1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the XCoreTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "XCoreISelLowering.h"
14 #include "XCore.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsXCore.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "xcore-lower"
44 
45 const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const46 getTargetNodeName(unsigned Opcode) const
47 {
48   switch ((XCoreISD::NodeType)Opcode)
49   {
50     case XCoreISD::FIRST_NUMBER      : break;
51     case XCoreISD::BL                : return "XCoreISD::BL";
52     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
53     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
54     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
55     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
56     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
57     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
58     case XCoreISD::LADD              : return "XCoreISD::LADD";
59     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
60     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
61     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
62     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
63     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
64     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
65     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
66     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
67     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
68     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
69   }
70   return nullptr;
71 }
72 
XCoreTargetLowering(const TargetMachine & TM,const XCoreSubtarget & Subtarget)73 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
74                                          const XCoreSubtarget &Subtarget)
75     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
76 
77   // Set up the register classes.
78   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
79 
80   // Compute derived properties from the register classes
81   computeRegisterProperties(Subtarget.getRegisterInfo());
82 
83   setStackPointerRegisterToSaveRestore(XCore::SP);
84 
85   setSchedulingPreference(Sched::Source);
86 
87   // Use i32 for setcc operations results (slt, sgt, ...).
88   setBooleanContents(ZeroOrOneBooleanContent);
89   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
90 
91   // XCore does not have the NodeTypes below.
92   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
93   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
94 
95   // 64bit
96   setOperationAction(ISD::ADD, MVT::i64, Custom);
97   setOperationAction(ISD::SUB, MVT::i64, Custom);
98   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
99   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
100   setOperationAction(ISD::MULHS, MVT::i32, Expand);
101   setOperationAction(ISD::MULHU, MVT::i32, Expand);
102   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
103   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
104   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
105 
106   // Bit Manipulation
107   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
108   setOperationAction(ISD::ROTL , MVT::i32, Expand);
109   setOperationAction(ISD::ROTR , MVT::i32, Expand);
110   setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
111 
112   setOperationAction(ISD::TRAP, MVT::Other, Legal);
113 
114   // Jump tables.
115   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
116 
117   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
118   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
119 
120   // Conversion of i64 -> double produces constantpool nodes
121   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
122 
123   // Loads
124   for (MVT VT : MVT::integer_valuetypes()) {
125     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
126     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
127     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
128 
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
131   }
132 
133   // Custom expand misaligned loads / stores.
134   setOperationAction(ISD::LOAD, MVT::i32, Custom);
135   setOperationAction(ISD::STORE, MVT::i32, Custom);
136 
137   // Varargs
138   setOperationAction(ISD::VAEND, MVT::Other, Expand);
139   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
140   setOperationAction(ISD::VAARG, MVT::Other, Custom);
141   setOperationAction(ISD::VASTART, MVT::Other, Custom);
142 
143   // Dynamic stack
144   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
145   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
146   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
147 
148   // Exception handling
149   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
150   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
151 
152   // Atomic operations
153   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
154   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
155   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
156   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
157   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
158 
159   // TRAMPOLINE is custom lowered.
160   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
161   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
162 
163   // We want to custom lower some of our intrinsics.
164   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
165 
166   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
167   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
168     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
169 
170   // We have target-specific dag combine patterns for the following nodes:
171   setTargetDAGCombine(ISD::STORE);
172   setTargetDAGCombine(ISD::ADD);
173   setTargetDAGCombine(ISD::INTRINSIC_VOID);
174   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
175 
176   setMinFunctionAlignment(Align(2));
177   setPrefFunctionAlignment(Align(4));
178 }
179 
isZExtFree(SDValue Val,EVT VT2) const180 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
181   if (Val.getOpcode() != ISD::LOAD)
182     return false;
183 
184   EVT VT1 = Val.getValueType();
185   if (!VT1.isSimple() || !VT1.isInteger() ||
186       !VT2.isSimple() || !VT2.isInteger())
187     return false;
188 
189   switch (VT1.getSimpleVT().SimpleTy) {
190   default: break;
191   case MVT::i8:
192     return true;
193   }
194 
195   return false;
196 }
197 
198 SDValue XCoreTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const199 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
200   switch (Op.getOpcode())
201   {
202   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
203   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
204   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
205   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
206   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
207   case ISD::LOAD:               return LowerLOAD(Op, DAG);
208   case ISD::STORE:              return LowerSTORE(Op, DAG);
209   case ISD::VAARG:              return LowerVAARG(Op, DAG);
210   case ISD::VASTART:            return LowerVASTART(Op, DAG);
211   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
212   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
213   // FIXME: Remove these when LegalizeDAGTypes lands.
214   case ISD::ADD:
215   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
216   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
217   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
218   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
219   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
220   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
221   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
222   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
223   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
224   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
225   default:
226     llvm_unreachable("unimplemented operand");
227   }
228 }
229 
230 /// ReplaceNodeResults - Replace the results of node with an illegal result
231 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const232 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
233                                              SmallVectorImpl<SDValue>&Results,
234                                              SelectionDAG &DAG) const {
235   switch (N->getOpcode()) {
236   default:
237     llvm_unreachable("Don't know how to custom expand this!");
238   case ISD::ADD:
239   case ISD::SUB:
240     Results.push_back(ExpandADDSUB(N, DAG));
241     return;
242   }
243 }
244 
245 //===----------------------------------------------------------------------===//
246 //  Misc Lower Operation implementation
247 //===----------------------------------------------------------------------===//
248 
getGlobalAddressWrapper(SDValue GA,const GlobalValue * GV,SelectionDAG & DAG) const249 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
250                                                      const GlobalValue *GV,
251                                                      SelectionDAG &DAG) const {
252   // FIXME there is no actual debug info here
253   SDLoc dl(GA);
254 
255   if (GV->getValueType()->isFunctionTy())
256     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
257 
258   const auto *GVar = dyn_cast<GlobalVariable>(GV);
259   if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
260       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
261     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
262 
263   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
264 }
265 
IsSmallObject(const GlobalValue * GV,const XCoreTargetLowering & XTL)266 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
267   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
268     return true;
269 
270   Type *ObjType = GV->getValueType();
271   if (!ObjType->isSized())
272     return false;
273 
274   auto &DL = GV->getParent()->getDataLayout();
275   unsigned ObjSize = DL.getTypeAllocSize(ObjType);
276   return ObjSize < CodeModelLargeSize && ObjSize != 0;
277 }
278 
279 SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const280 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
281 {
282   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
283   const GlobalValue *GV = GN->getGlobal();
284   SDLoc DL(GN);
285   int64_t Offset = GN->getOffset();
286   if (IsSmallObject(GV, *this)) {
287     // We can only fold positive offsets that are a multiple of the word size.
288     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
289     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
290     GA = getGlobalAddressWrapper(GA, GV, DAG);
291     // Handle the rest of the offset.
292     if (Offset != FoldedOffset) {
293       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
294       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
295     }
296     return GA;
297   } else {
298     // Ideally we would not fold in offset with an index <= 11.
299     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
300     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
301     Ty = Type::getInt32Ty(*DAG.getContext());
302     Constant *Idx = ConstantInt::get(Ty, Offset);
303     Constant *GAI = ConstantExpr::getGetElementPtr(
304         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
305     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
306     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
307                        DAG.getEntryNode(), CP, MachinePointerInfo());
308   }
309 }
310 
311 SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const312 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
313 {
314   SDLoc DL(Op);
315   auto PtrVT = getPointerTy(DAG.getDataLayout());
316   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
317   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
318 
319   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
320 }
321 
322 SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const323 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
324 {
325   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
326   // FIXME there isn't really debug info here
327   SDLoc dl(CP);
328   EVT PtrVT = Op.getValueType();
329   SDValue Res;
330   if (CP->isMachineConstantPoolEntry()) {
331     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
332                                     CP->getAlign(), CP->getOffset());
333   } else {
334     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
335                                     CP->getOffset());
336   }
337   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
338 }
339 
getJumpTableEncoding() const340 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
341   return MachineJumpTableInfo::EK_Inline;
342 }
343 
344 SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const345 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
346 {
347   SDValue Chain = Op.getOperand(0);
348   SDValue Table = Op.getOperand(1);
349   SDValue Index = Op.getOperand(2);
350   SDLoc dl(Op);
351   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
352   unsigned JTI = JT->getIndex();
353   MachineFunction &MF = DAG.getMachineFunction();
354   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
355   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
356 
357   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
358   if (NumEntries <= 32) {
359     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
360   }
361   assert((NumEntries >> 31) == 0);
362   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
363                                     DAG.getConstant(1, dl, MVT::i32));
364   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
365                      ScaledIndex);
366 }
367 
lowerLoadWordFromAlignedBasePlusOffset(const SDLoc & DL,SDValue Chain,SDValue Base,int64_t Offset,SelectionDAG & DAG) const368 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
369     const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
370     SelectionDAG &DAG) const {
371   auto PtrVT = getPointerTy(DAG.getDataLayout());
372   if ((Offset & 0x3) == 0) {
373     return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
374   }
375   // Lower to pair of consecutive word aligned loads plus some bit shifting.
376   int32_t HighOffset = alignTo(Offset, 4);
377   int32_t LowOffset = HighOffset - 4;
378   SDValue LowAddr, HighAddr;
379   if (GlobalAddressSDNode *GASD =
380         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
381     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
382                                    LowOffset);
383     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
384                                     HighOffset);
385   } else {
386     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
387                           DAG.getConstant(LowOffset, DL, MVT::i32));
388     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
389                            DAG.getConstant(HighOffset, DL, MVT::i32));
390   }
391   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
392   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
393 
394   SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
395   SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
396   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
397   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
398   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
399   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
400                       High.getValue(1));
401   SDValue Ops[] = { Result, Chain };
402   return DAG.getMergeValues(Ops, DL);
403 }
404 
isWordAligned(SDValue Value,SelectionDAG & DAG)405 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
406 {
407   KnownBits Known = DAG.computeKnownBits(Value);
408   return Known.countMinTrailingZeros() >= 2;
409 }
410 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const411 SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
413   LLVMContext &Context = *DAG.getContext();
414   LoadSDNode *LD = cast<LoadSDNode>(Op);
415   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
416          "Unexpected extension type");
417   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
418 
419   if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
420                                      LD->getMemoryVT(), *LD->getMemOperand()))
421     return SDValue();
422 
423   SDValue Chain = LD->getChain();
424   SDValue BasePtr = LD->getBasePtr();
425   SDLoc DL(Op);
426 
427   if (!LD->isVolatile()) {
428     const GlobalValue *GV;
429     int64_t Offset = 0;
430     if (DAG.isBaseWithConstantOffset(BasePtr) &&
431         isWordAligned(BasePtr->getOperand(0), DAG)) {
432       SDValue NewBasePtr = BasePtr->getOperand(0);
433       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
434       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
435                                                     Offset, DAG);
436     }
437     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
438         GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
439       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
440                                                 BasePtr->getValueType(0));
441       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
442                                                     Offset, DAG);
443     }
444   }
445 
446   if (LD->getAlignment() == 2) {
447     SDValue Low =
448         DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
449                        LD->getPointerInfo(), MVT::i16,
450                        /* Alignment = */ 2, LD->getMemOperand()->getFlags());
451     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
452                                    DAG.getConstant(2, DL, MVT::i32));
453     SDValue High =
454         DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
455                        LD->getPointerInfo().getWithOffset(2), MVT::i16,
456                        /* Alignment = */ 2, LD->getMemOperand()->getFlags());
457     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
458                                       DAG.getConstant(16, DL, MVT::i32));
459     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
460     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
461                              High.getValue(1));
462     SDValue Ops[] = { Result, Chain };
463     return DAG.getMergeValues(Ops, DL);
464   }
465 
466   // Lower to a call to __misaligned_load(BasePtr).
467   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
468   TargetLowering::ArgListTy Args;
469   TargetLowering::ArgListEntry Entry;
470 
471   Entry.Ty = IntPtrTy;
472   Entry.Node = BasePtr;
473   Args.push_back(Entry);
474 
475   TargetLowering::CallLoweringInfo CLI(DAG);
476   CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
477       CallingConv::C, IntPtrTy,
478       DAG.getExternalSymbol("__misaligned_load",
479                             getPointerTy(DAG.getDataLayout())),
480       std::move(Args));
481 
482   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
483   SDValue Ops[] = { CallResult.first, CallResult.second };
484   return DAG.getMergeValues(Ops, DL);
485 }
486 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const487 SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
488   LLVMContext &Context = *DAG.getContext();
489   StoreSDNode *ST = cast<StoreSDNode>(Op);
490   assert(!ST->isTruncatingStore() && "Unexpected store type");
491   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
492 
493   if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
494                                      ST->getMemoryVT(), *ST->getMemOperand()))
495     return SDValue();
496 
497   SDValue Chain = ST->getChain();
498   SDValue BasePtr = ST->getBasePtr();
499   SDValue Value = ST->getValue();
500   SDLoc dl(Op);
501 
502   if (ST->getAlignment() == 2) {
503     SDValue Low = Value;
504     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
505                                DAG.getConstant(16, dl, MVT::i32));
506     SDValue StoreLow = DAG.getTruncStore(
507         Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16,
508         /* Alignment = */ 2, ST->getMemOperand()->getFlags());
509     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
510                                    DAG.getConstant(2, dl, MVT::i32));
511     SDValue StoreHigh = DAG.getTruncStore(
512         Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
513         MVT::i16, /* Alignment = */ 2, ST->getMemOperand()->getFlags());
514     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
515   }
516 
517   // Lower to a call to __misaligned_store(BasePtr, Value).
518   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
519   TargetLowering::ArgListTy Args;
520   TargetLowering::ArgListEntry Entry;
521 
522   Entry.Ty = IntPtrTy;
523   Entry.Node = BasePtr;
524   Args.push_back(Entry);
525 
526   Entry.Node = Value;
527   Args.push_back(Entry);
528 
529   TargetLowering::CallLoweringInfo CLI(DAG);
530   CLI.setDebugLoc(dl).setChain(Chain).setCallee(
531       CallingConv::C, Type::getVoidTy(Context),
532       DAG.getExternalSymbol("__misaligned_store",
533                             getPointerTy(DAG.getDataLayout())),
534       std::move(Args));
535 
536   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
537   return CallResult.second;
538 }
539 
540 SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const541 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
542 {
543   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
544          "Unexpected operand to lower!");
545   SDLoc dl(Op);
546   SDValue LHS = Op.getOperand(0);
547   SDValue RHS = Op.getOperand(1);
548   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
549   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
550                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
551                            LHS, RHS);
552   SDValue Lo(Hi.getNode(), 1);
553   SDValue Ops[] = { Lo, Hi };
554   return DAG.getMergeValues(Ops, dl);
555 }
556 
557 SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const558 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
559 {
560   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
561          "Unexpected operand to lower!");
562   SDLoc dl(Op);
563   SDValue LHS = Op.getOperand(0);
564   SDValue RHS = Op.getOperand(1);
565   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
566   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
567                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
568                            Zero, Zero);
569   SDValue Lo(Hi.getNode(), 1);
570   SDValue Ops[] = { Lo, Hi };
571   return DAG.getMergeValues(Ops, dl);
572 }
573 
574 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
575 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
576 /// each intermediate result in the calculation must also have a single use.
577 /// If the Op is in the correct form the constituent parts are written to Mul0,
578 /// Mul1, Addend0 and Addend1.
579 static bool
isADDADDMUL(SDValue Op,SDValue & Mul0,SDValue & Mul1,SDValue & Addend0,SDValue & Addend1,bool requireIntermediatesHaveOneUse)580 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
581             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
582 {
583   if (Op.getOpcode() != ISD::ADD)
584     return false;
585   SDValue N0 = Op.getOperand(0);
586   SDValue N1 = Op.getOperand(1);
587   SDValue AddOp;
588   SDValue OtherOp;
589   if (N0.getOpcode() == ISD::ADD) {
590     AddOp = N0;
591     OtherOp = N1;
592   } else if (N1.getOpcode() == ISD::ADD) {
593     AddOp = N1;
594     OtherOp = N0;
595   } else {
596     return false;
597   }
598   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
599     return false;
600   if (OtherOp.getOpcode() == ISD::MUL) {
601     // add(add(a,b),mul(x,y))
602     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
603       return false;
604     Mul0 = OtherOp.getOperand(0);
605     Mul1 = OtherOp.getOperand(1);
606     Addend0 = AddOp.getOperand(0);
607     Addend1 = AddOp.getOperand(1);
608     return true;
609   }
610   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
611     // add(add(mul(x,y),a),b)
612     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
613       return false;
614     Mul0 = AddOp.getOperand(0).getOperand(0);
615     Mul1 = AddOp.getOperand(0).getOperand(1);
616     Addend0 = AddOp.getOperand(1);
617     Addend1 = OtherOp;
618     return true;
619   }
620   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
621     // add(add(a,mul(x,y)),b)
622     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
623       return false;
624     Mul0 = AddOp.getOperand(1).getOperand(0);
625     Mul1 = AddOp.getOperand(1).getOperand(1);
626     Addend0 = AddOp.getOperand(0);
627     Addend1 = OtherOp;
628     return true;
629   }
630   return false;
631 }
632 
633 SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode * N,SelectionDAG & DAG) const634 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
635 {
636   SDValue Mul;
637   SDValue Other;
638   if (N->getOperand(0).getOpcode() == ISD::MUL) {
639     Mul = N->getOperand(0);
640     Other = N->getOperand(1);
641   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
642     Mul = N->getOperand(1);
643     Other = N->getOperand(0);
644   } else {
645     return SDValue();
646   }
647   SDLoc dl(N);
648   SDValue LL, RL, AddendL, AddendH;
649   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
650                    Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
651   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
652                    Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
653   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
654                         Other, DAG.getConstant(0, dl, MVT::i32));
655   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
656                         Other, DAG.getConstant(1, dl, MVT::i32));
657   APInt HighMask = APInt::getHighBitsSet(64, 32);
658   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
659   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
660   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
661       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
662     // The inputs are both zero-extended.
663     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
664                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
665                              AddendL, LL, RL);
666     SDValue Lo(Hi.getNode(), 1);
667     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
668   }
669   if (LHSSB > 32 && RHSSB > 32) {
670     // The inputs are both sign-extended.
671     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
672                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
673                              AddendL, LL, RL);
674     SDValue Lo(Hi.getNode(), 1);
675     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
676   }
677   SDValue LH, RH;
678   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
679                    Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
680   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
681                    Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
682   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
683                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
684                            AddendL, LL, RL);
685   SDValue Lo(Hi.getNode(), 1);
686   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
687   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
688   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
689   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
690   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
691 }
692 
693 SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode * N,SelectionDAG & DAG) const694 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
695 {
696   assert(N->getValueType(0) == MVT::i64 &&
697          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
698         "Unknown operand to lower!");
699 
700   if (N->getOpcode() == ISD::ADD)
701     if (SDValue Result = TryExpandADDWithMul(N, DAG))
702       return Result;
703 
704   SDLoc dl(N);
705 
706   // Extract components
707   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
708                              N->getOperand(0),
709                              DAG.getConstant(0, dl, MVT::i32));
710   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
711                              N->getOperand(0),
712                              DAG.getConstant(1, dl, MVT::i32));
713   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
714                              N->getOperand(1),
715                              DAG.getConstant(0, dl, MVT::i32));
716   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
717                              N->getOperand(1),
718                              DAG.getConstant(1, dl, MVT::i32));
719 
720   // Expand
721   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
722                                                    XCoreISD::LSUB;
723   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
724   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
725                            LHSL, RHSL, Zero);
726   SDValue Carry(Lo.getNode(), 1);
727 
728   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
729                            LHSH, RHSH, Carry);
730   SDValue Ignored(Hi.getNode(), 1);
731   // Merge the pieces
732   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
733 }
734 
735 SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op,SelectionDAG & DAG) const736 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
737 {
738   // Whist llvm does not support aggregate varargs we can ignore
739   // the possibility of the ValueType being an implicit byVal vararg.
740   SDNode *Node = Op.getNode();
741   EVT VT = Node->getValueType(0); // not an aggregate
742   SDValue InChain = Node->getOperand(0);
743   SDValue VAListPtr = Node->getOperand(1);
744   EVT PtrVT = VAListPtr.getValueType();
745   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
746   SDLoc dl(Node);
747   SDValue VAList =
748       DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
749   // Increment the pointer, VAList, to the next vararg
750   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
751                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
752                                                       dl));
753   // Store the incremented VAList to the legalized pointer
754   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
755                          MachinePointerInfo(SV));
756   // Load the actual argument out of the pointer VAList
757   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
758 }
759 
760 SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op,SelectionDAG & DAG) const761 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
762 {
763   SDLoc dl(Op);
764   // vastart stores the address of the VarArgsFrameIndex slot into the
765   // memory location argument
766   MachineFunction &MF = DAG.getMachineFunction();
767   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
768   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
769   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
770                       MachinePointerInfo());
771 }
772 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const773 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
774                                             SelectionDAG &DAG) const {
775   // This nodes represent llvm.frameaddress on the DAG.
776   // It takes one operand, the index of the frame address to return.
777   // An index of zero corresponds to the current function's frame address.
778   // An index of one to the parent's frame address, and so on.
779   // Depths > 0 not supported yet!
780   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
781     return SDValue();
782 
783   MachineFunction &MF = DAG.getMachineFunction();
784   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
785   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
786                             RegInfo->getFrameRegister(MF), MVT::i32);
787 }
788 
789 SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const790 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
791   // This nodes represent llvm.returnaddress on the DAG.
792   // It takes one operand, the index of the return address to return.
793   // An index of zero corresponds to the current function's return address.
794   // An index of one to the parent's return address, and so on.
795   // Depths > 0 not supported yet!
796   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
797     return SDValue();
798 
799   MachineFunction &MF = DAG.getMachineFunction();
800   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
801   int FI = XFI->createLRSpillSlot(MF);
802   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
803   return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
804                      DAG.getEntryNode(), FIN,
805                      MachinePointerInfo::getFixedStack(MF, FI));
806 }
807 
808 SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const809 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
810   // This node represents offset from frame pointer to first on-stack argument.
811   // This is needed for correct stack adjustment during unwind.
812   // However, we don't know the offset until after the frame has be finalised.
813   // This is done during the XCoreFTAOElim pass.
814   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
815 }
816 
817 SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const818 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
819   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
820   // This node represents 'eh_return' gcc dwarf builtin, which is used to
821   // return from exception. The general meaning is: adjust stack by OFFSET and
822   // pass execution to HANDLER.
823   MachineFunction &MF = DAG.getMachineFunction();
824   SDValue Chain     = Op.getOperand(0);
825   SDValue Offset    = Op.getOperand(1);
826   SDValue Handler   = Op.getOperand(2);
827   SDLoc dl(Op);
828 
829   // Absolute SP = (FP + FrameToArgs) + Offset
830   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
831   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
832                             RegInfo->getFrameRegister(MF), MVT::i32);
833   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
834                                     MVT::i32);
835   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
836   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
837 
838   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
839   // which leaves 2 caller saved registers, R2 & R3 for us to use.
840   unsigned StackReg = XCore::R2;
841   unsigned HandlerReg = XCore::R3;
842 
843   SDValue OutChains[] = {
844     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
845     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
846   };
847 
848   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
849 
850   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
851                      DAG.getRegister(StackReg, MVT::i32),
852                      DAG.getRegister(HandlerReg, MVT::i32));
853 
854 }
855 
856 SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const857 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
858   return Op.getOperand(0);
859 }
860 
861 SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const862 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
863   SDValue Chain = Op.getOperand(0);
864   SDValue Trmp = Op.getOperand(1); // trampoline
865   SDValue FPtr = Op.getOperand(2); // nested function
866   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
867 
868   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
869 
870   // .align 4
871   // LDAPF_u10 r11, nest
872   // LDW_2rus r11, r11[0]
873   // STWSP_ru6 r11, sp[0]
874   // LDAPF_u10 r11, fptr
875   // LDW_2rus r11, r11[0]
876   // BAU_1r r11
877   // nest:
878   // .word nest
879   // fptr:
880   // .word fptr
881   SDValue OutChains[5];
882 
883   SDValue Addr = Trmp;
884 
885   SDLoc dl(Op);
886   OutChains[0] =
887       DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
888                    MachinePointerInfo(TrmpAddr));
889 
890   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
891                      DAG.getConstant(4, dl, MVT::i32));
892   OutChains[1] =
893       DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
894                    MachinePointerInfo(TrmpAddr, 4));
895 
896   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
897                      DAG.getConstant(8, dl, MVT::i32));
898   OutChains[2] =
899       DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
900                    MachinePointerInfo(TrmpAddr, 8));
901 
902   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
903                      DAG.getConstant(12, dl, MVT::i32));
904   OutChains[3] =
905       DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
906 
907   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
908                      DAG.getConstant(16, dl, MVT::i32));
909   OutChains[4] =
910       DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
911 
912   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
913 }
914 
915 SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const916 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
917   SDLoc DL(Op);
918   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
919   switch (IntNo) {
920     case Intrinsic::xcore_crc8:
921       EVT VT = Op.getValueType();
922       SDValue Data =
923         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
924                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
925       SDValue Crc(Data.getNode(), 1);
926       SDValue Results[] = { Crc, Data };
927       return DAG.getMergeValues(Results, DL);
928   }
929   return SDValue();
930 }
931 
932 SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const933 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
934   SDLoc DL(Op);
935   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
936 }
937 
938 SDValue XCoreTargetLowering::
LowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const939 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
940   AtomicSDNode *N = cast<AtomicSDNode>(Op);
941   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
942   assert((N->getOrdering() == AtomicOrdering::Unordered ||
943           N->getOrdering() == AtomicOrdering::Monotonic) &&
944          "setInsertFencesForAtomic(true) expects unordered / monotonic");
945   if (N->getMemoryVT() == MVT::i32) {
946     if (N->getAlignment() < 4)
947       report_fatal_error("atomic load must be aligned");
948     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
949                        N->getChain(), N->getBasePtr(), N->getPointerInfo(),
950                        N->getAlignment(), N->getMemOperand()->getFlags(),
951                        N->getAAInfo(), N->getRanges());
952   }
953   if (N->getMemoryVT() == MVT::i16) {
954     if (N->getAlignment() < 2)
955       report_fatal_error("atomic load must be aligned");
956     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
957                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
958                           N->getAlignment(), N->getMemOperand()->getFlags(),
959                           N->getAAInfo());
960   }
961   if (N->getMemoryVT() == MVT::i8)
962     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
963                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
964                           N->getAlignment(), N->getMemOperand()->getFlags(),
965                           N->getAAInfo());
966   return SDValue();
967 }
968 
969 SDValue XCoreTargetLowering::
LowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const970 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
971   AtomicSDNode *N = cast<AtomicSDNode>(Op);
972   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
973   assert((N->getOrdering() == AtomicOrdering::Unordered ||
974           N->getOrdering() == AtomicOrdering::Monotonic) &&
975          "setInsertFencesForAtomic(true) expects unordered / monotonic");
976   if (N->getMemoryVT() == MVT::i32) {
977     if (N->getAlignment() < 4)
978       report_fatal_error("atomic store must be aligned");
979     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
980                         N->getPointerInfo(), N->getAlignment(),
981                         N->getMemOperand()->getFlags(), N->getAAInfo());
982   }
983   if (N->getMemoryVT() == MVT::i16) {
984     if (N->getAlignment() < 2)
985       report_fatal_error("atomic store must be aligned");
986     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
987                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
988                              N->getAlignment(), N->getMemOperand()->getFlags(),
989                              N->getAAInfo());
990   }
991   if (N->getMemoryVT() == MVT::i8)
992     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
993                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
994                              N->getAlignment(), N->getMemOperand()->getFlags(),
995                              N->getAAInfo());
996   return SDValue();
997 }
998 
999 MachineMemOperand::Flags
getTargetMMOFlags(const Instruction & I) const1000 XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
1001   // Because of how we convert atomic_load and atomic_store to normal loads and
1002   // stores in the DAG, we need to ensure that the MMOs are marked volatile
1003   // since DAGCombine hasn't been updated to account for atomic, but non
1004   // volatile loads.  (See D57601)
1005   if (auto *SI = dyn_cast<StoreInst>(&I))
1006     if (SI->isAtomic())
1007       return MachineMemOperand::MOVolatile;
1008   if (auto *LI = dyn_cast<LoadInst>(&I))
1009     if (LI->isAtomic())
1010       return MachineMemOperand::MOVolatile;
1011   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
1012     if (AI->isAtomic())
1013       return MachineMemOperand::MOVolatile;
1014   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
1015     if (AI->isAtomic())
1016       return MachineMemOperand::MOVolatile;
1017   return MachineMemOperand::MONone;
1018 }
1019 
1020 //===----------------------------------------------------------------------===//
1021 //                      Calling Convention Implementation
1022 //===----------------------------------------------------------------------===//
1023 
1024 #include "XCoreGenCallingConv.inc"
1025 
1026 //===----------------------------------------------------------------------===//
1027 //                  Call Calling Convention Implementation
1028 //===----------------------------------------------------------------------===//
1029 
1030 /// XCore call implementation
1031 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1032 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1033                                SmallVectorImpl<SDValue> &InVals) const {
1034   SelectionDAG &DAG                     = CLI.DAG;
1035   SDLoc &dl                             = CLI.DL;
1036   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1037   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1038   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1039   SDValue Chain                         = CLI.Chain;
1040   SDValue Callee                        = CLI.Callee;
1041   bool &isTailCall                      = CLI.IsTailCall;
1042   CallingConv::ID CallConv              = CLI.CallConv;
1043   bool isVarArg                         = CLI.IsVarArg;
1044 
1045   // XCore target does not yet support tail call optimization.
1046   isTailCall = false;
1047 
1048   // For now, only CallingConv::C implemented
1049   switch (CallConv)
1050   {
1051     default:
1052       report_fatal_error("Unsupported calling convention");
1053     case CallingConv::Fast:
1054     case CallingConv::C:
1055       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1056                             Outs, OutVals, Ins, dl, DAG, InVals);
1057   }
1058 }
1059 
1060 /// LowerCallResult - Lower the result values of a call into the
1061 /// appropriate copies out of appropriate physical registers / memory locations.
LowerCallResult(SDValue Chain,SDValue InFlag,const SmallVectorImpl<CCValAssign> & RVLocs,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals)1062 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1063                                const SmallVectorImpl<CCValAssign> &RVLocs,
1064                                const SDLoc &dl, SelectionDAG &DAG,
1065                                SmallVectorImpl<SDValue> &InVals) {
1066   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1067   // Copy results out of physical registers.
1068   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1069     const CCValAssign &VA = RVLocs[i];
1070     if (VA.isRegLoc()) {
1071       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1072                                  InFlag).getValue(1);
1073       InFlag = Chain.getValue(2);
1074       InVals.push_back(Chain.getValue(0));
1075     } else {
1076       assert(VA.isMemLoc());
1077       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1078                                              InVals.size()));
1079       // Reserve space for this result.
1080       InVals.push_back(SDValue());
1081     }
1082   }
1083 
1084   // Copy results out of memory.
1085   SmallVector<SDValue, 4> MemOpChains;
1086   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1087     int offset = ResultMemLocs[i].first;
1088     unsigned index = ResultMemLocs[i].second;
1089     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1090     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1091     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1092     InVals[index] = load;
1093     MemOpChains.push_back(load.getValue(1));
1094   }
1095 
1096   // Transform all loads nodes into one single node because
1097   // all load nodes are independent of each other.
1098   if (!MemOpChains.empty())
1099     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1100 
1101   return Chain;
1102 }
1103 
1104 /// LowerCCCCallTo - functions arguments are copied from virtual
1105 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1106 /// CALLSEQ_END are emitted.
1107 /// TODO: isTailCall, sret.
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1108 SDValue XCoreTargetLowering::LowerCCCCallTo(
1109     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1110     bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1111     const SmallVectorImpl<SDValue> &OutVals,
1112     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1113     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1114 
1115   // Analyze operands of the call, assigning locations to each operand.
1116   SmallVector<CCValAssign, 16> ArgLocs;
1117   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1118                  *DAG.getContext());
1119 
1120   // The ABI dictates there should be one stack slot available to the callee
1121   // on function entry (for saving lr).
1122   CCInfo.AllocateStack(4, Align(4));
1123 
1124   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1125 
1126   SmallVector<CCValAssign, 16> RVLocs;
1127   // Analyze return values to determine the number of bytes of stack required.
1128   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1129                     *DAG.getContext());
1130   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4));
1131   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1132 
1133   // Get a count of how many bytes are to be pushed on the stack.
1134   unsigned NumBytes = RetCCInfo.getNextStackOffset();
1135   auto PtrVT = getPointerTy(DAG.getDataLayout());
1136 
1137   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1138 
1139   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1140   SmallVector<SDValue, 12> MemOpChains;
1141 
1142   // Walk the register/memloc assignments, inserting copies/loads.
1143   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1144     CCValAssign &VA = ArgLocs[i];
1145     SDValue Arg = OutVals[i];
1146 
1147     // Promote the value if needed.
1148     switch (VA.getLocInfo()) {
1149       default: llvm_unreachable("Unknown loc info!");
1150       case CCValAssign::Full: break;
1151       case CCValAssign::SExt:
1152         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1153         break;
1154       case CCValAssign::ZExt:
1155         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1156         break;
1157       case CCValAssign::AExt:
1158         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1159         break;
1160     }
1161 
1162     // Arguments that can be passed on register must be kept at
1163     // RegsToPass vector
1164     if (VA.isRegLoc()) {
1165       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1166     } else {
1167       assert(VA.isMemLoc());
1168 
1169       int Offset = VA.getLocMemOffset();
1170 
1171       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1172                                         Chain, Arg,
1173                                         DAG.getConstant(Offset/4, dl,
1174                                                         MVT::i32)));
1175     }
1176   }
1177 
1178   // Transform all store nodes into one single node because
1179   // all store nodes are independent of each other.
1180   if (!MemOpChains.empty())
1181     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1182 
1183   // Build a sequence of copy-to-reg nodes chained together with token
1184   // chain and flag operands which copy the outgoing args into registers.
1185   // The InFlag in necessary since all emitted instructions must be
1186   // stuck together.
1187   SDValue InFlag;
1188   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1189     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1190                              RegsToPass[i].second, InFlag);
1191     InFlag = Chain.getValue(1);
1192   }
1193 
1194   // If the callee is a GlobalAddress node (quite common, every direct call is)
1195   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1196   // Likewise ExternalSymbol -> TargetExternalSymbol.
1197   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1198     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1199   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1200     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1201 
1202   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1203   //             = Chain, Callee, Reg#1, Reg#2, ...
1204   //
1205   // Returns a chain & a flag for retval copy to use.
1206   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1207   SmallVector<SDValue, 8> Ops;
1208   Ops.push_back(Chain);
1209   Ops.push_back(Callee);
1210 
1211   // Add argument registers to the end of the list so that they are
1212   // known live into the call.
1213   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1214     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1215                                   RegsToPass[i].second.getValueType()));
1216 
1217   if (InFlag.getNode())
1218     Ops.push_back(InFlag);
1219 
1220   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1221   InFlag = Chain.getValue(1);
1222 
1223   // Create the CALLSEQ_END node.
1224   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1225                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1226   InFlag = Chain.getValue(1);
1227 
1228   // Handle result values, copying them out of physregs into vregs that we
1229   // return.
1230   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1231 }
1232 
1233 //===----------------------------------------------------------------------===//
1234 //             Formal Arguments Calling Convention Implementation
1235 //===----------------------------------------------------------------------===//
1236 
1237 namespace {
1238   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1239 }
1240 
1241 /// XCore formal arguments implementation
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1242 SDValue XCoreTargetLowering::LowerFormalArguments(
1243     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1244     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1245     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1246   switch (CallConv)
1247   {
1248     default:
1249       report_fatal_error("Unsupported calling convention");
1250     case CallingConv::C:
1251     case CallingConv::Fast:
1252       return LowerCCCArguments(Chain, CallConv, isVarArg,
1253                                Ins, dl, DAG, InVals);
1254   }
1255 }
1256 
1257 /// LowerCCCArguments - transform physical registers into
1258 /// virtual registers and generate load operations for
1259 /// arguments places on the stack.
1260 /// TODO: sret
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1261 SDValue XCoreTargetLowering::LowerCCCArguments(
1262     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1263     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1264     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1265   MachineFunction &MF = DAG.getMachineFunction();
1266   MachineFrameInfo &MFI = MF.getFrameInfo();
1267   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1268   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1269 
1270   // Assign locations to all of the incoming arguments.
1271   SmallVector<CCValAssign, 16> ArgLocs;
1272   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1273                  *DAG.getContext());
1274 
1275   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1276 
1277   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1278 
1279   unsigned LRSaveSize = StackSlotSize;
1280 
1281   if (!isVarArg)
1282     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1283 
1284   // All getCopyFromReg ops must precede any getMemcpys to prevent the
1285   // scheduler clobbering a register before it has been copied.
1286   // The stages are:
1287   // 1. CopyFromReg (and load) arg & vararg registers.
1288   // 2. Chain CopyFromReg nodes into a TokenFactor.
1289   // 3. Memcpy 'byVal' args & push final InVals.
1290   // 4. Chain mem ops nodes into a TokenFactor.
1291   SmallVector<SDValue, 4> CFRegNode;
1292   SmallVector<ArgDataPair, 4> ArgData;
1293   SmallVector<SDValue, 4> MemOps;
1294 
1295   // 1a. CopyFromReg (and load) arg registers.
1296   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1297 
1298     CCValAssign &VA = ArgLocs[i];
1299     SDValue ArgIn;
1300 
1301     if (VA.isRegLoc()) {
1302       // Arguments passed in registers
1303       EVT RegVT = VA.getLocVT();
1304       switch (RegVT.getSimpleVT().SimpleTy) {
1305       default:
1306         {
1307 #ifndef NDEBUG
1308           errs() << "LowerFormalArguments Unhandled argument type: "
1309                  << RegVT.getEVTString() << "\n";
1310 #endif
1311           llvm_unreachable(nullptr);
1312         }
1313       case MVT::i32:
1314         Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1315         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1316         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1317         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1318       }
1319     } else {
1320       // sanity check
1321       assert(VA.isMemLoc());
1322       // Load the argument to a virtual register
1323       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1324       if (ObjSize > StackSlotSize) {
1325         errs() << "LowerFormalArguments Unhandled argument type: "
1326                << EVT(VA.getLocVT()).getEVTString()
1327                << "\n";
1328       }
1329       // Create the frame index object for this incoming parameter...
1330       int FI = MFI.CreateFixedObject(ObjSize,
1331                                      LRSaveSize + VA.getLocMemOffset(),
1332                                      true);
1333 
1334       // Create the SelectionDAG nodes corresponding to a load
1335       //from this parameter
1336       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1337       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1338                           MachinePointerInfo::getFixedStack(MF, FI));
1339     }
1340     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1341     ArgData.push_back(ADP);
1342   }
1343 
1344   // 1b. CopyFromReg vararg registers.
1345   if (isVarArg) {
1346     // Argument registers
1347     static const MCPhysReg ArgRegs[] = {
1348       XCore::R0, XCore::R1, XCore::R2, XCore::R3
1349     };
1350     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1351     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1352     if (FirstVAReg < array_lengthof(ArgRegs)) {
1353       int offset = 0;
1354       // Save remaining registers, storing higher register numbers at a higher
1355       // address
1356       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1357         // Create a stack slot
1358         int FI = MFI.CreateFixedObject(4, offset, true);
1359         if (i == (int)FirstVAReg) {
1360           XFI->setVarArgsFrameIndex(FI);
1361         }
1362         offset -= StackSlotSize;
1363         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1364         // Move argument from phys reg -> virt reg
1365         Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1366         RegInfo.addLiveIn(ArgRegs[i], VReg);
1367         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1368         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1369         // Move argument from virt reg -> stack
1370         SDValue Store =
1371             DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1372         MemOps.push_back(Store);
1373       }
1374     } else {
1375       // This will point to the next argument passed via stack.
1376       XFI->setVarArgsFrameIndex(
1377         MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1378                               true));
1379     }
1380   }
1381 
1382   // 2. chain CopyFromReg nodes into a TokenFactor.
1383   if (!CFRegNode.empty())
1384     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1385 
1386   // 3. Memcpy 'byVal' args & push final InVals.
1387   // Aggregates passed "byVal" need to be copied by the callee.
1388   // The callee will use a pointer to this copy, rather than the original
1389   // pointer.
1390   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1391                                                     ArgDE = ArgData.end();
1392        ArgDI != ArgDE; ++ArgDI) {
1393     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1394       unsigned Size = ArgDI->Flags.getByValSize();
1395       Align Alignment =
1396           std::max(Align(StackSlotSize), ArgDI->Flags.getNonZeroByValAlign());
1397       // Create a new object on the stack and copy the pointee into it.
1398       int FI = MFI.CreateStackObject(Size, Alignment, false);
1399       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1400       InVals.push_back(FIN);
1401       MemOps.push_back(DAG.getMemcpy(
1402           Chain, dl, FIN, ArgDI->SDV, DAG.getConstant(Size, dl, MVT::i32),
1403           Alignment, false, false, false, MachinePointerInfo(),
1404           MachinePointerInfo()));
1405     } else {
1406       InVals.push_back(ArgDI->SDV);
1407     }
1408   }
1409 
1410   // 4, chain mem ops nodes into a TokenFactor.
1411   if (!MemOps.empty()) {
1412     MemOps.push_back(Chain);
1413     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1414   }
1415 
1416   return Chain;
1417 }
1418 
1419 //===----------------------------------------------------------------------===//
1420 //               Return Value Calling Convention Implementation
1421 //===----------------------------------------------------------------------===//
1422 
1423 bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1424 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1425                bool isVarArg,
1426                const SmallVectorImpl<ISD::OutputArg> &Outs,
1427                LLVMContext &Context) const {
1428   SmallVector<CCValAssign, 16> RVLocs;
1429   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1430   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1431     return false;
1432   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1433     return false;
1434   return true;
1435 }
1436 
1437 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const1438 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1439                                  bool isVarArg,
1440                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1441                                  const SmallVectorImpl<SDValue> &OutVals,
1442                                  const SDLoc &dl, SelectionDAG &DAG) const {
1443 
1444   XCoreFunctionInfo *XFI =
1445     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1446   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1447 
1448   // CCValAssign - represent the assignment of
1449   // the return value to a location
1450   SmallVector<CCValAssign, 16> RVLocs;
1451 
1452   // CCState - Info about the registers and stack slot.
1453   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1454                  *DAG.getContext());
1455 
1456   // Analyze return values.
1457   if (!isVarArg)
1458     CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
1459 
1460   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1461 
1462   SDValue Flag;
1463   SmallVector<SDValue, 4> RetOps(1, Chain);
1464 
1465   // Return on XCore is always a "retsp 0"
1466   RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1467 
1468   SmallVector<SDValue, 4> MemOpChains;
1469   // Handle return values that must be copied to memory.
1470   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1471     CCValAssign &VA = RVLocs[i];
1472     if (VA.isRegLoc())
1473       continue;
1474     assert(VA.isMemLoc());
1475     if (isVarArg) {
1476       report_fatal_error("Can't return value from vararg function in memory");
1477     }
1478 
1479     int Offset = VA.getLocMemOffset();
1480     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1481     // Create the frame index object for the memory location.
1482     int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1483 
1484     // Create a SelectionDAG node corresponding to a store
1485     // to this memory location.
1486     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1487     MemOpChains.push_back(DAG.getStore(
1488         Chain, dl, OutVals[i], FIN,
1489         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1490   }
1491 
1492   // Transform all store nodes into one single node because
1493   // all stores are independent of each other.
1494   if (!MemOpChains.empty())
1495     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1496 
1497   // Now handle return values copied to registers.
1498   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1499     CCValAssign &VA = RVLocs[i];
1500     if (!VA.isRegLoc())
1501       continue;
1502     // Copy the result values into the output registers.
1503     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1504 
1505     // guarantee that all emitted copies are
1506     // stuck together, avoiding something bad
1507     Flag = Chain.getValue(1);
1508     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1509   }
1510 
1511   RetOps[0] = Chain;  // Update chain.
1512 
1513   // Add the flag if we have it.
1514   if (Flag.getNode())
1515     RetOps.push_back(Flag);
1516 
1517   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1518 }
1519 
1520 //===----------------------------------------------------------------------===//
1521 //  Other Lowering Code
1522 //===----------------------------------------------------------------------===//
1523 
1524 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1525 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1526                                                  MachineBasicBlock *BB) const {
1527   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1528   DebugLoc dl = MI.getDebugLoc();
1529   assert((MI.getOpcode() == XCore::SELECT_CC) &&
1530          "Unexpected instr type to insert");
1531 
1532   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1533   // control-flow pattern.  The incoming instruction knows the destination vreg
1534   // to set, the condition code register to branch on, the true/false values to
1535   // select between, and a branch opcode to use.
1536   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1537   MachineFunction::iterator It = ++BB->getIterator();
1538 
1539   //  thisMBB:
1540   //  ...
1541   //   TrueVal = ...
1542   //   cmpTY ccX, r1, r2
1543   //   bCC copy1MBB
1544   //   fallthrough --> copy0MBB
1545   MachineBasicBlock *thisMBB = BB;
1546   MachineFunction *F = BB->getParent();
1547   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1548   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1549   F->insert(It, copy0MBB);
1550   F->insert(It, sinkMBB);
1551 
1552   // Transfer the remainder of BB and its successor edges to sinkMBB.
1553   sinkMBB->splice(sinkMBB->begin(), BB,
1554                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1555   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1556 
1557   // Next, add the true and fallthrough blocks as its successors.
1558   BB->addSuccessor(copy0MBB);
1559   BB->addSuccessor(sinkMBB);
1560 
1561   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1562       .addReg(MI.getOperand(1).getReg())
1563       .addMBB(sinkMBB);
1564 
1565   //  copy0MBB:
1566   //   %FalseValue = ...
1567   //   # fallthrough to sinkMBB
1568   BB = copy0MBB;
1569 
1570   // Update machine-CFG edges
1571   BB->addSuccessor(sinkMBB);
1572 
1573   //  sinkMBB:
1574   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1575   //  ...
1576   BB = sinkMBB;
1577   BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1578       .addReg(MI.getOperand(3).getReg())
1579       .addMBB(copy0MBB)
1580       .addReg(MI.getOperand(2).getReg())
1581       .addMBB(thisMBB);
1582 
1583   MI.eraseFromParent(); // The pseudo instruction is gone now.
1584   return BB;
1585 }
1586 
1587 //===----------------------------------------------------------------------===//
1588 // Target Optimization Hooks
1589 //===----------------------------------------------------------------------===//
1590 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1591 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1592                                              DAGCombinerInfo &DCI) const {
1593   SelectionDAG &DAG = DCI.DAG;
1594   SDLoc dl(N);
1595   switch (N->getOpcode()) {
1596   default: break;
1597   case ISD::INTRINSIC_VOID:
1598     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1599     case Intrinsic::xcore_outt:
1600     case Intrinsic::xcore_outct:
1601     case Intrinsic::xcore_chkct: {
1602       SDValue OutVal = N->getOperand(3);
1603       // These instructions ignore the high bits.
1604       if (OutVal.hasOneUse()) {
1605         unsigned BitWidth = OutVal.getValueSizeInBits();
1606         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1607         KnownBits Known;
1608         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1609                                               !DCI.isBeforeLegalizeOps());
1610         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1611         if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1612             TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1613           DCI.CommitTargetLoweringOpt(TLO);
1614       }
1615       break;
1616     }
1617     case Intrinsic::xcore_setpt: {
1618       SDValue Time = N->getOperand(3);
1619       // This instruction ignores the high bits.
1620       if (Time.hasOneUse()) {
1621         unsigned BitWidth = Time.getValueSizeInBits();
1622         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1623         KnownBits Known;
1624         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1625                                               !DCI.isBeforeLegalizeOps());
1626         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1627         if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1628             TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1629           DCI.CommitTargetLoweringOpt(TLO);
1630       }
1631       break;
1632     }
1633     }
1634     break;
1635   case XCoreISD::LADD: {
1636     SDValue N0 = N->getOperand(0);
1637     SDValue N1 = N->getOperand(1);
1638     SDValue N2 = N->getOperand(2);
1639     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1640     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1641     EVT VT = N0.getValueType();
1642 
1643     // canonicalize constant to RHS
1644     if (N0C && !N1C)
1645       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1646 
1647     // fold (ladd 0, 0, x) -> 0, x & 1
1648     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1649       SDValue Carry = DAG.getConstant(0, dl, VT);
1650       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1651                                    DAG.getConstant(1, dl, VT));
1652       SDValue Ops[] = { Result, Carry };
1653       return DAG.getMergeValues(Ops, dl);
1654     }
1655 
1656     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1657     // low bit set
1658     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1659       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1660                                          VT.getSizeInBits() - 1);
1661       KnownBits Known = DAG.computeKnownBits(N2);
1662       if ((Known.Zero & Mask) == Mask) {
1663         SDValue Carry = DAG.getConstant(0, dl, VT);
1664         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1665         SDValue Ops[] = { Result, Carry };
1666         return DAG.getMergeValues(Ops, dl);
1667       }
1668     }
1669   }
1670   break;
1671   case XCoreISD::LSUB: {
1672     SDValue N0 = N->getOperand(0);
1673     SDValue N1 = N->getOperand(1);
1674     SDValue N2 = N->getOperand(2);
1675     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1676     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1677     EVT VT = N0.getValueType();
1678 
1679     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1680     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1681       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1682                                          VT.getSizeInBits() - 1);
1683       KnownBits Known = DAG.computeKnownBits(N2);
1684       if ((Known.Zero & Mask) == Mask) {
1685         SDValue Borrow = N2;
1686         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1687                                      DAG.getConstant(0, dl, VT), N2);
1688         SDValue Ops[] = { Result, Borrow };
1689         return DAG.getMergeValues(Ops, dl);
1690       }
1691     }
1692 
1693     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1694     // low bit set
1695     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1696       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1697                                          VT.getSizeInBits() - 1);
1698       KnownBits Known = DAG.computeKnownBits(N2);
1699       if ((Known.Zero & Mask) == Mask) {
1700         SDValue Borrow = DAG.getConstant(0, dl, VT);
1701         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1702         SDValue Ops[] = { Result, Borrow };
1703         return DAG.getMergeValues(Ops, dl);
1704       }
1705     }
1706   }
1707   break;
1708   case XCoreISD::LMUL: {
1709     SDValue N0 = N->getOperand(0);
1710     SDValue N1 = N->getOperand(1);
1711     SDValue N2 = N->getOperand(2);
1712     SDValue N3 = N->getOperand(3);
1713     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1714     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1715     EVT VT = N0.getValueType();
1716     // Canonicalize multiplicative constant to RHS. If both multiplicative
1717     // operands are constant canonicalize smallest to RHS.
1718     if ((N0C && !N1C) ||
1719         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1720       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1721                          N1, N0, N2, N3);
1722 
1723     // lmul(x, 0, a, b)
1724     if (N1C && N1C->isNullValue()) {
1725       // If the high result is unused fold to add(a, b)
1726       if (N->hasNUsesOfValue(0, 0)) {
1727         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1728         SDValue Ops[] = { Lo, Lo };
1729         return DAG.getMergeValues(Ops, dl);
1730       }
1731       // Otherwise fold to ladd(a, b, 0)
1732       SDValue Result =
1733         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1734       SDValue Carry(Result.getNode(), 1);
1735       SDValue Ops[] = { Carry, Result };
1736       return DAG.getMergeValues(Ops, dl);
1737     }
1738   }
1739   break;
1740   case ISD::ADD: {
1741     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1742     // lmul(x, y, a, b). The high result of lmul will be ignored.
1743     // This is only profitable if the intermediate results are unused
1744     // elsewhere.
1745     SDValue Mul0, Mul1, Addend0, Addend1;
1746     if (N->getValueType(0) == MVT::i32 &&
1747         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1748       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1749                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1750                                     Mul1, Addend0, Addend1);
1751       SDValue Result(Ignored.getNode(), 1);
1752       return Result;
1753     }
1754     APInt HighMask = APInt::getHighBitsSet(64, 32);
1755     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1756     // lmul(x, y, a, b) if all operands are zero-extended. We do this
1757     // before type legalization as it is messy to match the operands after
1758     // that.
1759     if (N->getValueType(0) == MVT::i64 &&
1760         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1761         DAG.MaskedValueIsZero(Mul0, HighMask) &&
1762         DAG.MaskedValueIsZero(Mul1, HighMask) &&
1763         DAG.MaskedValueIsZero(Addend0, HighMask) &&
1764         DAG.MaskedValueIsZero(Addend1, HighMask)) {
1765       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1766                                   Mul0, DAG.getConstant(0, dl, MVT::i32));
1767       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1768                                   Mul1, DAG.getConstant(0, dl, MVT::i32));
1769       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1770                                      Addend0, DAG.getConstant(0, dl, MVT::i32));
1771       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1772                                      Addend1, DAG.getConstant(0, dl, MVT::i32));
1773       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1774                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1775                                Addend0L, Addend1L);
1776       SDValue Lo(Hi.getNode(), 1);
1777       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1778     }
1779   }
1780   break;
1781   case ISD::STORE: {
1782     // Replace unaligned store of unaligned load with memmove.
1783     StoreSDNode *ST = cast<StoreSDNode>(N);
1784     if (!DCI.isBeforeLegalize() ||
1785         allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1786                                        ST->getMemoryVT(),
1787                                        *ST->getMemOperand()) ||
1788         ST->isVolatile() || ST->isIndexed()) {
1789       break;
1790     }
1791     SDValue Chain = ST->getChain();
1792 
1793     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1794     assert((StoreBits % 8) == 0 &&
1795            "Store size in bits must be a multiple of 8");
1796     unsigned Alignment = ST->getAlignment();
1797 
1798     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1799       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1800         LD->getAlignment() == Alignment &&
1801         !LD->isVolatile() && !LD->isIndexed() &&
1802         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1803         bool isTail = isInTailCallPosition(DAG, ST, Chain);
1804         return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
1805                               DAG.getConstant(StoreBits / 8, dl, MVT::i32),
1806                               Align(Alignment), false, isTail,
1807                               ST->getPointerInfo(), LD->getPointerInfo());
1808       }
1809     }
1810     break;
1811   }
1812   }
1813   return SDValue();
1814 }
1815 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const1816 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1817                                                         KnownBits &Known,
1818                                                         const APInt &DemandedElts,
1819                                                         const SelectionDAG &DAG,
1820                                                         unsigned Depth) const {
1821   Known.resetAll();
1822   switch (Op.getOpcode()) {
1823   default: break;
1824   case XCoreISD::LADD:
1825   case XCoreISD::LSUB:
1826     if (Op.getResNo() == 1) {
1827       // Top bits of carry / borrow are clear.
1828       Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1829                                          Known.getBitWidth() - 1);
1830     }
1831     break;
1832   case ISD::INTRINSIC_W_CHAIN:
1833     {
1834       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1835       switch (IntNo) {
1836       case Intrinsic::xcore_getts:
1837         // High bits are known to be zero.
1838         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1839                                            Known.getBitWidth() - 16);
1840         break;
1841       case Intrinsic::xcore_int:
1842       case Intrinsic::xcore_inct:
1843         // High bits are known to be zero.
1844         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1845                                            Known.getBitWidth() - 8);
1846         break;
1847       case Intrinsic::xcore_testct:
1848         // Result is either 0 or 1.
1849         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1850                                            Known.getBitWidth() - 1);
1851         break;
1852       case Intrinsic::xcore_testwct:
1853         // Result is in the range 0 - 4.
1854         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1855                                            Known.getBitWidth() - 3);
1856         break;
1857       }
1858     }
1859     break;
1860   }
1861 }
1862 
1863 //===----------------------------------------------------------------------===//
1864 //  Addressing mode description hooks
1865 //===----------------------------------------------------------------------===//
1866 
isImmUs(int64_t val)1867 static inline bool isImmUs(int64_t val)
1868 {
1869   return (val >= 0 && val <= 11);
1870 }
1871 
isImmUs2(int64_t val)1872 static inline bool isImmUs2(int64_t val)
1873 {
1874   return (val%2 == 0 && isImmUs(val/2));
1875 }
1876 
isImmUs4(int64_t val)1877 static inline bool isImmUs4(int64_t val)
1878 {
1879   return (val%4 == 0 && isImmUs(val/4));
1880 }
1881 
1882 /// isLegalAddressingMode - Return true if the addressing mode represented
1883 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1884 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1885                                                 const AddrMode &AM, Type *Ty,
1886                                                 unsigned AS,
1887                                                 Instruction *I) const {
1888   if (Ty->getTypeID() == Type::VoidTyID)
1889     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1890 
1891   unsigned Size = DL.getTypeAllocSize(Ty);
1892   if (AM.BaseGV) {
1893     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1894                  AM.BaseOffs%4 == 0;
1895   }
1896 
1897   switch (Size) {
1898   case 1:
1899     // reg + imm
1900     if (AM.Scale == 0) {
1901       return isImmUs(AM.BaseOffs);
1902     }
1903     // reg + reg
1904     return AM.Scale == 1 && AM.BaseOffs == 0;
1905   case 2:
1906   case 3:
1907     // reg + imm
1908     if (AM.Scale == 0) {
1909       return isImmUs2(AM.BaseOffs);
1910     }
1911     // reg + reg<<1
1912     return AM.Scale == 2 && AM.BaseOffs == 0;
1913   default:
1914     // reg + imm
1915     if (AM.Scale == 0) {
1916       return isImmUs4(AM.BaseOffs);
1917     }
1918     // reg + reg<<2
1919     return AM.Scale == 4 && AM.BaseOffs == 0;
1920   }
1921 }
1922 
1923 //===----------------------------------------------------------------------===//
1924 //                           XCore Inline Assembly Support
1925 //===----------------------------------------------------------------------===//
1926 
1927 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1928 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1929                                                   StringRef Constraint,
1930                                                   MVT VT) const {
1931   if (Constraint.size() == 1) {
1932     switch (Constraint[0]) {
1933     default : break;
1934     case 'r':
1935       return std::make_pair(0U, &XCore::GRRegsRegClass);
1936     }
1937   }
1938   // Use the default implementation in TargetLowering to convert the register
1939   // constraint into a member of a register class.
1940   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1941 }
1942