1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares codegen opcodes and related utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_ISDOPCODES_H
14 #define LLVM_CODEGEN_ISDOPCODES_H
15 
16 #include "llvm/CodeGen/ValueTypes.h"
17 
18 namespace llvm {
19 
20 /// ISD namespace - This namespace contains an enum which represents all of the
21 /// SelectionDAG node types and value types.
22 ///
23 namespace ISD {
24 
25 //===--------------------------------------------------------------------===//
26 /// ISD::NodeType enum - This enum defines the target-independent operators
27 /// for a SelectionDAG.
28 ///
29 /// Targets may also define target-dependent operator codes for SDNodes. For
30 /// example, on x86, these are the enum values in the X86ISD namespace.
31 /// Targets should aim to use target-independent operators to model their
32 /// instruction sets as much as possible, and only use target-dependent
33 /// operators when they have special requirements.
34 ///
35 /// Finally, during and after selection proper, SNodes may use special
36 /// operator codes that correspond directly with MachineInstr opcodes. These
37 /// are used to represent selected instructions. See the isMachineOpcode()
38 /// and getMachineOpcode() member functions of SDNode.
39 ///
40 enum NodeType {
41 
42   /// DELETED_NODE - This is an illegal value that is used to catch
43   /// errors.  This opcode is not a legal opcode for any node.
44   DELETED_NODE,
45 
46   /// EntryToken - This is the marker used to indicate the start of a region.
47   EntryToken,
48 
49   /// TokenFactor - This node takes multiple tokens as input and produces a
50   /// single token result. This is used to represent the fact that the operand
51   /// operators are independent of each other.
52   TokenFactor,
53 
54   /// AssertSext, AssertZext - These nodes record if a register contains a
55   /// value that has already been zero or sign extended from a narrower type.
56   /// These nodes take two operands.  The first is the node that has already
57   /// been extended, and the second is a value type node indicating the width
58   /// of the extension
59   AssertSext,
60   AssertZext,
61   AssertAlign,
62 
63   /// Various leaf nodes.
64   BasicBlock,
65   VALUETYPE,
66   CONDCODE,
67   Register,
68   RegisterMask,
69   Constant,
70   ConstantFP,
71   GlobalAddress,
72   GlobalTLSAddress,
73   FrameIndex,
74   JumpTable,
75   ConstantPool,
76   ExternalSymbol,
77   BlockAddress,
78 
79   /// The address of the GOT
80   GLOBAL_OFFSET_TABLE,
81 
82   /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
83   /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
84   /// of the frame or return address to return.  An index of zero corresponds
85   /// to the current function's frame or return address, an index of one to
86   /// the parent's frame or return address, and so on.
87   FRAMEADDR,
88   RETURNADDR,
89   ADDROFRETURNADDR,
90   SPONENTRY,
91 
92   /// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
93   /// Materializes the offset from the local object pointer of another
94   /// function to a particular local object passed to llvm.localescape. The
95   /// operand is the MCSymbol label used to represent this offset, since
96   /// typically the offset is not known until after code generation of the
97   /// parent.
98   LOCAL_RECOVER,
99 
100   /// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
101   /// the DAG, which implements the named register global variables extension.
102   READ_REGISTER,
103   WRITE_REGISTER,
104 
105   /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
106   /// first (possible) on-stack argument. This is needed for correct stack
107   /// adjustment during unwind.
108   FRAME_TO_ARGS_OFFSET,
109 
110   /// EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical
111   /// Frame Address (CFA), generally the value of the stack pointer at the
112   /// call site in the previous frame.
113   EH_DWARF_CFA,
114 
115   /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
116   /// 'eh_return' gcc dwarf builtin, which is used to return from
117   /// exception. The general meaning is: adjust stack by OFFSET and pass
118   /// execution to HANDLER. Many platform-related details also :)
119   EH_RETURN,
120 
121   /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
122   /// This corresponds to the eh.sjlj.setjmp intrinsic.
123   /// It takes an input chain and a pointer to the jump buffer as inputs
124   /// and returns an outchain.
125   EH_SJLJ_SETJMP,
126 
127   /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
128   /// This corresponds to the eh.sjlj.longjmp intrinsic.
129   /// It takes an input chain and a pointer to the jump buffer as inputs
130   /// and returns an outchain.
131   EH_SJLJ_LONGJMP,
132 
133   /// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
134   /// The target initializes the dispatch table here.
135   EH_SJLJ_SETUP_DISPATCH,
136 
137   /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
138   /// simplification, or lowering of the constant. They are used for constants
139   /// which are known to fit in the immediate fields of their users, or for
140   /// carrying magic numbers which are not values which need to be
141   /// materialized in registers.
142   TargetConstant,
143   TargetConstantFP,
144 
145   /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
146   /// anything else with this node, and this is valid in the target-specific
147   /// dag, turning into a GlobalAddress operand.
148   TargetGlobalAddress,
149   TargetGlobalTLSAddress,
150   TargetFrameIndex,
151   TargetJumpTable,
152   TargetConstantPool,
153   TargetExternalSymbol,
154   TargetBlockAddress,
155 
156   MCSymbol,
157 
158   /// TargetIndex - Like a constant pool entry, but with completely
159   /// target-dependent semantics. Holds target flags, a 32-bit index, and a
160   /// 64-bit index. Targets can use this however they like.
161   TargetIndex,
162 
163   /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
164   /// This node represents a target intrinsic function with no side effects.
165   /// The first operand is the ID number of the intrinsic from the
166   /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
167   /// node returns the result of the intrinsic.
168   INTRINSIC_WO_CHAIN,
169 
170   /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
171   /// This node represents a target intrinsic function with side effects that
172   /// returns a result.  The first operand is a chain pointer.  The second is
173   /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
174   /// operands to the intrinsic follow.  The node has two results, the result
175   /// of the intrinsic and an output chain.
176   INTRINSIC_W_CHAIN,
177 
178   /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
179   /// This node represents a target intrinsic function with side effects that
180   /// does not return a result.  The first operand is a chain pointer.  The
181   /// second is the ID number of the intrinsic from the llvm::Intrinsic
182   /// namespace.  The operands to the intrinsic follow.
183   INTRINSIC_VOID,
184 
185   /// CopyToReg - This node has three operands: a chain, a register number to
186   /// set to this value, and a value.
187   CopyToReg,
188 
189   /// CopyFromReg - This node indicates that the input value is a virtual or
190   /// physical register that is defined outside of the scope of this
191   /// SelectionDAG.  The register is available from the RegisterSDNode object.
192   CopyFromReg,
193 
194   /// UNDEF - An undefined node.
195   UNDEF,
196 
197   // FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or
198   // is evaluated to UNDEF), or returns VAL otherwise. Note that each
199   // read of UNDEF can yield different value, but FREEZE(UNDEF) cannot.
200   FREEZE,
201 
202   /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
203   /// a Constant, which is required to be operand #1) half of the integer or
204   /// float value specified as operand #0.  This is only for use before
205   /// legalization, for values that will be broken into multiple registers.
206   EXTRACT_ELEMENT,
207 
208   /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
209   /// Given two values of the same integer value type, this produces a value
210   /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
211   /// legalization. The lower part of the composite value should be in
212   /// element 0 and the upper part should be in element 1.
213   BUILD_PAIR,
214 
215   /// MERGE_VALUES - This node takes multiple discrete operands and returns
216   /// them all as its individual results.  This nodes has exactly the same
217   /// number of inputs and outputs. This node is useful for some pieces of the
218   /// code generator that want to think about a single node with multiple
219   /// results, not multiple nodes.
220   MERGE_VALUES,
221 
222   /// Simple integer binary arithmetic operators.
223   ADD,
224   SUB,
225   MUL,
226   SDIV,
227   UDIV,
228   SREM,
229   UREM,
230 
231   /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
232   /// a signed/unsigned value of type i[2*N], and return the full value as
233   /// two results, each of type iN.
234   SMUL_LOHI,
235   UMUL_LOHI,
236 
237   /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
238   /// remainder result.
239   SDIVREM,
240   UDIVREM,
241 
242   /// CARRY_FALSE - This node is used when folding other nodes,
243   /// like ADDC/SUBC, which indicate the carry result is always false.
244   CARRY_FALSE,
245 
246   /// Carry-setting nodes for multiple precision addition and subtraction.
247   /// These nodes take two operands of the same value type, and produce two
248   /// results.  The first result is the normal add or sub result, the second
249   /// result is the carry flag result.
250   /// FIXME: These nodes are deprecated in favor of ADDCARRY and SUBCARRY.
251   /// They are kept around for now to provide a smooth transition path
252   /// toward the use of ADDCARRY/SUBCARRY and will eventually be removed.
253   ADDC,
254   SUBC,
255 
256   /// Carry-using nodes for multiple precision addition and subtraction. These
257   /// nodes take three operands: The first two are the normal lhs and rhs to
258   /// the add or sub, and the third is the input carry flag.  These nodes
259   /// produce two results; the normal result of the add or sub, and the output
260   /// carry flag.  These nodes both read and write a carry flag to allow them
261   /// to them to be chained together for add and sub of arbitrarily large
262   /// values.
263   ADDE,
264   SUBE,
265 
266   /// Carry-using nodes for multiple precision addition and subtraction.
267   /// These nodes take three operands: The first two are the normal lhs and
268   /// rhs to the add or sub, and the third is a boolean indicating if there
269   /// is an incoming carry. These nodes produce two results: the normal
270   /// result of the add or sub, and the output carry so they can be chained
271   /// together. The use of this opcode is preferable to adde/sube if the
272   /// target supports it, as the carry is a regular value rather than a
273   /// glue, which allows further optimisation.
274   ADDCARRY,
275   SUBCARRY,
276 
277   /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
278   /// These nodes take two operands: the normal LHS and RHS to the add. They
279   /// produce two results: the normal result of the add, and a boolean that
280   /// indicates if an overflow occurred (*not* a flag, because it may be store
281   /// to memory, etc.).  If the type of the boolean is not i1 then the high
282   /// bits conform to getBooleanContents.
283   /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
284   SADDO,
285   UADDO,
286 
287   /// Same for subtraction.
288   SSUBO,
289   USUBO,
290 
291   /// Same for multiplication.
292   SMULO,
293   UMULO,
294 
295   /// RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2
296   /// integers with the same bit width (W). If the true value of LHS + RHS
297   /// exceeds the largest value that can be represented by W bits, the
298   /// resulting value is this maximum value. Otherwise, if this value is less
299   /// than the smallest value that can be represented by W bits, the
300   /// resulting value is this minimum value.
301   SADDSAT,
302   UADDSAT,
303 
304   /// RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2
305   /// integers with the same bit width (W). If the true value of LHS - RHS
306   /// exceeds the largest value that can be represented by W bits, the
307   /// resulting value is this maximum value. Otherwise, if this value is less
308   /// than the smallest value that can be represented by W bits, the
309   /// resulting value is this minimum value.
310   SSUBSAT,
311   USUBSAT,
312 
313   /// RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication
314   /// on
315   /// 2 integers with the same width and scale. SCALE represents the scale of
316   /// both operands as fixed point numbers. This SCALE parameter must be a
317   /// constant integer. A scale of zero is effectively performing
318   /// multiplication on 2 integers.
319   SMULFIX,
320   UMULFIX,
321 
322   /// Same as the corresponding unsaturated fixed point instructions, but the
323   /// result is clamped between the min and max values representable by the
324   /// bits of the first 2 operands.
325   SMULFIXSAT,
326   UMULFIXSAT,
327 
328   /// RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on
329   /// 2 integers with the same width and scale. SCALE represents the scale
330   /// of both operands as fixed point numbers. This SCALE parameter must be a
331   /// constant integer.
332   SDIVFIX,
333   UDIVFIX,
334 
335   /// Same as the corresponding unsaturated fixed point instructions, but the
336   /// result is clamped between the min and max values representable by the
337   /// bits of the first 2 operands.
338   SDIVFIXSAT,
339   UDIVFIXSAT,
340 
341   /// Simple binary floating point operators.
342   FADD,
343   FSUB,
344   FMUL,
345   FDIV,
346   FREM,
347 
348   /// Constrained versions of the binary floating point operators.
349   /// These will be lowered to the simple operators before final selection.
350   /// They are used to limit optimizations while the DAG is being
351   /// optimized.
352   STRICT_FADD,
353   STRICT_FSUB,
354   STRICT_FMUL,
355   STRICT_FDIV,
356   STRICT_FREM,
357   STRICT_FMA,
358 
359   /// Constrained versions of libm-equivalent floating point intrinsics.
360   /// These will be lowered to the equivalent non-constrained pseudo-op
361   /// (or expanded to the equivalent library call) before final selection.
362   /// They are used to limit optimizations while the DAG is being optimized.
363   STRICT_FSQRT,
364   STRICT_FPOW,
365   STRICT_FPOWI,
366   STRICT_FSIN,
367   STRICT_FCOS,
368   STRICT_FEXP,
369   STRICT_FEXP2,
370   STRICT_FLOG,
371   STRICT_FLOG10,
372   STRICT_FLOG2,
373   STRICT_FRINT,
374   STRICT_FNEARBYINT,
375   STRICT_FMAXNUM,
376   STRICT_FMINNUM,
377   STRICT_FCEIL,
378   STRICT_FFLOOR,
379   STRICT_FROUND,
380   STRICT_FROUNDEVEN,
381   STRICT_FTRUNC,
382   STRICT_LROUND,
383   STRICT_LLROUND,
384   STRICT_LRINT,
385   STRICT_LLRINT,
386   STRICT_FMAXIMUM,
387   STRICT_FMINIMUM,
388 
389   /// STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or
390   /// unsigned integer. These have the same semantics as fptosi and fptoui
391   /// in IR.
392   /// They are used to limit optimizations while the DAG is being optimized.
393   STRICT_FP_TO_SINT,
394   STRICT_FP_TO_UINT,
395 
396   /// STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to
397   /// a floating point value. These have the same semantics as sitofp and
398   /// uitofp in IR.
399   /// They are used to limit optimizations while the DAG is being optimized.
400   STRICT_SINT_TO_FP,
401   STRICT_UINT_TO_FP,
402 
403   /// X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating
404   /// point type down to the precision of the destination VT.  TRUNC is a
405   /// flag, which is always an integer that is zero or one.  If TRUNC is 0,
406   /// this is a normal rounding, if it is 1, this FP_ROUND is known to not
407   /// change the value of Y.
408   ///
409   /// The TRUNC = 1 case is used in cases where we know that the value will
410   /// not be modified by the node, because Y is not using any of the extra
411   /// precision of source type.  This allows certain transformations like
412   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,1)) -> X which are not safe for
413   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,0)) because the extra bits aren't
414   /// removed.
415   /// It is used to limit optimizations while the DAG is being optimized.
416   STRICT_FP_ROUND,
417 
418   /// X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP
419   /// type.
420   /// It is used to limit optimizations while the DAG is being optimized.
421   STRICT_FP_EXTEND,
422 
423   /// STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used
424   /// for floating-point operands only.  STRICT_FSETCC performs a quiet
425   /// comparison operation, while STRICT_FSETCCS performs a signaling
426   /// comparison operation.
427   STRICT_FSETCC,
428   STRICT_FSETCCS,
429 
430   /// FMA - Perform a * b + c with no intermediate rounding step.
431   FMA,
432 
433   /// FMAD - Perform a * b + c, while getting the same result as the
434   /// separately rounded operations.
435   FMAD,
436 
437   /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
438   /// DAG node does not require that X and Y have the same type, just that
439   /// they are both floating point.  X and the result must have the same type.
440   /// FCOPYSIGN(f32, f64) is allowed.
441   FCOPYSIGN,
442 
443   /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
444   /// value as an integer 0/1 value.
445   FGETSIGN,
446 
447   /// Returns platform specific canonical encoding of a floating point number.
448   FCANONICALIZE,
449 
450   /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector
451   /// with the specified, possibly variable, elements. The types of the
452   /// operands must match the vector element type, except that integer types
453   /// are allowed to be larger than the element type, in which case the
454   /// operands are implicitly truncated. The types of the operands must all
455   /// be the same.
456   BUILD_VECTOR,
457 
458   /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
459   /// at IDX replaced with VAL. If the type of VAL is larger than the vector
460   /// element type then VAL is truncated before replacement.
461   ///
462   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
463   /// vector width. IDX is not first scaled by the runtime scaling factor of
464   /// VECTOR.
465   INSERT_VECTOR_ELT,
466 
467   /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
468   /// identified by the (potentially variable) element number IDX. If the return
469   /// type is an integer type larger than the element type of the vector, the
470   /// result is extended to the width of the return type. In that case, the high
471   /// bits are undefined.
472   ///
473   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
474   /// vector width. IDX is not first scaled by the runtime scaling factor of
475   /// VECTOR.
476   EXTRACT_VECTOR_ELT,
477 
478   /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
479   /// vector type with the same length and element type, this produces a
480   /// concatenated vector result value, with length equal to the sum of the
481   /// lengths of the input vectors. If VECTOR0 is a fixed-width vector, then
482   /// VECTOR1..VECTORN must all be fixed-width vectors. Similarly, if VECTOR0
483   /// is a scalable vector, then VECTOR1..VECTORN must all be scalable vectors.
484   CONCAT_VECTORS,
485 
486   /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2
487   /// inserted into VECTOR1. IDX represents the starting element number at which
488   /// VECTOR2 will be inserted. IDX must be a constant multiple of T's known
489   /// minimum vector length. Let the type of VECTOR2 be T, then if T is a
490   /// scalable vector, IDX is first scaled by the runtime scaling factor of T.
491   /// The elements of VECTOR1 starting at IDX are overwritten with VECTOR2.
492   /// Elements IDX through (IDX + num_elements(T) - 1) must be valid VECTOR1
493   /// indices. If this condition cannot be determined statically but is false at
494   /// runtime, then the result vector is undefined.
495   ///
496   /// This operation supports inserting a fixed-width vector into a scalable
497   /// vector, but not the other way around.
498   INSERT_SUBVECTOR,
499 
500   /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
501   /// Let the result type be T, then IDX represents the starting element number
502   /// from which a subvector of type T is extracted. IDX must be a constant
503   /// multiple of T's known minimum vector length. If T is a scalable vector,
504   /// IDX is first scaled by the runtime scaling factor of T. Elements IDX
505   /// through (IDX + num_elements(T) - 1) must be valid VECTOR indices. If this
506   /// condition cannot be determined statically but is false at runtime, then
507   /// the result vector is undefined.
508   ///
509   /// This operation supports extracting a fixed-width vector from a scalable
510   /// vector, but not the other way around.
511   EXTRACT_SUBVECTOR,
512 
513   /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
514   /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
515   /// values that indicate which value (or undef) each result element will
516   /// get.  These constant ints are accessible through the
517   /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
518   /// 'vperm' instruction, except that the indices must be constants and are
519   /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
520   VECTOR_SHUFFLE,
521 
522   /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
523   /// scalar value into element 0 of the resultant vector type.  The top
524   /// elements 1 to N-1 of the N-element vector are undefined.  The type
525   /// of the operand must match the vector element type, except when they
526   /// are integer types.  In this case the operand is allowed to be wider
527   /// than the vector element type, and is implicitly truncated to it.
528   SCALAR_TO_VECTOR,
529 
530   /// SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL
531   /// duplicated in all lanes. The type of the operand must match the vector
532   /// element type, except when they are integer types.  In this case the
533   /// operand is allowed to be wider than the vector element type, and is
534   /// implicitly truncated to it.
535   SPLAT_VECTOR,
536 
537   /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
538   /// producing an unsigned/signed value of type i[2*N], then return the top
539   /// part.
540   MULHU,
541   MULHS,
542 
543   /// [US]{MIN/MAX} - Binary minimum or maximum or signed or unsigned
544   /// integers.
545   SMIN,
546   SMAX,
547   UMIN,
548   UMAX,
549 
550   /// Bitwise operators - logical and, logical or, logical xor.
551   AND,
552   OR,
553   XOR,
554 
555   /// ABS - Determine the unsigned absolute value of a signed integer value of
556   /// the same bitwidth.
557   /// Note: A value of INT_MIN will return INT_MIN, no saturation or overflow
558   /// is performed.
559   ABS,
560 
561   /// Shift and rotation operations.  After legalization, the type of the
562   /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
563   /// the shift amount can be any type, but care must be taken to ensure it is
564   /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
565   /// legalization, types like i1024 can occur and i8 doesn't have enough bits
566   /// to represent the shift amount.
567   /// When the 1st operand is a vector, the shift amount must be in the same
568   /// type. (TLI.getShiftAmountTy() will return the same type when the input
569   /// type is a vector.)
570   /// For rotates and funnel shifts, the shift amount is treated as an unsigned
571   /// amount modulo the element size of the first operand.
572   ///
573   /// Funnel 'double' shifts take 3 operands, 2 inputs and the shift amount.
574   /// fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
575   /// fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
576   SHL,
577   SRA,
578   SRL,
579   ROTL,
580   ROTR,
581   FSHL,
582   FSHR,
583 
584   /// Byte Swap and Counting operators.
585   BSWAP,
586   CTTZ,
587   CTLZ,
588   CTPOP,
589   BITREVERSE,
590 
591   /// Bit counting operators with an undefined result for zero inputs.
592   CTTZ_ZERO_UNDEF,
593   CTLZ_ZERO_UNDEF,
594 
595   /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
596   /// i1 then the high bits must conform to getBooleanContents.
597   SELECT,
598 
599   /// Select with a vector condition (op #0) and two vector operands (ops #1
600   /// and #2), returning a vector result.  All vectors have the same length.
601   /// Much like the scalar select and setcc, each bit in the condition selects
602   /// whether the corresponding result element is taken from op #1 or op #2.
603   /// At first, the VSELECT condition is of vXi1 type. Later, targets may
604   /// change the condition type in order to match the VSELECT node using a
605   /// pattern. The condition follows the BooleanContent format of the target.
606   VSELECT,
607 
608   /// Select with condition operator - This selects between a true value and
609   /// a false value (ops #2 and #3) based on the boolean result of comparing
610   /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
611   /// condition code in op #4, a CondCodeSDNode.
612   SELECT_CC,
613 
614   /// SetCC operator - This evaluates to a true value iff the condition is
615   /// true.  If the result value type is not i1 then the high bits conform
616   /// to getBooleanContents.  The operands to this are the left and right
617   /// operands to compare (ops #0, and #1) and the condition code to compare
618   /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
619   /// then the result type must also be a vector type.
620   SETCC,
621 
622   /// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
623   /// op #2 is a boolean indicating if there is an incoming carry. This
624   /// operator checks the result of "LHS - RHS - Carry", and can be used to
625   /// compare two wide integers:
626   /// (setcccarry lhshi rhshi (subcarry lhslo rhslo) cc).
627   /// Only valid for integers.
628   SETCCCARRY,
629 
630   /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
631   /// integer shift operations.  The operation ordering is:
632   ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
633   SHL_PARTS,
634   SRA_PARTS,
635   SRL_PARTS,
636 
637   /// Conversion operators.  These are all single input single output
638   /// operations.  For all of these, the result type must be strictly
639   /// wider or narrower (depending on the operation) than the source
640   /// type.
641 
642   /// SIGN_EXTEND - Used for integer types, replicating the sign bit
643   /// into new bits.
644   SIGN_EXTEND,
645 
646   /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
647   ZERO_EXTEND,
648 
649   /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
650   ANY_EXTEND,
651 
652   /// TRUNCATE - Completely drop the high bits.
653   TRUNCATE,
654 
655   /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
656   /// depends on the first letter) to floating point.
657   SINT_TO_FP,
658   UINT_TO_FP,
659 
660   /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
661   /// sign extend a small value in a large integer register (e.g. sign
662   /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
663   /// with the 7th bit).  The size of the smaller type is indicated by the 1th
664   /// operand, a ValueType node.
665   SIGN_EXTEND_INREG,
666 
667   /// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
668   /// in-register any-extension of the low lanes of an integer vector. The
669   /// result type must have fewer elements than the operand type, and those
670   /// elements must be larger integer types such that the total size of the
671   /// operand type is less than or equal to the size of the result type. Each
672   /// of the low operand elements is any-extended into the corresponding,
673   /// wider result elements with the high bits becoming undef.
674   /// NOTE: The type legalizer prefers to make the operand and result size
675   /// the same to allow expansion to shuffle vector during op legalization.
676   ANY_EXTEND_VECTOR_INREG,
677 
678   /// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
679   /// in-register sign-extension of the low lanes of an integer vector. The
680   /// result type must have fewer elements than the operand type, and those
681   /// elements must be larger integer types such that the total size of the
682   /// operand type is less than or equal to the size of the result type. Each
683   /// of the low operand elements is sign-extended into the corresponding,
684   /// wider result elements.
685   /// NOTE: The type legalizer prefers to make the operand and result size
686   /// the same to allow expansion to shuffle vector during op legalization.
687   SIGN_EXTEND_VECTOR_INREG,
688 
689   /// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
690   /// in-register zero-extension of the low lanes of an integer vector. The
691   /// result type must have fewer elements than the operand type, and those
692   /// elements must be larger integer types such that the total size of the
693   /// operand type is less than or equal to the size of the result type. Each
694   /// of the low operand elements is zero-extended into the corresponding,
695   /// wider result elements.
696   /// NOTE: The type legalizer prefers to make the operand and result size
697   /// the same to allow expansion to shuffle vector during op legalization.
698   ZERO_EXTEND_VECTOR_INREG,
699 
700   /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
701   /// integer. These have the same semantics as fptosi and fptoui in IR. If
702   /// the FP value cannot fit in the integer type, the results are undefined.
703   FP_TO_SINT,
704   FP_TO_UINT,
705 
706   /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
707   /// down to the precision of the destination VT.  TRUNC is a flag, which is
708   /// always an integer that is zero or one.  If TRUNC is 0, this is a
709   /// normal rounding, if it is 1, this FP_ROUND is known to not change the
710   /// value of Y.
711   ///
712   /// The TRUNC = 1 case is used in cases where we know that the value will
713   /// not be modified by the node, because Y is not using any of the extra
714   /// precision of source type.  This allows certain transformations like
715   /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
716   /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
717   FP_ROUND,
718 
719   /// FLT_ROUNDS_ - Returns current rounding mode:
720   /// -1 Undefined
721   ///  0 Round to 0
722   ///  1 Round to nearest
723   ///  2 Round to +inf
724   ///  3 Round to -inf
725   /// Result is rounding mode and chain. Input is a chain.
726   FLT_ROUNDS_,
727 
728   /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
729   FP_EXTEND,
730 
731   /// BITCAST - This operator converts between integer, vector and FP
732   /// values, as if the value was stored to memory with one type and loaded
733   /// from the same address with the other type (or equivalently for vector
734   /// format conversions, etc).  The source and result are required to have
735   /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
736   /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
737   /// getNode().
738   ///
739   /// This operator is subtly different from the bitcast instruction from
740   /// LLVM-IR since this node may change the bits in the register. For
741   /// example, this occurs on big-endian NEON and big-endian MSA where the
742   /// layout of the bits in the register depends on the vector type and this
743   /// operator acts as a shuffle operation for some vector type combinations.
744   BITCAST,
745 
746   /// ADDRSPACECAST - This operator converts between pointers of different
747   /// address spaces.
748   ADDRSPACECAST,
749 
750   /// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
751   /// and truncation for half-precision (16 bit) floating numbers. These nodes
752   /// form a semi-softened interface for dealing with f16 (as an i16), which
753   /// is often a storage-only type but has native conversions.
754   FP16_TO_FP,
755   FP_TO_FP16,
756   STRICT_FP16_TO_FP,
757   STRICT_FP_TO_FP16,
758 
759   /// Perform various unary floating-point operations inspired by libm. For
760   /// FPOWI, the result is undefined if if the integer operand doesn't fit
761   /// into 32 bits.
762   FNEG,
763   FABS,
764   FSQRT,
765   FCBRT,
766   FSIN,
767   FCOS,
768   FPOWI,
769   FPOW,
770   FLOG,
771   FLOG2,
772   FLOG10,
773   FEXP,
774   FEXP2,
775   FCEIL,
776   FTRUNC,
777   FRINT,
778   FNEARBYINT,
779   FROUND,
780   FROUNDEVEN,
781   FFLOOR,
782   LROUND,
783   LLROUND,
784   LRINT,
785   LLRINT,
786 
787   /// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
788   /// values.
789   //
790   /// In the case where a single input is a NaN (either signaling or quiet),
791   /// the non-NaN input is returned.
792   ///
793   /// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
794   FMINNUM,
795   FMAXNUM,
796 
797   /// FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on
798   /// two values, following the IEEE-754 2008 definition. This differs from
799   /// FMINNUM/FMAXNUM in the handling of signaling NaNs. If one input is a
800   /// signaling NaN, returns a quiet NaN.
801   FMINNUM_IEEE,
802   FMAXNUM_IEEE,
803 
804   /// FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0
805   /// as less than 0.0. While FMINNUM_IEEE/FMAXNUM_IEEE follow IEEE 754-2008
806   /// semantics, FMINIMUM/FMAXIMUM follow IEEE 754-2018 draft semantics.
807   FMINIMUM,
808   FMAXIMUM,
809 
810   /// FSINCOS - Compute both fsin and fcos as a single operation.
811   FSINCOS,
812 
813   /// LOAD and STORE have token chains as their first operand, then the same
814   /// operands as an LLVM load/store instruction, then an offset node that
815   /// is added / subtracted from the base pointer to form the address (for
816   /// indexed memory ops).
817   LOAD,
818   STORE,
819 
820   /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
821   /// to a specified boundary.  This node always has two return values: a new
822   /// stack pointer value and a chain. The first operand is the token chain,
823   /// the second is the number of bytes to allocate, and the third is the
824   /// alignment boundary.  The size is guaranteed to be a multiple of the
825   /// stack alignment, and the alignment is guaranteed to be bigger than the
826   /// stack alignment (if required) or 0 to get standard stack alignment.
827   DYNAMIC_STACKALLOC,
828 
829   /// Control flow instructions.  These all have token chains.
830 
831   /// BR - Unconditional branch.  The first operand is the chain
832   /// operand, the second is the MBB to branch to.
833   BR,
834 
835   /// BRIND - Indirect branch.  The first operand is the chain, the second
836   /// is the value to branch to, which must be of the same type as the
837   /// target's pointer type.
838   BRIND,
839 
840   /// BR_JT - Jumptable branch. The first operand is the chain, the second
841   /// is the jumptable index, the last one is the jumptable entry index.
842   BR_JT,
843 
844   /// BRCOND - Conditional branch.  The first operand is the chain, the
845   /// second is the condition, the third is the block to branch to if the
846   /// condition is true.  If the type of the condition is not i1, then the
847   /// high bits must conform to getBooleanContents.
848   BRCOND,
849 
850   /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
851   /// that the condition is represented as condition code, and two nodes to
852   /// compare, rather than as a combined SetCC node.  The operands in order
853   /// are chain, cc, lhs, rhs, block to branch to if condition is true.
854   BR_CC,
855 
856   /// INLINEASM - Represents an inline asm block.  This node always has two
857   /// return values: a chain and a flag result.  The inputs are as follows:
858   ///   Operand #0  : Input chain.
859   ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
860   ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
861   ///   Operand #3  : HasSideEffect, IsAlignStack bits.
862   ///   After this, it is followed by a list of operands with this format:
863   ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
864   ///                     of operands that follow, etc.  See InlineAsm.h.
865   ///     ... however many operands ...
866   ///   Operand #last: Optional, an incoming flag.
867   ///
868   /// The variable width operands are required to represent target addressing
869   /// modes as a single "operand", even though they may have multiple
870   /// SDOperands.
871   INLINEASM,
872 
873   /// INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
874   INLINEASM_BR,
875 
876   /// EH_LABEL - Represents a label in mid basic block used to track
877   /// locations needed for debug and exception handling tables.  These nodes
878   /// take a chain as input and return a chain.
879   EH_LABEL,
880 
881   /// ANNOTATION_LABEL - Represents a mid basic block label used by
882   /// annotations. This should remain within the basic block and be ordered
883   /// with respect to other call instructions, but loads and stores may float
884   /// past it.
885   ANNOTATION_LABEL,
886 
887   /// CATCHRET - Represents a return from a catch block funclet. Used for
888   /// MSVC compatible exception handling. Takes a chain operand and a
889   /// destination basic block operand.
890   CATCHRET,
891 
892   /// CLEANUPRET - Represents a return from a cleanup block funclet.  Used for
893   /// MSVC compatible exception handling. Takes only a chain operand.
894   CLEANUPRET,
895 
896   /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
897   /// value, the same type as the pointer type for the system, and an output
898   /// chain.
899   STACKSAVE,
900 
901   /// STACKRESTORE has two operands, an input chain and a pointer to restore
902   /// to it returns an output chain.
903   STACKRESTORE,
904 
905   /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
906   /// of a call sequence, and carry arbitrary information that target might
907   /// want to know.  The first operand is a chain, the rest are specified by
908   /// the target and not touched by the DAG optimizers.
909   /// Targets that may use stack to pass call arguments define additional
910   /// operands:
911   /// - size of the call frame part that must be set up within the
912   ///   CALLSEQ_START..CALLSEQ_END pair,
913   /// - part of the call frame prepared prior to CALLSEQ_START.
914   /// Both these parameters must be constants, their sum is the total call
915   /// frame size.
916   /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
917   CALLSEQ_START, // Beginning of a call sequence
918   CALLSEQ_END,   // End of a call sequence
919 
920   /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
921   /// and the alignment. It returns a pair of values: the vaarg value and a
922   /// new chain.
923   VAARG,
924 
925   /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
926   /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
927   /// source.
928   VACOPY,
929 
930   /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
931   /// pointer, and a SRCVALUE.
932   VAEND,
933   VASTART,
934 
935   // PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE
936   // with the preallocated call Value.
937   PREALLOCATED_SETUP,
938   // PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE
939   // with the preallocated call Value, and a constant int.
940   PREALLOCATED_ARG,
941 
942   /// SRCVALUE - This is a node type that holds a Value* that is used to
943   /// make reference to a value in the LLVM IR.
944   SRCVALUE,
945 
946   /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
947   /// reference metadata in the IR.
948   MDNODE_SDNODE,
949 
950   /// PCMARKER - This corresponds to the pcmarker intrinsic.
951   PCMARKER,
952 
953   /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
954   /// It produces a chain and one i64 value. The only operand is a chain.
955   /// If i64 is not legal, the result will be expanded into smaller values.
956   /// Still, it returns an i64, so targets should set legality for i64.
957   /// The result is the content of the architecture-specific cycle
958   /// counter-like register (or other high accuracy low latency clock source).
959   READCYCLECOUNTER,
960 
961   /// HANDLENODE node - Used as a handle for various purposes.
962   HANDLENODE,
963 
964   /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
965   /// takes as input a token chain, the pointer to the trampoline, the pointer
966   /// to the nested function, the pointer to pass for the 'nest' parameter, a
967   /// SRCVALUE for the trampoline and another for the nested function
968   /// (allowing targets to access the original Function*).
969   /// It produces a token chain as output.
970   INIT_TRAMPOLINE,
971 
972   /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
973   /// It takes a pointer to the trampoline and produces a (possibly) new
974   /// pointer to the same trampoline with platform-specific adjustments
975   /// applied.  The pointer it returns points to an executable block of code.
976   ADJUST_TRAMPOLINE,
977 
978   /// TRAP - Trapping instruction
979   TRAP,
980 
981   /// DEBUGTRAP - Trap intended to get the attention of a debugger.
982   DEBUGTRAP,
983 
984   /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
985   /// is the chain.  The other operands are the address to prefetch,
986   /// read / write specifier, locality specifier and instruction / data cache
987   /// specifier.
988   PREFETCH,
989 
990   /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
991   /// This corresponds to the fence instruction. It takes an input chain, and
992   /// two integer constants: an AtomicOrdering and a SynchronizationScope.
993   ATOMIC_FENCE,
994 
995   /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
996   /// This corresponds to "load atomic" instruction.
997   ATOMIC_LOAD,
998 
999   /// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
1000   /// This corresponds to "store atomic" instruction.
1001   ATOMIC_STORE,
1002 
1003   /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
1004   /// For double-word atomic operations:
1005   /// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
1006   ///                                          swapLo, swapHi)
1007   /// This corresponds to the cmpxchg instruction.
1008   ATOMIC_CMP_SWAP,
1009 
1010   /// Val, Success, OUTCHAIN
1011   ///     = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
1012   /// N.b. this is still a strong cmpxchg operation, so
1013   /// Success == "Val == cmp".
1014   ATOMIC_CMP_SWAP_WITH_SUCCESS,
1015 
1016   /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
1017   /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
1018   /// For double-word atomic operations:
1019   /// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
1020   /// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
1021   /// These correspond to the atomicrmw instruction.
1022   ATOMIC_SWAP,
1023   ATOMIC_LOAD_ADD,
1024   ATOMIC_LOAD_SUB,
1025   ATOMIC_LOAD_AND,
1026   ATOMIC_LOAD_CLR,
1027   ATOMIC_LOAD_OR,
1028   ATOMIC_LOAD_XOR,
1029   ATOMIC_LOAD_NAND,
1030   ATOMIC_LOAD_MIN,
1031   ATOMIC_LOAD_MAX,
1032   ATOMIC_LOAD_UMIN,
1033   ATOMIC_LOAD_UMAX,
1034   ATOMIC_LOAD_FADD,
1035   ATOMIC_LOAD_FSUB,
1036 
1037   // Masked load and store - consecutive vector load and store operations
1038   // with additional mask operand that prevents memory accesses to the
1039   // masked-off lanes.
1040   //
1041   // Val, OutChain = MLOAD(BasePtr, Mask, PassThru)
1042   // OutChain = MSTORE(Value, BasePtr, Mask)
1043   MLOAD,
1044   MSTORE,
1045 
1046   // Masked gather and scatter - load and store operations for a vector of
1047   // random addresses with additional mask operand that prevents memory
1048   // accesses to the masked-off lanes.
1049   //
1050   // Val, OutChain = GATHER(InChain, PassThru, Mask, BasePtr, Index, Scale)
1051   // OutChain = SCATTER(InChain, Value, Mask, BasePtr, Index, Scale)
1052   //
1053   // The Index operand can have more vector elements than the other operands
1054   // due to type legalization. The extra elements are ignored.
1055   MGATHER,
1056   MSCATTER,
1057 
1058   /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
1059   /// is the chain and the second operand is the alloca pointer.
1060   LIFETIME_START,
1061   LIFETIME_END,
1062 
1063   /// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
1064   /// beginning and end of GC transition  sequence, and carry arbitrary
1065   /// information that target might need for lowering.  The first operand is
1066   /// a chain, the rest are specified by the target and not touched by the DAG
1067   /// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
1068   /// nested.
1069   GC_TRANSITION_START,
1070   GC_TRANSITION_END,
1071 
1072   /// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
1073   /// the most recent dynamic alloca. For most targets that would be 0, but
1074   /// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
1075   /// known nonzero constant. The only operand here is the chain.
1076   GET_DYNAMIC_AREA_OFFSET,
1077 
1078   /// VSCALE(IMM) - Returns the runtime scaling factor used to calculate the
1079   /// number of elements within a scalable vector. IMM is a constant integer
1080   /// multiplier that is applied to the runtime value.
1081   VSCALE,
1082 
1083   /// Generic reduction nodes. These nodes represent horizontal vector
1084   /// reduction operations, producing a scalar result.
1085   /// The STRICT variants perform reductions in sequential order. The first
1086   /// operand is an initial scalar accumulator value, and the second operand
1087   /// is the vector to reduce.
1088   VECREDUCE_STRICT_FADD,
1089   VECREDUCE_STRICT_FMUL,
1090   /// These reductions are non-strict, and have a single vector operand.
1091   VECREDUCE_FADD,
1092   VECREDUCE_FMUL,
1093   /// FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
1094   VECREDUCE_FMAX,
1095   VECREDUCE_FMIN,
1096   /// Integer reductions may have a result type larger than the vector element
1097   /// type. However, the reduction is performed using the vector element type
1098   /// and the value in the top bits is unspecified.
1099   VECREDUCE_ADD,
1100   VECREDUCE_MUL,
1101   VECREDUCE_AND,
1102   VECREDUCE_OR,
1103   VECREDUCE_XOR,
1104   VECREDUCE_SMAX,
1105   VECREDUCE_SMIN,
1106   VECREDUCE_UMAX,
1107   VECREDUCE_UMIN,
1108 
1109   /// BUILTIN_OP_END - This must be the last enum value in this list.
1110   /// The target-specific pre-isel opcode values start here.
1111   BUILTIN_OP_END
1112 };
1113 
1114 /// FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations
1115 /// which cannot raise FP exceptions should be less than this value.
1116 /// Those that do must not be less than this value.
1117 static const int FIRST_TARGET_STRICTFP_OPCODE = BUILTIN_OP_END + 400;
1118 
1119 /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
1120 /// which do not reference a specific memory location should be less than
1121 /// this value. Those that do must not be less than this value, and can
1122 /// be used with SelectionDAG::getMemIntrinsicNode.
1123 static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END + 500;
1124 
1125 //===--------------------------------------------------------------------===//
1126 /// MemIndexedMode enum - This enum defines the load / store indexed
1127 /// addressing modes.
1128 ///
1129 /// UNINDEXED    "Normal" load / store. The effective address is already
1130 ///              computed and is available in the base pointer. The offset
1131 ///              operand is always undefined. In addition to producing a
1132 ///              chain, an unindexed load produces one value (result of the
1133 ///              load); an unindexed store does not produce a value.
1134 ///
1135 /// PRE_INC      Similar to the unindexed mode where the effective address is
1136 /// PRE_DEC      the value of the base pointer add / subtract the offset.
1137 ///              It considers the computation as being folded into the load /
1138 ///              store operation (i.e. the load / store does the address
1139 ///              computation as well as performing the memory transaction).
1140 ///              The base operand is always undefined. In addition to
1141 ///              producing a chain, pre-indexed load produces two values
1142 ///              (result of the load and the result of the address
1143 ///              computation); a pre-indexed store produces one value (result
1144 ///              of the address computation).
1145 ///
1146 /// POST_INC     The effective address is the value of the base pointer. The
1147 /// POST_DEC     value of the offset operand is then added to / subtracted
1148 ///              from the base after memory transaction. In addition to
1149 ///              producing a chain, post-indexed load produces two values
1150 ///              (the result of the load and the result of the base +/- offset
1151 ///              computation); a post-indexed store produces one value (the
1152 ///              the result of the base +/- offset computation).
1153 enum MemIndexedMode { UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC, POST_DEC };
1154 
1155 static const int LAST_INDEXED_MODE = POST_DEC + 1;
1156 
1157 //===--------------------------------------------------------------------===//
1158 /// MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's
1159 /// index parameter when calculating addresses.
1160 ///
1161 /// SIGNED_SCALED     Addr = Base + ((signed)Index * sizeof(element))
1162 /// SIGNED_UNSCALED   Addr = Base + (signed)Index
1163 /// UNSIGNED_SCALED   Addr = Base + ((unsigned)Index * sizeof(element))
1164 /// UNSIGNED_UNSCALED Addr = Base + (unsigned)Index
1165 enum MemIndexType {
1166   SIGNED_SCALED = 0,
1167   SIGNED_UNSCALED,
1168   UNSIGNED_SCALED,
1169   UNSIGNED_UNSCALED
1170 };
1171 
1172 static const int LAST_MEM_INDEX_TYPE = UNSIGNED_UNSCALED + 1;
1173 
1174 //===--------------------------------------------------------------------===//
1175 /// LoadExtType enum - This enum defines the three variants of LOADEXT
1176 /// (load with extension).
1177 ///
1178 /// SEXTLOAD loads the integer operand and sign extends it to a larger
1179 ///          integer result type.
1180 /// ZEXTLOAD loads the integer operand and zero extends it to a larger
1181 ///          integer result type.
1182 /// EXTLOAD  is used for two things: floating point extending loads and
1183 ///          integer extending loads [the top bits are undefined].
1184 enum LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD };
1185 
1186 static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1;
1187 
1188 NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
1189 
1190 //===--------------------------------------------------------------------===//
1191 /// ISD::CondCode enum - These are ordered carefully to make the bitfields
1192 /// below work out, when considering SETFALSE (something that never exists
1193 /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
1194 /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
1195 /// to.  If the "N" column is 1, the result of the comparison is undefined if
1196 /// the input is a NAN.
1197 ///
1198 /// All of these (except for the 'always folded ops') should be handled for
1199 /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
1200 /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
1201 ///
1202 /// Note that these are laid out in a specific order to allow bit-twiddling
1203 /// to transform conditions.
1204 enum CondCode {
1205   // Opcode       N U L G E       Intuitive operation
1206   SETFALSE, //      0 0 0 0       Always false (always folded)
1207   SETOEQ,   //      0 0 0 1       True if ordered and equal
1208   SETOGT,   //      0 0 1 0       True if ordered and greater than
1209   SETOGE,   //      0 0 1 1       True if ordered and greater than or equal
1210   SETOLT,   //      0 1 0 0       True if ordered and less than
1211   SETOLE,   //      0 1 0 1       True if ordered and less than or equal
1212   SETONE,   //      0 1 1 0       True if ordered and operands are unequal
1213   SETO,     //      0 1 1 1       True if ordered (no nans)
1214   SETUO,    //      1 0 0 0       True if unordered: isnan(X) | isnan(Y)
1215   SETUEQ,   //      1 0 0 1       True if unordered or equal
1216   SETUGT,   //      1 0 1 0       True if unordered or greater than
1217   SETUGE,   //      1 0 1 1       True if unordered, greater than, or equal
1218   SETULT,   //      1 1 0 0       True if unordered or less than
1219   SETULE,   //      1 1 0 1       True if unordered, less than, or equal
1220   SETUNE,   //      1 1 1 0       True if unordered or not equal
1221   SETTRUE,  //      1 1 1 1       Always true (always folded)
1222   // Don't care operations: undefined if the input is a nan.
1223   SETFALSE2, //   1 X 0 0 0       Always false (always folded)
1224   SETEQ,     //   1 X 0 0 1       True if equal
1225   SETGT,     //   1 X 0 1 0       True if greater than
1226   SETGE,     //   1 X 0 1 1       True if greater than or equal
1227   SETLT,     //   1 X 1 0 0       True if less than
1228   SETLE,     //   1 X 1 0 1       True if less than or equal
1229   SETNE,     //   1 X 1 1 0       True if not equal
1230   SETTRUE2,  //   1 X 1 1 1       Always true (always folded)
1231 
1232   SETCC_INVALID // Marker value.
1233 };
1234 
1235 /// Return true if this is a setcc instruction that performs a signed
1236 /// comparison when used with integer operands.
isSignedIntSetCC(CondCode Code)1237 inline bool isSignedIntSetCC(CondCode Code) {
1238   return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
1239 }
1240 
1241 /// Return true if this is a setcc instruction that performs an unsigned
1242 /// comparison when used with integer operands.
isUnsignedIntSetCC(CondCode Code)1243 inline bool isUnsignedIntSetCC(CondCode Code) {
1244   return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
1245 }
1246 
1247 /// Return true if the specified condition returns true if the two operands to
1248 /// the condition are equal. Note that if one of the two operands is a NaN,
1249 /// this value is meaningless.
isTrueWhenEqual(CondCode Cond)1250 inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; }
1251 
1252 /// This function returns 0 if the condition is always false if an operand is
1253 /// a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if
1254 /// the condition is undefined if the operand is a NaN.
getUnorderedFlavor(CondCode Cond)1255 inline unsigned getUnorderedFlavor(CondCode Cond) {
1256   return ((int)Cond >> 3) & 3;
1257 }
1258 
1259 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1260 /// SetCC operation.
1261 CondCode getSetCCInverse(CondCode Operation, EVT Type);
1262 
1263 namespace GlobalISel {
1264 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1265 /// SetCC operation. The U bit of the condition code has different meanings
1266 /// between floating point and integer comparisons and LLT's don't provide
1267 /// this distinction. As such we need to be told whether the comparison is
1268 /// floating point or integer-like. Pointers should use integer-like
1269 /// comparisons.
1270 CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike);
1271 } // end namespace GlobalISel
1272 
1273 /// Return the operation corresponding to (Y op X) when given the operation
1274 /// for (X op Y).
1275 CondCode getSetCCSwappedOperands(CondCode Operation);
1276 
1277 /// Return the result of a logical OR between different comparisons of
1278 /// identical values: ((X op1 Y) | (X op2 Y)). This function returns
1279 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1280 CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type);
1281 
1282 /// Return the result of a logical AND between different comparisons of
1283 /// identical values: ((X op1 Y) & (X op2 Y)). This function returns
1284 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1285 CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type);
1286 
1287 } // namespace ISD
1288 
1289 } // namespace llvm
1290 
1291 #endif
1292