1 //===- AArch64ErrataFix.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements Section Patching for the purpose of working around
9 // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4
10 // versions of the core.
11 //
12 // The general principle is that an erratum sequence of one or
13 // more instructions is detected in the instruction stream, one of the
14 // instructions in the sequence is replaced with a branch to a patch sequence
15 // of replacement instructions. At the end of the replacement sequence the
16 // patch branches back to the instruction stream.
17 
18 // This technique is only suitable for fixing an erratum when:
19 // - There is a set of necessary conditions required to trigger the erratum that
20 // can be detected at static link time.
21 // - There is a set of replacement instructions that can be used to remove at
22 // least one of the necessary conditions that trigger the erratum.
23 // - We can overwrite an instruction in the erratum sequence with a branch to
24 // the replacement sequence.
25 // - We can place the replacement sequence within range of the branch.
26 //===----------------------------------------------------------------------===//
27 
28 #include "AArch64ErrataFix.h"
29 #include "Config.h"
30 #include "LinkerScript.h"
31 #include "OutputSections.h"
32 #include "Relocations.h"
33 #include "Symbols.h"
34 #include "SyntheticSections.h"
35 #include "Target.h"
36 #include "lld/Common/Memory.h"
37 #include "lld/Common/Strings.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support;
46 using namespace llvm::support::endian;
47 
48 namespace lld {
49 namespace elf {
50 
51 // Helper functions to identify instructions and conditions needed to trigger
52 // the Cortex-A53-843419 erratum.
53 
54 // ADRP
55 // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
isADRP(uint32_t instr)56 static bool isADRP(uint32_t instr) {
57   return (instr & 0x9f000000) == 0x90000000;
58 }
59 
60 // Load and store bit patterns from ARMv8-A ARM ARM.
61 // Instructions appear in order of appearance starting from table in
62 // C4.1.3 Loads and Stores.
63 
64 // All loads and stores have 1 (at bit position 27), (0 at bit position 25).
65 // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
isLoadStoreClass(uint32_t instr)66 static bool isLoadStoreClass(uint32_t instr) {
67   return (instr & 0x0a000000) == 0x08000000;
68 }
69 
70 // LDN/STN multiple no offset
71 // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
72 // LDN/STN multiple post-indexed
73 // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
74 // L == 0 for stores.
75 
76 // Utility routine to decode opcode field of LDN/STN multiple structure
77 // instructions to find the ST1 instructions.
78 // opcode == 0010 ST1 4 registers.
79 // opcode == 0110 ST1 3 registers.
80 // opcode == 0111 ST1 1 register.
81 // opcode == 1010 ST1 2 registers.
isST1MultipleOpcode(uint32_t instr)82 static bool isST1MultipleOpcode(uint32_t instr) {
83   return (instr & 0x0000f000) == 0x00002000 ||
84          (instr & 0x0000f000) == 0x00006000 ||
85          (instr & 0x0000f000) == 0x00007000 ||
86          (instr & 0x0000f000) == 0x0000a000;
87 }
88 
isST1Multiple(uint32_t instr)89 static bool isST1Multiple(uint32_t instr) {
90   return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr);
91 }
92 
93 // Writes to Rn (writeback).
isST1MultiplePost(uint32_t instr)94 static bool isST1MultiplePost(uint32_t instr) {
95   return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr);
96 }
97 
98 // LDN/STN single no offset
99 // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
100 // LDN/STN single post-indexed
101 // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
102 // L == 0 for stores
103 
104 // Utility routine to decode opcode field of LDN/STN single structure
105 // instructions to find the ST1 instructions.
106 // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
107 // opcode == 000 ST1 8-bit.
108 // opcode == 010 ST1 16-bit.
109 // opcode == 100 ST1 32 or 64-bit (Size determines which).
isST1SingleOpcode(uint32_t instr)110 static bool isST1SingleOpcode(uint32_t instr) {
111   return (instr & 0x0040e000) == 0x00000000 ||
112          (instr & 0x0040e000) == 0x00004000 ||
113          (instr & 0x0040e000) == 0x00008000;
114 }
115 
isST1Single(uint32_t instr)116 static bool isST1Single(uint32_t instr) {
117   return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr);
118 }
119 
120 // Writes to Rn (writeback).
isST1SinglePost(uint32_t instr)121 static bool isST1SinglePost(uint32_t instr) {
122   return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr);
123 }
124 
isST1(uint32_t instr)125 static bool isST1(uint32_t instr) {
126   return isST1Multiple(instr) || isST1MultiplePost(instr) ||
127          isST1Single(instr) || isST1SinglePost(instr);
128 }
129 
130 // Load/store exclusive
131 // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
132 // L == 0 for Stores.
isLoadStoreExclusive(uint32_t instr)133 static bool isLoadStoreExclusive(uint32_t instr) {
134   return (instr & 0x3f000000) == 0x08000000;
135 }
136 
isLoadExclusive(uint32_t instr)137 static bool isLoadExclusive(uint32_t instr) {
138   return (instr & 0x3f400000) == 0x08400000;
139 }
140 
141 // Load register literal
142 // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
isLoadLiteral(uint32_t instr)143 static bool isLoadLiteral(uint32_t instr) {
144   return (instr & 0x3b000000) == 0x18000000;
145 }
146 
147 // Load/store no-allocate pair
148 // (offset)
149 // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
150 // L == 0 for stores.
151 // Never writes to register
isSTNP(uint32_t instr)152 static bool isSTNP(uint32_t instr) {
153   return (instr & 0x3bc00000) == 0x28000000;
154 }
155 
156 // Load/store register pair
157 // (post-indexed)
158 // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
159 // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
160 // Writes to Rn.
isSTPPost(uint32_t instr)161 static bool isSTPPost(uint32_t instr) {
162   return (instr & 0x3bc00000) == 0x28800000;
163 }
164 
165 // (offset)
166 // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
isSTPOffset(uint32_t instr)167 static bool isSTPOffset(uint32_t instr) {
168   return (instr & 0x3bc00000) == 0x29000000;
169 }
170 
171 // (pre-index)
172 // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
173 // Writes to Rn.
isSTPPre(uint32_t instr)174 static bool isSTPPre(uint32_t instr) {
175   return (instr & 0x3bc00000) == 0x29800000;
176 }
177 
isSTP(uint32_t instr)178 static bool isSTP(uint32_t instr) {
179   return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr);
180 }
181 
182 // Load/store register (unscaled immediate)
183 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
184 // V == 0 for Scalar, V == 1 for Simd/FP.
isLoadStoreUnscaled(uint32_t instr)185 static bool isLoadStoreUnscaled(uint32_t instr) {
186   return (instr & 0x3b000c00) == 0x38000000;
187 }
188 
189 // Load/store register (immediate post-indexed)
190 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
isLoadStoreImmediatePost(uint32_t instr)191 static bool isLoadStoreImmediatePost(uint32_t instr) {
192   return (instr & 0x3b200c00) == 0x38000400;
193 }
194 
195 // Load/store register (unprivileged)
196 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
isLoadStoreUnpriv(uint32_t instr)197 static bool isLoadStoreUnpriv(uint32_t instr) {
198   return (instr & 0x3b200c00) == 0x38000800;
199 }
200 
201 // Load/store register (immediate pre-indexed)
202 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
isLoadStoreImmediatePre(uint32_t instr)203 static bool isLoadStoreImmediatePre(uint32_t instr) {
204   return (instr & 0x3b200c00) == 0x38000c00;
205 }
206 
207 // Load/store register (register offset)
208 // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
isLoadStoreRegisterOff(uint32_t instr)209 static bool isLoadStoreRegisterOff(uint32_t instr) {
210   return (instr & 0x3b200c00) == 0x38200800;
211 }
212 
213 // Load/store register (unsigned immediate)
214 // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
isLoadStoreRegisterUnsigned(uint32_t instr)215 static bool isLoadStoreRegisterUnsigned(uint32_t instr) {
216   return (instr & 0x3b000000) == 0x39000000;
217 }
218 
219 // Rt is always in bit position 0 - 4.
getRt(uint32_t instr)220 static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); }
221 
222 // Rn is always in bit position 5 - 9.
getRn(uint32_t instr)223 static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; }
224 
225 // C4.1.2 Branches, Exception Generating and System instructions
226 // | op0 (3) 1 | 01 op1 (4) | x (22) |
227 // op0 == 010 101 op1 == 0xxx Conditional Branch.
228 // op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
229 // op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
230 // op0 == x01 101 op1 == 0xxx Compare and branch immediate.
231 // op0 == x01 101 op1 == 1xxx Test and branch immediate.
isBranch(uint32_t instr)232 static bool isBranch(uint32_t instr) {
233   return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch.
234          ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
235          ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
236          ((instr & 0x7c000000) == 0x34000000);   // Compare and test branch.
237 }
238 
isV8SingleRegisterNonStructureLoadStore(uint32_t instr)239 static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) {
240   return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) ||
241          isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) ||
242          isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr);
243 }
244 
245 // Note that this function refers to v8.0 only and does not include the
246 // additional load and store instructions added for in later revisions of
247 // the architecture such as the Atomic memory operations introduced
248 // in v8.1.
isV8NonStructureLoad(uint32_t instr)249 static bool isV8NonStructureLoad(uint32_t instr) {
250   if (isLoadExclusive(instr))
251     return true;
252   if (isLoadLiteral(instr))
253     return true;
254   else if (isV8SingleRegisterNonStructureLoadStore(instr)) {
255     // For Load and Store single register, Loads are derived from a
256     // combination of the Size, V and Opc fields.
257     uint32_t size = (instr >> 30) & 0xff;
258     uint32_t v = (instr >> 26) & 0x1;
259     uint32_t opc = (instr >> 22) & 0x3;
260     // For the load and store instructions that we are decoding.
261     // Opc == 0 are all stores.
262     // Opc == 1 with a couple of exceptions are loads. The exceptions are:
263     // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
264     // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
265     return opc != 0 && !(size == 0 && v == 1 && opc == 2) &&
266            !(size == 3 && v == 0 && opc == 2);
267   }
268   return false;
269 }
270 
271 // The following decode instructions are only complete up to the instructions
272 // needed for errata 843419.
273 
274 // Instruction with writeback updates the index register after the load/store.
hasWriteback(uint32_t instr)275 static bool hasWriteback(uint32_t instr) {
276   return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) ||
277          isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) ||
278          isST1MultiplePost(instr);
279 }
280 
281 // For the load and store class of instructions, a load can write to the
282 // destination register, a load and a store can write to the base register when
283 // the instruction has writeback.
doesLoadStoreWriteToReg(uint32_t instr,uint32_t reg)284 static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) {
285   return (isV8NonStructureLoad(instr) && getRt(instr) == reg) ||
286          (hasWriteback(instr) && getRn(instr) == reg);
287 }
288 
289 // Scanner for Cortex-A53 errata 843419
290 // Full details are available in the Cortex A53 MPCore revision 0 Software
291 // Developers Errata Notice (ARM-EPM-048406).
292 //
293 // The instruction sequence that triggers the erratum is common in compiled
294 // AArch64 code, however it is sensitive to the offset of the sequence within
295 // a 4k page. This means that by scanning and fixing the patch after we have
296 // assigned addresses we only need to disassemble and fix instances of the
297 // sequence in the range of affected offsets.
298 //
299 // In summary the erratum conditions are a series of 4 instructions:
300 // 1.) An ADRP instruction that writes to register Rn with low 12 bits of
301 //     address of instruction either 0xff8 or 0xffc.
302 // 2.) A load or store instruction that can be:
303 // - A single register load or store, of either integer or vector registers.
304 // - An STP or STNP, of either integer or vector registers.
305 // - An Advanced SIMD ST1 store instruction.
306 // - Must not write to Rn, but may optionally read from it.
307 // 3.) An optional instruction that is not a branch and does not write to Rn.
308 // 4.) A load or store from the  Load/store register (unsigned immediate) class
309 //     that uses Rn as the base address register.
310 //
311 // Note that we do not attempt to scan for Sequence 2 as described in the
312 // Software Developers Errata Notice as this has been assessed to be extremely
313 // unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
314 
315 // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
316 // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
317 // and 4.) in the Scanner for Cortex-A53 errata comment above.
is843419ErratumSequence(uint32_t instr1,uint32_t instr2,uint32_t instr4)318 static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2,
319                                     uint32_t instr4) {
320   if (!isADRP(instr1))
321     return false;
322 
323   uint32_t rn = getRt(instr1);
324   return isLoadStoreClass(instr2) &&
325          (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) ||
326           isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) ||
327           isSTNP(instr2) || isST1(instr2)) &&
328          !doesLoadStoreWriteToReg(instr2, rn) &&
329          isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn;
330 }
331 
332 // Scan the instruction sequence starting at Offset Off from the base of
333 // InputSection isec. We update Off in this function rather than in the caller
334 // as we can skip ahead much further into the section when we know how many
335 // instructions we've scanned.
336 // Return the offset of the load or store instruction in isec that we want to
337 // patch or 0 if no patch required.
scanCortexA53Errata843419(InputSection * isec,uint64_t & off,uint64_t limit)338 static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off,
339                                           uint64_t limit) {
340   uint64_t isecAddr = isec->getVA(0);
341 
342   // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8.
343   uint64_t initialPageOff = (isecAddr + off) & 0xfff;
344   if (initialPageOff < 0xff8)
345     off += 0xff8 - initialPageOff;
346 
347   bool optionalAllowed = limit - off > 12;
348   if (off >= limit || limit - off < 12) {
349     // Need at least 3 4-byte sized instructions to trigger erratum.
350     off = limit;
351     return 0;
352   }
353 
354   uint64_t patchOff = 0;
355   const uint8_t *buf = isec->data().begin();
356   const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off);
357   uint32_t instr1 = *instBuf++;
358   uint32_t instr2 = *instBuf++;
359   uint32_t instr3 = *instBuf++;
360   if (is843419ErratumSequence(instr1, instr2, instr3)) {
361     patchOff = off + 8;
362   } else if (optionalAllowed && !isBranch(instr3)) {
363     uint32_t instr4 = *instBuf++;
364     if (is843419ErratumSequence(instr1, instr2, instr4))
365       patchOff = off + 12;
366   }
367   if (((isecAddr + off) & 0xfff) == 0xff8)
368     off += 4;
369   else
370     off += 0xffc;
371   return patchOff;
372 }
373 
374 class Patch843419Section : public SyntheticSection {
375 public:
376   Patch843419Section(InputSection *p, uint64_t off);
377 
378   void writeTo(uint8_t *buf) override;
379 
getSize() const380   size_t getSize() const override { return 8; }
381 
382   uint64_t getLDSTAddr() const;
383 
classof(const SectionBase * d)384   static bool classof(const SectionBase *d) {
385     return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch";
386   }
387 
388   // The Section we are patching.
389   const InputSection *patchee;
390   // The offset of the instruction in the patchee section we are patching.
391   uint64_t patcheeOffset;
392   // A label for the start of the Patch that we can use as a relocation target.
393   Symbol *patchSym;
394 };
395 
Patch843419Section(InputSection * p,uint64_t off)396 Patch843419Section::Patch843419Section(InputSection *p, uint64_t off)
397     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
398                        ".text.patch"),
399       patchee(p), patcheeOffset(off) {
400   this->parent = p->getParent();
401   patchSym = addSyntheticLocal(
402       saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0,
403       getSize(), *this);
404   addSyntheticLocal(saver.save("$x"), STT_NOTYPE, 0, 0, *this);
405 }
406 
getLDSTAddr() const407 uint64_t Patch843419Section::getLDSTAddr() const {
408   return patchee->getVA(patcheeOffset);
409 }
410 
writeTo(uint8_t * buf)411 void Patch843419Section::writeTo(uint8_t *buf) {
412   // Copy the instruction that we will be replacing with a branch in the
413   // patchee Section.
414   write32le(buf, read32le(patchee->data().begin() + patcheeOffset));
415 
416   // Apply any relocation transferred from the original patchee section.
417   // For a SyntheticSection Buf already has outSecOff added, but relocateAlloc
418   // also adds outSecOff so we need to subtract to avoid double counting.
419   this->relocateAlloc(buf - outSecOff, buf - outSecOff + getSize());
420 
421   // Return address is the next instruction after the one we have just copied.
422   uint64_t s = getLDSTAddr() + 4;
423   uint64_t p = patchSym->getVA() + 4;
424   target->relocateOne(buf + 4, R_AARCH64_JUMP26, s - p);
425 }
426 
init()427 void AArch64Err843419Patcher::init() {
428   // The AArch64 ABI permits data in executable sections. We must avoid scanning
429   // this data as if it were instructions to avoid false matches. We use the
430   // mapping symbols in the InputObjects to identify this data, caching the
431   // results in sectionMap so we don't have to recalculate it each pass.
432 
433   // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
434   // half open intervals [Symbol Value, Next Symbol Value) of code and data
435   // within sections. If there is no next symbol then the half open interval is
436   // [Symbol Value, End of section). The type, code or data, is determined by
437   // the mapping symbol name, $x for code, $d for data.
438   auto isCodeMapSymbol = [](const Symbol *b) {
439     return b->getName() == "$x" || b->getName().startswith("$x.");
440   };
441   auto isDataMapSymbol = [](const Symbol *b) {
442     return b->getName() == "$d" || b->getName().startswith("$d.");
443   };
444 
445   // Collect mapping symbols for every executable InputSection.
446   for (InputFile *file : objectFiles) {
447     auto *f = cast<ObjFile<ELF64LE>>(file);
448     for (Symbol *b : f->getLocalSymbols()) {
449       auto *def = dyn_cast<Defined>(b);
450       if (!def)
451         continue;
452       if (!isCodeMapSymbol(def) && !isDataMapSymbol(def))
453         continue;
454       if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
455         if (sec->flags & SHF_EXECINSTR)
456           sectionMap[sec].push_back(def);
457     }
458   }
459   // For each InputSection make sure the mapping symbols are in sorted in
460   // ascending order and free from consecutive runs of mapping symbols with
461   // the same type. For example we must remove the redundant $d.1 from $x.0
462   // $d.0 $d.1 $x.1.
463   for (auto &kv : sectionMap) {
464     std::vector<const Defined *> &mapSyms = kv.second;
465     llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
466       return a->value < b->value;
467     });
468     mapSyms.erase(
469         std::unique(mapSyms.begin(), mapSyms.end(),
470                     [=](const Defined *a, const Defined *b) {
471                       return isCodeMapSymbol(a) == isCodeMapSymbol(b);
472                     }),
473         mapSyms.end());
474     // Always start with a Code Mapping Symbol.
475     if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front()))
476       mapSyms.erase(mapSyms.begin());
477   }
478   initialized = true;
479 }
480 
481 // Insert the PatchSections we have created back into the
482 // InputSectionDescription. As inserting patches alters the addresses of
483 // InputSections that follow them, we try and place the patches after all the
484 // executable sections, although we may need to insert them earlier if the
485 // InputSectionDescription is larger than the maximum branch range.
insertPatches(InputSectionDescription & isd,std::vector<Patch843419Section * > & patches)486 void AArch64Err843419Patcher::insertPatches(
487     InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) {
488   uint64_t isecLimit;
489   uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
490   uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
491   uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
492 
493   // Set the outSecOff of patches to the place where we want to insert them.
494   // We use a similar strategy to Thunk placement. Place patches roughly
495   // every multiple of maximum branch range.
496   auto patchIt = patches.begin();
497   auto patchEnd = patches.end();
498   for (const InputSection *isec : isd.sections) {
499     isecLimit = isec->outSecOff + isec->getSize();
500     if (isecLimit > patchUpperBound) {
501       while (patchIt != patchEnd) {
502         if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit)
503           break;
504         (*patchIt)->outSecOff = prevIsecLimit;
505         ++patchIt;
506       }
507       patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
508     }
509     prevIsecLimit = isecLimit;
510   }
511   for (; patchIt != patchEnd; ++patchIt) {
512     (*patchIt)->outSecOff = isecLimit;
513   }
514 
515   // Merge all patch sections. We use the outSecOff assigned above to
516   // determine the insertion point. This is ok as we only merge into an
517   // InputSectionDescription once per pass, and at the end of the pass
518   // assignAddresses() will recalculate all the outSecOff values.
519   std::vector<InputSection *> tmp;
520   tmp.reserve(isd.sections.size() + patches.size());
521   auto mergeCmp = [](const InputSection *a, const InputSection *b) {
522     if (a->outSecOff != b->outSecOff)
523       return a->outSecOff < b->outSecOff;
524     return isa<Patch843419Section>(a) && !isa<Patch843419Section>(b);
525   };
526   std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
527              patches.end(), std::back_inserter(tmp), mergeCmp);
528   isd.sections = std::move(tmp);
529 }
530 
531 // Given an erratum sequence that starts at address adrpAddr, with an
532 // instruction that we need to patch at patcheeOffset from the start of
533 // InputSection isec, create a Patch843419 Section and add it to the
534 // Patches that we need to insert.
implementPatch(uint64_t adrpAddr,uint64_t patcheeOffset,InputSection * isec,std::vector<Patch843419Section * > & patches)535 static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset,
536                            InputSection *isec,
537                            std::vector<Patch843419Section *> &patches) {
538   // There may be a relocation at the same offset that we are patching. There
539   // are four cases that we need to consider.
540   // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
541   // instance of the erratum on a previous patch and altered the relocation. We
542   // have nothing more to do.
543   // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that
544   // we read will be transformed into a MOVZ later so we actually don't match
545   // the sequence and have nothing more to do.
546   // Case 3: A load/store register (unsigned immediate) class relocation. There
547   // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
548   // they are both absolute. We need to add the same relocation to the patch,
549   // and replace the relocation with a R_AARCH_JUMP26 branch relocation.
550   // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch
551   // relocation at the offset.
552   auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
553     return r.offset == patcheeOffset;
554   });
555   if (relIt != isec->relocations.end() &&
556       (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE))
557     return;
558 
559   log("detected cortex-a53-843419 erratum sequence starting at " +
560       utohexstr(adrpAddr) + " in unpatched output.");
561 
562   auto *ps = make<Patch843419Section>(isec, patcheeOffset);
563   patches.push_back(ps);
564 
565   auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) {
566     return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym};
567   };
568 
569   if (relIt != isec->relocations.end()) {
570     ps->relocations.push_back(
571         {relIt->expr, relIt->type, 0, relIt->addend, relIt->sym});
572     *relIt = makeRelToPatch(patcheeOffset, ps->patchSym);
573   } else
574     isec->relocations.push_back(makeRelToPatch(patcheeOffset, ps->patchSym));
575 }
576 
577 // Scan all the instructions in InputSectionDescription, for each instance of
578 // the erratum sequence create a Patch843419Section. We return the list of
579 // Patch843419Sections that need to be applied to the InputSectionDescription.
580 std::vector<Patch843419Section *>
patchInputSectionDescription(InputSectionDescription & isd)581 AArch64Err843419Patcher::patchInputSectionDescription(
582     InputSectionDescription &isd) {
583   std::vector<Patch843419Section *> patches;
584   for (InputSection *isec : isd.sections) {
585     //  LLD doesn't use the erratum sequence in SyntheticSections.
586     if (isa<SyntheticSection>(isec))
587       continue;
588     // Use sectionMap to make sure we only scan code and not inline data.
589     // We have already sorted MapSyms in ascending order and removed consecutive
590     // mapping symbols of the same type. Our range of executable instructions to
591     // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value,
592     // section size).
593     std::vector<const Defined *> &mapSyms = sectionMap[isec];
594 
595     auto codeSym = mapSyms.begin();
596     while (codeSym != mapSyms.end()) {
597       auto dataSym = std::next(codeSym);
598       uint64_t off = (*codeSym)->value;
599       uint64_t limit =
600           (dataSym == mapSyms.end()) ? isec->data().size() : (*dataSym)->value;
601 
602       while (off < limit) {
603         uint64_t startAddr = isec->getVA(off);
604         if (uint64_t patcheeOffset =
605                 scanCortexA53Errata843419(isec, off, limit))
606           implementPatch(startAddr, patcheeOffset, isec, patches);
607       }
608       if (dataSym == mapSyms.end())
609         break;
610       codeSym = std::next(dataSym);
611     }
612   }
613   return patches;
614 }
615 
616 // For each InputSectionDescription make one pass over the executable sections
617 // looking for the erratum sequence; creating a synthetic Patch843419Section
618 // for each instance found. We insert these synthetic patch sections after the
619 // executable code in each InputSectionDescription.
620 //
621 // PreConditions:
622 // The Output and Input Sections have had their final addresses assigned.
623 //
624 // PostConditions:
625 // Returns true if at least one patch was added. The addresses of the
626 // Output and Input Sections may have been changed.
627 // Returns false if no patches were required and no changes were made.
createFixes()628 bool AArch64Err843419Patcher::createFixes() {
629   if (!initialized)
630     init();
631 
632   bool addressesChanged = false;
633   for (OutputSection *os : outputSections) {
634     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
635       continue;
636     for (BaseCommand *bc : os->sectionCommands)
637       if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
638         std::vector<Patch843419Section *> patches =
639             patchInputSectionDescription(*isd);
640         if (!patches.empty()) {
641           insertPatches(*isd, patches);
642           addressesChanged = true;
643         }
644       }
645   }
646   return addressesChanged;
647 }
648 } // namespace elf
649 } // namespace lld
650