1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends. This makes it easier to access the data and
11 // provides a single place that needs to check it for validity. All of these
12 // classes abort on error conditions.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <algorithm>
28 using namespace llvm;
29
30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
32
33 static cl::opt<unsigned>
34 AsmParserNum("asmparsernum", cl::init(0),
35 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36 cl::cat(AsmParserCat));
37
38 static cl::opt<unsigned>
39 AsmWriterNum("asmwriternum", cl::init(0),
40 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41 cl::cat(AsmWriterCat));
42
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
getValueType(Record * Rec)45 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
47 }
48
getName(MVT::SimpleValueType T)49 StringRef llvm::getName(MVT::SimpleValueType T) {
50 switch (T) {
51 case MVT::Other: return "UNKNOWN";
52 case MVT::iPTR: return "TLI.getPointerTy()";
53 case MVT::iPTRAny: return "TLI.getPointerTy()";
54 default: return getEnumName(T);
55 }
56 }
57
getEnumName(MVT::SimpleValueType T)58 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
59 switch (T) {
60 case MVT::Other: return "MVT::Other";
61 case MVT::i1: return "MVT::i1";
62 case MVT::i8: return "MVT::i8";
63 case MVT::i16: return "MVT::i16";
64 case MVT::i32: return "MVT::i32";
65 case MVT::i64: return "MVT::i64";
66 case MVT::i128: return "MVT::i128";
67 case MVT::Any: return "MVT::Any";
68 case MVT::iAny: return "MVT::iAny";
69 case MVT::fAny: return "MVT::fAny";
70 case MVT::vAny: return "MVT::vAny";
71 case MVT::f16: return "MVT::f16";
72 case MVT::f32: return "MVT::f32";
73 case MVT::f64: return "MVT::f64";
74 case MVT::f80: return "MVT::f80";
75 case MVT::f128: return "MVT::f128";
76 case MVT::ppcf128: return "MVT::ppcf128";
77 case MVT::x86mmx: return "MVT::x86mmx";
78 case MVT::Glue: return "MVT::Glue";
79 case MVT::isVoid: return "MVT::isVoid";
80 case MVT::v1i1: return "MVT::v1i1";
81 case MVT::v2i1: return "MVT::v2i1";
82 case MVT::v4i1: return "MVT::v4i1";
83 case MVT::v8i1: return "MVT::v8i1";
84 case MVT::v16i1: return "MVT::v16i1";
85 case MVT::v32i1: return "MVT::v32i1";
86 case MVT::v64i1: return "MVT::v64i1";
87 case MVT::v128i1: return "MVT::v128i1";
88 case MVT::v512i1: return "MVT::v512i1";
89 case MVT::v1024i1: return "MVT::v1024i1";
90 case MVT::v1i8: return "MVT::v1i8";
91 case MVT::v2i8: return "MVT::v2i8";
92 case MVT::v4i8: return "MVT::v4i8";
93 case MVT::v8i8: return "MVT::v8i8";
94 case MVT::v16i8: return "MVT::v16i8";
95 case MVT::v32i8: return "MVT::v32i8";
96 case MVT::v64i8: return "MVT::v64i8";
97 case MVT::v128i8: return "MVT::v128i8";
98 case MVT::v256i8: return "MVT::v256i8";
99 case MVT::v1i16: return "MVT::v1i16";
100 case MVT::v2i16: return "MVT::v2i16";
101 case MVT::v3i16: return "MVT::v3i16";
102 case MVT::v4i16: return "MVT::v4i16";
103 case MVT::v8i16: return "MVT::v8i16";
104 case MVT::v16i16: return "MVT::v16i16";
105 case MVT::v32i16: return "MVT::v32i16";
106 case MVT::v64i16: return "MVT::v64i16";
107 case MVT::v128i16: return "MVT::v128i16";
108 case MVT::v1i32: return "MVT::v1i32";
109 case MVT::v2i32: return "MVT::v2i32";
110 case MVT::v3i32: return "MVT::v3i32";
111 case MVT::v4i32: return "MVT::v4i32";
112 case MVT::v5i32: return "MVT::v5i32";
113 case MVT::v8i32: return "MVT::v8i32";
114 case MVT::v16i32: return "MVT::v16i32";
115 case MVT::v32i32: return "MVT::v32i32";
116 case MVT::v64i32: return "MVT::v64i32";
117 case MVT::v128i32: return "MVT::v128i32";
118 case MVT::v256i32: return "MVT::v256i32";
119 case MVT::v512i32: return "MVT::v512i32";
120 case MVT::v1024i32: return "MVT::v1024i32";
121 case MVT::v2048i32: return "MVT::v2048i32";
122 case MVT::v1i64: return "MVT::v1i64";
123 case MVT::v2i64: return "MVT::v2i64";
124 case MVT::v4i64: return "MVT::v4i64";
125 case MVT::v8i64: return "MVT::v8i64";
126 case MVT::v16i64: return "MVT::v16i64";
127 case MVT::v32i64: return "MVT::v32i64";
128 case MVT::v1i128: return "MVT::v1i128";
129 case MVT::v2f16: return "MVT::v2f16";
130 case MVT::v3f16: return "MVT::v3f16";
131 case MVT::v4f16: return "MVT::v4f16";
132 case MVT::v8f16: return "MVT::v8f16";
133 case MVT::v16f16: return "MVT::v16f16";
134 case MVT::v32f16: return "MVT::v32f16";
135 case MVT::v1f32: return "MVT::v1f32";
136 case MVT::v2f32: return "MVT::v2f32";
137 case MVT::v3f32: return "MVT::v3f32";
138 case MVT::v4f32: return "MVT::v4f32";
139 case MVT::v5f32: return "MVT::v5f32";
140 case MVT::v8f32: return "MVT::v8f32";
141 case MVT::v16f32: return "MVT::v16f32";
142 case MVT::v32f32: return "MVT::v32f32";
143 case MVT::v64f32: return "MVT::v64f32";
144 case MVT::v128f32: return "MVT::v128f32";
145 case MVT::v256f32: return "MVT::v256f32";
146 case MVT::v512f32: return "MVT::v512f32";
147 case MVT::v1024f32: return "MVT::v1024f32";
148 case MVT::v2048f32: return "MVT::v2048f32";
149 case MVT::v1f64: return "MVT::v1f64";
150 case MVT::v2f64: return "MVT::v2f64";
151 case MVT::v4f64: return "MVT::v4f64";
152 case MVT::v8f64: return "MVT::v8f64";
153 case MVT::nxv1i1: return "MVT::nxv1i1";
154 case MVT::nxv2i1: return "MVT::nxv2i1";
155 case MVT::nxv4i1: return "MVT::nxv4i1";
156 case MVT::nxv8i1: return "MVT::nxv8i1";
157 case MVT::nxv16i1: return "MVT::nxv16i1";
158 case MVT::nxv32i1: return "MVT::nxv32i1";
159 case MVT::nxv1i8: return "MVT::nxv1i8";
160 case MVT::nxv2i8: return "MVT::nxv2i8";
161 case MVT::nxv4i8: return "MVT::nxv4i8";
162 case MVT::nxv8i8: return "MVT::nxv8i8";
163 case MVT::nxv16i8: return "MVT::nxv16i8";
164 case MVT::nxv32i8: return "MVT::nxv32i8";
165 case MVT::nxv1i16: return "MVT::nxv1i16";
166 case MVT::nxv2i16: return "MVT::nxv2i16";
167 case MVT::nxv4i16: return "MVT::nxv4i16";
168 case MVT::nxv8i16: return "MVT::nxv8i16";
169 case MVT::nxv16i16: return "MVT::nxv16i16";
170 case MVT::nxv32i16: return "MVT::nxv32i16";
171 case MVT::nxv1i32: return "MVT::nxv1i32";
172 case MVT::nxv2i32: return "MVT::nxv2i32";
173 case MVT::nxv4i32: return "MVT::nxv4i32";
174 case MVT::nxv8i32: return "MVT::nxv8i32";
175 case MVT::nxv16i32: return "MVT::nxv16i32";
176 case MVT::nxv1i64: return "MVT::nxv1i64";
177 case MVT::nxv2i64: return "MVT::nxv2i64";
178 case MVT::nxv4i64: return "MVT::nxv4i64";
179 case MVT::nxv8i64: return "MVT::nxv8i64";
180 case MVT::nxv16i64: return "MVT::nxv16i64";
181 case MVT::nxv2f16: return "MVT::nxv2f16";
182 case MVT::nxv4f16: return "MVT::nxv4f16";
183 case MVT::nxv8f16: return "MVT::nxv8f16";
184 case MVT::nxv1f32: return "MVT::nxv1f32";
185 case MVT::nxv2f32: return "MVT::nxv2f32";
186 case MVT::nxv4f32: return "MVT::nxv4f32";
187 case MVT::nxv8f32: return "MVT::nxv8f32";
188 case MVT::nxv16f32: return "MVT::nxv16f32";
189 case MVT::nxv1f64: return "MVT::nxv1f64";
190 case MVT::nxv2f64: return "MVT::nxv2f64";
191 case MVT::nxv4f64: return "MVT::nxv4f64";
192 case MVT::nxv8f64: return "MVT::nxv8f64";
193 case MVT::token: return "MVT::token";
194 case MVT::Metadata: return "MVT::Metadata";
195 case MVT::iPTR: return "MVT::iPTR";
196 case MVT::iPTRAny: return "MVT::iPTRAny";
197 case MVT::Untyped: return "MVT::Untyped";
198 case MVT::exnref: return "MVT::exnref";
199 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
200 }
201 }
202
203 /// getQualifiedName - Return the name of the specified record, with a
204 /// namespace qualifier if the record contains one.
205 ///
getQualifiedName(const Record * R)206 std::string llvm::getQualifiedName(const Record *R) {
207 std::string Namespace;
208 if (R->getValue("Namespace"))
209 Namespace = R->getValueAsString("Namespace");
210 if (Namespace.empty()) return R->getName();
211 return Namespace + "::" + R->getName().str();
212 }
213
214
215 /// getTarget - Return the current instance of the Target class.
216 ///
CodeGenTarget(RecordKeeper & records)217 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
218 : Records(records), CGH(records) {
219 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
220 if (Targets.size() == 0)
221 PrintFatalError("ERROR: No 'Target' subclasses defined!");
222 if (Targets.size() != 1)
223 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
224 TargetRec = Targets[0];
225 }
226
~CodeGenTarget()227 CodeGenTarget::~CodeGenTarget() {
228 }
229
getName() const230 const StringRef CodeGenTarget::getName() const {
231 return TargetRec->getName();
232 }
233
getInstNamespace() const234 StringRef CodeGenTarget::getInstNamespace() const {
235 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
236 // Make sure not to pick up "TargetOpcode" by accidentally getting
237 // the namespace off the PHI instruction or something.
238 if (Inst->Namespace != "TargetOpcode")
239 return Inst->Namespace;
240 }
241
242 return "";
243 }
244
getInstructionSet() const245 Record *CodeGenTarget::getInstructionSet() const {
246 return TargetRec->getValueAsDef("InstructionSet");
247 }
248
getAllowRegisterRenaming() const249 bool CodeGenTarget::getAllowRegisterRenaming() const {
250 return TargetRec->getValueAsInt("AllowRegisterRenaming");
251 }
252
253 /// getAsmParser - Return the AssemblyParser definition for this target.
254 ///
getAsmParser() const255 Record *CodeGenTarget::getAsmParser() const {
256 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
257 if (AsmParserNum >= LI.size())
258 PrintFatalError("Target does not have an AsmParser #" +
259 Twine(AsmParserNum) + "!");
260 return LI[AsmParserNum];
261 }
262
263 /// getAsmParserVariant - Return the AssemblyParserVariant definition for
264 /// this target.
265 ///
getAsmParserVariant(unsigned i) const266 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
267 std::vector<Record*> LI =
268 TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
269 if (i >= LI.size())
270 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
271 "!");
272 return LI[i];
273 }
274
275 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition
276 /// available for this target.
277 ///
getAsmParserVariantCount() const278 unsigned CodeGenTarget::getAsmParserVariantCount() const {
279 std::vector<Record*> LI =
280 TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
281 return LI.size();
282 }
283
284 /// getAsmWriter - Return the AssemblyWriter definition for this target.
285 ///
getAsmWriter() const286 Record *CodeGenTarget::getAsmWriter() const {
287 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
288 if (AsmWriterNum >= LI.size())
289 PrintFatalError("Target does not have an AsmWriter #" +
290 Twine(AsmWriterNum) + "!");
291 return LI[AsmWriterNum];
292 }
293
getRegBank() const294 CodeGenRegBank &CodeGenTarget::getRegBank() const {
295 if (!RegBank)
296 RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
297 return *RegBank;
298 }
299
300 Optional<CodeGenRegisterClass *>
getSuperRegForSubReg(const ValueTypeByHwMode & ValueTy,CodeGenRegBank & RegBank,const CodeGenSubRegIndex * SubIdx) const301 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
302 CodeGenRegBank &RegBank,
303 const CodeGenSubRegIndex *SubIdx) const {
304 std::vector<CodeGenRegisterClass *> Candidates;
305 auto &RegClasses = RegBank.getRegClasses();
306
307 // Try to find a register class which supports ValueTy, and also contains
308 // SubIdx.
309 for (CodeGenRegisterClass &RC : RegClasses) {
310 // Is there a subclass of this class which contains this subregister index?
311 CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
312 if (!SubClassWithSubReg)
313 continue;
314
315 // We have a class. Check if it supports this value type.
316 if (llvm::none_of(SubClassWithSubReg->VTs,
317 [&ValueTy](const ValueTypeByHwMode &ClassVT) {
318 return ClassVT == ValueTy;
319 }))
320 continue;
321
322 // We have a register class which supports both the value type and
323 // subregister index. Remember it.
324 Candidates.push_back(SubClassWithSubReg);
325 }
326
327 // If we didn't find anything, we're done.
328 if (Candidates.empty())
329 return None;
330
331 // Find and return the largest of our candidate classes.
332 llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
333 const CodeGenRegisterClass *B) {
334 if (A->getMembers().size() > B->getMembers().size())
335 return true;
336
337 if (A->getMembers().size() < B->getMembers().size())
338 return false;
339
340 // Order by name as a tie-breaker.
341 return StringRef(A->getName()) < B->getName();
342 });
343
344 return Candidates[0];
345 }
346
ReadRegAltNameIndices() const347 void CodeGenTarget::ReadRegAltNameIndices() const {
348 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
349 llvm::sort(RegAltNameIndices, LessRecord());
350 }
351
352 /// getRegisterByName - If there is a register with the specific AsmName,
353 /// return it.
getRegisterByName(StringRef Name) const354 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
355 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
356 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
357 if (I == Regs.end())
358 return nullptr;
359 return I->second;
360 }
361
getRegisterVTs(Record * R) const362 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
363 const {
364 const CodeGenRegister *Reg = getRegBank().getReg(R);
365 std::vector<ValueTypeByHwMode> Result;
366 for (const auto &RC : getRegBank().getRegClasses()) {
367 if (RC.contains(Reg)) {
368 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
369 Result.insert(Result.end(), InVTs.begin(), InVTs.end());
370 }
371 }
372
373 // Remove duplicates.
374 llvm::sort(Result);
375 Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
376 return Result;
377 }
378
379
ReadLegalValueTypes() const380 void CodeGenTarget::ReadLegalValueTypes() const {
381 for (const auto &RC : getRegBank().getRegClasses())
382 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
383
384 // Remove duplicates.
385 llvm::sort(LegalValueTypes);
386 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
387 LegalValueTypes.end()),
388 LegalValueTypes.end());
389 }
390
getSchedModels() const391 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
392 if (!SchedModels)
393 SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
394 return *SchedModels;
395 }
396
ReadInstructions() const397 void CodeGenTarget::ReadInstructions() const {
398 NamedRegionTimer T("Read Instructions", "Time spent reading instructions",
399 "CodeGenTarget", "CodeGenTarget", TimeRegions);
400 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
401 if (Insts.size() <= 2)
402 PrintFatalError("No 'Instruction' subclasses defined!");
403
404 // Parse the instructions defined in the .td file.
405 for (unsigned i = 0, e = Insts.size(); i != e; ++i)
406 Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
407 }
408
409 static const CodeGenInstruction *
GetInstByName(const char * Name,const DenseMap<const Record *,std::unique_ptr<CodeGenInstruction>> & Insts,RecordKeeper & Records)410 GetInstByName(const char *Name,
411 const DenseMap<const Record*,
412 std::unique_ptr<CodeGenInstruction>> &Insts,
413 RecordKeeper &Records) {
414 const Record *Rec = Records.getDef(Name);
415
416 const auto I = Insts.find(Rec);
417 if (!Rec || I == Insts.end())
418 PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
419 return I->second.get();
420 }
421
422 static const char *const FixedInstrs[] = {
423 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
424 #include "llvm/Support/TargetOpcodes.def"
425 nullptr};
426
getNumFixedInstructions()427 unsigned CodeGenTarget::getNumFixedInstructions() {
428 return array_lengthof(FixedInstrs) - 1;
429 }
430
431 /// Return all of the instructions defined by the target, ordered by
432 /// their enum value.
ComputeInstrsByEnum() const433 void CodeGenTarget::ComputeInstrsByEnum() const {
434 const auto &Insts = getInstructions();
435 for (const char *const *p = FixedInstrs; *p; ++p) {
436 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
437 assert(Instr && "Missing target independent instruction");
438 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
439 InstrsByEnum.push_back(Instr);
440 }
441 unsigned EndOfPredefines = InstrsByEnum.size();
442 assert(EndOfPredefines == getNumFixedInstructions() &&
443 "Missing generic opcode");
444
445 for (const auto &I : Insts) {
446 const CodeGenInstruction *CGI = I.second.get();
447 if (CGI->Namespace != "TargetOpcode") {
448 InstrsByEnum.push_back(CGI);
449 if (CGI->TheDef->getValueAsBit("isPseudo"))
450 ++NumPseudoInstructions;
451 }
452 }
453
454 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
455
456 // All of the instructions are now in random order based on the map iteration.
457 llvm::sort(
458 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
459 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
460 const auto &D1 = *Rec1->TheDef;
461 const auto &D2 = *Rec2->TheDef;
462 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
463 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
464 });
465 }
466
467
468 /// isLittleEndianEncoding - Return whether this target encodes its instruction
469 /// in little-endian format, i.e. bits laid out in the order [0..n]
470 ///
isLittleEndianEncoding() const471 bool CodeGenTarget::isLittleEndianEncoding() const {
472 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
473 }
474
475 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
476 /// encodings, reverse the bit order of all instructions.
reverseBitsForLittleEndianEncoding()477 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
478 if (!isLittleEndianEncoding())
479 return;
480
481 std::vector<Record *> Insts =
482 Records.getAllDerivedDefinitions("InstructionEncoding");
483 for (Record *R : Insts) {
484 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
485 R->getValueAsBit("isPseudo"))
486 continue;
487
488 BitsInit *BI = R->getValueAsBitsInit("Inst");
489
490 unsigned numBits = BI->getNumBits();
491
492 SmallVector<Init *, 16> NewBits(numBits);
493
494 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
495 unsigned bitSwapIdx = numBits - bit - 1;
496 Init *OrigBit = BI->getBit(bit);
497 Init *BitSwap = BI->getBit(bitSwapIdx);
498 NewBits[bit] = BitSwap;
499 NewBits[bitSwapIdx] = OrigBit;
500 }
501 if (numBits % 2) {
502 unsigned middle = (numBits + 1) / 2;
503 NewBits[middle] = BI->getBit(middle);
504 }
505
506 BitsInit *NewBI = BitsInit::get(NewBits);
507
508 // Update the bits in reversed order so that emitInstrOpBits will get the
509 // correct endianness.
510 R->getValue("Inst")->setValue(NewBI);
511 }
512 }
513
514 /// guessInstructionProperties - Return true if it's OK to guess instruction
515 /// properties instead of raising an error.
516 ///
517 /// This is configurable as a temporary migration aid. It will eventually be
518 /// permanently false.
guessInstructionProperties() const519 bool CodeGenTarget::guessInstructionProperties() const {
520 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
521 }
522
523 //===----------------------------------------------------------------------===//
524 // ComplexPattern implementation
525 //
ComplexPattern(Record * R)526 ComplexPattern::ComplexPattern(Record *R) {
527 Ty = ::getValueType(R->getValueAsDef("Ty"));
528 NumOperands = R->getValueAsInt("NumOperands");
529 SelectFunc = R->getValueAsString("SelectFunc");
530 RootNodes = R->getValueAsListOfDefs("RootNodes");
531
532 // FIXME: This is a hack to statically increase the priority of patterns which
533 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
534 // possible pattern match we'll need to dynamically calculate the complexity
535 // of all patterns a dag can potentially map to.
536 int64_t RawComplexity = R->getValueAsInt("Complexity");
537 if (RawComplexity == -1)
538 Complexity = NumOperands * 3;
539 else
540 Complexity = RawComplexity;
541
542 // FIXME: Why is this different from parseSDPatternOperatorProperties?
543 // Parse the properties.
544 Properties = 0;
545 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
546 for (unsigned i = 0, e = PropList.size(); i != e; ++i)
547 if (PropList[i]->getName() == "SDNPHasChain") {
548 Properties |= 1 << SDNPHasChain;
549 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
550 Properties |= 1 << SDNPOptInGlue;
551 } else if (PropList[i]->getName() == "SDNPMayStore") {
552 Properties |= 1 << SDNPMayStore;
553 } else if (PropList[i]->getName() == "SDNPMayLoad") {
554 Properties |= 1 << SDNPMayLoad;
555 } else if (PropList[i]->getName() == "SDNPSideEffect") {
556 Properties |= 1 << SDNPSideEffect;
557 } else if (PropList[i]->getName() == "SDNPMemOperand") {
558 Properties |= 1 << SDNPMemOperand;
559 } else if (PropList[i]->getName() == "SDNPVariadic") {
560 Properties |= 1 << SDNPVariadic;
561 } else if (PropList[i]->getName() == "SDNPWantRoot") {
562 Properties |= 1 << SDNPWantRoot;
563 } else if (PropList[i]->getName() == "SDNPWantParent") {
564 Properties |= 1 << SDNPWantParent;
565 } else {
566 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
567 PropList[i]->getName() +
568 "' on ComplexPattern '" + R->getName() +
569 "'!");
570 }
571 }
572
573 //===----------------------------------------------------------------------===//
574 // CodeGenIntrinsic Implementation
575 //===----------------------------------------------------------------------===//
576
CodeGenIntrinsicTable(const RecordKeeper & RC)577 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
578 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
579
580 Intrinsics.reserve(Defs.size());
581
582 for (unsigned I = 0, e = Defs.size(); I != e; ++I)
583 Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
584
585 llvm::sort(Intrinsics,
586 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
587 return std::tie(LHS.TargetPrefix, LHS.Name) <
588 std::tie(RHS.TargetPrefix, RHS.Name);
589 });
590 Targets.push_back({"", 0, 0});
591 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
592 if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
593 Targets.back().Count = I - Targets.back().Offset;
594 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
595 }
596 Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
597 }
598
CodeGenIntrinsic(Record * R)599 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
600 TheDef = R;
601 std::string DefName = R->getName();
602 ArrayRef<SMLoc> DefLoc = R->getLoc();
603 ModRef = ReadWriteMem;
604 Properties = 0;
605 isOverloaded = false;
606 isCommutative = false;
607 canThrow = false;
608 isNoReturn = false;
609 isWillReturn = false;
610 isCold = false;
611 isNoDuplicate = false;
612 isConvergent = false;
613 isSpeculatable = false;
614 hasSideEffects = false;
615
616 if (DefName.size() <= 4 ||
617 std::string(DefName.begin(), DefName.begin() + 4) != "int_")
618 PrintFatalError(DefLoc,
619 "Intrinsic '" + DefName + "' does not start with 'int_'!");
620
621 EnumName = std::string(DefName.begin()+4, DefName.end());
622
623 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
624 GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
625 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
626 MSBuiltinName = R->getValueAsString("MSBuiltinName");
627
628 TargetPrefix = R->getValueAsString("TargetPrefix");
629 Name = R->getValueAsString("LLVMName");
630
631 if (Name == "") {
632 // If an explicit name isn't specified, derive one from the DefName.
633 Name = "llvm.";
634
635 for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
636 Name += (EnumName[i] == '_') ? '.' : EnumName[i];
637 } else {
638 // Verify it starts with "llvm.".
639 if (Name.size() <= 5 ||
640 std::string(Name.begin(), Name.begin() + 5) != "llvm.")
641 PrintFatalError(DefLoc, "Intrinsic '" + DefName +
642 "'s name does not start with 'llvm.'!");
643 }
644
645 // If TargetPrefix is specified, make sure that Name starts with
646 // "llvm.<targetprefix>.".
647 if (!TargetPrefix.empty()) {
648 if (Name.size() < 6+TargetPrefix.size() ||
649 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
650 != (TargetPrefix + "."))
651 PrintFatalError(DefLoc, "Intrinsic '" + DefName +
652 "' does not start with 'llvm." +
653 TargetPrefix + ".'!");
654 }
655
656 ListInit *RetTypes = R->getValueAsListInit("RetTypes");
657 ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
658
659 // First collate a list of overloaded types.
660 std::vector<MVT::SimpleValueType> OverloadedVTs;
661 for (ListInit *TypeList : {RetTypes, ParamTypes}) {
662 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
663 Record *TyEl = TypeList->getElementAsRecord(i);
664 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
665
666 if (TyEl->isSubClassOf("LLVMMatchType"))
667 continue;
668
669 MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
670 if (MVT(VT).isOverloaded()) {
671 OverloadedVTs.push_back(VT);
672 isOverloaded = true;
673 }
674 }
675 }
676
677 // Parse the list of return types.
678 ListInit *TypeList = RetTypes;
679 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
680 Record *TyEl = TypeList->getElementAsRecord(i);
681 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
682 MVT::SimpleValueType VT;
683 if (TyEl->isSubClassOf("LLVMMatchType")) {
684 unsigned MatchTy = TyEl->getValueAsInt("Number");
685 assert(MatchTy < OverloadedVTs.size() &&
686 "Invalid matching number!");
687 VT = OverloadedVTs[MatchTy];
688 // It only makes sense to use the extended and truncated vector element
689 // variants with iAny types; otherwise, if the intrinsic is not
690 // overloaded, all the types can be specified directly.
691 assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
692 !TyEl->isSubClassOf("LLVMTruncatedType")) ||
693 VT == MVT::iAny || VT == MVT::vAny) &&
694 "Expected iAny or vAny type");
695 } else {
696 VT = getValueType(TyEl->getValueAsDef("VT"));
697 }
698
699 // Reject invalid types.
700 if (VT == MVT::isVoid)
701 PrintFatalError(DefLoc, "Intrinsic '" + DefName +
702 " has void in result type list!");
703
704 IS.RetVTs.push_back(VT);
705 IS.RetTypeDefs.push_back(TyEl);
706 }
707
708 // Parse the list of parameter types.
709 TypeList = ParamTypes;
710 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
711 Record *TyEl = TypeList->getElementAsRecord(i);
712 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
713 MVT::SimpleValueType VT;
714 if (TyEl->isSubClassOf("LLVMMatchType")) {
715 unsigned MatchTy = TyEl->getValueAsInt("Number");
716 if (MatchTy >= OverloadedVTs.size()) {
717 PrintError(R->getLoc(),
718 "Parameter #" + Twine(i) + " has out of bounds matching "
719 "number " + Twine(MatchTy));
720 PrintFatalError(DefLoc,
721 Twine("ParamTypes is ") + TypeList->getAsString());
722 }
723 VT = OverloadedVTs[MatchTy];
724 // It only makes sense to use the extended and truncated vector element
725 // variants with iAny types; otherwise, if the intrinsic is not
726 // overloaded, all the types can be specified directly.
727 assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
728 !TyEl->isSubClassOf("LLVMTruncatedType") &&
729 !TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) ||
730 VT == MVT::iAny || VT == MVT::vAny) &&
731 "Expected iAny or vAny type");
732 } else
733 VT = getValueType(TyEl->getValueAsDef("VT"));
734
735 // Reject invalid types.
736 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
737 PrintFatalError(DefLoc, "Intrinsic '" + DefName +
738 " has void in result type list!");
739
740 IS.ParamVTs.push_back(VT);
741 IS.ParamTypeDefs.push_back(TyEl);
742 }
743
744 // Parse the intrinsic properties.
745 ListInit *PropList = R->getValueAsListInit("IntrProperties");
746 for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
747 Record *Property = PropList->getElementAsRecord(i);
748 assert(Property->isSubClassOf("IntrinsicProperty") &&
749 "Expected a property!");
750
751 if (Property->getName() == "IntrNoMem")
752 ModRef = NoMem;
753 else if (Property->getName() == "IntrReadMem")
754 ModRef = ModRefBehavior(ModRef & ~MR_Mod);
755 else if (Property->getName() == "IntrWriteMem")
756 ModRef = ModRefBehavior(ModRef & ~MR_Ref);
757 else if (Property->getName() == "IntrArgMemOnly")
758 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
759 else if (Property->getName() == "IntrInaccessibleMemOnly")
760 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
761 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
762 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
763 MR_InaccessibleMem);
764 else if (Property->getName() == "Commutative")
765 isCommutative = true;
766 else if (Property->getName() == "Throws")
767 canThrow = true;
768 else if (Property->getName() == "IntrNoDuplicate")
769 isNoDuplicate = true;
770 else if (Property->getName() == "IntrConvergent")
771 isConvergent = true;
772 else if (Property->getName() == "IntrNoReturn")
773 isNoReturn = true;
774 else if (Property->getName() == "IntrWillReturn")
775 isWillReturn = true;
776 else if (Property->getName() == "IntrCold")
777 isCold = true;
778 else if (Property->getName() == "IntrSpeculatable")
779 isSpeculatable = true;
780 else if (Property->getName() == "IntrHasSideEffects")
781 hasSideEffects = true;
782 else if (Property->isSubClassOf("NoCapture")) {
783 unsigned ArgNo = Property->getValueAsInt("ArgNo");
784 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
785 } else if (Property->isSubClassOf("NoAlias")) {
786 unsigned ArgNo = Property->getValueAsInt("ArgNo");
787 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoAlias));
788 } else if (Property->isSubClassOf("Returned")) {
789 unsigned ArgNo = Property->getValueAsInt("ArgNo");
790 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
791 } else if (Property->isSubClassOf("ReadOnly")) {
792 unsigned ArgNo = Property->getValueAsInt("ArgNo");
793 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
794 } else if (Property->isSubClassOf("WriteOnly")) {
795 unsigned ArgNo = Property->getValueAsInt("ArgNo");
796 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
797 } else if (Property->isSubClassOf("ReadNone")) {
798 unsigned ArgNo = Property->getValueAsInt("ArgNo");
799 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
800 } else if (Property->isSubClassOf("ImmArg")) {
801 unsigned ArgNo = Property->getValueAsInt("ArgNo");
802 ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg));
803 } else
804 llvm_unreachable("Unknown property!");
805 }
806
807 // Also record the SDPatternOperator Properties.
808 Properties = parseSDPatternOperatorProperties(R);
809
810 // Sort the argument attributes for later benefit.
811 llvm::sort(ArgumentAttributes);
812 }
813
isParamAPointer(unsigned ParamIdx) const814 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
815 if (ParamIdx >= IS.ParamVTs.size())
816 return false;
817 MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
818 return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
819 }
820
isParamImmArg(unsigned ParamIdx) const821 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
822 std::pair<unsigned, ArgAttribute> Val = {ParamIdx, ImmArg};
823 return std::binary_search(ArgumentAttributes.begin(),
824 ArgumentAttributes.end(), Val);
825 }
826