1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
18 // terms of ICF*.
19 //
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
23 //
24 //   void foo() { bar(); }
25 //   void bar() { foo(); }
26 //
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
30 //
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
34 //
35 // 1. First, we partition sections using their hash values as keys. Hash
36 //    values contain section types, section contents and numbers of
37 //    relocations. During this step, relocation targets are not taken into
38 //    account. We just put sections that apparently differ into different
39 //    equivalence classes.
40 //
41 // 2. Next, for each equivalence class, we visit sections to compare
42 //    relocation targets. Relocation targets are considered equivalent if
43 //    their targets are in the same equivalence class. Sections with
44 //    different relocation targets are put into different equivalence
45 //    classes.
46 //
47 // 3. If we split an equivalence class in step 2, two relocations
48 //    previously target the same equivalence class may now target
49 //    different equivalence classes. Therefore, we repeat step 2 until a
50 //    convergence is obtained.
51 //
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 //    merge all the other sections in C with it.
54 //
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
57 //
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
60 //
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
68 //
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70 // in the Gold Linker
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72 //
73 //===----------------------------------------------------------------------===//
74 
75 #include "ICF.h"
76 #include "Config.h"
77 #include "LinkerScript.h"
78 #include "OutputSections.h"
79 #include "SymbolTable.h"
80 #include "Symbols.h"
81 #include "SyntheticSections.h"
82 #include "Writer.h"
83 #include "llvm/ADT/StringExtras.h"
84 #include "llvm/BinaryFormat/ELF.h"
85 #include "llvm/Object/ELF.h"
86 #include "llvm/Support/Parallel.h"
87 #include "llvm/Support/TimeProfiler.h"
88 #include "llvm/Support/xxhash.h"
89 #include <algorithm>
90 #include <atomic>
91 
92 using namespace llvm;
93 using namespace llvm::ELF;
94 using namespace llvm::object;
95 using namespace lld;
96 using namespace lld::elf;
97 
98 namespace {
99 template <class ELFT> class ICF {
100 public:
101   void run();
102 
103 private:
104   void segregate(size_t begin, size_t end, bool constant);
105 
106   template <class RelTy>
107   bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
108                   const InputSection *b, ArrayRef<RelTy> relsB);
109 
110   template <class RelTy>
111   bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
112                   const InputSection *b, ArrayRef<RelTy> relsB);
113 
114   bool equalsConstant(const InputSection *a, const InputSection *b);
115   bool equalsVariable(const InputSection *a, const InputSection *b);
116 
117   size_t findBoundary(size_t begin, size_t end);
118 
119   void forEachClassRange(size_t begin, size_t end,
120                          llvm::function_ref<void(size_t, size_t)> fn);
121 
122   void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
123 
124   std::vector<InputSection *> sections;
125 
126   // We repeat the main loop while `Repeat` is true.
127   std::atomic<bool> repeat;
128 
129   // The main loop counter.
130   int cnt = 0;
131 
132   // We have two locations for equivalence classes. On the first iteration
133   // of the main loop, Class[0] has a valid value, and Class[1] contains
134   // garbage. We read equivalence classes from slot 0 and write to slot 1.
135   // So, Class[0] represents the current class, and Class[1] represents
136   // the next class. On each iteration, we switch their roles and use them
137   // alternately.
138   //
139   // Why are we doing this? Recall that other threads may be working on
140   // other equivalence classes in parallel. They may read sections that we
141   // are updating. We cannot update equivalence classes in place because
142   // it breaks the invariance that all possibly-identical sections must be
143   // in the same equivalence class at any moment. In other words, the for
144   // loop to update equivalence classes is not atomic, and that is
145   // observable from other threads. By writing new classes to other
146   // places, we can keep the invariance.
147   //
148   // Below, `Current` has the index of the current class, and `Next` has
149   // the index of the next class. If threading is enabled, they are either
150   // (0, 1) or (1, 0).
151   //
152   // Note on single-thread: if that's the case, they are always (0, 0)
153   // because we can safely read the next class without worrying about race
154   // conditions. Using the same location makes this algorithm converge
155   // faster because it uses results of the same iteration earlier.
156   int current = 0;
157   int next = 0;
158 };
159 }
160 
161 // Returns true if section S is subject of ICF.
isEligible(InputSection * s)162 static bool isEligible(InputSection *s) {
163   if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
164     return false;
165 
166   // Don't merge writable sections. .data.rel.ro sections are marked as writable
167   // but are semantically read-only.
168   if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
169       !s->name.startswith(".data.rel.ro."))
170     return false;
171 
172   // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
173   // so we don't consider them for ICF individually.
174   if (s->flags & SHF_LINK_ORDER)
175     return false;
176 
177   // Don't merge synthetic sections as their Data member is not valid and empty.
178   // The Data member needs to be valid for ICF as it is used by ICF to determine
179   // the equality of section contents.
180   if (isa<SyntheticSection>(s))
181     return false;
182 
183   // .init and .fini contains instructions that must be executed to initialize
184   // and finalize the process. They cannot and should not be merged.
185   if (s->name == ".init" || s->name == ".fini")
186     return false;
187 
188   // A user program may enumerate sections named with a C identifier using
189   // __start_* and __stop_* symbols. We cannot ICF any such sections because
190   // that could change program semantics.
191   if (isValidCIdentifier(s->name))
192     return false;
193 
194   return true;
195 }
196 
197 // Split an equivalence class into smaller classes.
198 template <class ELFT>
segregate(size_t begin,size_t end,bool constant)199 void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) {
200   // This loop rearranges sections in [Begin, End) so that all sections
201   // that are equal in terms of equals{Constant,Variable} are contiguous
202   // in [Begin, End).
203   //
204   // The algorithm is quadratic in the worst case, but that is not an
205   // issue in practice because the number of the distinct sections in
206   // each range is usually very small.
207 
208   while (begin < end) {
209     // Divide [Begin, End) into two. Let Mid be the start index of the
210     // second group.
211     auto bound =
212         std::stable_partition(sections.begin() + begin + 1,
213                               sections.begin() + end, [&](InputSection *s) {
214                                 if (constant)
215                                   return equalsConstant(sections[begin], s);
216                                 return equalsVariable(sections[begin], s);
217                               });
218     size_t mid = bound - sections.begin();
219 
220     // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
221     // updating the sections in [Begin, Mid). We use Mid as an equivalence
222     // class ID because every group ends with a unique index.
223     for (size_t i = begin; i < mid; ++i)
224       sections[i]->eqClass[next] = mid;
225 
226     // If we created a group, we need to iterate the main loop again.
227     if (mid != end)
228       repeat = true;
229 
230     begin = mid;
231   }
232 }
233 
234 // Compare two lists of relocations.
235 template <class ELFT>
236 template <class RelTy>
constantEq(const InputSection * secA,ArrayRef<RelTy> ra,const InputSection * secB,ArrayRef<RelTy> rb)237 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
238                            const InputSection *secB, ArrayRef<RelTy> rb) {
239   for (size_t i = 0; i < ra.size(); ++i) {
240     if (ra[i].r_offset != rb[i].r_offset ||
241         ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
242       return false;
243 
244     uint64_t addA = getAddend<ELFT>(ra[i]);
245     uint64_t addB = getAddend<ELFT>(rb[i]);
246 
247     Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
248     Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
249     if (&sa == &sb) {
250       if (addA == addB)
251         continue;
252       return false;
253     }
254 
255     auto *da = dyn_cast<Defined>(&sa);
256     auto *db = dyn_cast<Defined>(&sb);
257 
258     // Placeholder symbols generated by linker scripts look the same now but
259     // may have different values later.
260     if (!da || !db || da->scriptDefined || db->scriptDefined)
261       return false;
262 
263     // When comparing a pair of relocations, if they refer to different symbols,
264     // and either symbol is preemptible, the containing sections should be
265     // considered different. This is because even if the sections are identical
266     // in this DSO, they may not be after preemption.
267     if (da->isPreemptible || db->isPreemptible)
268       return false;
269 
270     // Relocations referring to absolute symbols are constant-equal if their
271     // values are equal.
272     if (!da->section && !db->section && da->value + addA == db->value + addB)
273       continue;
274     if (!da->section || !db->section)
275       return false;
276 
277     if (da->section->kind() != db->section->kind())
278       return false;
279 
280     // Relocations referring to InputSections are constant-equal if their
281     // section offsets are equal.
282     if (isa<InputSection>(da->section)) {
283       if (da->value + addA == db->value + addB)
284         continue;
285       return false;
286     }
287 
288     // Relocations referring to MergeInputSections are constant-equal if their
289     // offsets in the output section are equal.
290     auto *x = dyn_cast<MergeInputSection>(da->section);
291     if (!x)
292       return false;
293     auto *y = cast<MergeInputSection>(db->section);
294     if (x->getParent() != y->getParent())
295       return false;
296 
297     uint64_t offsetA =
298         sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
299     uint64_t offsetB =
300         sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
301     if (offsetA != offsetB)
302       return false;
303   }
304 
305   return true;
306 }
307 
308 // Compare "non-moving" part of two InputSections, namely everything
309 // except relocation targets.
310 template <class ELFT>
equalsConstant(const InputSection * a,const InputSection * b)311 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
312   if (a->numRelocations != b->numRelocations || a->flags != b->flags ||
313       a->getSize() != b->getSize() || a->data() != b->data())
314     return false;
315 
316   // If two sections have different output sections, we cannot merge them.
317   assert(a->getParent() && b->getParent());
318   if (a->getParent() != b->getParent())
319     return false;
320 
321   if (a->areRelocsRela)
322     return constantEq(a, a->template relas<ELFT>(), b,
323                       b->template relas<ELFT>());
324   return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
325 }
326 
327 // Compare two lists of relocations. Returns true if all pairs of
328 // relocations point to the same section in terms of ICF.
329 template <class ELFT>
330 template <class RelTy>
variableEq(const InputSection * secA,ArrayRef<RelTy> ra,const InputSection * secB,ArrayRef<RelTy> rb)331 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
332                            const InputSection *secB, ArrayRef<RelTy> rb) {
333   assert(ra.size() == rb.size());
334 
335   for (size_t i = 0; i < ra.size(); ++i) {
336     // The two sections must be identical.
337     Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
338     Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
339     if (&sa == &sb)
340       continue;
341 
342     auto *da = cast<Defined>(&sa);
343     auto *db = cast<Defined>(&sb);
344 
345     // We already dealt with absolute and non-InputSection symbols in
346     // constantEq, and for InputSections we have already checked everything
347     // except the equivalence class.
348     if (!da->section)
349       continue;
350     auto *x = dyn_cast<InputSection>(da->section);
351     if (!x)
352       continue;
353     auto *y = cast<InputSection>(db->section);
354 
355     // Ineligible sections are in the special equivalence class 0.
356     // They can never be the same in terms of the equivalence class.
357     if (x->eqClass[current] == 0)
358       return false;
359     if (x->eqClass[current] != y->eqClass[current])
360       return false;
361   };
362 
363   return true;
364 }
365 
366 // Compare "moving" part of two InputSections, namely relocation targets.
367 template <class ELFT>
equalsVariable(const InputSection * a,const InputSection * b)368 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
369   if (a->areRelocsRela)
370     return variableEq(a, a->template relas<ELFT>(), b,
371                       b->template relas<ELFT>());
372   return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
373 }
374 
findBoundary(size_t begin,size_t end)375 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
376   uint32_t eqClass = sections[begin]->eqClass[current];
377   for (size_t i = begin + 1; i < end; ++i)
378     if (eqClass != sections[i]->eqClass[current])
379       return i;
380   return end;
381 }
382 
383 // Sections in the same equivalence class are contiguous in Sections
384 // vector. Therefore, Sections vector can be considered as contiguous
385 // groups of sections, grouped by the class.
386 //
387 // This function calls Fn on every group within [Begin, End).
388 template <class ELFT>
forEachClassRange(size_t begin,size_t end,llvm::function_ref<void (size_t,size_t)> fn)389 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
390                                   llvm::function_ref<void(size_t, size_t)> fn) {
391   while (begin < end) {
392     size_t mid = findBoundary(begin, end);
393     fn(begin, mid);
394     begin = mid;
395   }
396 }
397 
398 // Call Fn on each equivalence class.
399 template <class ELFT>
forEachClass(llvm::function_ref<void (size_t,size_t)> fn)400 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
401   // If threading is disabled or the number of sections are
402   // too small to use threading, call Fn sequentially.
403   if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
404     forEachClassRange(0, sections.size(), fn);
405     ++cnt;
406     return;
407   }
408 
409   current = cnt % 2;
410   next = (cnt + 1) % 2;
411 
412   // Shard into non-overlapping intervals, and call Fn in parallel.
413   // The sharding must be completed before any calls to Fn are made
414   // so that Fn can modify the Chunks in its shard without causing data
415   // races.
416   const size_t numShards = 256;
417   size_t step = sections.size() / numShards;
418   size_t boundaries[numShards + 1];
419   boundaries[0] = 0;
420   boundaries[numShards] = sections.size();
421 
422   parallelForEachN(1, numShards, [&](size_t i) {
423     boundaries[i] = findBoundary((i - 1) * step, sections.size());
424   });
425 
426   parallelForEachN(1, numShards + 1, [&](size_t i) {
427     if (boundaries[i - 1] < boundaries[i])
428       forEachClassRange(boundaries[i - 1], boundaries[i], fn);
429   });
430   ++cnt;
431 }
432 
433 // Combine the hashes of the sections referenced by the given section into its
434 // hash.
435 template <class ELFT, class RelTy>
combineRelocHashes(unsigned cnt,InputSection * isec,ArrayRef<RelTy> rels)436 static void combineRelocHashes(unsigned cnt, InputSection *isec,
437                                ArrayRef<RelTy> rels) {
438   uint32_t hash = isec->eqClass[cnt % 2];
439   for (RelTy rel : rels) {
440     Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
441     if (auto *d = dyn_cast<Defined>(&s))
442       if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
443         hash += relSec->eqClass[cnt % 2];
444   }
445   // Set MSB to 1 to avoid collisions with non-hash IDs.
446   isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
447 }
448 
print(const Twine & s)449 static void print(const Twine &s) {
450   if (config->printIcfSections)
451     message(s);
452 }
453 
454 // The main function of ICF.
run()455 template <class ELFT> void ICF<ELFT>::run() {
456   // Compute isPreemptible early. We may add more symbols later, so this loop
457   // cannot be merged with the later computeIsPreemptible() pass which is used
458   // by scanRelocations().
459   for (Symbol *sym : symtab->symbols())
460     sym->isPreemptible = computeIsPreemptible(*sym);
461 
462   // Collect sections to merge.
463   for (InputSectionBase *sec : inputSections) {
464     auto *s = cast<InputSection>(sec);
465     if (isEligible(s))
466       sections.push_back(s);
467   }
468 
469   // Initially, we use hash values to partition sections.
470   parallelForEach(
471       sections, [&](InputSection *s) { s->eqClass[0] = xxHash64(s->data()); });
472 
473   for (unsigned cnt = 0; cnt != 2; ++cnt) {
474     parallelForEach(sections, [&](InputSection *s) {
475       if (s->areRelocsRela)
476         combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>());
477       else
478         combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>());
479     });
480   }
481 
482   // From now on, sections in Sections vector are ordered so that sections
483   // in the same equivalence class are consecutive in the vector.
484   llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
485     return a->eqClass[0] < b->eqClass[0];
486   });
487 
488   // Compare static contents and assign unique IDs for each static content.
489   forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
490 
491   // Split groups by comparing relocations until convergence is obtained.
492   do {
493     repeat = false;
494     forEachClass(
495         [&](size_t begin, size_t end) { segregate(begin, end, false); });
496   } while (repeat);
497 
498   log("ICF needed " + Twine(cnt) + " iterations");
499 
500   // Merge sections by the equivalence class.
501   forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
502     if (end - begin == 1)
503       return;
504     print("selected section " + toString(sections[begin]));
505     for (size_t i = begin + 1; i < end; ++i) {
506       print("  removing identical section " + toString(sections[i]));
507       sections[begin]->replace(sections[i]);
508 
509       // At this point we know sections merged are fully identical and hence
510       // we want to remove duplicate implicit dependencies such as link order
511       // and relocation sections.
512       for (InputSection *isec : sections[i]->dependentSections)
513         isec->markDead();
514     }
515   });
516 
517   // InputSectionDescription::sections is populated by processSectionCommands().
518   // ICF may fold some input sections assigned to output sections. Remove them.
519   for (BaseCommand *base : script->sectionCommands)
520     if (auto *sec = dyn_cast<OutputSection>(base))
521       for (BaseCommand *sub_base : sec->sectionCommands)
522         if (auto *isd = dyn_cast<InputSectionDescription>(sub_base))
523           llvm::erase_if(isd->sections,
524                          [](InputSection *isec) { return !isec->isLive(); });
525 }
526 
527 // ICF entry point function.
doIcf()528 template <class ELFT> void elf::doIcf() {
529   llvm::TimeTraceScope timeScope("ICF");
530   ICF<ELFT>().run();
531 }
532 
533 template void elf::doIcf<ELF32LE>();
534 template void elf::doIcf<ELF32BE>();
535 template void elf::doIcf<ELF64LE>();
536 template void elf::doIcf<ELF64BE>();
537