1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/TypeSize.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <algorithm>
30 #include <cstdio>
31 #include <iterator>
32 #include <set>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "dag-patterns"
36 
isIntegerOrPtr(MVT VT)37 static inline bool isIntegerOrPtr(MVT VT) {
38   return VT.isInteger() || VT == MVT::iPTR;
39 }
isFloatingPoint(MVT VT)40 static inline bool isFloatingPoint(MVT VT) {
41   return VT.isFloatingPoint();
42 }
isVector(MVT VT)43 static inline bool isVector(MVT VT) {
44   return VT.isVector();
45 }
isScalar(MVT VT)46 static inline bool isScalar(MVT VT) {
47   return !VT.isVector();
48 }
49 
50 template <typename Predicate>
berase_if(MachineValueTypeSet & S,Predicate P)51 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52   bool Erased = false;
53   // It is ok to iterate over MachineValueTypeSet and remove elements from it
54   // at the same time.
55   for (MVT T : S) {
56     if (!P(T))
57       continue;
58     Erased = true;
59     S.erase(T);
60   }
61   return Erased;
62 }
63 
64 // --- TypeSetByHwMode
65 
66 // This is a parameterized type-set class. For each mode there is a list
67 // of types that are currently possible for a given tree node. Type
68 // inference will apply to each mode separately.
69 
TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList)70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71   for (const ValueTypeByHwMode &VVT : VTList) {
72     insert(VVT);
73     AddrSpaces.push_back(VVT.PtrAddrSpace);
74   }
75 }
76 
isValueTypeByHwMode(bool AllowEmpty) const77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
78   for (const auto &I : *this) {
79     if (I.second.size() > 1)
80       return false;
81     if (!AllowEmpty && I.second.empty())
82       return false;
83   }
84   return true;
85 }
86 
getValueTypeByHwMode() const87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
88   assert(isValueTypeByHwMode(true) &&
89          "The type set has multiple types for at least one HW mode");
90   ValueTypeByHwMode VVT;
91   auto ASI = AddrSpaces.begin();
92 
93   for (const auto &I : *this) {
94     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
95     VVT.getOrCreateTypeForMode(I.first, T);
96     if (ASI != AddrSpaces.end())
97       VVT.PtrAddrSpace = *ASI++;
98   }
99   return VVT;
100 }
101 
isPossible() const102 bool TypeSetByHwMode::isPossible() const {
103   for (const auto &I : *this)
104     if (!I.second.empty())
105       return true;
106   return false;
107 }
108 
insert(const ValueTypeByHwMode & VVT)109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
110   bool Changed = false;
111   bool ContainsDefault = false;
112   MVT DT = MVT::Other;
113 
114   SmallDenseSet<unsigned, 4> Modes;
115   for (const auto &P : VVT) {
116     unsigned M = P.first;
117     Modes.insert(M);
118     // Make sure there exists a set for each specific mode from VVT.
119     Changed |= getOrCreate(M).insert(P.second).second;
120     // Cache VVT's default mode.
121     if (DefaultMode == M) {
122       ContainsDefault = true;
123       DT = P.second;
124     }
125   }
126 
127   // If VVT has a default mode, add the corresponding type to all
128   // modes in "this" that do not exist in VVT.
129   if (ContainsDefault)
130     for (auto &I : *this)
131       if (!Modes.count(I.first))
132         Changed |= I.second.insert(DT).second;
133 
134   return Changed;
135 }
136 
137 // Constrain the type set to be the intersection with VTS.
constrain(const TypeSetByHwMode & VTS)138 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
139   bool Changed = false;
140   if (hasDefault()) {
141     for (const auto &I : VTS) {
142       unsigned M = I.first;
143       if (M == DefaultMode || hasMode(M))
144         continue;
145       Map.insert({M, Map.at(DefaultMode)});
146       Changed = true;
147     }
148   }
149 
150   for (auto &I : *this) {
151     unsigned M = I.first;
152     SetType &S = I.second;
153     if (VTS.hasMode(M) || VTS.hasDefault()) {
154       Changed |= intersect(I.second, VTS.get(M));
155     } else if (!S.empty()) {
156       S.clear();
157       Changed = true;
158     }
159   }
160   return Changed;
161 }
162 
163 template <typename Predicate>
constrain(Predicate P)164 bool TypeSetByHwMode::constrain(Predicate P) {
165   bool Changed = false;
166   for (auto &I : *this)
167     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
168   return Changed;
169 }
170 
171 template <typename Predicate>
assign_if(const TypeSetByHwMode & VTS,Predicate P)172 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
173   assert(empty());
174   for (const auto &I : VTS) {
175     SetType &S = getOrCreate(I.first);
176     for (auto J : I.second)
177       if (P(J))
178         S.insert(J);
179   }
180   return !empty();
181 }
182 
writeToStream(raw_ostream & OS) const183 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
184   SmallVector<unsigned, 4> Modes;
185   Modes.reserve(Map.size());
186 
187   for (const auto &I : *this)
188     Modes.push_back(I.first);
189   if (Modes.empty()) {
190     OS << "{}";
191     return;
192   }
193   array_pod_sort(Modes.begin(), Modes.end());
194 
195   OS << '{';
196   for (unsigned M : Modes) {
197     OS << ' ' << getModeName(M) << ':';
198     writeToStream(get(M), OS);
199   }
200   OS << " }";
201 }
202 
writeToStream(const SetType & S,raw_ostream & OS)203 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
204   SmallVector<MVT, 4> Types(S.begin(), S.end());
205   array_pod_sort(Types.begin(), Types.end());
206 
207   OS << '[';
208   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
209     OS << ValueTypeByHwMode::getMVTName(Types[i]);
210     if (i != e-1)
211       OS << ' ';
212   }
213   OS << ']';
214 }
215 
operator ==(const TypeSetByHwMode & VTS) const216 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
217   // The isSimple call is much quicker than hasDefault - check this first.
218   bool IsSimple = isSimple();
219   bool VTSIsSimple = VTS.isSimple();
220   if (IsSimple && VTSIsSimple)
221     return *begin() == *VTS.begin();
222 
223   // Speedup: We have a default if the set is simple.
224   bool HaveDefault = IsSimple || hasDefault();
225   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
226   if (HaveDefault != VTSHaveDefault)
227     return false;
228 
229   SmallDenseSet<unsigned, 4> Modes;
230   for (auto &I : *this)
231     Modes.insert(I.first);
232   for (const auto &I : VTS)
233     Modes.insert(I.first);
234 
235   if (HaveDefault) {
236     // Both sets have default mode.
237     for (unsigned M : Modes) {
238       if (get(M) != VTS.get(M))
239         return false;
240     }
241   } else {
242     // Neither set has default mode.
243     for (unsigned M : Modes) {
244       // If there is no default mode, an empty set is equivalent to not having
245       // the corresponding mode.
246       bool NoModeThis = !hasMode(M) || get(M).empty();
247       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
248       if (NoModeThis != NoModeVTS)
249         return false;
250       if (!NoModeThis)
251         if (get(M) != VTS.get(M))
252           return false;
253     }
254   }
255 
256   return true;
257 }
258 
259 namespace llvm {
operator <<(raw_ostream & OS,const TypeSetByHwMode & T)260   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
261     T.writeToStream(OS);
262     return OS;
263   }
264 }
265 
266 LLVM_DUMP_METHOD
dump() const267 void TypeSetByHwMode::dump() const {
268   dbgs() << *this << '\n';
269 }
270 
intersect(SetType & Out,const SetType & In)271 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
272   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
273   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
274 
275   if (OutP == InP)
276     return berase_if(Out, Int);
277 
278   // Compute the intersection of scalars separately to account for only
279   // one set containing iPTR.
280   // The itersection of iPTR with a set of integer scalar types that does not
281   // include iPTR will result in the most specific scalar type:
282   // - iPTR is more specific than any set with two elements or more
283   // - iPTR is less specific than any single integer scalar type.
284   // For example
285   // { iPTR } * { i32 }     -> { i32 }
286   // { iPTR } * { i32 i64 } -> { iPTR }
287   // and
288   // { iPTR i32 } * { i32 }          -> { i32 }
289   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
290   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
291 
292   // Compute the difference between the two sets in such a way that the
293   // iPTR is in the set that is being subtracted. This is to see if there
294   // are any extra scalars in the set without iPTR that are not in the
295   // set containing iPTR. Then the iPTR could be considered a "wildcard"
296   // matching these scalars. If there is only one such scalar, it would
297   // replace the iPTR, if there are more, the iPTR would be retained.
298   SetType Diff;
299   if (InP) {
300     Diff = Out;
301     berase_if(Diff, [&In](MVT T) { return In.count(T); });
302     // Pre-remove these elements and rely only on InP/OutP to determine
303     // whether a change has been made.
304     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
305   } else {
306     Diff = In;
307     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
308     Out.erase(MVT::iPTR);
309   }
310 
311   // The actual intersection.
312   bool Changed = berase_if(Out, Int);
313   unsigned NumD = Diff.size();
314   if (NumD == 0)
315     return Changed;
316 
317   if (NumD == 1) {
318     Out.insert(*Diff.begin());
319     // This is a change only if Out was the one with iPTR (which is now
320     // being replaced).
321     Changed |= OutP;
322   } else {
323     // Multiple elements from Out are now replaced with iPTR.
324     Out.insert(MVT::iPTR);
325     Changed |= !OutP;
326   }
327   return Changed;
328 }
329 
validate() const330 bool TypeSetByHwMode::validate() const {
331 #ifndef NDEBUG
332   if (empty())
333     return true;
334   bool AllEmpty = true;
335   for (const auto &I : *this)
336     AllEmpty &= I.second.empty();
337   return !AllEmpty;
338 #endif
339   return true;
340 }
341 
342 // --- TypeInfer
343 
MergeInTypeInfo(TypeSetByHwMode & Out,const TypeSetByHwMode & In)344 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
345                                 const TypeSetByHwMode &In) {
346   ValidateOnExit _1(Out, *this);
347   In.validate();
348   if (In.empty() || Out == In || TP.hasError())
349     return false;
350   if (Out.empty()) {
351     Out = In;
352     return true;
353   }
354 
355   bool Changed = Out.constrain(In);
356   if (Changed && Out.empty())
357     TP.error("Type contradiction");
358 
359   return Changed;
360 }
361 
forceArbitrary(TypeSetByHwMode & Out)362 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
363   ValidateOnExit _1(Out, *this);
364   if (TP.hasError())
365     return false;
366   assert(!Out.empty() && "cannot pick from an empty set");
367 
368   bool Changed = false;
369   for (auto &I : Out) {
370     TypeSetByHwMode::SetType &S = I.second;
371     if (S.size() <= 1)
372       continue;
373     MVT T = *S.begin(); // Pick the first element.
374     S.clear();
375     S.insert(T);
376     Changed = true;
377   }
378   return Changed;
379 }
380 
EnforceInteger(TypeSetByHwMode & Out)381 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
382   ValidateOnExit _1(Out, *this);
383   if (TP.hasError())
384     return false;
385   if (!Out.empty())
386     return Out.constrain(isIntegerOrPtr);
387 
388   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
389 }
390 
EnforceFloatingPoint(TypeSetByHwMode & Out)391 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
392   ValidateOnExit _1(Out, *this);
393   if (TP.hasError())
394     return false;
395   if (!Out.empty())
396     return Out.constrain(isFloatingPoint);
397 
398   return Out.assign_if(getLegalTypes(), isFloatingPoint);
399 }
400 
EnforceScalar(TypeSetByHwMode & Out)401 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
402   ValidateOnExit _1(Out, *this);
403   if (TP.hasError())
404     return false;
405   if (!Out.empty())
406     return Out.constrain(isScalar);
407 
408   return Out.assign_if(getLegalTypes(), isScalar);
409 }
410 
EnforceVector(TypeSetByHwMode & Out)411 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
412   ValidateOnExit _1(Out, *this);
413   if (TP.hasError())
414     return false;
415   if (!Out.empty())
416     return Out.constrain(isVector);
417 
418   return Out.assign_if(getLegalTypes(), isVector);
419 }
420 
EnforceAny(TypeSetByHwMode & Out)421 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
422   ValidateOnExit _1(Out, *this);
423   if (TP.hasError() || !Out.empty())
424     return false;
425 
426   Out = getLegalTypes();
427   return true;
428 }
429 
430 template <typename Iter, typename Pred, typename Less>
min_if(Iter B,Iter E,Pred P,Less L)431 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
432   if (B == E)
433     return E;
434   Iter Min = E;
435   for (Iter I = B; I != E; ++I) {
436     if (!P(*I))
437       continue;
438     if (Min == E || L(*I, *Min))
439       Min = I;
440   }
441   return Min;
442 }
443 
444 template <typename Iter, typename Pred, typename Less>
max_if(Iter B,Iter E,Pred P,Less L)445 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
446   if (B == E)
447     return E;
448   Iter Max = E;
449   for (Iter I = B; I != E; ++I) {
450     if (!P(*I))
451       continue;
452     if (Max == E || L(*Max, *I))
453       Max = I;
454   }
455   return Max;
456 }
457 
458 /// Make sure that for each type in Small, there exists a larger type in Big.
EnforceSmallerThan(TypeSetByHwMode & Small,TypeSetByHwMode & Big)459 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
460                                    TypeSetByHwMode &Big) {
461   ValidateOnExit _1(Small, *this), _2(Big, *this);
462   if (TP.hasError())
463     return false;
464   bool Changed = false;
465 
466   if (Small.empty())
467     Changed |= EnforceAny(Small);
468   if (Big.empty())
469     Changed |= EnforceAny(Big);
470 
471   assert(Small.hasDefault() && Big.hasDefault());
472 
473   std::vector<unsigned> Modes = union_modes(Small, Big);
474 
475   // 1. Only allow integer or floating point types and make sure that
476   //    both sides are both integer or both floating point.
477   // 2. Make sure that either both sides have vector types, or neither
478   //    of them does.
479   for (unsigned M : Modes) {
480     TypeSetByHwMode::SetType &S = Small.get(M);
481     TypeSetByHwMode::SetType &B = Big.get(M);
482 
483     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
484       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
485       Changed |= berase_if(S, NotInt);
486       Changed |= berase_if(B, NotInt);
487     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
488       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
489       Changed |= berase_if(S, NotFP);
490       Changed |= berase_if(B, NotFP);
491     } else if (S.empty() || B.empty()) {
492       Changed = !S.empty() || !B.empty();
493       S.clear();
494       B.clear();
495     } else {
496       TP.error("Incompatible types");
497       return Changed;
498     }
499 
500     if (none_of(S, isVector) || none_of(B, isVector)) {
501       Changed |= berase_if(S, isVector);
502       Changed |= berase_if(B, isVector);
503     }
504   }
505 
506   auto LT = [](MVT A, MVT B) -> bool {
507     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
508     // purposes of ordering.
509     auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
510                                  A.getSizeInBits());
511     auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
512                                  B.getSizeInBits());
513     return ASize < BSize;
514   };
515   auto SameKindLE = [](MVT A, MVT B) -> bool {
516     // This function is used when removing elements: when a vector is compared
517     // to a non-vector or a scalable vector to any non-scalable MVT, it should
518     // return false (to avoid removal).
519     if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
520         std::make_tuple(B.isVector(), B.isScalableVector()))
521       return false;
522 
523     return std::make_tuple(A.getScalarSizeInBits(), A.getSizeInBits()) <=
524            std::make_tuple(B.getScalarSizeInBits(), B.getSizeInBits());
525   };
526 
527   for (unsigned M : Modes) {
528     TypeSetByHwMode::SetType &S = Small.get(M);
529     TypeSetByHwMode::SetType &B = Big.get(M);
530     // MinS = min scalar in Small, remove all scalars from Big that are
531     // smaller-or-equal than MinS.
532     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
533     if (MinS != S.end())
534       Changed |= berase_if(B, std::bind(SameKindLE,
535                                         std::placeholders::_1, *MinS));
536 
537     // MaxS = max scalar in Big, remove all scalars from Small that are
538     // larger than MaxS.
539     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
540     if (MaxS != B.end())
541       Changed |= berase_if(S, std::bind(SameKindLE,
542                                         *MaxS, std::placeholders::_1));
543 
544     // MinV = min vector in Small, remove all vectors from Big that are
545     // smaller-or-equal than MinV.
546     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
547     if (MinV != S.end())
548       Changed |= berase_if(B, std::bind(SameKindLE,
549                                         std::placeholders::_1, *MinV));
550 
551     // MaxV = max vector in Big, remove all vectors from Small that are
552     // larger than MaxV.
553     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
554     if (MaxV != B.end())
555       Changed |= berase_if(S, std::bind(SameKindLE,
556                                         *MaxV, std::placeholders::_1));
557   }
558 
559   return Changed;
560 }
561 
562 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
563 ///    for each type U in Elem, U is a scalar type.
564 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
565 ///    type T in Vec, such that U is the element type of T.
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Elem)566 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
567                                        TypeSetByHwMode &Elem) {
568   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
569   if (TP.hasError())
570     return false;
571   bool Changed = false;
572 
573   if (Vec.empty())
574     Changed |= EnforceVector(Vec);
575   if (Elem.empty())
576     Changed |= EnforceScalar(Elem);
577 
578   for (unsigned M : union_modes(Vec, Elem)) {
579     TypeSetByHwMode::SetType &V = Vec.get(M);
580     TypeSetByHwMode::SetType &E = Elem.get(M);
581 
582     Changed |= berase_if(V, isScalar);  // Scalar = !vector
583     Changed |= berase_if(E, isVector);  // Vector = !scalar
584     assert(!V.empty() && !E.empty());
585 
586     SmallSet<MVT,4> VT, ST;
587     // Collect element types from the "vector" set.
588     for (MVT T : V)
589       VT.insert(T.getVectorElementType());
590     // Collect scalar types from the "element" set.
591     for (MVT T : E)
592       ST.insert(T);
593 
594     // Remove from V all (vector) types whose element type is not in S.
595     Changed |= berase_if(V, [&ST](MVT T) -> bool {
596                               return !ST.count(T.getVectorElementType());
597                             });
598     // Remove from E all (scalar) types, for which there is no corresponding
599     // type in V.
600     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
601   }
602 
603   return Changed;
604 }
605 
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,const ValueTypeByHwMode & VVT)606 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
607                                        const ValueTypeByHwMode &VVT) {
608   TypeSetByHwMode Tmp(VVT);
609   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
610   return EnforceVectorEltTypeIs(Vec, Tmp);
611 }
612 
613 /// Ensure that for each type T in Sub, T is a vector type, and there
614 /// exists a type U in Vec such that U is a vector type with the same
615 /// element type as T and at least as many elements as T.
EnforceVectorSubVectorTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Sub)616 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
617                                              TypeSetByHwMode &Sub) {
618   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
619   if (TP.hasError())
620     return false;
621 
622   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
623   auto IsSubVec = [](MVT B, MVT P) -> bool {
624     if (!B.isVector() || !P.isVector())
625       return false;
626     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
627     // but until there are obvious use-cases for this, keep the
628     // types separate.
629     if (B.isScalableVector() != P.isScalableVector())
630       return false;
631     if (B.getVectorElementType() != P.getVectorElementType())
632       return false;
633     return B.getVectorNumElements() < P.getVectorNumElements();
634   };
635 
636   /// Return true if S has no element (vector type) that T is a sub-vector of,
637   /// i.e. has the same element type as T and more elements.
638   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
639     for (auto I : S)
640       if (IsSubVec(T, I))
641         return false;
642     return true;
643   };
644 
645   /// Return true if S has no element (vector type) that T is a super-vector
646   /// of, i.e. has the same element type as T and fewer elements.
647   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
648     for (auto I : S)
649       if (IsSubVec(I, T))
650         return false;
651     return true;
652   };
653 
654   bool Changed = false;
655 
656   if (Vec.empty())
657     Changed |= EnforceVector(Vec);
658   if (Sub.empty())
659     Changed |= EnforceVector(Sub);
660 
661   for (unsigned M : union_modes(Vec, Sub)) {
662     TypeSetByHwMode::SetType &S = Sub.get(M);
663     TypeSetByHwMode::SetType &V = Vec.get(M);
664 
665     Changed |= berase_if(S, isScalar);
666 
667     // Erase all types from S that are not sub-vectors of a type in V.
668     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
669 
670     // Erase all types from V that are not super-vectors of a type in S.
671     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
672   }
673 
674   return Changed;
675 }
676 
677 /// 1. Ensure that V has a scalar type iff W has a scalar type.
678 /// 2. Ensure that for each vector type T in V, there exists a vector
679 ///    type U in W, such that T and U have the same number of elements.
680 /// 3. Ensure that for each vector type U in W, there exists a vector
681 ///    type T in V, such that T and U have the same number of elements
682 ///    (reverse of 2).
EnforceSameNumElts(TypeSetByHwMode & V,TypeSetByHwMode & W)683 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
684   ValidateOnExit _1(V, *this), _2(W, *this);
685   if (TP.hasError())
686     return false;
687 
688   bool Changed = false;
689   if (V.empty())
690     Changed |= EnforceAny(V);
691   if (W.empty())
692     Changed |= EnforceAny(W);
693 
694   // An actual vector type cannot have 0 elements, so we can treat scalars
695   // as zero-length vectors. This way both vectors and scalars can be
696   // processed identically.
697   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
698     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
699   };
700 
701   for (unsigned M : union_modes(V, W)) {
702     TypeSetByHwMode::SetType &VS = V.get(M);
703     TypeSetByHwMode::SetType &WS = W.get(M);
704 
705     SmallSet<unsigned,2> VN, WN;
706     for (MVT T : VS)
707       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
708     for (MVT T : WS)
709       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
710 
711     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
712     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
713   }
714   return Changed;
715 }
716 
717 /// 1. Ensure that for each type T in A, there exists a type U in B,
718 ///    such that T and U have equal size in bits.
719 /// 2. Ensure that for each type U in B, there exists a type T in A
720 ///    such that T and U have equal size in bits (reverse of 1).
EnforceSameSize(TypeSetByHwMode & A,TypeSetByHwMode & B)721 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
722   ValidateOnExit _1(A, *this), _2(B, *this);
723   if (TP.hasError())
724     return false;
725   bool Changed = false;
726   if (A.empty())
727     Changed |= EnforceAny(A);
728   if (B.empty())
729     Changed |= EnforceAny(B);
730 
731   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
732     return !Sizes.count(T.getSizeInBits());
733   };
734 
735   for (unsigned M : union_modes(A, B)) {
736     TypeSetByHwMode::SetType &AS = A.get(M);
737     TypeSetByHwMode::SetType &BS = B.get(M);
738     SmallSet<unsigned,2> AN, BN;
739 
740     for (MVT T : AS)
741       AN.insert(T.getSizeInBits());
742     for (MVT T : BS)
743       BN.insert(T.getSizeInBits());
744 
745     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
746     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
747   }
748 
749   return Changed;
750 }
751 
expandOverloads(TypeSetByHwMode & VTS)752 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
753   ValidateOnExit _1(VTS, *this);
754   const TypeSetByHwMode &Legal = getLegalTypes();
755   assert(Legal.isDefaultOnly() && "Default-mode only expected");
756   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
757 
758   for (auto &I : VTS)
759     expandOverloads(I.second, LegalTypes);
760 }
761 
expandOverloads(TypeSetByHwMode::SetType & Out,const TypeSetByHwMode::SetType & Legal)762 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
763                                 const TypeSetByHwMode::SetType &Legal) {
764   std::set<MVT> Ovs;
765   for (MVT T : Out) {
766     if (!T.isOverloaded())
767       continue;
768 
769     Ovs.insert(T);
770     // MachineValueTypeSet allows iteration and erasing.
771     Out.erase(T);
772   }
773 
774   for (MVT Ov : Ovs) {
775     switch (Ov.SimpleTy) {
776       case MVT::iPTRAny:
777         Out.insert(MVT::iPTR);
778         return;
779       case MVT::iAny:
780         for (MVT T : MVT::integer_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
784           if (Legal.count(T))
785             Out.insert(T);
786         for (MVT T : MVT::integer_scalable_vector_valuetypes())
787           if (Legal.count(T))
788             Out.insert(T);
789         return;
790       case MVT::fAny:
791         for (MVT T : MVT::fp_valuetypes())
792           if (Legal.count(T))
793             Out.insert(T);
794         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
795           if (Legal.count(T))
796             Out.insert(T);
797         for (MVT T : MVT::fp_scalable_vector_valuetypes())
798           if (Legal.count(T))
799             Out.insert(T);
800         return;
801       case MVT::vAny:
802         for (MVT T : MVT::vector_valuetypes())
803           if (Legal.count(T))
804             Out.insert(T);
805         return;
806       case MVT::Any:
807         for (MVT T : MVT::all_valuetypes())
808           if (Legal.count(T))
809             Out.insert(T);
810         return;
811       default:
812         break;
813     }
814   }
815 }
816 
getLegalTypes()817 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
818   if (!LegalTypesCached) {
819     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
820     // Stuff all types from all modes into the default mode.
821     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
822     for (const auto &I : LTS)
823       LegalTypes.insert(I.second);
824     LegalTypesCached = true;
825   }
826   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
827   return LegalCache;
828 }
829 
830 #ifndef NDEBUG
~ValidateOnExit()831 TypeInfer::ValidateOnExit::~ValidateOnExit() {
832   if (Infer.Validate && !VTS.validate()) {
833     dbgs() << "Type set is empty for each HW mode:\n"
834               "possible type contradiction in the pattern below "
835               "(use -print-records with llvm-tblgen to see all "
836               "expanded records).\n";
837     Infer.TP.dump();
838     llvm_unreachable(nullptr);
839   }
840 }
841 #endif
842 
843 
844 //===----------------------------------------------------------------------===//
845 // ScopedName Implementation
846 //===----------------------------------------------------------------------===//
847 
operator ==(const ScopedName & o) const848 bool ScopedName::operator==(const ScopedName &o) const {
849   return Scope == o.Scope && Identifier == o.Identifier;
850 }
851 
operator !=(const ScopedName & o) const852 bool ScopedName::operator!=(const ScopedName &o) const {
853   return !(*this == o);
854 }
855 
856 
857 //===----------------------------------------------------------------------===//
858 // TreePredicateFn Implementation
859 //===----------------------------------------------------------------------===//
860 
861 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)862 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
863   assert(
864       (!hasPredCode() || !hasImmCode()) &&
865       ".td file corrupt: can't have a node predicate *and* an imm predicate");
866 }
867 
hasPredCode() const868 bool TreePredicateFn::hasPredCode() const {
869   return isLoad() || isStore() || isAtomic() ||
870          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
871 }
872 
getPredCode() const873 std::string TreePredicateFn::getPredCode() const {
874   std::string Code = "";
875 
876   if (!isLoad() && !isStore() && !isAtomic()) {
877     Record *MemoryVT = getMemoryVT();
878 
879     if (MemoryVT)
880       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881                       "MemoryVT requires IsLoad or IsStore");
882   }
883 
884   if (!isLoad() && !isStore()) {
885     if (isUnindexed())
886       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
887                       "IsUnindexed requires IsLoad or IsStore");
888 
889     Record *ScalarMemoryVT = getScalarMemoryVT();
890 
891     if (ScalarMemoryVT)
892       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
893                       "ScalarMemoryVT requires IsLoad or IsStore");
894   }
895 
896   if (isLoad() + isStore() + isAtomic() > 1)
897     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
899 
900   if (isLoad()) {
901     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
902         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
903         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
904         getMinAlignment() < 1)
905       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
906                       "IsLoad cannot be used by itself");
907   } else {
908     if (isNonExtLoad())
909       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                       "IsNonExtLoad requires IsLoad");
911     if (isAnyExtLoad())
912       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
913                       "IsAnyExtLoad requires IsLoad");
914     if (isSignExtLoad())
915       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916                       "IsSignExtLoad requires IsLoad");
917     if (isZeroExtLoad())
918       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
919                       "IsZeroExtLoad requires IsLoad");
920   }
921 
922   if (isStore()) {
923     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
924         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
925         getAddressSpaces() == nullptr && getMinAlignment() < 1)
926       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
927                       "IsStore cannot be used by itself");
928   } else {
929     if (isNonTruncStore())
930       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931                       "IsNonTruncStore requires IsStore");
932     if (isTruncStore())
933       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934                       "IsTruncStore requires IsStore");
935   }
936 
937   if (isAtomic()) {
938     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
939         getAddressSpaces() == nullptr &&
940         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
941         !isAtomicOrderingAcquireRelease() &&
942         !isAtomicOrderingSequentiallyConsistent() &&
943         !isAtomicOrderingAcquireOrStronger() &&
944         !isAtomicOrderingReleaseOrStronger() &&
945         !isAtomicOrderingWeakerThanAcquire() &&
946         !isAtomicOrderingWeakerThanRelease())
947       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
948                       "IsAtomic cannot be used by itself");
949   } else {
950     if (isAtomicOrderingMonotonic())
951       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                       "IsAtomicOrderingMonotonic requires IsAtomic");
953     if (isAtomicOrderingAcquire())
954       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                       "IsAtomicOrderingAcquire requires IsAtomic");
956     if (isAtomicOrderingRelease())
957       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958                       "IsAtomicOrderingRelease requires IsAtomic");
959     if (isAtomicOrderingAcquireRelease())
960       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
961                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
962     if (isAtomicOrderingSequentiallyConsistent())
963       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
964                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
965     if (isAtomicOrderingAcquireOrStronger())
966       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
968     if (isAtomicOrderingReleaseOrStronger())
969       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
970                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
971     if (isAtomicOrderingWeakerThanAcquire())
972       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
973                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
974   }
975 
976   if (isLoad() || isStore() || isAtomic()) {
977     if (ListInit *AddressSpaces = getAddressSpaces()) {
978       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
979         " if (";
980 
981       bool First = true;
982       for (Init *Val : AddressSpaces->getValues()) {
983         if (First)
984           First = false;
985         else
986           Code += " && ";
987 
988         IntInit *IntVal = dyn_cast<IntInit>(Val);
989         if (!IntVal) {
990           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
991                           "AddressSpaces element must be integer");
992         }
993 
994         Code += "AddrSpace != " + utostr(IntVal->getValue());
995       }
996 
997       Code += ")\nreturn false;\n";
998     }
999 
1000     int64_t MinAlign = getMinAlignment();
1001     if (MinAlign > 0) {
1002       Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
1003       Code += utostr(MinAlign);
1004       Code += ")\nreturn false;\n";
1005     }
1006 
1007     Record *MemoryVT = getMemoryVT();
1008 
1009     if (MemoryVT)
1010       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1011                MemoryVT->getName() + ") return false;\n")
1012                   .str();
1013   }
1014 
1015   if (isAtomic() && isAtomicOrderingMonotonic())
1016     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1017             "AtomicOrdering::Monotonic) return false;\n";
1018   if (isAtomic() && isAtomicOrderingAcquire())
1019     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1020             "AtomicOrdering::Acquire) return false;\n";
1021   if (isAtomic() && isAtomicOrderingRelease())
1022     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1023             "AtomicOrdering::Release) return false;\n";
1024   if (isAtomic() && isAtomicOrderingAcquireRelease())
1025     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1026             "AtomicOrdering::AcquireRelease) return false;\n";
1027   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1028     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1029             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1030 
1031   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1032     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1033             "return false;\n";
1034   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1035     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1036             "return false;\n";
1037 
1038   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1039     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1040             "return false;\n";
1041   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1042     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1043             "return false;\n";
1044 
1045   if (isLoad() || isStore()) {
1046     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1047 
1048     if (isUnindexed())
1049       Code += ("if (cast<" + SDNodeName +
1050                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1051                "return false;\n")
1052                   .str();
1053 
1054     if (isLoad()) {
1055       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1056            isZeroExtLoad()) > 1)
1057         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1058                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1059                         "IsZeroExtLoad are mutually exclusive");
1060       if (isNonExtLoad())
1061         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1062                 "ISD::NON_EXTLOAD) return false;\n";
1063       if (isAnyExtLoad())
1064         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1065                 "return false;\n";
1066       if (isSignExtLoad())
1067         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1068                 "return false;\n";
1069       if (isZeroExtLoad())
1070         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1071                 "return false;\n";
1072     } else {
1073       if ((isNonTruncStore() + isTruncStore()) > 1)
1074         PrintFatalError(
1075             getOrigPatFragRecord()->getRecord()->getLoc(),
1076             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1077       if (isNonTruncStore())
1078         Code +=
1079             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1080       if (isTruncStore())
1081         Code +=
1082             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1083     }
1084 
1085     Record *ScalarMemoryVT = getScalarMemoryVT();
1086 
1087     if (ScalarMemoryVT)
1088       Code += ("if (cast<" + SDNodeName +
1089                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1090                ScalarMemoryVT->getName() + ") return false;\n")
1091                   .str();
1092   }
1093 
1094   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1095 
1096   Code += PredicateCode;
1097 
1098   if (PredicateCode.empty() && !Code.empty())
1099     Code += "return true;\n";
1100 
1101   return Code;
1102 }
1103 
hasImmCode() const1104 bool TreePredicateFn::hasImmCode() const {
1105   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1106 }
1107 
getImmCode() const1108 std::string TreePredicateFn::getImmCode() const {
1109   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1110 }
1111 
immCodeUsesAPInt() const1112 bool TreePredicateFn::immCodeUsesAPInt() const {
1113   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1114 }
1115 
immCodeUsesAPFloat() const1116 bool TreePredicateFn::immCodeUsesAPFloat() const {
1117   bool Unset;
1118   // The return value will be false when IsAPFloat is unset.
1119   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1120                                                                    Unset);
1121 }
1122 
isPredefinedPredicateEqualTo(StringRef Field,bool Value) const1123 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1124                                                    bool Value) const {
1125   bool Unset;
1126   bool Result =
1127       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1128   if (Unset)
1129     return false;
1130   return Result == Value;
1131 }
usesOperands() const1132 bool TreePredicateFn::usesOperands() const {
1133   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1134 }
isLoad() const1135 bool TreePredicateFn::isLoad() const {
1136   return isPredefinedPredicateEqualTo("IsLoad", true);
1137 }
isStore() const1138 bool TreePredicateFn::isStore() const {
1139   return isPredefinedPredicateEqualTo("IsStore", true);
1140 }
isAtomic() const1141 bool TreePredicateFn::isAtomic() const {
1142   return isPredefinedPredicateEqualTo("IsAtomic", true);
1143 }
isUnindexed() const1144 bool TreePredicateFn::isUnindexed() const {
1145   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1146 }
isNonExtLoad() const1147 bool TreePredicateFn::isNonExtLoad() const {
1148   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1149 }
isAnyExtLoad() const1150 bool TreePredicateFn::isAnyExtLoad() const {
1151   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1152 }
isSignExtLoad() const1153 bool TreePredicateFn::isSignExtLoad() const {
1154   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1155 }
isZeroExtLoad() const1156 bool TreePredicateFn::isZeroExtLoad() const {
1157   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1158 }
isNonTruncStore() const1159 bool TreePredicateFn::isNonTruncStore() const {
1160   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1161 }
isTruncStore() const1162 bool TreePredicateFn::isTruncStore() const {
1163   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1164 }
isAtomicOrderingMonotonic() const1165 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1166   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1167 }
isAtomicOrderingAcquire() const1168 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1169   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1170 }
isAtomicOrderingRelease() const1171 bool TreePredicateFn::isAtomicOrderingRelease() const {
1172   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1173 }
isAtomicOrderingAcquireRelease() const1174 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1175   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1176 }
isAtomicOrderingSequentiallyConsistent() const1177 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1178   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1179                                       true);
1180 }
isAtomicOrderingAcquireOrStronger() const1181 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1182   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1183 }
isAtomicOrderingWeakerThanAcquire() const1184 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1185   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1186 }
isAtomicOrderingReleaseOrStronger() const1187 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1188   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1189 }
isAtomicOrderingWeakerThanRelease() const1190 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1191   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1192 }
getMemoryVT() const1193 Record *TreePredicateFn::getMemoryVT() const {
1194   Record *R = getOrigPatFragRecord()->getRecord();
1195   if (R->isValueUnset("MemoryVT"))
1196     return nullptr;
1197   return R->getValueAsDef("MemoryVT");
1198 }
1199 
getAddressSpaces() const1200 ListInit *TreePredicateFn::getAddressSpaces() const {
1201   Record *R = getOrigPatFragRecord()->getRecord();
1202   if (R->isValueUnset("AddressSpaces"))
1203     return nullptr;
1204   return R->getValueAsListInit("AddressSpaces");
1205 }
1206 
getMinAlignment() const1207 int64_t TreePredicateFn::getMinAlignment() const {
1208   Record *R = getOrigPatFragRecord()->getRecord();
1209   if (R->isValueUnset("MinAlignment"))
1210     return 0;
1211   return R->getValueAsInt("MinAlignment");
1212 }
1213 
getScalarMemoryVT() const1214 Record *TreePredicateFn::getScalarMemoryVT() const {
1215   Record *R = getOrigPatFragRecord()->getRecord();
1216   if (R->isValueUnset("ScalarMemoryVT"))
1217     return nullptr;
1218   return R->getValueAsDef("ScalarMemoryVT");
1219 }
hasGISelPredicateCode() const1220 bool TreePredicateFn::hasGISelPredicateCode() const {
1221   return !PatFragRec->getRecord()
1222               ->getValueAsString("GISelPredicateCode")
1223               .empty();
1224 }
getGISelPredicateCode() const1225 std::string TreePredicateFn::getGISelPredicateCode() const {
1226   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1227 }
1228 
getImmType() const1229 StringRef TreePredicateFn::getImmType() const {
1230   if (immCodeUsesAPInt())
1231     return "const APInt &";
1232   if (immCodeUsesAPFloat())
1233     return "const APFloat &";
1234   return "int64_t";
1235 }
1236 
getImmTypeIdentifier() const1237 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1238   if (immCodeUsesAPInt())
1239     return "APInt";
1240   else if (immCodeUsesAPFloat())
1241     return "APFloat";
1242   return "I64";
1243 }
1244 
1245 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const1246 bool TreePredicateFn::isAlwaysTrue() const {
1247   return !hasPredCode() && !hasImmCode();
1248 }
1249 
1250 /// Return the name to use in the generated code to reference this, this is
1251 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const1252 std::string TreePredicateFn::getFnName() const {
1253   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1254 }
1255 
1256 /// getCodeToRunOnSDNode - Return the code for the function body that
1257 /// evaluates this predicate.  The argument is expected to be in "Node",
1258 /// not N.  This handles casting and conversion to a concrete node type as
1259 /// appropriate.
getCodeToRunOnSDNode() const1260 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1261   // Handle immediate predicates first.
1262   std::string ImmCode = getImmCode();
1263   if (!ImmCode.empty()) {
1264     if (isLoad())
1265       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1266                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1267     if (isStore())
1268       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1269                       "IsStore cannot be used with ImmLeaf or its subclasses");
1270     if (isUnindexed())
1271       PrintFatalError(
1272           getOrigPatFragRecord()->getRecord()->getLoc(),
1273           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1274     if (isNonExtLoad())
1275       PrintFatalError(
1276           getOrigPatFragRecord()->getRecord()->getLoc(),
1277           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1278     if (isAnyExtLoad())
1279       PrintFatalError(
1280           getOrigPatFragRecord()->getRecord()->getLoc(),
1281           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1282     if (isSignExtLoad())
1283       PrintFatalError(
1284           getOrigPatFragRecord()->getRecord()->getLoc(),
1285           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1286     if (isZeroExtLoad())
1287       PrintFatalError(
1288           getOrigPatFragRecord()->getRecord()->getLoc(),
1289           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1290     if (isNonTruncStore())
1291       PrintFatalError(
1292           getOrigPatFragRecord()->getRecord()->getLoc(),
1293           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1294     if (isTruncStore())
1295       PrintFatalError(
1296           getOrigPatFragRecord()->getRecord()->getLoc(),
1297           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1298     if (getMemoryVT())
1299       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1300                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1301     if (getScalarMemoryVT())
1302       PrintFatalError(
1303           getOrigPatFragRecord()->getRecord()->getLoc(),
1304           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1305 
1306     std::string Result = ("    " + getImmType() + " Imm = ").str();
1307     if (immCodeUsesAPFloat())
1308       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1309     else if (immCodeUsesAPInt())
1310       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1311     else
1312       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1313     return Result + ImmCode;
1314   }
1315 
1316   // Handle arbitrary node predicates.
1317   assert(hasPredCode() && "Don't have any predicate code!");
1318 
1319   // If this is using PatFrags, there are multiple trees to search. They should
1320   // all have the same class.  FIXME: Is there a way to find a common
1321   // superclass?
1322   StringRef ClassName;
1323   for (const auto &Tree : PatFragRec->getTrees()) {
1324     StringRef TreeClassName;
1325     if (Tree->isLeaf())
1326       TreeClassName = "SDNode";
1327     else {
1328       Record *Op = Tree->getOperator();
1329       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1330       TreeClassName = Info.getSDClassName();
1331     }
1332 
1333     if (ClassName.empty())
1334       ClassName = TreeClassName;
1335     else if (ClassName != TreeClassName) {
1336       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1337                       "PatFrags trees do not have consistent class");
1338     }
1339   }
1340 
1341   std::string Result;
1342   if (ClassName == "SDNode")
1343     Result = "    SDNode *N = Node;\n";
1344   else
1345     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1346 
1347   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1348 }
1349 
1350 //===----------------------------------------------------------------------===//
1351 // PatternToMatch implementation
1352 //
1353 
isImmAllOnesAllZerosMatch(const TreePatternNode * P)1354 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1355   if (!P->isLeaf())
1356     return false;
1357   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1358   if (!DI)
1359     return false;
1360 
1361   Record *R = DI->getDef();
1362   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1363 }
1364 
1365 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1366 /// patterns before small ones.  This is used to determine the size of a
1367 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)1368 static unsigned getPatternSize(const TreePatternNode *P,
1369                                const CodeGenDAGPatterns &CGP) {
1370   unsigned Size = 3;  // The node itself.
1371   // If the root node is a ConstantSDNode, increases its size.
1372   // e.g. (set R32:$dst, 0).
1373   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1374     Size += 2;
1375 
1376   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1377     Size += AM->getComplexity();
1378     // We don't want to count any children twice, so return early.
1379     return Size;
1380   }
1381 
1382   // If this node has some predicate function that must match, it adds to the
1383   // complexity of this node.
1384   if (!P->getPredicateCalls().empty())
1385     ++Size;
1386 
1387   // Count children in the count if they are also nodes.
1388   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1389     const TreePatternNode *Child = P->getChild(i);
1390     if (!Child->isLeaf() && Child->getNumTypes()) {
1391       const TypeSetByHwMode &T0 = Child->getExtType(0);
1392       // At this point, all variable type sets should be simple, i.e. only
1393       // have a default mode.
1394       if (T0.getMachineValueType() != MVT::Other) {
1395         Size += getPatternSize(Child, CGP);
1396         continue;
1397       }
1398     }
1399     if (Child->isLeaf()) {
1400       if (isa<IntInit>(Child->getLeafValue()))
1401         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1402       else if (Child->getComplexPatternInfo(CGP))
1403         Size += getPatternSize(Child, CGP);
1404       else if (isImmAllOnesAllZerosMatch(Child))
1405         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1406       else if (!Child->getPredicateCalls().empty())
1407         ++Size;
1408     }
1409   }
1410 
1411   return Size;
1412 }
1413 
1414 /// Compute the complexity metric for the input pattern.  This roughly
1415 /// corresponds to the number of nodes that are covered.
1416 int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const1417 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1418   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1419 }
1420 
1421 /// getPredicateCheck - Return a single string containing all of this
1422 /// pattern's predicates concatenated with "&&" operators.
1423 ///
getPredicateCheck() const1424 std::string PatternToMatch::getPredicateCheck() const {
1425   SmallVector<const Predicate*,4> PredList;
1426   for (const Predicate &P : Predicates) {
1427     if (!P.getCondString().empty())
1428       PredList.push_back(&P);
1429   }
1430   llvm::sort(PredList, deref<std::less<>>());
1431 
1432   std::string Check;
1433   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1434     if (i != 0)
1435       Check += " && ";
1436     Check += '(' + PredList[i]->getCondString() + ')';
1437   }
1438   return Check;
1439 }
1440 
1441 //===----------------------------------------------------------------------===//
1442 // SDTypeConstraint implementation
1443 //
1444 
SDTypeConstraint(Record * R,const CodeGenHwModes & CGH)1445 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1446   OperandNo = R->getValueAsInt("OperandNum");
1447 
1448   if (R->isSubClassOf("SDTCisVT")) {
1449     ConstraintType = SDTCisVT;
1450     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1451     for (const auto &P : VVT)
1452       if (P.second == MVT::isVoid)
1453         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1454   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1455     ConstraintType = SDTCisPtrTy;
1456   } else if (R->isSubClassOf("SDTCisInt")) {
1457     ConstraintType = SDTCisInt;
1458   } else if (R->isSubClassOf("SDTCisFP")) {
1459     ConstraintType = SDTCisFP;
1460   } else if (R->isSubClassOf("SDTCisVec")) {
1461     ConstraintType = SDTCisVec;
1462   } else if (R->isSubClassOf("SDTCisSameAs")) {
1463     ConstraintType = SDTCisSameAs;
1464     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1465   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1466     ConstraintType = SDTCisVTSmallerThanOp;
1467     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1468       R->getValueAsInt("OtherOperandNum");
1469   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1470     ConstraintType = SDTCisOpSmallerThanOp;
1471     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1472       R->getValueAsInt("BigOperandNum");
1473   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1474     ConstraintType = SDTCisEltOfVec;
1475     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1476   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1477     ConstraintType = SDTCisSubVecOfVec;
1478     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1479       R->getValueAsInt("OtherOpNum");
1480   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1481     ConstraintType = SDTCVecEltisVT;
1482     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1483     for (const auto &P : VVT) {
1484       MVT T = P.second;
1485       if (T.isVector())
1486         PrintFatalError(R->getLoc(),
1487                         "Cannot use vector type as SDTCVecEltisVT");
1488       if (!T.isInteger() && !T.isFloatingPoint())
1489         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1490                                      "as SDTCVecEltisVT");
1491     }
1492   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1493     ConstraintType = SDTCisSameNumEltsAs;
1494     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1495       R->getValueAsInt("OtherOperandNum");
1496   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1497     ConstraintType = SDTCisSameSizeAs;
1498     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1499       R->getValueAsInt("OtherOperandNum");
1500   } else {
1501     PrintFatalError(R->getLoc(),
1502                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1503   }
1504 }
1505 
1506 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1507 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)1508 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1509                                       const SDNodeInfo &NodeInfo,
1510                                       unsigned &ResNo) {
1511   unsigned NumResults = NodeInfo.getNumResults();
1512   if (OpNo < NumResults) {
1513     ResNo = OpNo;
1514     return N;
1515   }
1516 
1517   OpNo -= NumResults;
1518 
1519   if (OpNo >= N->getNumChildren()) {
1520     std::string S;
1521     raw_string_ostream OS(S);
1522     OS << "Invalid operand number in type constraint "
1523            << (OpNo+NumResults) << " ";
1524     N->print(OS);
1525     PrintFatalError(OS.str());
1526   }
1527 
1528   return N->getChild(OpNo);
1529 }
1530 
1531 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1532 /// constraint to the nodes operands.  This returns true if it makes a
1533 /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const1534 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1535                                            const SDNodeInfo &NodeInfo,
1536                                            TreePattern &TP) const {
1537   if (TP.hasError())
1538     return false;
1539 
1540   unsigned ResNo = 0; // The result number being referenced.
1541   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1542   TypeInfer &TI = TP.getInfer();
1543 
1544   switch (ConstraintType) {
1545   case SDTCisVT:
1546     // Operand must be a particular type.
1547     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1548   case SDTCisPtrTy:
1549     // Operand must be same as target pointer type.
1550     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1551   case SDTCisInt:
1552     // Require it to be one of the legal integer VTs.
1553      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1554   case SDTCisFP:
1555     // Require it to be one of the legal fp VTs.
1556     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1557   case SDTCisVec:
1558     // Require it to be one of the legal vector VTs.
1559     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1560   case SDTCisSameAs: {
1561     unsigned OResNo = 0;
1562     TreePatternNode *OtherNode =
1563       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1564     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1565            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1566   }
1567   case SDTCisVTSmallerThanOp: {
1568     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1569     // have an integer type that is smaller than the VT.
1570     if (!NodeToApply->isLeaf() ||
1571         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1572         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1573                ->isSubClassOf("ValueType")) {
1574       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1575       return false;
1576     }
1577     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1578     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1579     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1580     TypeSetByHwMode TypeListTmp(VVT);
1581 
1582     unsigned OResNo = 0;
1583     TreePatternNode *OtherNode =
1584       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1585                     OResNo);
1586 
1587     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1588   }
1589   case SDTCisOpSmallerThanOp: {
1590     unsigned BResNo = 0;
1591     TreePatternNode *BigOperand =
1592       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1593                     BResNo);
1594     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1595                                  BigOperand->getExtType(BResNo));
1596   }
1597   case SDTCisEltOfVec: {
1598     unsigned VResNo = 0;
1599     TreePatternNode *VecOperand =
1600       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1601                     VResNo);
1602     // Filter vector types out of VecOperand that don't have the right element
1603     // type.
1604     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1605                                      NodeToApply->getExtType(ResNo));
1606   }
1607   case SDTCisSubVecOfVec: {
1608     unsigned VResNo = 0;
1609     TreePatternNode *BigVecOperand =
1610       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1611                     VResNo);
1612 
1613     // Filter vector types out of BigVecOperand that don't have the
1614     // right subvector type.
1615     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1616                                            NodeToApply->getExtType(ResNo));
1617   }
1618   case SDTCVecEltisVT: {
1619     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1620   }
1621   case SDTCisSameNumEltsAs: {
1622     unsigned OResNo = 0;
1623     TreePatternNode *OtherNode =
1624       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1625                     N, NodeInfo, OResNo);
1626     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1627                                  NodeToApply->getExtType(ResNo));
1628   }
1629   case SDTCisSameSizeAs: {
1630     unsigned OResNo = 0;
1631     TreePatternNode *OtherNode =
1632       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1633                     N, NodeInfo, OResNo);
1634     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1635                               NodeToApply->getExtType(ResNo));
1636   }
1637   }
1638   llvm_unreachable("Invalid ConstraintType!");
1639 }
1640 
1641 // Update the node type to match an instruction operand or result as specified
1642 // in the ins or outs lists on the instruction definition. Return true if the
1643 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)1644 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1645                                              Record *Operand,
1646                                              TreePattern &TP) {
1647   // The 'unknown' operand indicates that types should be inferred from the
1648   // context.
1649   if (Operand->isSubClassOf("unknown_class"))
1650     return false;
1651 
1652   // The Operand class specifies a type directly.
1653   if (Operand->isSubClassOf("Operand")) {
1654     Record *R = Operand->getValueAsDef("Type");
1655     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1656     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1657   }
1658 
1659   // PointerLikeRegClass has a type that is determined at runtime.
1660   if (Operand->isSubClassOf("PointerLikeRegClass"))
1661     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1662 
1663   // Both RegisterClass and RegisterOperand operands derive their types from a
1664   // register class def.
1665   Record *RC = nullptr;
1666   if (Operand->isSubClassOf("RegisterClass"))
1667     RC = Operand;
1668   else if (Operand->isSubClassOf("RegisterOperand"))
1669     RC = Operand->getValueAsDef("RegClass");
1670 
1671   assert(RC && "Unknown operand type");
1672   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1673   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1674 }
1675 
ContainsUnresolvedType(TreePattern & TP) const1676 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1677   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1678     if (!TP.getInfer().isConcrete(Types[i], true))
1679       return true;
1680   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1681     if (getChild(i)->ContainsUnresolvedType(TP))
1682       return true;
1683   return false;
1684 }
1685 
hasProperTypeByHwMode() const1686 bool TreePatternNode::hasProperTypeByHwMode() const {
1687   for (const TypeSetByHwMode &S : Types)
1688     if (!S.isDefaultOnly())
1689       return true;
1690   for (const TreePatternNodePtr &C : Children)
1691     if (C->hasProperTypeByHwMode())
1692       return true;
1693   return false;
1694 }
1695 
hasPossibleType() const1696 bool TreePatternNode::hasPossibleType() const {
1697   for (const TypeSetByHwMode &S : Types)
1698     if (!S.isPossible())
1699       return false;
1700   for (const TreePatternNodePtr &C : Children)
1701     if (!C->hasPossibleType())
1702       return false;
1703   return true;
1704 }
1705 
setDefaultMode(unsigned Mode)1706 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1707   for (TypeSetByHwMode &S : Types) {
1708     S.makeSimple(Mode);
1709     // Check if the selected mode had a type conflict.
1710     if (S.get(DefaultMode).empty())
1711       return false;
1712   }
1713   for (const TreePatternNodePtr &C : Children)
1714     if (!C->setDefaultMode(Mode))
1715       return false;
1716   return true;
1717 }
1718 
1719 //===----------------------------------------------------------------------===//
1720 // SDNodeInfo implementation
1721 //
SDNodeInfo(Record * R,const CodeGenHwModes & CGH)1722 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1723   EnumName    = R->getValueAsString("Opcode");
1724   SDClassName = R->getValueAsString("SDClass");
1725   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1726   NumResults = TypeProfile->getValueAsInt("NumResults");
1727   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1728 
1729   // Parse the properties.
1730   Properties = parseSDPatternOperatorProperties(R);
1731 
1732   // Parse the type constraints.
1733   std::vector<Record*> ConstraintList =
1734     TypeProfile->getValueAsListOfDefs("Constraints");
1735   for (Record *R : ConstraintList)
1736     TypeConstraints.emplace_back(R, CGH);
1737 }
1738 
1739 /// getKnownType - If the type constraints on this node imply a fixed type
1740 /// (e.g. all stores return void, etc), then return it as an
1741 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1742 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1743   unsigned NumResults = getNumResults();
1744   assert(NumResults <= 1 &&
1745          "We only work with nodes with zero or one result so far!");
1746   assert(ResNo == 0 && "Only handles single result nodes so far");
1747 
1748   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1749     // Make sure that this applies to the correct node result.
1750     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1751       continue;
1752 
1753     switch (Constraint.ConstraintType) {
1754     default: break;
1755     case SDTypeConstraint::SDTCisVT:
1756       if (Constraint.VVT.isSimple())
1757         return Constraint.VVT.getSimple().SimpleTy;
1758       break;
1759     case SDTypeConstraint::SDTCisPtrTy:
1760       return MVT::iPTR;
1761     }
1762   }
1763   return MVT::Other;
1764 }
1765 
1766 //===----------------------------------------------------------------------===//
1767 // TreePatternNode implementation
1768 //
1769 
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1770 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1771   if (Operator->getName() == "set" ||
1772       Operator->getName() == "implicit")
1773     return 0;  // All return nothing.
1774 
1775   if (Operator->isSubClassOf("Intrinsic"))
1776     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1777 
1778   if (Operator->isSubClassOf("SDNode"))
1779     return CDP.getSDNodeInfo(Operator).getNumResults();
1780 
1781   if (Operator->isSubClassOf("PatFrags")) {
1782     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1783     // the forward reference case where one pattern fragment references another
1784     // before it is processed.
1785     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1786       // The number of results of a fragment with alternative records is the
1787       // maximum number of results across all alternatives.
1788       unsigned NumResults = 0;
1789       for (auto T : PFRec->getTrees())
1790         NumResults = std::max(NumResults, T->getNumTypes());
1791       return NumResults;
1792     }
1793 
1794     ListInit *LI = Operator->getValueAsListInit("Fragments");
1795     assert(LI && "Invalid Fragment");
1796     unsigned NumResults = 0;
1797     for (Init *I : LI->getValues()) {
1798       Record *Op = nullptr;
1799       if (DagInit *Dag = dyn_cast<DagInit>(I))
1800         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1801           Op = DI->getDef();
1802       assert(Op && "Invalid Fragment");
1803       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1804     }
1805     return NumResults;
1806   }
1807 
1808   if (Operator->isSubClassOf("Instruction")) {
1809     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1810 
1811     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1812 
1813     // Subtract any defaulted outputs.
1814     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1815       Record *OperandNode = InstInfo.Operands[i].Rec;
1816 
1817       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1818           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1819         --NumDefsToAdd;
1820     }
1821 
1822     // Add on one implicit def if it has a resolvable type.
1823     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1824       ++NumDefsToAdd;
1825     return NumDefsToAdd;
1826   }
1827 
1828   if (Operator->isSubClassOf("SDNodeXForm"))
1829     return 1;  // FIXME: Generalize SDNodeXForm
1830 
1831   if (Operator->isSubClassOf("ValueType"))
1832     return 1;  // A type-cast of one result.
1833 
1834   if (Operator->isSubClassOf("ComplexPattern"))
1835     return 1;
1836 
1837   errs() << *Operator;
1838   PrintFatalError("Unhandled node in GetNumNodeResults");
1839 }
1840 
print(raw_ostream & OS) const1841 void TreePatternNode::print(raw_ostream &OS) const {
1842   if (isLeaf())
1843     OS << *getLeafValue();
1844   else
1845     OS << '(' << getOperator()->getName();
1846 
1847   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1848     OS << ':';
1849     getExtType(i).writeToStream(OS);
1850   }
1851 
1852   if (!isLeaf()) {
1853     if (getNumChildren() != 0) {
1854       OS << " ";
1855       getChild(0)->print(OS);
1856       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1857         OS << ", ";
1858         getChild(i)->print(OS);
1859       }
1860     }
1861     OS << ")";
1862   }
1863 
1864   for (const TreePredicateCall &Pred : PredicateCalls) {
1865     OS << "<<P:";
1866     if (Pred.Scope)
1867       OS << Pred.Scope << ":";
1868     OS << Pred.Fn.getFnName() << ">>";
1869   }
1870   if (TransformFn)
1871     OS << "<<X:" << TransformFn->getName() << ">>";
1872   if (!getName().empty())
1873     OS << ":$" << getName();
1874 
1875   for (const ScopedName &Name : NamesAsPredicateArg)
1876     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1877 }
dump() const1878 void TreePatternNode::dump() const {
1879   print(errs());
1880 }
1881 
1882 /// isIsomorphicTo - Return true if this node is recursively
1883 /// isomorphic to the specified node.  For this comparison, the node's
1884 /// entire state is considered. The assigned name is ignored, since
1885 /// nodes with differing names are considered isomorphic. However, if
1886 /// the assigned name is present in the dependent variable set, then
1887 /// the assigned name is considered significant and the node is
1888 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1889 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1890                                      const MultipleUseVarSet &DepVars) const {
1891   if (N == this) return true;
1892   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1893       getPredicateCalls() != N->getPredicateCalls() ||
1894       getTransformFn() != N->getTransformFn())
1895     return false;
1896 
1897   if (isLeaf()) {
1898     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1899       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1900         return ((DI->getDef() == NDI->getDef())
1901                 && (DepVars.find(getName()) == DepVars.end()
1902                     || getName() == N->getName()));
1903       }
1904     }
1905     return getLeafValue() == N->getLeafValue();
1906   }
1907 
1908   if (N->getOperator() != getOperator() ||
1909       N->getNumChildren() != getNumChildren()) return false;
1910   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1911     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1912       return false;
1913   return true;
1914 }
1915 
1916 /// clone - Make a copy of this tree and all of its children.
1917 ///
clone() const1918 TreePatternNodePtr TreePatternNode::clone() const {
1919   TreePatternNodePtr New;
1920   if (isLeaf()) {
1921     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1922   } else {
1923     std::vector<TreePatternNodePtr> CChildren;
1924     CChildren.reserve(Children.size());
1925     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1926       CChildren.push_back(getChild(i)->clone());
1927     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1928                                             getNumTypes());
1929   }
1930   New->setName(getName());
1931   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1932   New->Types = Types;
1933   New->setPredicateCalls(getPredicateCalls());
1934   New->setTransformFn(getTransformFn());
1935   return New;
1936 }
1937 
1938 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1939 void TreePatternNode::RemoveAllTypes() {
1940   // Reset to unknown type.
1941   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1942   if (isLeaf()) return;
1943   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1944     getChild(i)->RemoveAllTypes();
1945 }
1946 
1947 
1948 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1949 /// with actual values specified by ArgMap.
SubstituteFormalArguments(std::map<std::string,TreePatternNodePtr> & ArgMap)1950 void TreePatternNode::SubstituteFormalArguments(
1951     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1952   if (isLeaf()) return;
1953 
1954   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1955     TreePatternNode *Child = getChild(i);
1956     if (Child->isLeaf()) {
1957       Init *Val = Child->getLeafValue();
1958       // Note that, when substituting into an output pattern, Val might be an
1959       // UnsetInit.
1960       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1961           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1962         // We found a use of a formal argument, replace it with its value.
1963         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1964         assert(NewChild && "Couldn't find formal argument!");
1965         assert((Child->getPredicateCalls().empty() ||
1966                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1967                "Non-empty child predicate clobbered!");
1968         setChild(i, std::move(NewChild));
1969       }
1970     } else {
1971       getChild(i)->SubstituteFormalArguments(ArgMap);
1972     }
1973   }
1974 }
1975 
1976 
1977 /// InlinePatternFragments - If this pattern refers to any pattern
1978 /// fragments, return the set of inlined versions (this can be more than
1979 /// one if a PatFrags record has multiple alternatives).
InlinePatternFragments(TreePatternNodePtr T,TreePattern & TP,std::vector<TreePatternNodePtr> & OutAlternatives)1980 void TreePatternNode::InlinePatternFragments(
1981   TreePatternNodePtr T, TreePattern &TP,
1982   std::vector<TreePatternNodePtr> &OutAlternatives) {
1983 
1984   if (TP.hasError())
1985     return;
1986 
1987   if (isLeaf()) {
1988     OutAlternatives.push_back(T);  // nothing to do.
1989     return;
1990   }
1991 
1992   Record *Op = getOperator();
1993 
1994   if (!Op->isSubClassOf("PatFrags")) {
1995     if (getNumChildren() == 0) {
1996       OutAlternatives.push_back(T);
1997       return;
1998     }
1999 
2000     // Recursively inline children nodes.
2001     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2002     ChildAlternatives.resize(getNumChildren());
2003     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2004       TreePatternNodePtr Child = getChildShared(i);
2005       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2006       // If there are no alternatives for any child, there are no
2007       // alternatives for this expression as whole.
2008       if (ChildAlternatives[i].empty())
2009         return;
2010 
2011       for (auto NewChild : ChildAlternatives[i])
2012         assert((Child->getPredicateCalls().empty() ||
2013                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2014                "Non-empty child predicate clobbered!");
2015     }
2016 
2017     // The end result is an all-pairs construction of the resultant pattern.
2018     std::vector<unsigned> Idxs;
2019     Idxs.resize(ChildAlternatives.size());
2020     bool NotDone;
2021     do {
2022       // Create the variant and add it to the output list.
2023       std::vector<TreePatternNodePtr> NewChildren;
2024       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2025         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2026       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2027           getOperator(), std::move(NewChildren), getNumTypes());
2028 
2029       // Copy over properties.
2030       R->setName(getName());
2031       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2032       R->setPredicateCalls(getPredicateCalls());
2033       R->setTransformFn(getTransformFn());
2034       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2035         R->setType(i, getExtType(i));
2036       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2037         R->setResultIndex(i, getResultIndex(i));
2038 
2039       // Register alternative.
2040       OutAlternatives.push_back(R);
2041 
2042       // Increment indices to the next permutation by incrementing the
2043       // indices from last index backward, e.g., generate the sequence
2044       // [0, 0], [0, 1], [1, 0], [1, 1].
2045       int IdxsIdx;
2046       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2047         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2048           Idxs[IdxsIdx] = 0;
2049         else
2050           break;
2051       }
2052       NotDone = (IdxsIdx >= 0);
2053     } while (NotDone);
2054 
2055     return;
2056   }
2057 
2058   // Otherwise, we found a reference to a fragment.  First, look up its
2059   // TreePattern record.
2060   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2061 
2062   // Verify that we are passing the right number of operands.
2063   if (Frag->getNumArgs() != Children.size()) {
2064     TP.error("'" + Op->getName() + "' fragment requires " +
2065              Twine(Frag->getNumArgs()) + " operands!");
2066     return;
2067   }
2068 
2069   TreePredicateFn PredFn(Frag);
2070   unsigned Scope = 0;
2071   if (TreePredicateFn(Frag).usesOperands())
2072     Scope = TP.getDAGPatterns().allocateScope();
2073 
2074   // Compute the map of formal to actual arguments.
2075   std::map<std::string, TreePatternNodePtr> ArgMap;
2076   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2077     TreePatternNodePtr Child = getChildShared(i);
2078     if (Scope != 0) {
2079       Child = Child->clone();
2080       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2081     }
2082     ArgMap[Frag->getArgName(i)] = Child;
2083   }
2084 
2085   // Loop over all fragment alternatives.
2086   for (auto Alternative : Frag->getTrees()) {
2087     TreePatternNodePtr FragTree = Alternative->clone();
2088 
2089     if (!PredFn.isAlwaysTrue())
2090       FragTree->addPredicateCall(PredFn, Scope);
2091 
2092     // Resolve formal arguments to their actual value.
2093     if (Frag->getNumArgs())
2094       FragTree->SubstituteFormalArguments(ArgMap);
2095 
2096     // Transfer types.  Note that the resolved alternative may have fewer
2097     // (but not more) results than the PatFrags node.
2098     FragTree->setName(getName());
2099     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2100       FragTree->UpdateNodeType(i, getExtType(i), TP);
2101 
2102     // Transfer in the old predicates.
2103     for (const TreePredicateCall &Pred : getPredicateCalls())
2104       FragTree->addPredicateCall(Pred);
2105 
2106     // The fragment we inlined could have recursive inlining that is needed.  See
2107     // if there are any pattern fragments in it and inline them as needed.
2108     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2109   }
2110 }
2111 
2112 /// getImplicitType - Check to see if the specified record has an implicit
2113 /// type which should be applied to it.  This will infer the type of register
2114 /// references from the register file information, for example.
2115 ///
2116 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2117 /// the F8RC register class argument in:
2118 ///
2119 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2120 ///
2121 /// When Unnamed is false, return the type of a named DAG operand such as the
2122 /// GPR:$src operand above.
2123 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)2124 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2125                                        bool NotRegisters,
2126                                        bool Unnamed,
2127                                        TreePattern &TP) {
2128   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2129 
2130   // Check to see if this is a register operand.
2131   if (R->isSubClassOf("RegisterOperand")) {
2132     assert(ResNo == 0 && "Regoperand ref only has one result!");
2133     if (NotRegisters)
2134       return TypeSetByHwMode(); // Unknown.
2135     Record *RegClass = R->getValueAsDef("RegClass");
2136     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2137     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2138   }
2139 
2140   // Check to see if this is a register or a register class.
2141   if (R->isSubClassOf("RegisterClass")) {
2142     assert(ResNo == 0 && "Regclass ref only has one result!");
2143     // An unnamed register class represents itself as an i32 immediate, for
2144     // example on a COPY_TO_REGCLASS instruction.
2145     if (Unnamed)
2146       return TypeSetByHwMode(MVT::i32);
2147 
2148     // In a named operand, the register class provides the possible set of
2149     // types.
2150     if (NotRegisters)
2151       return TypeSetByHwMode(); // Unknown.
2152     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2153     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2154   }
2155 
2156   if (R->isSubClassOf("PatFrags")) {
2157     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2158     // Pattern fragment types will be resolved when they are inlined.
2159     return TypeSetByHwMode(); // Unknown.
2160   }
2161 
2162   if (R->isSubClassOf("Register")) {
2163     assert(ResNo == 0 && "Registers only produce one result!");
2164     if (NotRegisters)
2165       return TypeSetByHwMode(); // Unknown.
2166     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2167     return TypeSetByHwMode(T.getRegisterVTs(R));
2168   }
2169 
2170   if (R->isSubClassOf("SubRegIndex")) {
2171     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2172     return TypeSetByHwMode(MVT::i32);
2173   }
2174 
2175   if (R->isSubClassOf("ValueType")) {
2176     assert(ResNo == 0 && "This node only has one result!");
2177     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2178     //
2179     //   (sext_inreg GPR:$src, i16)
2180     //                         ~~~
2181     if (Unnamed)
2182       return TypeSetByHwMode(MVT::Other);
2183     // With a name, the ValueType simply provides the type of the named
2184     // variable.
2185     //
2186     //   (sext_inreg i32:$src, i16)
2187     //               ~~~~~~~~
2188     if (NotRegisters)
2189       return TypeSetByHwMode(); // Unknown.
2190     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2191     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2192   }
2193 
2194   if (R->isSubClassOf("CondCode")) {
2195     assert(ResNo == 0 && "This node only has one result!");
2196     // Using a CondCodeSDNode.
2197     return TypeSetByHwMode(MVT::Other);
2198   }
2199 
2200   if (R->isSubClassOf("ComplexPattern")) {
2201     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2202     if (NotRegisters)
2203       return TypeSetByHwMode(); // Unknown.
2204     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2205   }
2206   if (R->isSubClassOf("PointerLikeRegClass")) {
2207     assert(ResNo == 0 && "Regclass can only have one result!");
2208     TypeSetByHwMode VTS(MVT::iPTR);
2209     TP.getInfer().expandOverloads(VTS);
2210     return VTS;
2211   }
2212 
2213   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2214       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2215       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2216     // Placeholder.
2217     return TypeSetByHwMode(); // Unknown.
2218   }
2219 
2220   if (R->isSubClassOf("Operand")) {
2221     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2222     Record *T = R->getValueAsDef("Type");
2223     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2224   }
2225 
2226   TP.error("Unknown node flavor used in pattern: " + R->getName());
2227   return TypeSetByHwMode(MVT::Other);
2228 }
2229 
2230 
2231 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2232 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2233 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const2234 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2235   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2236       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2237       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2238     return nullptr;
2239 
2240   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2241   return &CDP.getIntrinsicInfo(IID);
2242 }
2243 
2244 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2245 /// return the ComplexPattern information, otherwise return null.
2246 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const2247 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2248   Record *Rec;
2249   if (isLeaf()) {
2250     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2251     if (!DI)
2252       return nullptr;
2253     Rec = DI->getDef();
2254   } else
2255     Rec = getOperator();
2256 
2257   if (!Rec->isSubClassOf("ComplexPattern"))
2258     return nullptr;
2259   return &CGP.getComplexPattern(Rec);
2260 }
2261 
getNumMIResults(const CodeGenDAGPatterns & CGP) const2262 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2263   // A ComplexPattern specifically declares how many results it fills in.
2264   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2265     return CP->getNumOperands();
2266 
2267   // If MIOperandInfo is specified, that gives the count.
2268   if (isLeaf()) {
2269     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2270     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2271       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2272       if (MIOps->getNumArgs())
2273         return MIOps->getNumArgs();
2274     }
2275   }
2276 
2277   // Otherwise there is just one result.
2278   return 1;
2279 }
2280 
2281 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2282 bool TreePatternNode::NodeHasProperty(SDNP Property,
2283                                       const CodeGenDAGPatterns &CGP) const {
2284   if (isLeaf()) {
2285     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2286       return CP->hasProperty(Property);
2287 
2288     return false;
2289   }
2290 
2291   if (Property != SDNPHasChain) {
2292     // The chain proprety is already present on the different intrinsic node
2293     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2294     // on the intrinsic. Anything else is specific to the individual intrinsic.
2295     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2296       return Int->hasProperty(Property);
2297   }
2298 
2299   if (!Operator->isSubClassOf("SDPatternOperator"))
2300     return false;
2301 
2302   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2303 }
2304 
2305 
2306 
2307 
2308 /// TreeHasProperty - Return true if any node in this tree has the specified
2309 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2310 bool TreePatternNode::TreeHasProperty(SDNP Property,
2311                                       const CodeGenDAGPatterns &CGP) const {
2312   if (NodeHasProperty(Property, CGP))
2313     return true;
2314   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2315     if (getChild(i)->TreeHasProperty(Property, CGP))
2316       return true;
2317   return false;
2318 }
2319 
2320 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2321 /// commutative intrinsic.
2322 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const2323 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2324   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2325     return Int->isCommutative;
2326   return false;
2327 }
2328 
isOperandClass(const TreePatternNode * N,StringRef Class)2329 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2330   if (!N->isLeaf())
2331     return N->getOperator()->isSubClassOf(Class);
2332 
2333   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2334   if (DI && DI->getDef()->isSubClassOf(Class))
2335     return true;
2336 
2337   return false;
2338 }
2339 
emitTooManyOperandsError(TreePattern & TP,StringRef InstName,unsigned Expected,unsigned Actual)2340 static void emitTooManyOperandsError(TreePattern &TP,
2341                                      StringRef InstName,
2342                                      unsigned Expected,
2343                                      unsigned Actual) {
2344   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2345            " operands but expected only " + Twine(Expected) + "!");
2346 }
2347 
emitTooFewOperandsError(TreePattern & TP,StringRef InstName,unsigned Actual)2348 static void emitTooFewOperandsError(TreePattern &TP,
2349                                     StringRef InstName,
2350                                     unsigned Actual) {
2351   TP.error("Instruction '" + InstName +
2352            "' expects more than the provided " + Twine(Actual) + " operands!");
2353 }
2354 
2355 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2356 /// this node and its children in the tree.  This returns true if it makes a
2357 /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)2358 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2359   if (TP.hasError())
2360     return false;
2361 
2362   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2363   if (isLeaf()) {
2364     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2365       // If it's a regclass or something else known, include the type.
2366       bool MadeChange = false;
2367       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2368         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2369                                                         NotRegisters,
2370                                                         !hasName(), TP), TP);
2371       return MadeChange;
2372     }
2373 
2374     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2375       assert(Types.size() == 1 && "Invalid IntInit");
2376 
2377       // Int inits are always integers. :)
2378       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2379 
2380       if (!TP.getInfer().isConcrete(Types[0], false))
2381         return MadeChange;
2382 
2383       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2384       for (auto &P : VVT) {
2385         MVT::SimpleValueType VT = P.second.SimpleTy;
2386         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2387           continue;
2388         unsigned Size = MVT(VT).getSizeInBits();
2389         // Make sure that the value is representable for this type.
2390         if (Size >= 32)
2391           continue;
2392         // Check that the value doesn't use more bits than we have. It must
2393         // either be a sign- or zero-extended equivalent of the original.
2394         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2395         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2396             SignBitAndAbove == 1)
2397           continue;
2398 
2399         TP.error("Integer value '" + Twine(II->getValue()) +
2400                  "' is out of range for type '" + getEnumName(VT) + "'!");
2401         break;
2402       }
2403       return MadeChange;
2404     }
2405 
2406     return false;
2407   }
2408 
2409   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2410     bool MadeChange = false;
2411 
2412     // Apply the result type to the node.
2413     unsigned NumRetVTs = Int->IS.RetVTs.size();
2414     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2415 
2416     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2417       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2418 
2419     if (getNumChildren() != NumParamVTs + 1) {
2420       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2421                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2422       return false;
2423     }
2424 
2425     // Apply type info to the intrinsic ID.
2426     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2427 
2428     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2429       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2430 
2431       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2432       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2433       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2434     }
2435     return MadeChange;
2436   }
2437 
2438   if (getOperator()->isSubClassOf("SDNode")) {
2439     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2440 
2441     // Check that the number of operands is sane.  Negative operands -> varargs.
2442     if (NI.getNumOperands() >= 0 &&
2443         getNumChildren() != (unsigned)NI.getNumOperands()) {
2444       TP.error(getOperator()->getName() + " node requires exactly " +
2445                Twine(NI.getNumOperands()) + " operands!");
2446       return false;
2447     }
2448 
2449     bool MadeChange = false;
2450     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2451       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2452     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2453     return MadeChange;
2454   }
2455 
2456   if (getOperator()->isSubClassOf("Instruction")) {
2457     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2458     CodeGenInstruction &InstInfo =
2459       CDP.getTargetInfo().getInstruction(getOperator());
2460 
2461     bool MadeChange = false;
2462 
2463     // Apply the result types to the node, these come from the things in the
2464     // (outs) list of the instruction.
2465     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2466                                         Inst.getNumResults());
2467     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2468       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2469 
2470     // If the instruction has implicit defs, we apply the first one as a result.
2471     // FIXME: This sucks, it should apply all implicit defs.
2472     if (!InstInfo.ImplicitDefs.empty()) {
2473       unsigned ResNo = NumResultsToAdd;
2474 
2475       // FIXME: Generalize to multiple possible types and multiple possible
2476       // ImplicitDefs.
2477       MVT::SimpleValueType VT =
2478         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2479 
2480       if (VT != MVT::Other)
2481         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2482     }
2483 
2484     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2485     // be the same.
2486     if (getOperator()->getName() == "INSERT_SUBREG") {
2487       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2488       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2489       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2490     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2491       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2492       // variadic.
2493 
2494       unsigned NChild = getNumChildren();
2495       if (NChild < 3) {
2496         TP.error("REG_SEQUENCE requires at least 3 operands!");
2497         return false;
2498       }
2499 
2500       if (NChild % 2 == 0) {
2501         TP.error("REG_SEQUENCE requires an odd number of operands!");
2502         return false;
2503       }
2504 
2505       if (!isOperandClass(getChild(0), "RegisterClass")) {
2506         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2507         return false;
2508       }
2509 
2510       for (unsigned I = 1; I < NChild; I += 2) {
2511         TreePatternNode *SubIdxChild = getChild(I + 1);
2512         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2513           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2514                    Twine(I + 1) + "!");
2515           return false;
2516         }
2517       }
2518     }
2519 
2520     // If one or more operands with a default value appear at the end of the
2521     // formal operand list for an instruction, we allow them to be overridden
2522     // by optional operands provided in the pattern.
2523     //
2524     // But if an operand B without a default appears at any point after an
2525     // operand A with a default, then we don't allow A to be overridden,
2526     // because there would be no way to specify whether the next operand in
2527     // the pattern was intended to override A or skip it.
2528     unsigned NonOverridableOperands = Inst.getNumOperands();
2529     while (NonOverridableOperands > 0 &&
2530            CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2531       --NonOverridableOperands;
2532 
2533     unsigned ChildNo = 0;
2534     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2535       Record *OperandNode = Inst.getOperand(i);
2536 
2537       // If the operand has a default value, do we use it? We must use the
2538       // default if we've run out of children of the pattern DAG to consume,
2539       // or if the operand is followed by a non-defaulted one.
2540       if (CDP.operandHasDefault(OperandNode) &&
2541           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2542         continue;
2543 
2544       // If we have run out of child nodes and there _isn't_ a default
2545       // value we can use for the next operand, give an error.
2546       if (ChildNo >= getNumChildren()) {
2547         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2548         return false;
2549       }
2550 
2551       TreePatternNode *Child = getChild(ChildNo++);
2552       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2553 
2554       // If the operand has sub-operands, they may be provided by distinct
2555       // child patterns, so attempt to match each sub-operand separately.
2556       if (OperandNode->isSubClassOf("Operand")) {
2557         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2558         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2559           // But don't do that if the whole operand is being provided by
2560           // a single ComplexPattern-related Operand.
2561 
2562           if (Child->getNumMIResults(CDP) < NumArgs) {
2563             // Match first sub-operand against the child we already have.
2564             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2565             MadeChange |=
2566               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2567 
2568             // And the remaining sub-operands against subsequent children.
2569             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2570               if (ChildNo >= getNumChildren()) {
2571                 emitTooFewOperandsError(TP, getOperator()->getName(),
2572                                         getNumChildren());
2573                 return false;
2574               }
2575               Child = getChild(ChildNo++);
2576 
2577               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2578               MadeChange |=
2579                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2580             }
2581             continue;
2582           }
2583         }
2584       }
2585 
2586       // If we didn't match by pieces above, attempt to match the whole
2587       // operand now.
2588       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2589     }
2590 
2591     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2592       emitTooManyOperandsError(TP, getOperator()->getName(),
2593                                ChildNo, getNumChildren());
2594       return false;
2595     }
2596 
2597     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2598       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2599     return MadeChange;
2600   }
2601 
2602   if (getOperator()->isSubClassOf("ComplexPattern")) {
2603     bool MadeChange = false;
2604 
2605     for (unsigned i = 0; i < getNumChildren(); ++i)
2606       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2607 
2608     return MadeChange;
2609   }
2610 
2611   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2612 
2613   // Node transforms always take one operand.
2614   if (getNumChildren() != 1) {
2615     TP.error("Node transform '" + getOperator()->getName() +
2616              "' requires one operand!");
2617     return false;
2618   }
2619 
2620   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2621   return MadeChange;
2622 }
2623 
2624 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2625 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)2626 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2627   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2628     return true;
2629   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2630     return true;
2631   return false;
2632 }
2633 
2634 
2635 /// canPatternMatch - If it is impossible for this pattern to match on this
2636 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2637 /// used as a sanity check for .td files (to prevent people from writing stuff
2638 /// that can never possibly work), and to prevent the pattern permuter from
2639 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)2640 bool TreePatternNode::canPatternMatch(std::string &Reason,
2641                                       const CodeGenDAGPatterns &CDP) {
2642   if (isLeaf()) return true;
2643 
2644   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2645     if (!getChild(i)->canPatternMatch(Reason, CDP))
2646       return false;
2647 
2648   // If this is an intrinsic, handle cases that would make it not match.  For
2649   // example, if an operand is required to be an immediate.
2650   if (getOperator()->isSubClassOf("Intrinsic")) {
2651     // TODO:
2652     return true;
2653   }
2654 
2655   if (getOperator()->isSubClassOf("ComplexPattern"))
2656     return true;
2657 
2658   // If this node is a commutative operator, check that the LHS isn't an
2659   // immediate.
2660   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2661   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2662   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2663     // Scan all of the operands of the node and make sure that only the last one
2664     // is a constant node, unless the RHS also is.
2665     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2666       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2667       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2668         if (OnlyOnRHSOfCommutative(getChild(i))) {
2669           Reason="Immediate value must be on the RHS of commutative operators!";
2670           return false;
2671         }
2672     }
2673   }
2674 
2675   return true;
2676 }
2677 
2678 //===----------------------------------------------------------------------===//
2679 // TreePattern implementation
2680 //
2681 
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)2682 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2683                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2684                          isInputPattern(isInput), HasError(false),
2685                          Infer(*this) {
2686   for (Init *I : RawPat->getValues())
2687     Trees.push_back(ParseTreePattern(I, ""));
2688 }
2689 
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)2690 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2691                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2692                          isInputPattern(isInput), HasError(false),
2693                          Infer(*this) {
2694   Trees.push_back(ParseTreePattern(Pat, ""));
2695 }
2696 
TreePattern(Record * TheRec,TreePatternNodePtr Pat,bool isInput,CodeGenDAGPatterns & cdp)2697 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2698                          CodeGenDAGPatterns &cdp)
2699     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2700       Infer(*this) {
2701   Trees.push_back(Pat);
2702 }
2703 
error(const Twine & Msg)2704 void TreePattern::error(const Twine &Msg) {
2705   if (HasError)
2706     return;
2707   dump();
2708   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2709   HasError = true;
2710 }
2711 
ComputeNamedNodes()2712 void TreePattern::ComputeNamedNodes() {
2713   for (TreePatternNodePtr &Tree : Trees)
2714     ComputeNamedNodes(Tree.get());
2715 }
2716 
ComputeNamedNodes(TreePatternNode * N)2717 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2718   if (!N->getName().empty())
2719     NamedNodes[N->getName()].push_back(N);
2720 
2721   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2722     ComputeNamedNodes(N->getChild(i));
2723 }
2724 
ParseTreePattern(Init * TheInit,StringRef OpName)2725 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2726                                                  StringRef OpName) {
2727   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2728     Record *R = DI->getDef();
2729 
2730     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2731     // TreePatternNode of its own.  For example:
2732     ///   (foo GPR, imm) -> (foo GPR, (imm))
2733     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2734       return ParseTreePattern(
2735         DagInit::get(DI, nullptr,
2736                      std::vector<std::pair<Init*, StringInit*> >()),
2737         OpName);
2738 
2739     // Input argument?
2740     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2741     if (R->getName() == "node" && !OpName.empty()) {
2742       if (OpName.empty())
2743         error("'node' argument requires a name to match with operand list");
2744       Args.push_back(OpName);
2745     }
2746 
2747     Res->setName(OpName);
2748     return Res;
2749   }
2750 
2751   // ?:$name or just $name.
2752   if (isa<UnsetInit>(TheInit)) {
2753     if (OpName.empty())
2754       error("'?' argument requires a name to match with operand list");
2755     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2756     Args.push_back(OpName);
2757     Res->setName(OpName);
2758     return Res;
2759   }
2760 
2761   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2762     if (!OpName.empty())
2763       error("Constant int or bit argument should not have a name!");
2764     if (isa<BitInit>(TheInit))
2765       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2766     return std::make_shared<TreePatternNode>(TheInit, 1);
2767   }
2768 
2769   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2770     // Turn this into an IntInit.
2771     Init *II = BI->convertInitializerTo(IntRecTy::get());
2772     if (!II || !isa<IntInit>(II))
2773       error("Bits value must be constants!");
2774     return ParseTreePattern(II, OpName);
2775   }
2776 
2777   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2778   if (!Dag) {
2779     TheInit->print(errs());
2780     error("Pattern has unexpected init kind!");
2781   }
2782   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2783   if (!OpDef) error("Pattern has unexpected operator type!");
2784   Record *Operator = OpDef->getDef();
2785 
2786   if (Operator->isSubClassOf("ValueType")) {
2787     // If the operator is a ValueType, then this must be "type cast" of a leaf
2788     // node.
2789     if (Dag->getNumArgs() != 1)
2790       error("Type cast only takes one operand!");
2791 
2792     TreePatternNodePtr New =
2793         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2794 
2795     // Apply the type cast.
2796     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2797     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2798     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2799 
2800     if (!OpName.empty())
2801       error("ValueType cast should not have a name!");
2802     return New;
2803   }
2804 
2805   // Verify that this is something that makes sense for an operator.
2806   if (!Operator->isSubClassOf("PatFrags") &&
2807       !Operator->isSubClassOf("SDNode") &&
2808       !Operator->isSubClassOf("Instruction") &&
2809       !Operator->isSubClassOf("SDNodeXForm") &&
2810       !Operator->isSubClassOf("Intrinsic") &&
2811       !Operator->isSubClassOf("ComplexPattern") &&
2812       Operator->getName() != "set" &&
2813       Operator->getName() != "implicit")
2814     error("Unrecognized node '" + Operator->getName() + "'!");
2815 
2816   //  Check to see if this is something that is illegal in an input pattern.
2817   if (isInputPattern) {
2818     if (Operator->isSubClassOf("Instruction") ||
2819         Operator->isSubClassOf("SDNodeXForm"))
2820       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2821   } else {
2822     if (Operator->isSubClassOf("Intrinsic"))
2823       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2824 
2825     if (Operator->isSubClassOf("SDNode") &&
2826         Operator->getName() != "imm" &&
2827         Operator->getName() != "timm" &&
2828         Operator->getName() != "fpimm" &&
2829         Operator->getName() != "tglobaltlsaddr" &&
2830         Operator->getName() != "tconstpool" &&
2831         Operator->getName() != "tjumptable" &&
2832         Operator->getName() != "tframeindex" &&
2833         Operator->getName() != "texternalsym" &&
2834         Operator->getName() != "tblockaddress" &&
2835         Operator->getName() != "tglobaladdr" &&
2836         Operator->getName() != "bb" &&
2837         Operator->getName() != "vt" &&
2838         Operator->getName() != "mcsym")
2839       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2840   }
2841 
2842   std::vector<TreePatternNodePtr> Children;
2843 
2844   // Parse all the operands.
2845   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2846     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2847 
2848   // Get the actual number of results before Operator is converted to an intrinsic
2849   // node (which is hard-coded to have either zero or one result).
2850   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2851 
2852   // If the operator is an intrinsic, then this is just syntactic sugar for
2853   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2854   // convert the intrinsic name to a number.
2855   if (Operator->isSubClassOf("Intrinsic")) {
2856     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2857     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2858 
2859     // If this intrinsic returns void, it must have side-effects and thus a
2860     // chain.
2861     if (Int.IS.RetVTs.empty())
2862       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2863     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2864       // Has side-effects, requires chain.
2865       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2866     else // Otherwise, no chain.
2867       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2868 
2869     Children.insert(Children.begin(),
2870                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2871   }
2872 
2873   if (Operator->isSubClassOf("ComplexPattern")) {
2874     for (unsigned i = 0; i < Children.size(); ++i) {
2875       TreePatternNodePtr Child = Children[i];
2876 
2877       if (Child->getName().empty())
2878         error("All arguments to a ComplexPattern must be named");
2879 
2880       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2881       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2882       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2883       auto OperandId = std::make_pair(Operator, i);
2884       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2885       if (PrevOp != ComplexPatternOperands.end()) {
2886         if (PrevOp->getValue() != OperandId)
2887           error("All ComplexPattern operands must appear consistently: "
2888                 "in the same order in just one ComplexPattern instance.");
2889       } else
2890         ComplexPatternOperands[Child->getName()] = OperandId;
2891     }
2892   }
2893 
2894   TreePatternNodePtr Result =
2895       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2896                                         NumResults);
2897   Result->setName(OpName);
2898 
2899   if (Dag->getName()) {
2900     assert(Result->getName().empty());
2901     Result->setName(Dag->getNameStr());
2902   }
2903   return Result;
2904 }
2905 
2906 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2907 /// will never match in favor of something obvious that will.  This is here
2908 /// strictly as a convenience to target authors because it allows them to write
2909 /// more type generic things and have useless type casts fold away.
2910 ///
2911 /// This returns true if any change is made.
SimplifyTree(TreePatternNodePtr & N)2912 static bool SimplifyTree(TreePatternNodePtr &N) {
2913   if (N->isLeaf())
2914     return false;
2915 
2916   // If we have a bitconvert with a resolved type and if the source and
2917   // destination types are the same, then the bitconvert is useless, remove it.
2918   if (N->getOperator()->getName() == "bitconvert" &&
2919       N->getExtType(0).isValueTypeByHwMode(false) &&
2920       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2921       N->getName().empty()) {
2922     N = N->getChildShared(0);
2923     SimplifyTree(N);
2924     return true;
2925   }
2926 
2927   // Walk all children.
2928   bool MadeChange = false;
2929   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2930     TreePatternNodePtr Child = N->getChildShared(i);
2931     MadeChange |= SimplifyTree(Child);
2932     N->setChild(i, std::move(Child));
2933   }
2934   return MadeChange;
2935 }
2936 
2937 
2938 
2939 /// InferAllTypes - Infer/propagate as many types throughout the expression
2940 /// patterns as possible.  Return true if all types are inferred, false
2941 /// otherwise.  Flags an error if a type contradiction is found.
2942 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2943 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2944   if (NamedNodes.empty())
2945     ComputeNamedNodes();
2946 
2947   bool MadeChange = true;
2948   while (MadeChange) {
2949     MadeChange = false;
2950     for (TreePatternNodePtr &Tree : Trees) {
2951       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2952       MadeChange |= SimplifyTree(Tree);
2953     }
2954 
2955     // If there are constraints on our named nodes, apply them.
2956     for (auto &Entry : NamedNodes) {
2957       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2958 
2959       // If we have input named node types, propagate their types to the named
2960       // values here.
2961       if (InNamedTypes) {
2962         if (!InNamedTypes->count(Entry.getKey())) {
2963           error("Node '" + std::string(Entry.getKey()) +
2964                 "' in output pattern but not input pattern");
2965           return true;
2966         }
2967 
2968         const SmallVectorImpl<TreePatternNode*> &InNodes =
2969           InNamedTypes->find(Entry.getKey())->second;
2970 
2971         // The input types should be fully resolved by now.
2972         for (TreePatternNode *Node : Nodes) {
2973           // If this node is a register class, and it is the root of the pattern
2974           // then we're mapping something onto an input register.  We allow
2975           // changing the type of the input register in this case.  This allows
2976           // us to match things like:
2977           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2978           if (Node == Trees[0].get() && Node->isLeaf()) {
2979             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2980             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2981                        DI->getDef()->isSubClassOf("RegisterOperand")))
2982               continue;
2983           }
2984 
2985           assert(Node->getNumTypes() == 1 &&
2986                  InNodes[0]->getNumTypes() == 1 &&
2987                  "FIXME: cannot name multiple result nodes yet");
2988           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2989                                              *this);
2990         }
2991       }
2992 
2993       // If there are multiple nodes with the same name, they must all have the
2994       // same type.
2995       if (Entry.second.size() > 1) {
2996         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2997           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2998           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2999                  "FIXME: cannot name multiple result nodes yet");
3000 
3001           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3002           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3003         }
3004       }
3005     }
3006   }
3007 
3008   bool HasUnresolvedTypes = false;
3009   for (const TreePatternNodePtr &Tree : Trees)
3010     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3011   return !HasUnresolvedTypes;
3012 }
3013 
print(raw_ostream & OS) const3014 void TreePattern::print(raw_ostream &OS) const {
3015   OS << getRecord()->getName();
3016   if (!Args.empty()) {
3017     OS << "(" << Args[0];
3018     for (unsigned i = 1, e = Args.size(); i != e; ++i)
3019       OS << ", " << Args[i];
3020     OS << ")";
3021   }
3022   OS << ": ";
3023 
3024   if (Trees.size() > 1)
3025     OS << "[\n";
3026   for (const TreePatternNodePtr &Tree : Trees) {
3027     OS << "\t";
3028     Tree->print(OS);
3029     OS << "\n";
3030   }
3031 
3032   if (Trees.size() > 1)
3033     OS << "]\n";
3034 }
3035 
dump() const3036 void TreePattern::dump() const { print(errs()); }
3037 
3038 //===----------------------------------------------------------------------===//
3039 // CodeGenDAGPatterns implementation
3040 //
3041 
CodeGenDAGPatterns(RecordKeeper & R,PatternRewriterFn PatternRewriter)3042 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3043                                        PatternRewriterFn PatternRewriter)
3044     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3045       PatternRewriter(PatternRewriter) {
3046 
3047   Intrinsics = CodeGenIntrinsicTable(Records);
3048   ParseNodeInfo();
3049   ParseNodeTransforms();
3050   ParseComplexPatterns();
3051   ParsePatternFragments();
3052   ParseDefaultOperands();
3053   ParseInstructions();
3054   ParsePatternFragments(/*OutFrags*/true);
3055   ParsePatterns();
3056 
3057   // Break patterns with parameterized types into a series of patterns,
3058   // where each one has a fixed type and is predicated on the conditions
3059   // of the associated HW mode.
3060   ExpandHwModeBasedTypes();
3061 
3062   // Generate variants.  For example, commutative patterns can match
3063   // multiple ways.  Add them to PatternsToMatch as well.
3064   GenerateVariants();
3065 
3066   // Infer instruction flags.  For example, we can detect loads,
3067   // stores, and side effects in many cases by examining an
3068   // instruction's pattern.
3069   InferInstructionFlags();
3070 
3071   // Verify that instruction flags match the patterns.
3072   VerifyInstructionFlags();
3073 }
3074 
getSDNodeNamed(const std::string & Name) const3075 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3076   Record *N = Records.getDef(Name);
3077   if (!N || !N->isSubClassOf("SDNode"))
3078     PrintFatalError("Error getting SDNode '" + Name + "'!");
3079 
3080   return N;
3081 }
3082 
3083 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()3084 void CodeGenDAGPatterns::ParseNodeInfo() {
3085   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3086   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3087 
3088   while (!Nodes.empty()) {
3089     Record *R = Nodes.back();
3090     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3091     Nodes.pop_back();
3092   }
3093 
3094   // Get the builtin intrinsic nodes.
3095   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3096   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3097   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3098 }
3099 
3100 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3101 /// map, and emit them to the file as functions.
ParseNodeTransforms()3102 void CodeGenDAGPatterns::ParseNodeTransforms() {
3103   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3104   while (!Xforms.empty()) {
3105     Record *XFormNode = Xforms.back();
3106     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3107     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3108     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3109 
3110     Xforms.pop_back();
3111   }
3112 }
3113 
ParseComplexPatterns()3114 void CodeGenDAGPatterns::ParseComplexPatterns() {
3115   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3116   while (!AMs.empty()) {
3117     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3118     AMs.pop_back();
3119   }
3120 }
3121 
3122 
3123 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3124 /// file, building up the PatternFragments map.  After we've collected them all,
3125 /// inline fragments together as necessary, so that there are no references left
3126 /// inside a pattern fragment to a pattern fragment.
3127 ///
ParsePatternFragments(bool OutFrags)3128 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3129   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3130 
3131   // First step, parse all of the fragments.
3132   for (Record *Frag : Fragments) {
3133     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3134       continue;
3135 
3136     ListInit *LI = Frag->getValueAsListInit("Fragments");
3137     TreePattern *P =
3138         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3139              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3140              *this)).get();
3141 
3142     // Validate the argument list, converting it to set, to discard duplicates.
3143     std::vector<std::string> &Args = P->getArgList();
3144     // Copy the args so we can take StringRefs to them.
3145     auto ArgsCopy = Args;
3146     SmallDenseSet<StringRef, 4> OperandsSet;
3147     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3148 
3149     if (OperandsSet.count(""))
3150       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3151 
3152     // Parse the operands list.
3153     DagInit *OpsList = Frag->getValueAsDag("Operands");
3154     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3155     // Special cases: ops == outs == ins. Different names are used to
3156     // improve readability.
3157     if (!OpsOp ||
3158         (OpsOp->getDef()->getName() != "ops" &&
3159          OpsOp->getDef()->getName() != "outs" &&
3160          OpsOp->getDef()->getName() != "ins"))
3161       P->error("Operands list should start with '(ops ... '!");
3162 
3163     // Copy over the arguments.
3164     Args.clear();
3165     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3166       if (!isa<DefInit>(OpsList->getArg(j)) ||
3167           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3168         P->error("Operands list should all be 'node' values.");
3169       if (!OpsList->getArgName(j))
3170         P->error("Operands list should have names for each operand!");
3171       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3172       if (!OperandsSet.count(ArgNameStr))
3173         P->error("'" + ArgNameStr +
3174                  "' does not occur in pattern or was multiply specified!");
3175       OperandsSet.erase(ArgNameStr);
3176       Args.push_back(ArgNameStr);
3177     }
3178 
3179     if (!OperandsSet.empty())
3180       P->error("Operands list does not contain an entry for operand '" +
3181                *OperandsSet.begin() + "'!");
3182 
3183     // If there is a node transformation corresponding to this, keep track of
3184     // it.
3185     Record *Transform = Frag->getValueAsDef("OperandTransform");
3186     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3187       for (auto T : P->getTrees())
3188         T->setTransformFn(Transform);
3189   }
3190 
3191   // Now that we've parsed all of the tree fragments, do a closure on them so
3192   // that there are not references to PatFrags left inside of them.
3193   for (Record *Frag : Fragments) {
3194     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3195       continue;
3196 
3197     TreePattern &ThePat = *PatternFragments[Frag];
3198     ThePat.InlinePatternFragments();
3199 
3200     // Infer as many types as possible.  Don't worry about it if we don't infer
3201     // all of them, some may depend on the inputs of the pattern.  Also, don't
3202     // validate type sets; validation may cause spurious failures e.g. if a
3203     // fragment needs floating-point types but the current target does not have
3204     // any (this is only an error if that fragment is ever used!).
3205     {
3206       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3207       ThePat.InferAllTypes();
3208       ThePat.resetError();
3209     }
3210 
3211     // If debugging, print out the pattern fragment result.
3212     LLVM_DEBUG(ThePat.dump());
3213   }
3214 }
3215 
ParseDefaultOperands()3216 void CodeGenDAGPatterns::ParseDefaultOperands() {
3217   std::vector<Record*> DefaultOps;
3218   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3219 
3220   // Find some SDNode.
3221   assert(!SDNodes.empty() && "No SDNodes parsed?");
3222   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3223 
3224   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3225     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3226 
3227     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3228     // SomeSDnode so that we can parse this.
3229     std::vector<std::pair<Init*, StringInit*> > Ops;
3230     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3231       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3232                                    DefaultInfo->getArgName(op)));
3233     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3234 
3235     // Create a TreePattern to parse this.
3236     TreePattern P(DefaultOps[i], DI, false, *this);
3237     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3238 
3239     // Copy the operands over into a DAGDefaultOperand.
3240     DAGDefaultOperand DefaultOpInfo;
3241 
3242     const TreePatternNodePtr &T = P.getTree(0);
3243     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3244       TreePatternNodePtr TPN = T->getChildShared(op);
3245       while (TPN->ApplyTypeConstraints(P, false))
3246         /* Resolve all types */;
3247 
3248       if (TPN->ContainsUnresolvedType(P)) {
3249         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3250                         DefaultOps[i]->getName() +
3251                         "' doesn't have a concrete type!");
3252       }
3253       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3254     }
3255 
3256     // Insert it into the DefaultOperands map so we can find it later.
3257     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3258   }
3259 }
3260 
3261 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3262 /// instruction input.  Return true if this is a real use.
HandleUse(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs)3263 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3264                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3265   // No name -> not interesting.
3266   if (Pat->getName().empty()) {
3267     if (Pat->isLeaf()) {
3268       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3269       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3270                  DI->getDef()->isSubClassOf("RegisterOperand")))
3271         I.error("Input " + DI->getDef()->getName() + " must be named!");
3272     }
3273     return false;
3274   }
3275 
3276   Record *Rec;
3277   if (Pat->isLeaf()) {
3278     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3279     if (!DI)
3280       I.error("Input $" + Pat->getName() + " must be an identifier!");
3281     Rec = DI->getDef();
3282   } else {
3283     Rec = Pat->getOperator();
3284   }
3285 
3286   // SRCVALUE nodes are ignored.
3287   if (Rec->getName() == "srcvalue")
3288     return false;
3289 
3290   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3291   if (!Slot) {
3292     Slot = Pat;
3293     return true;
3294   }
3295   Record *SlotRec;
3296   if (Slot->isLeaf()) {
3297     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3298   } else {
3299     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3300     SlotRec = Slot->getOperator();
3301   }
3302 
3303   // Ensure that the inputs agree if we've already seen this input.
3304   if (Rec != SlotRec)
3305     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3306   // Ensure that the types can agree as well.
3307   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3308   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3309   if (Slot->getExtTypes() != Pat->getExtTypes())
3310     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3311   return true;
3312 }
3313 
3314 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3315 /// part of "I", the instruction), computing the set of inputs and outputs of
3316 /// the pattern.  Report errors if we see anything naughty.
FindPatternInputsAndOutputs(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs,MapVector<std::string,TreePatternNodePtr,std::map<std::string,unsigned>> & InstResults,std::vector<Record * > & InstImpResults)3317 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3318     TreePattern &I, TreePatternNodePtr Pat,
3319     std::map<std::string, TreePatternNodePtr> &InstInputs,
3320     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3321         &InstResults,
3322     std::vector<Record *> &InstImpResults) {
3323 
3324   // The instruction pattern still has unresolved fragments.  For *named*
3325   // nodes we must resolve those here.  This may not result in multiple
3326   // alternatives.
3327   if (!Pat->getName().empty()) {
3328     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3329     SrcPattern.InlinePatternFragments();
3330     SrcPattern.InferAllTypes();
3331     Pat = SrcPattern.getOnlyTree();
3332   }
3333 
3334   if (Pat->isLeaf()) {
3335     bool isUse = HandleUse(I, Pat, InstInputs);
3336     if (!isUse && Pat->getTransformFn())
3337       I.error("Cannot specify a transform function for a non-input value!");
3338     return;
3339   }
3340 
3341   if (Pat->getOperator()->getName() == "implicit") {
3342     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3343       TreePatternNode *Dest = Pat->getChild(i);
3344       if (!Dest->isLeaf())
3345         I.error("implicitly defined value should be a register!");
3346 
3347       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3348       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3349         I.error("implicitly defined value should be a register!");
3350       InstImpResults.push_back(Val->getDef());
3351     }
3352     return;
3353   }
3354 
3355   if (Pat->getOperator()->getName() != "set") {
3356     // If this is not a set, verify that the children nodes are not void typed,
3357     // and recurse.
3358     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3359       if (Pat->getChild(i)->getNumTypes() == 0)
3360         I.error("Cannot have void nodes inside of patterns!");
3361       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3362                                   InstResults, InstImpResults);
3363     }
3364 
3365     // If this is a non-leaf node with no children, treat it basically as if
3366     // it were a leaf.  This handles nodes like (imm).
3367     bool isUse = HandleUse(I, Pat, InstInputs);
3368 
3369     if (!isUse && Pat->getTransformFn())
3370       I.error("Cannot specify a transform function for a non-input value!");
3371     return;
3372   }
3373 
3374   // Otherwise, this is a set, validate and collect instruction results.
3375   if (Pat->getNumChildren() == 0)
3376     I.error("set requires operands!");
3377 
3378   if (Pat->getTransformFn())
3379     I.error("Cannot specify a transform function on a set node!");
3380 
3381   // Check the set destinations.
3382   unsigned NumDests = Pat->getNumChildren()-1;
3383   for (unsigned i = 0; i != NumDests; ++i) {
3384     TreePatternNodePtr Dest = Pat->getChildShared(i);
3385     // For set destinations we also must resolve fragments here.
3386     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3387     DestPattern.InlinePatternFragments();
3388     DestPattern.InferAllTypes();
3389     Dest = DestPattern.getOnlyTree();
3390 
3391     if (!Dest->isLeaf())
3392       I.error("set destination should be a register!");
3393 
3394     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3395     if (!Val) {
3396       I.error("set destination should be a register!");
3397       continue;
3398     }
3399 
3400     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3401         Val->getDef()->isSubClassOf("ValueType") ||
3402         Val->getDef()->isSubClassOf("RegisterOperand") ||
3403         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3404       if (Dest->getName().empty())
3405         I.error("set destination must have a name!");
3406       if (InstResults.count(Dest->getName()))
3407         I.error("cannot set '" + Dest->getName() + "' multiple times");
3408       InstResults[Dest->getName()] = Dest;
3409     } else if (Val->getDef()->isSubClassOf("Register")) {
3410       InstImpResults.push_back(Val->getDef());
3411     } else {
3412       I.error("set destination should be a register!");
3413     }
3414   }
3415 
3416   // Verify and collect info from the computation.
3417   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3418                               InstResults, InstImpResults);
3419 }
3420 
3421 //===----------------------------------------------------------------------===//
3422 // Instruction Analysis
3423 //===----------------------------------------------------------------------===//
3424 
3425 class InstAnalyzer {
3426   const CodeGenDAGPatterns &CDP;
3427 public:
3428   bool hasSideEffects;
3429   bool mayStore;
3430   bool mayLoad;
3431   bool isBitcast;
3432   bool isVariadic;
3433   bool hasChain;
3434 
InstAnalyzer(const CodeGenDAGPatterns & cdp)3435   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3436     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3437       isBitcast(false), isVariadic(false), hasChain(false) {}
3438 
Analyze(const PatternToMatch & Pat)3439   void Analyze(const PatternToMatch &Pat) {
3440     const TreePatternNode *N = Pat.getSrcPattern();
3441     AnalyzeNode(N);
3442     // These properties are detected only on the root node.
3443     isBitcast = IsNodeBitcast(N);
3444   }
3445 
3446 private:
IsNodeBitcast(const TreePatternNode * N) const3447   bool IsNodeBitcast(const TreePatternNode *N) const {
3448     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3449       return false;
3450 
3451     if (N->isLeaf())
3452       return false;
3453     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3454       return false;
3455 
3456     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3457     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3458       return false;
3459     return OpInfo.getEnumName() == "ISD::BITCAST";
3460   }
3461 
3462 public:
AnalyzeNode(const TreePatternNode * N)3463   void AnalyzeNode(const TreePatternNode *N) {
3464     if (N->isLeaf()) {
3465       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3466         Record *LeafRec = DI->getDef();
3467         // Handle ComplexPattern leaves.
3468         if (LeafRec->isSubClassOf("ComplexPattern")) {
3469           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3470           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3471           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3472           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3473         }
3474       }
3475       return;
3476     }
3477 
3478     // Analyze children.
3479     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3480       AnalyzeNode(N->getChild(i));
3481 
3482     // Notice properties of the node.
3483     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3484     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3485     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3486     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3487     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3488 
3489     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3490       // If this is an intrinsic, analyze it.
3491       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3492         mayLoad = true;// These may load memory.
3493 
3494       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3495         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3496 
3497       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3498           IntInfo->hasSideEffects)
3499         // ReadWriteMem intrinsics can have other strange effects.
3500         hasSideEffects = true;
3501     }
3502   }
3503 
3504 };
3505 
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)3506 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3507                              const InstAnalyzer &PatInfo,
3508                              Record *PatDef) {
3509   bool Error = false;
3510 
3511   // Remember where InstInfo got its flags.
3512   if (InstInfo.hasUndefFlags())
3513       InstInfo.InferredFrom = PatDef;
3514 
3515   // Check explicitly set flags for consistency.
3516   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3517       !InstInfo.hasSideEffects_Unset) {
3518     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3519     // the pattern has no side effects. That could be useful for div/rem
3520     // instructions that may trap.
3521     if (!InstInfo.hasSideEffects) {
3522       Error = true;
3523       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3524                  Twine(InstInfo.hasSideEffects));
3525     }
3526   }
3527 
3528   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3529     Error = true;
3530     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3531                Twine(InstInfo.mayStore));
3532   }
3533 
3534   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3535     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3536     // Some targets translate immediates to loads.
3537     if (!InstInfo.mayLoad) {
3538       Error = true;
3539       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3540                  Twine(InstInfo.mayLoad));
3541     }
3542   }
3543 
3544   // Transfer inferred flags.
3545   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3546   InstInfo.mayStore |= PatInfo.mayStore;
3547   InstInfo.mayLoad |= PatInfo.mayLoad;
3548 
3549   // These flags are silently added without any verification.
3550   // FIXME: To match historical behavior of TableGen, for now add those flags
3551   // only when we're inferring from the primary instruction pattern.
3552   if (PatDef->isSubClassOf("Instruction")) {
3553     InstInfo.isBitcast |= PatInfo.isBitcast;
3554     InstInfo.hasChain |= PatInfo.hasChain;
3555     InstInfo.hasChain_Inferred = true;
3556   }
3557 
3558   // Don't infer isVariadic. This flag means something different on SDNodes and
3559   // instructions. For example, a CALL SDNode is variadic because it has the
3560   // call arguments as operands, but a CALL instruction is not variadic - it
3561   // has argument registers as implicit, not explicit uses.
3562 
3563   return Error;
3564 }
3565 
3566 /// hasNullFragReference - Return true if the DAG has any reference to the
3567 /// null_frag operator.
hasNullFragReference(DagInit * DI)3568 static bool hasNullFragReference(DagInit *DI) {
3569   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3570   if (!OpDef) return false;
3571   Record *Operator = OpDef->getDef();
3572 
3573   // If this is the null fragment, return true.
3574   if (Operator->getName() == "null_frag") return true;
3575   // If any of the arguments reference the null fragment, return true.
3576   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3577     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3578     if (Arg && hasNullFragReference(Arg))
3579       return true;
3580   }
3581 
3582   return false;
3583 }
3584 
3585 /// hasNullFragReference - Return true if any DAG in the list references
3586 /// the null_frag operator.
hasNullFragReference(ListInit * LI)3587 static bool hasNullFragReference(ListInit *LI) {
3588   for (Init *I : LI->getValues()) {
3589     DagInit *DI = dyn_cast<DagInit>(I);
3590     assert(DI && "non-dag in an instruction Pattern list?!");
3591     if (hasNullFragReference(DI))
3592       return true;
3593   }
3594   return false;
3595 }
3596 
3597 /// Get all the instructions in a tree.
3598 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)3599 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3600   if (Tree->isLeaf())
3601     return;
3602   if (Tree->getOperator()->isSubClassOf("Instruction"))
3603     Instrs.push_back(Tree->getOperator());
3604   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3605     getInstructionsInTree(Tree->getChild(i), Instrs);
3606 }
3607 
3608 /// Check the class of a pattern leaf node against the instruction operand it
3609 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)3610 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3611                               Record *Leaf) {
3612   if (OI.Rec == Leaf)
3613     return true;
3614 
3615   // Allow direct value types to be used in instruction set patterns.
3616   // The type will be checked later.
3617   if (Leaf->isSubClassOf("ValueType"))
3618     return true;
3619 
3620   // Patterns can also be ComplexPattern instances.
3621   if (Leaf->isSubClassOf("ComplexPattern"))
3622     return true;
3623 
3624   return false;
3625 }
3626 
parseInstructionPattern(CodeGenInstruction & CGI,ListInit * Pat,DAGInstMap & DAGInsts)3627 void CodeGenDAGPatterns::parseInstructionPattern(
3628     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3629 
3630   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3631 
3632   // Parse the instruction.
3633   TreePattern I(CGI.TheDef, Pat, true, *this);
3634 
3635   // InstInputs - Keep track of all of the inputs of the instruction, along
3636   // with the record they are declared as.
3637   std::map<std::string, TreePatternNodePtr> InstInputs;
3638 
3639   // InstResults - Keep track of all the virtual registers that are 'set'
3640   // in the instruction, including what reg class they are.
3641   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3642       InstResults;
3643 
3644   std::vector<Record*> InstImpResults;
3645 
3646   // Verify that the top-level forms in the instruction are of void type, and
3647   // fill in the InstResults map.
3648   SmallString<32> TypesString;
3649   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3650     TypesString.clear();
3651     TreePatternNodePtr Pat = I.getTree(j);
3652     if (Pat->getNumTypes() != 0) {
3653       raw_svector_ostream OS(TypesString);
3654       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3655         if (k > 0)
3656           OS << ", ";
3657         Pat->getExtType(k).writeToStream(OS);
3658       }
3659       I.error("Top-level forms in instruction pattern should have"
3660                " void types, has types " +
3661                OS.str());
3662     }
3663 
3664     // Find inputs and outputs, and verify the structure of the uses/defs.
3665     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3666                                 InstImpResults);
3667   }
3668 
3669   // Now that we have inputs and outputs of the pattern, inspect the operands
3670   // list for the instruction.  This determines the order that operands are
3671   // added to the machine instruction the node corresponds to.
3672   unsigned NumResults = InstResults.size();
3673 
3674   // Parse the operands list from the (ops) list, validating it.
3675   assert(I.getArgList().empty() && "Args list should still be empty here!");
3676 
3677   // Check that all of the results occur first in the list.
3678   std::vector<Record*> Results;
3679   std::vector<unsigned> ResultIndices;
3680   SmallVector<TreePatternNodePtr, 2> ResNodes;
3681   for (unsigned i = 0; i != NumResults; ++i) {
3682     if (i == CGI.Operands.size()) {
3683       const std::string &OpName =
3684           std::find_if(InstResults.begin(), InstResults.end(),
3685                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3686                          return P.second;
3687                        })
3688               ->first;
3689 
3690       I.error("'" + OpName + "' set but does not appear in operand list!");
3691     }
3692 
3693     const std::string &OpName = CGI.Operands[i].Name;
3694 
3695     // Check that it exists in InstResults.
3696     auto InstResultIter = InstResults.find(OpName);
3697     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3698       I.error("Operand $" + OpName + " does not exist in operand list!");
3699 
3700     TreePatternNodePtr RNode = InstResultIter->second;
3701     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3702     ResNodes.push_back(std::move(RNode));
3703     if (!R)
3704       I.error("Operand $" + OpName + " should be a set destination: all "
3705                "outputs must occur before inputs in operand list!");
3706 
3707     if (!checkOperandClass(CGI.Operands[i], R))
3708       I.error("Operand $" + OpName + " class mismatch!");
3709 
3710     // Remember the return type.
3711     Results.push_back(CGI.Operands[i].Rec);
3712 
3713     // Remember the result index.
3714     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3715 
3716     // Okay, this one checks out.
3717     InstResultIter->second = nullptr;
3718   }
3719 
3720   // Loop over the inputs next.
3721   std::vector<TreePatternNodePtr> ResultNodeOperands;
3722   std::vector<Record*> Operands;
3723   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3724     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3725     const std::string &OpName = Op.Name;
3726     if (OpName.empty())
3727       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3728 
3729     if (!InstInputs.count(OpName)) {
3730       // If this is an operand with a DefaultOps set filled in, we can ignore
3731       // this.  When we codegen it, we will do so as always executed.
3732       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3733         // Does it have a non-empty DefaultOps field?  If so, ignore this
3734         // operand.
3735         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3736           continue;
3737       }
3738       I.error("Operand $" + OpName +
3739                " does not appear in the instruction pattern");
3740     }
3741     TreePatternNodePtr InVal = InstInputs[OpName];
3742     InstInputs.erase(OpName);   // It occurred, remove from map.
3743 
3744     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3745       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3746       if (!checkOperandClass(Op, InRec))
3747         I.error("Operand $" + OpName + "'s register class disagrees"
3748                  " between the operand and pattern");
3749     }
3750     Operands.push_back(Op.Rec);
3751 
3752     // Construct the result for the dest-pattern operand list.
3753     TreePatternNodePtr OpNode = InVal->clone();
3754 
3755     // No predicate is useful on the result.
3756     OpNode->clearPredicateCalls();
3757 
3758     // Promote the xform function to be an explicit node if set.
3759     if (Record *Xform = OpNode->getTransformFn()) {
3760       OpNode->setTransformFn(nullptr);
3761       std::vector<TreePatternNodePtr> Children;
3762       Children.push_back(OpNode);
3763       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3764                                                  OpNode->getNumTypes());
3765     }
3766 
3767     ResultNodeOperands.push_back(std::move(OpNode));
3768   }
3769 
3770   if (!InstInputs.empty())
3771     I.error("Input operand $" + InstInputs.begin()->first +
3772             " occurs in pattern but not in operands list!");
3773 
3774   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3775       I.getRecord(), std::move(ResultNodeOperands),
3776       GetNumNodeResults(I.getRecord(), *this));
3777   // Copy fully inferred output node types to instruction result pattern.
3778   for (unsigned i = 0; i != NumResults; ++i) {
3779     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3780     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3781     ResultPattern->setResultIndex(i, ResultIndices[i]);
3782   }
3783 
3784   // FIXME: Assume only the first tree is the pattern. The others are clobber
3785   // nodes.
3786   TreePatternNodePtr Pattern = I.getTree(0);
3787   TreePatternNodePtr SrcPattern;
3788   if (Pattern->getOperator()->getName() == "set") {
3789     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3790   } else{
3791     // Not a set (store or something?)
3792     SrcPattern = Pattern;
3793   }
3794 
3795   // Create and insert the instruction.
3796   // FIXME: InstImpResults should not be part of DAGInstruction.
3797   Record *R = I.getRecord();
3798   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3799                    std::forward_as_tuple(Results, Operands, InstImpResults,
3800                                          SrcPattern, ResultPattern));
3801 
3802   LLVM_DEBUG(I.dump());
3803 }
3804 
3805 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3806 /// any fragments involved.  This populates the Instructions list with fully
3807 /// resolved instructions.
ParseInstructions()3808 void CodeGenDAGPatterns::ParseInstructions() {
3809   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3810 
3811   for (Record *Instr : Instrs) {
3812     ListInit *LI = nullptr;
3813 
3814     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3815       LI = Instr->getValueAsListInit("Pattern");
3816 
3817     // If there is no pattern, only collect minimal information about the
3818     // instruction for its operand list.  We have to assume that there is one
3819     // result, as we have no detailed info. A pattern which references the
3820     // null_frag operator is as-if no pattern were specified. Normally this
3821     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3822     // null_frag.
3823     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3824       std::vector<Record*> Results;
3825       std::vector<Record*> Operands;
3826 
3827       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3828 
3829       if (InstInfo.Operands.size() != 0) {
3830         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3831           Results.push_back(InstInfo.Operands[j].Rec);
3832 
3833         // The rest are inputs.
3834         for (unsigned j = InstInfo.Operands.NumDefs,
3835                e = InstInfo.Operands.size(); j < e; ++j)
3836           Operands.push_back(InstInfo.Operands[j].Rec);
3837       }
3838 
3839       // Create and insert the instruction.
3840       std::vector<Record*> ImpResults;
3841       Instructions.insert(std::make_pair(Instr,
3842                             DAGInstruction(Results, Operands, ImpResults)));
3843       continue;  // no pattern.
3844     }
3845 
3846     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3847     parseInstructionPattern(CGI, LI, Instructions);
3848   }
3849 
3850   // If we can, convert the instructions to be patterns that are matched!
3851   for (auto &Entry : Instructions) {
3852     Record *Instr = Entry.first;
3853     DAGInstruction &TheInst = Entry.second;
3854     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3855     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3856 
3857     if (SrcPattern && ResultPattern) {
3858       TreePattern Pattern(Instr, SrcPattern, true, *this);
3859       TreePattern Result(Instr, ResultPattern, false, *this);
3860       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3861     }
3862   }
3863 }
3864 
3865 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3866 
FindNames(TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)3867 static void FindNames(TreePatternNode *P,
3868                       std::map<std::string, NameRecord> &Names,
3869                       TreePattern *PatternTop) {
3870   if (!P->getName().empty()) {
3871     NameRecord &Rec = Names[P->getName()];
3872     // If this is the first instance of the name, remember the node.
3873     if (Rec.second++ == 0)
3874       Rec.first = P;
3875     else if (Rec.first->getExtTypes() != P->getExtTypes())
3876       PatternTop->error("repetition of value: $" + P->getName() +
3877                         " where different uses have different types!");
3878   }
3879 
3880   if (!P->isLeaf()) {
3881     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3882       FindNames(P->getChild(i), Names, PatternTop);
3883   }
3884 }
3885 
makePredList(ListInit * L)3886 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3887   std::vector<Predicate> Preds;
3888   for (Init *I : L->getValues()) {
3889     if (DefInit *Pred = dyn_cast<DefInit>(I))
3890       Preds.push_back(Pred->getDef());
3891     else
3892       llvm_unreachable("Non-def on the list");
3893   }
3894 
3895   // Sort so that different orders get canonicalized to the same string.
3896   llvm::sort(Preds);
3897   return Preds;
3898 }
3899 
AddPatternToMatch(TreePattern * Pattern,PatternToMatch && PTM)3900 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3901                                            PatternToMatch &&PTM) {
3902   // Do some sanity checking on the pattern we're about to match.
3903   std::string Reason;
3904   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3905     PrintWarning(Pattern->getRecord()->getLoc(),
3906       Twine("Pattern can never match: ") + Reason);
3907     return;
3908   }
3909 
3910   // If the source pattern's root is a complex pattern, that complex pattern
3911   // must specify the nodes it can potentially match.
3912   if (const ComplexPattern *CP =
3913         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3914     if (CP->getRootNodes().empty())
3915       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3916                      " could match");
3917 
3918 
3919   // Find all of the named values in the input and output, ensure they have the
3920   // same type.
3921   std::map<std::string, NameRecord> SrcNames, DstNames;
3922   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3923   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3924 
3925   // Scan all of the named values in the destination pattern, rejecting them if
3926   // they don't exist in the input pattern.
3927   for (const auto &Entry : DstNames) {
3928     if (SrcNames[Entry.first].first == nullptr)
3929       Pattern->error("Pattern has input without matching name in output: $" +
3930                      Entry.first);
3931   }
3932 
3933   // Scan all of the named values in the source pattern, rejecting them if the
3934   // name isn't used in the dest, and isn't used to tie two values together.
3935   for (const auto &Entry : SrcNames)
3936     if (DstNames[Entry.first].first == nullptr &&
3937         SrcNames[Entry.first].second == 1)
3938       Pattern->error("Pattern has dead named input: $" + Entry.first);
3939 
3940   PatternsToMatch.push_back(PTM);
3941 }
3942 
InferInstructionFlags()3943 void CodeGenDAGPatterns::InferInstructionFlags() {
3944   ArrayRef<const CodeGenInstruction*> Instructions =
3945     Target.getInstructionsByEnumValue();
3946 
3947   unsigned Errors = 0;
3948 
3949   // Try to infer flags from all patterns in PatternToMatch.  These include
3950   // both the primary instruction patterns (which always come first) and
3951   // patterns defined outside the instruction.
3952   for (const PatternToMatch &PTM : ptms()) {
3953     // We can only infer from single-instruction patterns, otherwise we won't
3954     // know which instruction should get the flags.
3955     SmallVector<Record*, 8> PatInstrs;
3956     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3957     if (PatInstrs.size() != 1)
3958       continue;
3959 
3960     // Get the single instruction.
3961     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3962 
3963     // Only infer properties from the first pattern. We'll verify the others.
3964     if (InstInfo.InferredFrom)
3965       continue;
3966 
3967     InstAnalyzer PatInfo(*this);
3968     PatInfo.Analyze(PTM);
3969     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3970   }
3971 
3972   if (Errors)
3973     PrintFatalError("pattern conflicts");
3974 
3975   // If requested by the target, guess any undefined properties.
3976   if (Target.guessInstructionProperties()) {
3977     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3978       CodeGenInstruction *InstInfo =
3979         const_cast<CodeGenInstruction *>(Instructions[i]);
3980       if (InstInfo->InferredFrom)
3981         continue;
3982       // The mayLoad and mayStore flags default to false.
3983       // Conservatively assume hasSideEffects if it wasn't explicit.
3984       if (InstInfo->hasSideEffects_Unset)
3985         InstInfo->hasSideEffects = true;
3986     }
3987     return;
3988   }
3989 
3990   // Complain about any flags that are still undefined.
3991   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3992     CodeGenInstruction *InstInfo =
3993       const_cast<CodeGenInstruction *>(Instructions[i]);
3994     if (InstInfo->InferredFrom)
3995       continue;
3996     if (InstInfo->hasSideEffects_Unset)
3997       PrintError(InstInfo->TheDef->getLoc(),
3998                  "Can't infer hasSideEffects from patterns");
3999     if (InstInfo->mayStore_Unset)
4000       PrintError(InstInfo->TheDef->getLoc(),
4001                  "Can't infer mayStore from patterns");
4002     if (InstInfo->mayLoad_Unset)
4003       PrintError(InstInfo->TheDef->getLoc(),
4004                  "Can't infer mayLoad from patterns");
4005   }
4006 }
4007 
4008 
4009 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()4010 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4011   unsigned Errors = 0;
4012   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
4013     const PatternToMatch &PTM = *I;
4014     SmallVector<Record*, 8> Instrs;
4015     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4016     if (Instrs.empty())
4017       continue;
4018 
4019     // Count the number of instructions with each flag set.
4020     unsigned NumSideEffects = 0;
4021     unsigned NumStores = 0;
4022     unsigned NumLoads = 0;
4023     for (const Record *Instr : Instrs) {
4024       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4025       NumSideEffects += InstInfo.hasSideEffects;
4026       NumStores += InstInfo.mayStore;
4027       NumLoads += InstInfo.mayLoad;
4028     }
4029 
4030     // Analyze the source pattern.
4031     InstAnalyzer PatInfo(*this);
4032     PatInfo.Analyze(PTM);
4033 
4034     // Collect error messages.
4035     SmallVector<std::string, 4> Msgs;
4036 
4037     // Check for missing flags in the output.
4038     // Permit extra flags for now at least.
4039     if (PatInfo.hasSideEffects && !NumSideEffects)
4040       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4041 
4042     // Don't verify store flags on instructions with side effects. At least for
4043     // intrinsics, side effects implies mayStore.
4044     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4045       Msgs.push_back("pattern may store, but mayStore isn't set");
4046 
4047     // Similarly, mayStore implies mayLoad on intrinsics.
4048     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4049       Msgs.push_back("pattern may load, but mayLoad isn't set");
4050 
4051     // Print error messages.
4052     if (Msgs.empty())
4053       continue;
4054     ++Errors;
4055 
4056     for (const std::string &Msg : Msgs)
4057       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4058                  (Instrs.size() == 1 ?
4059                   "instruction" : "output instructions"));
4060     // Provide the location of the relevant instruction definitions.
4061     for (const Record *Instr : Instrs) {
4062       if (Instr != PTM.getSrcRecord())
4063         PrintError(Instr->getLoc(), "defined here");
4064       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4065       if (InstInfo.InferredFrom &&
4066           InstInfo.InferredFrom != InstInfo.TheDef &&
4067           InstInfo.InferredFrom != PTM.getSrcRecord())
4068         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4069     }
4070   }
4071   if (Errors)
4072     PrintFatalError("Errors in DAG patterns");
4073 }
4074 
4075 /// Given a pattern result with an unresolved type, see if we can find one
4076 /// instruction with an unresolved result type.  Force this result type to an
4077 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)4078 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4079   if (N->isLeaf())
4080     return false;
4081 
4082   // Analyze children.
4083   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4084     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4085       return true;
4086 
4087   if (!N->getOperator()->isSubClassOf("Instruction"))
4088     return false;
4089 
4090   // If this type is already concrete or completely unknown we can't do
4091   // anything.
4092   TypeInfer &TI = TP.getInfer();
4093   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4094     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4095       continue;
4096 
4097     // Otherwise, force its type to an arbitrary choice.
4098     if (TI.forceArbitrary(N->getExtType(i)))
4099       return true;
4100   }
4101 
4102   return false;
4103 }
4104 
4105 // Promote xform function to be an explicit node wherever set.
PromoteXForms(TreePatternNodePtr N)4106 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4107   if (Record *Xform = N->getTransformFn()) {
4108       N->setTransformFn(nullptr);
4109       std::vector<TreePatternNodePtr> Children;
4110       Children.push_back(PromoteXForms(N));
4111       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4112                                                N->getNumTypes());
4113   }
4114 
4115   if (!N->isLeaf())
4116     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4117       TreePatternNodePtr Child = N->getChildShared(i);
4118       N->setChild(i, PromoteXForms(Child));
4119     }
4120   return N;
4121 }
4122 
ParseOnePattern(Record * TheDef,TreePattern & Pattern,TreePattern & Result,const std::vector<Record * > & InstImpResults)4123 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4124        TreePattern &Pattern, TreePattern &Result,
4125        const std::vector<Record *> &InstImpResults) {
4126 
4127   // Inline pattern fragments and expand multiple alternatives.
4128   Pattern.InlinePatternFragments();
4129   Result.InlinePatternFragments();
4130 
4131   if (Result.getNumTrees() != 1)
4132     Result.error("Cannot use multi-alternative fragments in result pattern!");
4133 
4134   // Infer types.
4135   bool IterateInference;
4136   bool InferredAllPatternTypes, InferredAllResultTypes;
4137   do {
4138     // Infer as many types as possible.  If we cannot infer all of them, we
4139     // can never do anything with this pattern: report it to the user.
4140     InferredAllPatternTypes =
4141         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4142 
4143     // Infer as many types as possible.  If we cannot infer all of them, we
4144     // can never do anything with this pattern: report it to the user.
4145     InferredAllResultTypes =
4146         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4147 
4148     IterateInference = false;
4149 
4150     // Apply the type of the result to the source pattern.  This helps us
4151     // resolve cases where the input type is known to be a pointer type (which
4152     // is considered resolved), but the result knows it needs to be 32- or
4153     // 64-bits.  Infer the other way for good measure.
4154     for (auto T : Pattern.getTrees())
4155       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4156                                         T->getNumTypes());
4157          i != e; ++i) {
4158         IterateInference |= T->UpdateNodeType(
4159             i, Result.getOnlyTree()->getExtType(i), Result);
4160         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4161             i, T->getExtType(i), Result);
4162       }
4163 
4164     // If our iteration has converged and the input pattern's types are fully
4165     // resolved but the result pattern is not fully resolved, we may have a
4166     // situation where we have two instructions in the result pattern and
4167     // the instructions require a common register class, but don't care about
4168     // what actual MVT is used.  This is actually a bug in our modelling:
4169     // output patterns should have register classes, not MVTs.
4170     //
4171     // In any case, to handle this, we just go through and disambiguate some
4172     // arbitrary types to the result pattern's nodes.
4173     if (!IterateInference && InferredAllPatternTypes &&
4174         !InferredAllResultTypes)
4175       IterateInference =
4176           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4177   } while (IterateInference);
4178 
4179   // Verify that we inferred enough types that we can do something with the
4180   // pattern and result.  If these fire the user has to add type casts.
4181   if (!InferredAllPatternTypes)
4182     Pattern.error("Could not infer all types in pattern!");
4183   if (!InferredAllResultTypes) {
4184     Pattern.dump();
4185     Result.error("Could not infer all types in pattern result!");
4186   }
4187 
4188   // Promote xform function to be an explicit node wherever set.
4189   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4190 
4191   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4192   Temp.InferAllTypes();
4193 
4194   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4195   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4196 
4197   if (PatternRewriter)
4198     PatternRewriter(&Pattern);
4199 
4200   // A pattern may end up with an "impossible" type, i.e. a situation
4201   // where all types have been eliminated for some node in this pattern.
4202   // This could occur for intrinsics that only make sense for a specific
4203   // value type, and use a specific register class. If, for some mode,
4204   // that register class does not accept that type, the type inference
4205   // will lead to a contradiction, which is not an error however, but
4206   // a sign that this pattern will simply never match.
4207   if (Temp.getOnlyTree()->hasPossibleType())
4208     for (auto T : Pattern.getTrees())
4209       if (T->hasPossibleType())
4210         AddPatternToMatch(&Pattern,
4211                           PatternToMatch(TheDef, makePredList(Preds),
4212                                          T, Temp.getOnlyTree(),
4213                                          InstImpResults, Complexity,
4214                                          TheDef->getID()));
4215 }
4216 
ParsePatterns()4217 void CodeGenDAGPatterns::ParsePatterns() {
4218   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4219 
4220   for (Record *CurPattern : Patterns) {
4221     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4222 
4223     // If the pattern references the null_frag, there's nothing to do.
4224     if (hasNullFragReference(Tree))
4225       continue;
4226 
4227     TreePattern Pattern(CurPattern, Tree, true, *this);
4228 
4229     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4230     if (LI->empty()) continue;  // no pattern.
4231 
4232     // Parse the instruction.
4233     TreePattern Result(CurPattern, LI, false, *this);
4234 
4235     if (Result.getNumTrees() != 1)
4236       Result.error("Cannot handle instructions producing instructions "
4237                    "with temporaries yet!");
4238 
4239     // Validate that the input pattern is correct.
4240     std::map<std::string, TreePatternNodePtr> InstInputs;
4241     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4242         InstResults;
4243     std::vector<Record*> InstImpResults;
4244     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4245       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4246                                   InstResults, InstImpResults);
4247 
4248     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4249   }
4250 }
4251 
collectModes(std::set<unsigned> & Modes,const TreePatternNode * N)4252 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4253   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4254     for (const auto &I : VTS)
4255       Modes.insert(I.first);
4256 
4257   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4258     collectModes(Modes, N->getChild(i));
4259 }
4260 
ExpandHwModeBasedTypes()4261 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4262   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4263   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4264   std::vector<PatternToMatch> Copy = PatternsToMatch;
4265   PatternsToMatch.clear();
4266 
4267   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4268     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4269     TreePatternNodePtr NewDst = P.DstPattern->clone();
4270     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4271       return;
4272     }
4273 
4274     std::vector<Predicate> Preds = P.Predicates;
4275     const std::vector<Predicate> &MC = ModeChecks[Mode];
4276     Preds.insert(Preds.end(), MC.begin(), MC.end());
4277     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4278                                  std::move(NewDst), P.getDstRegs(),
4279                                  P.getAddedComplexity(), Record::getNewUID(),
4280                                  Mode);
4281   };
4282 
4283   for (PatternToMatch &P : Copy) {
4284     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4285     if (P.SrcPattern->hasProperTypeByHwMode())
4286       SrcP = P.SrcPattern;
4287     if (P.DstPattern->hasProperTypeByHwMode())
4288       DstP = P.DstPattern;
4289     if (!SrcP && !DstP) {
4290       PatternsToMatch.push_back(P);
4291       continue;
4292     }
4293 
4294     std::set<unsigned> Modes;
4295     if (SrcP)
4296       collectModes(Modes, SrcP.get());
4297     if (DstP)
4298       collectModes(Modes, DstP.get());
4299 
4300     // The predicate for the default mode needs to be constructed for each
4301     // pattern separately.
4302     // Since not all modes must be present in each pattern, if a mode m is
4303     // absent, then there is no point in constructing a check for m. If such
4304     // a check was created, it would be equivalent to checking the default
4305     // mode, except not all modes' predicates would be a part of the checking
4306     // code. The subsequently generated check for the default mode would then
4307     // have the exact same patterns, but a different predicate code. To avoid
4308     // duplicated patterns with different predicate checks, construct the
4309     // default check as a negation of all predicates that are actually present
4310     // in the source/destination patterns.
4311     std::vector<Predicate> DefaultPred;
4312 
4313     for (unsigned M : Modes) {
4314       if (M == DefaultMode)
4315         continue;
4316       if (ModeChecks.find(M) != ModeChecks.end())
4317         continue;
4318 
4319       // Fill the map entry for this mode.
4320       const HwMode &HM = CGH.getMode(M);
4321       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4322 
4323       // Add negations of the HM's predicates to the default predicate.
4324       DefaultPred.emplace_back(Predicate(HM.Features, false));
4325     }
4326 
4327     for (unsigned M : Modes) {
4328       if (M == DefaultMode)
4329         continue;
4330       AppendPattern(P, M);
4331     }
4332 
4333     bool HasDefault = Modes.count(DefaultMode);
4334     if (HasDefault)
4335       AppendPattern(P, DefaultMode);
4336   }
4337 }
4338 
4339 /// Dependent variable map for CodeGenDAGPattern variant generation
4340 typedef StringMap<int> DepVarMap;
4341 
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)4342 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4343   if (N->isLeaf()) {
4344     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4345       DepMap[N->getName()]++;
4346   } else {
4347     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4348       FindDepVarsOf(N->getChild(i), DepMap);
4349   }
4350 }
4351 
4352 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)4353 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4354   DepVarMap depcounts;
4355   FindDepVarsOf(N, depcounts);
4356   for (const auto &Pair : depcounts) {
4357     if (Pair.getValue() > 1)
4358       DepVars.insert(Pair.getKey());
4359   }
4360 }
4361 
4362 #ifndef NDEBUG
4363 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)4364 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4365   if (DepVars.empty()) {
4366     LLVM_DEBUG(errs() << "<empty set>");
4367   } else {
4368     LLVM_DEBUG(errs() << "[ ");
4369     for (const auto &DepVar : DepVars) {
4370       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4371     }
4372     LLVM_DEBUG(errs() << "]");
4373   }
4374 }
4375 #endif
4376 
4377 
4378 /// CombineChildVariants - Given a bunch of permutations of each child of the
4379 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<std::vector<TreePatternNodePtr>> & ChildVariants,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4380 static void CombineChildVariants(
4381     TreePatternNodePtr Orig,
4382     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4383     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4384     const MultipleUseVarSet &DepVars) {
4385   // Make sure that each operand has at least one variant to choose from.
4386   for (const auto &Variants : ChildVariants)
4387     if (Variants.empty())
4388       return;
4389 
4390   // The end result is an all-pairs construction of the resultant pattern.
4391   std::vector<unsigned> Idxs;
4392   Idxs.resize(ChildVariants.size());
4393   bool NotDone;
4394   do {
4395 #ifndef NDEBUG
4396     LLVM_DEBUG(if (!Idxs.empty()) {
4397       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4398       for (unsigned Idx : Idxs) {
4399         errs() << Idx << " ";
4400       }
4401       errs() << "]\n";
4402     });
4403 #endif
4404     // Create the variant and add it to the output list.
4405     std::vector<TreePatternNodePtr> NewChildren;
4406     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4407       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4408     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4409         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4410 
4411     // Copy over properties.
4412     R->setName(Orig->getName());
4413     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4414     R->setPredicateCalls(Orig->getPredicateCalls());
4415     R->setTransformFn(Orig->getTransformFn());
4416     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4417       R->setType(i, Orig->getExtType(i));
4418 
4419     // If this pattern cannot match, do not include it as a variant.
4420     std::string ErrString;
4421     // Scan to see if this pattern has already been emitted.  We can get
4422     // duplication due to things like commuting:
4423     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4424     // which are the same pattern.  Ignore the dups.
4425     if (R->canPatternMatch(ErrString, CDP) &&
4426         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4427           return R->isIsomorphicTo(Variant.get(), DepVars);
4428         }))
4429       OutVariants.push_back(R);
4430 
4431     // Increment indices to the next permutation by incrementing the
4432     // indices from last index backward, e.g., generate the sequence
4433     // [0, 0], [0, 1], [1, 0], [1, 1].
4434     int IdxsIdx;
4435     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4436       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4437         Idxs[IdxsIdx] = 0;
4438       else
4439         break;
4440     }
4441     NotDone = (IdxsIdx >= 0);
4442   } while (NotDone);
4443 }
4444 
4445 /// CombineChildVariants - A helper function for binary operators.
4446 ///
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<TreePatternNodePtr> & LHS,const std::vector<TreePatternNodePtr> & RHS,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4447 static void CombineChildVariants(TreePatternNodePtr Orig,
4448                                  const std::vector<TreePatternNodePtr> &LHS,
4449                                  const std::vector<TreePatternNodePtr> &RHS,
4450                                  std::vector<TreePatternNodePtr> &OutVariants,
4451                                  CodeGenDAGPatterns &CDP,
4452                                  const MultipleUseVarSet &DepVars) {
4453   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4454   ChildVariants.push_back(LHS);
4455   ChildVariants.push_back(RHS);
4456   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4457 }
4458 
4459 static void
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & Children)4460 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4461                                   std::vector<TreePatternNodePtr> &Children) {
4462   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4463   Record *Operator = N->getOperator();
4464 
4465   // Only permit raw nodes.
4466   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4467       N->getTransformFn()) {
4468     Children.push_back(N);
4469     return;
4470   }
4471 
4472   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4473     Children.push_back(N->getChildShared(0));
4474   else
4475     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4476 
4477   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4478     Children.push_back(N->getChildShared(1));
4479   else
4480     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4481 }
4482 
4483 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4484 /// the (potentially recursive) pattern by using algebraic laws.
4485 ///
GenerateVariantsOf(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4486 static void GenerateVariantsOf(TreePatternNodePtr N,
4487                                std::vector<TreePatternNodePtr> &OutVariants,
4488                                CodeGenDAGPatterns &CDP,
4489                                const MultipleUseVarSet &DepVars) {
4490   // We cannot permute leaves or ComplexPattern uses.
4491   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4492     OutVariants.push_back(N);
4493     return;
4494   }
4495 
4496   // Look up interesting info about the node.
4497   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4498 
4499   // If this node is associative, re-associate.
4500   if (NodeInfo.hasProperty(SDNPAssociative)) {
4501     // Re-associate by pulling together all of the linked operators
4502     std::vector<TreePatternNodePtr> MaximalChildren;
4503     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4504 
4505     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4506     // permutations.
4507     if (MaximalChildren.size() == 3) {
4508       // Find the variants of all of our maximal children.
4509       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4510       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4511       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4512       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4513 
4514       // There are only two ways we can permute the tree:
4515       //   (A op B) op C    and    A op (B op C)
4516       // Within these forms, we can also permute A/B/C.
4517 
4518       // Generate legal pair permutations of A/B/C.
4519       std::vector<TreePatternNodePtr> ABVariants;
4520       std::vector<TreePatternNodePtr> BAVariants;
4521       std::vector<TreePatternNodePtr> ACVariants;
4522       std::vector<TreePatternNodePtr> CAVariants;
4523       std::vector<TreePatternNodePtr> BCVariants;
4524       std::vector<TreePatternNodePtr> CBVariants;
4525       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4526       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4527       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4528       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4529       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4530       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4531 
4532       // Combine those into the result: (x op x) op x
4533       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4534       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4535       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4536       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4537       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4538       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4539 
4540       // Combine those into the result: x op (x op x)
4541       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4542       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4543       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4544       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4545       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4546       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4547       return;
4548     }
4549   }
4550 
4551   // Compute permutations of all children.
4552   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4553   ChildVariants.resize(N->getNumChildren());
4554   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4555     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4556 
4557   // Build all permutations based on how the children were formed.
4558   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4559 
4560   // If this node is commutative, consider the commuted order.
4561   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4562   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4563     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4564            "Commutative but doesn't have 2 children!");
4565     // Don't count children which are actually register references.
4566     unsigned NC = 0;
4567     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4568       TreePatternNode *Child = N->getChild(i);
4569       if (Child->isLeaf())
4570         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4571           Record *RR = DI->getDef();
4572           if (RR->isSubClassOf("Register"))
4573             continue;
4574         }
4575       NC++;
4576     }
4577     // Consider the commuted order.
4578     if (isCommIntrinsic) {
4579       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4580       // operands are the commutative operands, and there might be more operands
4581       // after those.
4582       assert(NC >= 3 &&
4583              "Commutative intrinsic should have at least 3 children!");
4584       std::vector<std::vector<TreePatternNodePtr>> Variants;
4585       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4586       Variants.push_back(std::move(ChildVariants[2]));
4587       Variants.push_back(std::move(ChildVariants[1]));
4588       for (unsigned i = 3; i != NC; ++i)
4589         Variants.push_back(std::move(ChildVariants[i]));
4590       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4591     } else if (NC == N->getNumChildren()) {
4592       std::vector<std::vector<TreePatternNodePtr>> Variants;
4593       Variants.push_back(std::move(ChildVariants[1]));
4594       Variants.push_back(std::move(ChildVariants[0]));
4595       for (unsigned i = 2; i != NC; ++i)
4596         Variants.push_back(std::move(ChildVariants[i]));
4597       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4598     }
4599   }
4600 }
4601 
4602 
4603 // GenerateVariants - Generate variants.  For example, commutative patterns can
4604 // match multiple ways.  Add them to PatternsToMatch as well.
GenerateVariants()4605 void CodeGenDAGPatterns::GenerateVariants() {
4606   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4607 
4608   // Loop over all of the patterns we've collected, checking to see if we can
4609   // generate variants of the instruction, through the exploitation of
4610   // identities.  This permits the target to provide aggressive matching without
4611   // the .td file having to contain tons of variants of instructions.
4612   //
4613   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4614   // intentionally do not reconsider these.  Any variants of added patterns have
4615   // already been added.
4616   //
4617   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4618   BitVector MatchedPatterns(NumOriginalPatterns);
4619   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4620                                            BitVector(NumOriginalPatterns));
4621 
4622   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4623       DepsAndVariants;
4624   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4625 
4626   // Collect patterns with more than one variant.
4627   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4628     MultipleUseVarSet DepVars;
4629     std::vector<TreePatternNodePtr> Variants;
4630     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4631     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4632     LLVM_DEBUG(DumpDepVars(DepVars));
4633     LLVM_DEBUG(errs() << "\n");
4634     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4635                        *this, DepVars);
4636 
4637     assert(!Variants.empty() && "Must create at least original variant!");
4638     if (Variants.size() == 1) // No additional variants for this pattern.
4639       continue;
4640 
4641     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4642                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4643 
4644     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4645 
4646     // Cache matching predicates.
4647     if (MatchedPatterns[i])
4648       continue;
4649 
4650     const std::vector<Predicate> &Predicates =
4651         PatternsToMatch[i].getPredicates();
4652 
4653     BitVector &Matches = MatchedPredicates[i];
4654     MatchedPatterns.set(i);
4655     Matches.set(i);
4656 
4657     // Don't test patterns that have already been cached - it won't match.
4658     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4659       if (!MatchedPatterns[p])
4660         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4661 
4662     // Copy this to all the matching patterns.
4663     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4664       if (p != (int)i) {
4665         MatchedPatterns.set(p);
4666         MatchedPredicates[p] = Matches;
4667       }
4668   }
4669 
4670   for (auto it : PatternsWithVariants) {
4671     unsigned i = it.first;
4672     const MultipleUseVarSet &DepVars = it.second.first;
4673     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4674 
4675     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4676       TreePatternNodePtr Variant = Variants[v];
4677       BitVector &Matches = MatchedPredicates[i];
4678 
4679       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4680                  errs() << "\n");
4681 
4682       // Scan to see if an instruction or explicit pattern already matches this.
4683       bool AlreadyExists = false;
4684       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4685         // Skip if the top level predicates do not match.
4686         if (!Matches[p])
4687           continue;
4688         // Check to see if this variant already exists.
4689         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4690                                     DepVars)) {
4691           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4692           AlreadyExists = true;
4693           break;
4694         }
4695       }
4696       // If we already have it, ignore the variant.
4697       if (AlreadyExists) continue;
4698 
4699       // Otherwise, add it to the list of patterns we have.
4700       PatternsToMatch.push_back(PatternToMatch(
4701           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4702           Variant, PatternsToMatch[i].getDstPatternShared(),
4703           PatternsToMatch[i].getDstRegs(),
4704           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4705       MatchedPredicates.push_back(Matches);
4706 
4707       // Add a new match the same as this pattern.
4708       for (auto &P : MatchedPredicates)
4709         P.push_back(P[i]);
4710     }
4711 
4712     LLVM_DEBUG(errs() << "\n");
4713   }
4714 }
4715