VERSION: 574 575MODULE_CODE_VERSION Record 576^^^^^^^^^^^^^^^^^^^^^^^^^^ 577 578``[VERSION, version#]`` 579 580The ``VERSION`` record (code 1) contains a single value indicating the format 581version. Versions 0, 1 and 2 are supported at this time. The difference between 582version 0 and 1 is in the encoding of instruction operands in 583each `FUNCTION_BLOCK`_. 584 585In version 0, each value defined by an instruction is assigned an ID 586unique to the function. Function-level value IDs are assigned starting from 587``NumModuleValues`` since they share the same namespace as module-level 588values. The value enumerator resets after each function. When a value is 589an operand of an instruction, the value ID is used to represent the operand. 590For large functions or large modules, these operand values can be large. 591 592The encoding in version 1 attempts to avoid large operand values 593in common cases. Instead of using the value ID directly, operands are 594encoded as relative to the current instruction. Thus, if an operand 595is the value defined by the previous instruction, the operand 596will be encoded as 1. 597 598For example, instead of 599 600.. code-block:: none 601 602 #n = load #n-1 603 #n+1 = icmp eq #n, #const0 604 br #n+1, label #(bb1), label #(bb2) 605 606version 1 will encode the instructions as 607 608.. code-block:: none 609 610 #n = load #1 611 #n+1 = icmp eq #1, (#n+1)-#const0 612 br #1, label #(bb1), label #(bb2) 613 614Note in the example that operands which are constants also use 615the relative encoding, while operands like basic block labels 616do not use the relative encoding. 617 618Forward references will result in a negative value. 619This can be inefficient, as operands are normally encoded 620as unsigned VBRs. However, forward references are rare, except in the 621case of phi instructions. For phi instructions, operands are encoded as 622`Signed VBRs`_ to deal with forward references. 623 624In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``, 625``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands 626specify an offset and size of a string in a string table (see `STRTAB_BLOCK 627Contents`_), the function name is removed from the ``FNENTRY`` record in the 628value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain 629``FNENTRY`` records. 630 631MODULE_CODE_TRIPLE Record 632^^^^^^^^^^^^^^^^^^^^^^^^^ 633 634``[TRIPLE, ...string...]`` 635 636The ``TRIPLE`` record (code 2) contains a variable number of values representing 637the bytes of the ``target triple`` specification string. 638 639MODULE_CODE_DATALAYOUT Record 640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 641 642``[DATALAYOUT, ...string...]`` 643 644The ``DATALAYOUT`` record (code 3) contains a variable number of values 645representing the bytes of the ``target datalayout`` specification string. 646 647MODULE_CODE_ASM Record 648^^^^^^^^^^^^^^^^^^^^^^ 649 650``[ASM, ...string...]`` 651 652The ``ASM`` record (code 4) contains a variable number of values representing 653the bytes of ``module asm`` strings, with individual assembly blocks separated 654by newline (ASCII 10) characters. 655 656.. _MODULE_CODE_SECTIONNAME: 657 658MODULE_CODE_SECTIONNAME Record 659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 660 661``[SECTIONNAME, ...string...]`` 662 663The ``SECTIONNAME`` record (code 5) contains a variable number of values 664representing the bytes of a single section name string. There should be one 665``SECTIONNAME`` record for each section name referenced (e.g., in global 666variable or function ``section`` attributes) within the module. These records 667can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR`` 668or ``FUNCTION`` records. 669 670MODULE_CODE_DEPLIB Record 671^^^^^^^^^^^^^^^^^^^^^^^^^ 672 673``[DEPLIB, ...string...]`` 674 675The ``DEPLIB`` record (code 6) contains a variable number of values representing 676the bytes of a single dependent library name string, one of the libraries 677mentioned in a ``deplibs`` declaration. There should be one ``DEPLIB`` record 678for each library name referenced. 679 680MODULE_CODE_GLOBALVAR Record 681^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 682 683``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat, attributes, preemptionspecifier]`` 684 685The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a 686global variable. The operand fields are: 687 688* *strtab offset*, *strtab size*: Specifies the name of the global variable. 689 See `STRTAB_BLOCK Contents`_. 690 691* *pointer type*: The type index of the pointer type used to point to this 692 global variable 693 694* *isconst*: Non-zero if the variable is treated as constant within the module, 695 or zero if it is not 696 697* *initid*: If non-zero, the value index of the initializer for this variable, 698 plus 1. 699 700.. _linkage type: 701 702* *linkage*: An encoding of the linkage type for this variable: 703 704 * ``external``: code 0 705 * ``weak``: code 1 706 * ``appending``: code 2 707 * ``internal``: code 3 708 * ``linkonce``: code 4 709 * ``dllimport``: code 5 710 * ``dllexport``: code 6 711 * ``extern_weak``: code 7 712 * ``common``: code 8 713 * ``private``: code 9 714 * ``weak_odr``: code 10 715 * ``linkonce_odr``: code 11 716 * ``available_externally``: code 12 717 * deprecated : code 13 718 * deprecated : code 14 719 720* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1 721 722* *section*: If non-zero, the 1-based section index in the table of 723 `MODULE_CODE_SECTIONNAME`_ entries. 724 725.. _visibility: 726 727* *visibility*: If present, an encoding of the visibility of this variable: 728 729 * ``default``: code 0 730 * ``hidden``: code 1 731 * ``protected``: code 2 732 733.. _bcthreadlocal: 734 735* *threadlocal*: If present, an encoding of the thread local storage mode of the 736 variable: 737 738 * ``not thread local``: code 0 739 * ``thread local; default TLS model``: code 1 740 * ``localdynamic``: code 2 741 * ``initialexec``: code 3 742 * ``localexec``: code 4 743 744.. _bcunnamedaddr: 745 746* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this 747 variable: 748 749 * not ``unnamed_addr``: code 0 750 * ``unnamed_addr``: code 1 751 * ``local_unnamed_addr``: code 2 752 753.. _bcdllstorageclass: 754 755* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable: 756 757 * ``default``: code 0 758 * ``dllimport``: code 1 759 * ``dllexport``: code 2 760 761* *comdat*: An encoding of the COMDAT of this function 762 763* *attributes*: If nonzero, the 1-based index into the table of AttributeLists. 764 765.. _bcpreemptionspecifier: 766 767* *preemptionspecifier*: If present, an encoding of the runtime preemption specifier of this variable: 768 769 * ``dso_preemptable``: code 0 770 * ``dso_local``: code 1 771 772.. _FUNCTION: 773 774MODULE_CODE_FUNCTION Record 775^^^^^^^^^^^^^^^^^^^^^^^^^^^ 776 777``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn, preemptionspecifier]`` 778 779The ``FUNCTION`` record (code 8) marks the declaration or definition of a 780function. The operand fields are: 781 782* *strtab offset*, *strtab size*: Specifies the name of the function. 783 See `STRTAB_BLOCK Contents`_. 784 785* *type*: The type index of the function type describing this function 786 787* *callingconv*: The calling convention number: 788 * ``ccc``: code 0 789 * ``fastcc``: code 8 790 * ``coldcc``: code 9 791 * ``webkit_jscc``: code 12 792 * ``anyregcc``: code 13 793 * ``preserve_mostcc``: code 14 794 * ``preserve_allcc``: code 15 795 * ``swiftcc`` : code 16 796 * ``cxx_fast_tlscc``: code 17 797 * ``tailcc`` : code 18 798 * ``cfguard_checkcc`` : code 19 799 * ``swifttailcc`` : code 20 800 * ``x86_stdcallcc``: code 64 801 * ``x86_fastcallcc``: code 65 802 * ``arm_apcscc``: code 66 803 * ``arm_aapcscc``: code 67 804 * ``arm_aapcs_vfpcc``: code 68 805 806* isproto*: Non-zero if this entry represents a declaration rather than a 807 definition 808 809* *linkage*: An encoding of the `linkage type`_ for this function 810 811* *paramattr*: If nonzero, the 1-based parameter attribute index into the table 812 of `PARAMATTR_CODE_ENTRY`_ entries. 813 814* *alignment*: The logarithm base 2 of the function's requested alignment, plus 815 1 816 817* *section*: If non-zero, the 1-based section index in the table of 818 `MODULE_CODE_SECTIONNAME`_ entries. 819 820* *visibility*: An encoding of the `visibility`_ of this function 821 822* *gc*: If present and nonzero, the 1-based garbage collector index in the table 823 of `MODULE_CODE_GCNAME`_ entries. 824 825* *unnamed_addr*: If present, an encoding of the 826 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function 827 828* *prologuedata*: If non-zero, the value index of the prologue data for this function, 829 plus 1. 830 831* *dllstorageclass*: An encoding of the 832 :ref:`dllstorageclass<bcdllstorageclass>` of this function 833 834* *comdat*: An encoding of the COMDAT of this function 835 836* *prefixdata*: If non-zero, the value index of the prefix data for this function, 837 plus 1. 838 839* *personalityfn*: If non-zero, the value index of the personality function for this function, 840 plus 1. 841 842* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this function. 843 844MODULE_CODE_ALIAS Record 845^^^^^^^^^^^^^^^^^^^^^^^^ 846 847``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr, preemptionspecifier]`` 848 849The ``ALIAS`` record (code 9) marks the definition of an alias. The operand 850fields are 851 852* *strtab offset*, *strtab size*: Specifies the name of the alias. 853 See `STRTAB_BLOCK Contents`_. 854 855* *alias type*: The type index of the alias 856 857* *aliasee val#*: The value index of the aliased value 858 859* *linkage*: An encoding of the `linkage type`_ for this alias 860 861* *visibility*: If present, an encoding of the `visibility`_ of the alias 862 863* *dllstorageclass*: If present, an encoding of the 864 :ref:`dllstorageclass<bcdllstorageclass>` of the alias 865 866* *threadlocal*: If present, an encoding of the 867 :ref:`thread local property<bcthreadlocal>` of the alias 868 869* *unnamed_addr*: If present, an encoding of the 870 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias 871 872* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this alias. 873 874.. _MODULE_CODE_GCNAME: 875 876MODULE_CODE_GCNAME Record 877^^^^^^^^^^^^^^^^^^^^^^^^^ 878 879``[GCNAME, ...string...]`` 880 881The ``GCNAME`` record (code 11) contains a variable number of values 882representing the bytes of a single garbage collector name string. There should 883be one ``GCNAME`` record for each garbage collector name referenced in function 884``gc`` attributes within the module. These records can be referenced by 1-based 885index in the *gc* fields of ``FUNCTION`` records. 886 887.. _PARAMATTR_BLOCK: 888 889PARAMATTR_BLOCK Contents 890------------------------ 891 892The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the 893attributes of function parameters. These entries are referenced by 1-based index 894in the *paramattr* field of module block `FUNCTION`_ records, or within the 895*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records. 896 897Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique 898(i.e., no two indices represent equivalent attribute lists). 899 900.. _PARAMATTR_CODE_ENTRY: 901 902PARAMATTR_CODE_ENTRY Record 903^^^^^^^^^^^^^^^^^^^^^^^^^^^ 904 905``[ENTRY, attrgrp0, attrgrp1, ...]`` 906 907The ``ENTRY`` record (code 2) contains a variable number of values describing a 908unique set of function parameter attributes. Each *attrgrp* value is used as a 909key with which to look up an entry in the attribute group table described 910in the ``PARAMATTR_GROUP_BLOCK`` block. 911 912.. _PARAMATTR_CODE_ENTRY_OLD: 913 914PARAMATTR_CODE_ENTRY_OLD Record 915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 916 917.. note:: 918 This is a legacy encoding for attributes, produced by LLVM versions 3.2 and 919 earlier. It is guaranteed to be understood by the current LLVM version, as 920 specified in the :ref:`IR backwards compatibility` policy. 921 922``[ENTRY, paramidx0, attr0, paramidx1, attr1...]`` 923 924The ``ENTRY`` record (code 1) contains an even number of values describing a 925unique set of function parameter attributes. Each *paramidx* value indicates 926which set of attributes is represented, with 0 representing the return value 927attributes, 0xFFFFFFFF representing function attributes, and other values 928representing 1-based function parameters. Each *attr* value is a bitmap with the 929following interpretation: 930 931* bit 0: ``zeroext`` 932* bit 1: ``signext`` 933* bit 2: ``noreturn`` 934* bit 3: ``inreg`` 935* bit 4: ``sret`` 936* bit 5: ``nounwind`` 937* bit 6: ``noalias`` 938* bit 7: ``byval`` 939* bit 8: ``nest`` 940* bit 9: ``readnone`` 941* bit 10: ``readonly`` 942* bit 11: ``noinline`` 943* bit 12: ``alwaysinline`` 944* bit 13: ``optsize`` 945* bit 14: ``ssp`` 946* bit 15: ``sspreq`` 947* bits 16-31: ``align n`` 948* bit 32: ``nocapture`` 949* bit 33: ``noredzone`` 950* bit 34: ``noimplicitfloat`` 951* bit 35: ``naked`` 952* bit 36: ``inlinehint`` 953* bits 37-39: ``alignstack n``, represented as the logarithm 954 base 2 of the requested alignment, plus 1 955 956.. _PARAMATTR_GROUP_BLOCK: 957 958PARAMATTR_GROUP_BLOCK Contents 959------------------------------ 960 961The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries 962describing the attribute groups present in the module. These entries can be 963referenced within ``PARAMATTR_CODE_ENTRY`` entries. 964 965.. _PARAMATTR_GRP_CODE_ENTRY: 966 967PARAMATTR_GRP_CODE_ENTRY Record 968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 969 970``[ENTRY, grpid, paramidx, attr0, attr1, ...]`` 971 972The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed 973by a variable number of values describing a unique group of attributes. The 974*grpid* value is a unique key for the attribute group, which can be referenced 975within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which 976set of attributes is represented, with 0 representing the return value 977attributes, 0xFFFFFFFF representing function attributes, and other values 978representing 1-based function parameters. 979 980Each *attr* is itself represented as a variable number of values: 981 982``kind, key [, ...], [value [, ...]]`` 983 984Each attribute is either a well-known LLVM attribute (possibly with an integer 985value associated with it), or an arbitrary string (possibly with an arbitrary 986string value associated with it). The *kind* value is an integer code 987distinguishing between these possibilities: 988 989* code 0: well-known attribute 990* code 1: well-known attribute with an integer value 991* code 3: string attribute 992* code 4: string attribute with a string value 993 994For well-known attributes (code 0 or 1), the *key* value is an integer code 995identifying the attribute. For attributes with an integer argument (code 1), 996the *value* value indicates the argument. 997 998For string attributes (code 3 or 4), the *key* value is actually a variable 999number of values representing the bytes of a null-terminated string. For 1000attributes with a string argument (code 4), the *value* value is similarly a 1001variable number of values representing the bytes of a null-terminated string. 1002 1003The integer codes are mapped to well-known attributes as follows. 1004 1005* code 1: ``align(<n>)`` 1006* code 2: ``alwaysinline`` 1007* code 3: ``byval`` 1008* code 4: ``inlinehint`` 1009* code 5: ``inreg`` 1010* code 6: ``minsize`` 1011* code 7: ``naked`` 1012* code 8: ``nest`` 1013* code 9: ``noalias`` 1014* code 10: ``nobuiltin`` 1015* code 11: ``nocapture`` 1016* code 12: ``nodeduplicate`` 1017* code 13: ``noimplicitfloat`` 1018* code 14: ``noinline`` 1019* code 15: ``nonlazybind`` 1020* code 16: ``noredzone`` 1021* code 17: ``noreturn`` 1022* code 18: ``nounwind`` 1023* code 19: ``optsize`` 1024* code 20: ``readnone`` 1025* code 21: ``readonly`` 1026* code 22: ``returned`` 1027* code 23: ``returns_twice`` 1028* code 24: ``signext`` 1029* code 25: ``alignstack(<n>)`` 1030* code 26: ``ssp`` 1031* code 27: ``sspreq`` 1032* code 28: ``sspstrong`` 1033* code 29: ``sret`` 1034* code 30: ``sanitize_address`` 1035* code 31: ``sanitize_thread`` 1036* code 32: ``sanitize_memory`` 1037* code 33: ``uwtable`` 1038* code 34: ``zeroext`` 1039* code 35: ``builtin`` 1040* code 36: ``cold`` 1041* code 37: ``optnone`` 1042* code 38: ``inalloca`` 1043* code 39: ``nonnull`` 1044* code 40: ``jumptable`` 1045* code 41: ``dereferenceable(<n>)`` 1046* code 42: ``dereferenceable_or_null(<n>)`` 1047* code 43: ``convergent`` 1048* code 44: ``safestack`` 1049* code 45: ``argmemonly`` 1050* code 46: ``swiftself`` 1051* code 47: ``swifterror`` 1052* code 48: ``norecurse`` 1053* code 49: ``inaccessiblememonly`` 1054* code 50: ``inaccessiblememonly_or_argmemonly`` 1055* code 51: ``allocsize(<EltSizeParam>[, <NumEltsParam>])`` 1056* code 52: ``writeonly`` 1057* code 53: ``speculatable`` 1058* code 54: ``strictfp`` 1059* code 55: ``sanitize_hwaddress`` 1060* code 56: ``nocf_check`` 1061* code 57: ``optforfuzzing`` 1062* code 58: ``shadowcallstack`` 1063* code 59: ``speculative_load_hardening`` 1064* code 60: ``immarg`` 1065* code 61: ``willreturn`` 1066* code 62: ``nofree`` 1067* code 63: ``nosync`` 1068* code 64: ``sanitize_memtag`` 1069* code 65: ``preallocated`` 1070* code 66: ``no_merge`` 1071* code 67: ``null_pointer_is_valid`` 1072* code 68: ``noundef`` 1073* code 69: ``byref`` 1074* code 70: ``mustprogress`` 1075* code 74: ``vscale_range(<Min>[, <Max>])`` 1076* code 75: ``swiftasync`` 1077* code 76: ``nosanitize_coverage`` 1078* code 77: ``elementtype`` 1079* code 78: ``disable_sanitizer_instrumentation`` 1080 1081.. note:: 1082 The ``allocsize`` attribute has a special encoding for its arguments. Its two 1083 arguments, which are 32-bit integers, are packed into one 64-bit integer value 1084 (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on 1085 the sentinel value -1 if it is not specified. 1086 1087.. note:: 1088 The ``vscale_range`` attribute has a special encoding for its arguments. Its two 1089 arguments, which are 32-bit integers, are packed into one 64-bit integer value 1090 (i.e. ``(Min << 32) | Max``), with ``Max`` taking on the value of ``Min`` if 1091 it is not specified. 1092 1093.. _TYPE_BLOCK: 1094 1095TYPE_BLOCK Contents 1096------------------- 1097 1098The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of 1099type operator entries used to represent types referenced within an LLVM 1100module. Each record (with the exception of `NUMENTRY`_) generates a single type 1101table entry, which may be referenced by 0-based index from instructions, 1102constants, metadata, type symbol table entries, or other type operator records. 1103 1104Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is 1105unique (i.e., no two indices represent structurally equivalent types). 1106 1107.. _TYPE_CODE_NUMENTRY: 1108.. _NUMENTRY: 1109 1110TYPE_CODE_NUMENTRY Record 1111^^^^^^^^^^^^^^^^^^^^^^^^^ 1112 1113``[NUMENTRY, numentries]`` 1114 1115The ``NUMENTRY`` record (code 1) contains a single value which indicates the 1116total number of type code entries in the type table of the module. If present, 1117``NUMENTRY`` should be the first record in the block. 1118 1119TYPE_CODE_VOID Record 1120^^^^^^^^^^^^^^^^^^^^^ 1121 1122``[VOID]`` 1123 1124The ``VOID`` record (code 2) adds a ``void`` type to the type table. 1125 1126TYPE_CODE_HALF Record 1127^^^^^^^^^^^^^^^^^^^^^ 1128 1129``[HALF]`` 1130 1131The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to 1132the type table. 1133 1134TYPE_CODE_BFLOAT Record 1135^^^^^^^^^^^^^^^^^^^^^^^ 1136 1137``[BFLOAT]`` 1138 1139The ``BFLOAT`` record (code 23) adds a ``bfloat`` (16-bit brain floating point) 1140type to the type table. 1141 1142TYPE_CODE_FLOAT Record 1143^^^^^^^^^^^^^^^^^^^^^^ 1144 1145``[FLOAT]`` 1146 1147The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to 1148the type table. 1149 1150TYPE_CODE_DOUBLE Record 1151^^^^^^^^^^^^^^^^^^^^^^^ 1152 1153``[DOUBLE]`` 1154 1155The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to 1156the type table. 1157 1158TYPE_CODE_LABEL Record 1159^^^^^^^^^^^^^^^^^^^^^^ 1160 1161``[LABEL]`` 1162 1163The ``LABEL`` record (code 5) adds a ``label`` type to the type table. 1164 1165TYPE_CODE_OPAQUE Record 1166^^^^^^^^^^^^^^^^^^^^^^^ 1167 1168``[OPAQUE]`` 1169 1170The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with 1171a name defined by a previously encountered ``STRUCT_NAME`` record. Note that 1172distinct ``opaque`` types are not unified. 1173 1174TYPE_CODE_INTEGER Record 1175^^^^^^^^^^^^^^^^^^^^^^^^ 1176 1177``[INTEGER, width]`` 1178 1179The ``INTEGER`` record (code 7) adds an integer type to the type table. The 1180single *width* field indicates the width of the integer type. 1181 1182TYPE_CODE_POINTER Record 1183^^^^^^^^^^^^^^^^^^^^^^^^ 1184 1185``[POINTER, pointee type, address space]`` 1186 1187The ``POINTER`` record (code 8) adds a pointer type to the type table. The 1188operand fields are 1189 1190* *pointee type*: The type index of the pointed-to type 1191 1192* *address space*: If supplied, the target-specific numbered address space where 1193 the pointed-to object resides. Otherwise, the default address space is zero. 1194 1195TYPE_CODE_FUNCTION_OLD Record 1196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1197 1198.. note:: 1199 This is a legacy encoding for functions, produced by LLVM versions 3.0 and 1200 earlier. It is guaranteed to be understood by the current LLVM version, as 1201 specified in the :ref:`IR backwards compatibility` policy. 1202 1203``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]`` 1204 1205The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table. 1206The operand fields are 1207 1208* *vararg*: Non-zero if the type represents a varargs function 1209 1210* *ignored*: This value field is present for backward compatibility only, and is 1211 ignored 1212 1213* *retty*: The type index of the function's return type 1214 1215* *paramty*: Zero or more type indices representing the parameter types of the 1216 function 1217 1218TYPE_CODE_ARRAY Record 1219^^^^^^^^^^^^^^^^^^^^^^ 1220 1221``[ARRAY, numelts, eltty]`` 1222 1223The ``ARRAY`` record (code 11) adds an array type to the type table. The 1224operand fields are 1225 1226* *numelts*: The number of elements in arrays of this type 1227 1228* *eltty*: The type index of the array element type 1229 1230TYPE_CODE_VECTOR Record 1231^^^^^^^^^^^^^^^^^^^^^^^ 1232 1233``[VECTOR, numelts, eltty]`` 1234 1235The ``VECTOR`` record (code 12) adds a vector type to the type table. The 1236operand fields are 1237 1238* *numelts*: The number of elements in vectors of this type 1239 1240* *eltty*: The type index of the vector element type 1241 1242TYPE_CODE_X86_FP80 Record 1243^^^^^^^^^^^^^^^^^^^^^^^^^ 1244 1245``[X86_FP80]`` 1246 1247The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point) 1248type to the type table. 1249 1250TYPE_CODE_FP128 Record 1251^^^^^^^^^^^^^^^^^^^^^^ 1252 1253``[FP128]`` 1254 1255The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type 1256to the type table. 1257 1258TYPE_CODE_PPC_FP128 Record 1259^^^^^^^^^^^^^^^^^^^^^^^^^^ 1260 1261``[PPC_FP128]`` 1262 1263The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point) 1264type to the type table. 1265 1266TYPE_CODE_METADATA Record 1267^^^^^^^^^^^^^^^^^^^^^^^^^ 1268 1269``[METADATA]`` 1270 1271The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table. 1272 1273TYPE_CODE_X86_MMX Record 1274^^^^^^^^^^^^^^^^^^^^^^^^ 1275 1276``[X86_MMX]`` 1277 1278The ``X86_MMX`` record (code 17) adds an ``x86_mmx`` type to the type table. 1279 1280TYPE_CODE_STRUCT_ANON Record 1281^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1282 1283``[STRUCT_ANON, ispacked, ...eltty...]`` 1284 1285The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type 1286table. The operand fields are 1287 1288* *ispacked*: Non-zero if the type represents a packed structure 1289 1290* *eltty*: Zero or more type indices representing the element types of the 1291 structure 1292 1293TYPE_CODE_STRUCT_NAME Record 1294^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1295 1296``[STRUCT_NAME, ...string...]`` 1297 1298The ``STRUCT_NAME`` record (code 19) contains a variable number of values 1299representing the bytes of a struct name. The next ``OPAQUE`` or 1300``STRUCT_NAMED`` record will use this name. 1301 1302TYPE_CODE_STRUCT_NAMED Record 1303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1304 1305``[STRUCT_NAMED, ispacked, ...eltty...]`` 1306 1307The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the 1308type table, with a name defined by a previously encountered ``STRUCT_NAME`` 1309record. The operand fields are 1310 1311* *ispacked*: Non-zero if the type represents a packed structure 1312 1313* *eltty*: Zero or more type indices representing the element types of the 1314 structure 1315 1316TYPE_CODE_FUNCTION Record 1317^^^^^^^^^^^^^^^^^^^^^^^^^ 1318 1319``[FUNCTION, vararg, retty, ...paramty... ]`` 1320 1321The ``FUNCTION`` record (code 21) adds a function type to the type table. The 1322operand fields are 1323 1324* *vararg*: Non-zero if the type represents a varargs function 1325 1326* *retty*: The type index of the function's return type 1327 1328* *paramty*: Zero or more type indices representing the parameter types of the 1329 function 1330 1331TYPE_CODE_X86_AMX Record 1332^^^^^^^^^^^^^^^^^^^^^^^^ 1333 1334``[X86_AMX]`` 1335 1336The ``X86_AMX`` record (code 24) adds an ``x86_amx`` type to the type table. 1337 1338.. _CONSTANTS_BLOCK: 1339 1340CONSTANTS_BLOCK Contents 1341------------------------ 1342 1343The ``CONSTANTS_BLOCK`` block (id 11) ... 1344 1345.. _FUNCTION_BLOCK: 1346 1347FUNCTION_BLOCK Contents 1348----------------------- 1349 1350The ``FUNCTION_BLOCK`` block (id 12) ... 1351 1352In addition to the record types described below, a ``FUNCTION_BLOCK`` block may 1353contain the following sub-blocks: 1354 1355* `CONSTANTS_BLOCK`_ 1356* `VALUE_SYMTAB_BLOCK`_ 1357* `METADATA_ATTACHMENT`_ 1358 1359.. _VALUE_SYMTAB_BLOCK: 1360 1361VALUE_SYMTAB_BLOCK Contents 1362--------------------------- 1363 1364The ``VALUE_SYMTAB_BLOCK`` block (id 14) ... 1365 1366.. _METADATA_BLOCK: 1367 1368METADATA_BLOCK Contents 1369----------------------- 1370 1371The ``METADATA_BLOCK`` block (id 15) ... 1372 1373.. _METADATA_ATTACHMENT: 1374 1375METADATA_ATTACHMENT Contents 1376---------------------------- 1377 1378The ``METADATA_ATTACHMENT`` block (id 16) ... 1379 1380.. _STRTAB_BLOCK: 1381 1382STRTAB_BLOCK Contents 1383--------------------- 1384 1385The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1) 1386with a single blob operand containing the bitcode file's string table. 1387 1388Strings in the string table are not null terminated. A record's *strtab 1389offset* and *strtab size* operands specify the byte offset and size of a 1390string within the string table. 1391 1392The string table is used by all preceding blocks in the bitcode file that are 1393not succeeded by another intervening ``STRTAB`` block. Normally a bitcode 1394file will have a single string table, but it may have more than one if it 1395was created by binary concatenation of multiple bitcode files. 1396