1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LiveRangeEdit class represents changes done to a virtual register when it
10 // is spilled or split.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/LiveRangeEdit.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/CodeGen/CalcSpillWeights.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "regalloc"
26 
27 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
29 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
30 
anchor()31 void LiveRangeEdit::Delegate::anchor() { }
32 
createEmptyIntervalFrom(Register OldReg,bool createSubRanges)33 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg,
34                                                      bool createSubRanges) {
35   Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36   if (VRM)
37     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
38 
39   LiveInterval &LI = LIS.createEmptyInterval(VReg);
40   if (Parent && !Parent->isSpillable())
41     LI.markNotSpillable();
42   if (createSubRanges) {
43     // Create empty subranges if the OldReg's interval has them. Do not create
44     // the main range here---it will be constructed later after the subranges
45     // have been finalized.
46     LiveInterval &OldLI = LIS.getInterval(OldReg);
47     VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
48     for (LiveInterval::SubRange &S : OldLI.subranges())
49       LI.createSubRange(Alloc, S.LaneMask);
50   }
51   return LI;
52 }
53 
createFrom(Register OldReg)54 Register LiveRangeEdit::createFrom(Register OldReg) {
55   Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
56   if (VRM) {
57     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
58   }
59   // FIXME: Getting the interval here actually computes it.
60   // In theory, this may not be what we want, but in practice
61   // the createEmptyIntervalFrom API is used when this is not
62   // the case. Generally speaking we just want to annotate the
63   // LiveInterval when it gets created but we cannot do that at
64   // the moment.
65   if (Parent && !Parent->isSpillable())
66     LIS.getInterval(VReg).markNotSpillable();
67   return VReg;
68 }
69 
checkRematerializable(VNInfo * VNI,const MachineInstr * DefMI,AAResults * aa)70 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
71                                           const MachineInstr *DefMI,
72                                           AAResults *aa) {
73   assert(DefMI && "Missing instruction");
74   ScannedRemattable = true;
75   if (!TII.isTriviallyReMaterializable(*DefMI, aa))
76     return false;
77   Remattable.insert(VNI);
78   return true;
79 }
80 
scanRemattable(AAResults * aa)81 void LiveRangeEdit::scanRemattable(AAResults *aa) {
82   for (VNInfo *VNI : getParent().valnos) {
83     if (VNI->isUnused())
84       continue;
85     unsigned Original = VRM->getOriginal(getReg());
86     LiveInterval &OrigLI = LIS.getInterval(Original);
87     VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
88     if (!OrigVNI)
89       continue;
90     MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
91     if (!DefMI)
92       continue;
93     checkRematerializable(OrigVNI, DefMI, aa);
94   }
95   ScannedRemattable = true;
96 }
97 
anyRematerializable(AAResults * aa)98 bool LiveRangeEdit::anyRematerializable(AAResults *aa) {
99   if (!ScannedRemattable)
100     scanRemattable(aa);
101   return !Remattable.empty();
102 }
103 
104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
105 /// OrigIdx are also available with the same value at UseIdx.
allUsesAvailableAt(const MachineInstr * OrigMI,SlotIndex OrigIdx,SlotIndex UseIdx) const106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
107                                        SlotIndex OrigIdx,
108                                        SlotIndex UseIdx) const {
109   OrigIdx = OrigIdx.getRegSlot(true);
110   UseIdx = UseIdx.getRegSlot(true);
111   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
112     const MachineOperand &MO = OrigMI->getOperand(i);
113     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
114       continue;
115 
116     // We can't remat physreg uses, unless it is a constant.
117     if (Register::isPhysicalRegister(MO.getReg())) {
118       if (MRI.isConstantPhysReg(MO.getReg()))
119         continue;
120       return false;
121     }
122 
123     LiveInterval &li = LIS.getInterval(MO.getReg());
124     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
125     if (!OVNI)
126       continue;
127 
128     // Don't allow rematerialization immediately after the original def.
129     // It would be incorrect if OrigMI redefines the register.
130     // See PR14098.
131     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
132       return false;
133 
134     if (OVNI != li.getVNInfoAt(UseIdx))
135       return false;
136   }
137   return true;
138 }
139 
canRematerializeAt(Remat & RM,VNInfo * OrigVNI,SlotIndex UseIdx,bool cheapAsAMove)140 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
141                                        SlotIndex UseIdx, bool cheapAsAMove) {
142   assert(ScannedRemattable && "Call anyRematerializable first");
143 
144   // Use scanRemattable info.
145   if (!Remattable.count(OrigVNI))
146     return false;
147 
148   // No defining instruction provided.
149   SlotIndex DefIdx;
150   assert(RM.OrigMI && "No defining instruction for remattable value");
151   DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
152 
153   // If only cheap remats were requested, bail out early.
154   if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
155     return false;
156 
157   // Verify that all used registers are available with the same values.
158   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
159     return false;
160 
161   return true;
162 }
163 
rematerializeAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,const Remat & RM,const TargetRegisterInfo & tri,bool Late)164 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
165                                          MachineBasicBlock::iterator MI,
166                                          unsigned DestReg,
167                                          const Remat &RM,
168                                          const TargetRegisterInfo &tri,
169                                          bool Late) {
170   assert(RM.OrigMI && "Invalid remat");
171   TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
172   // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
173   // to false anyway in case the isDead flag of RM.OrigMI's dest register
174   // is true.
175   (*--MI).getOperand(0).setIsDead(false);
176   Rematted.insert(RM.ParentVNI);
177   return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
178 }
179 
eraseVirtReg(Register Reg)180 void LiveRangeEdit::eraseVirtReg(Register Reg) {
181   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
182     LIS.removeInterval(Reg);
183 }
184 
foldAsLoad(LiveInterval * LI,SmallVectorImpl<MachineInstr * > & Dead)185 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
186                                SmallVectorImpl<MachineInstr*> &Dead) {
187   MachineInstr *DefMI = nullptr, *UseMI = nullptr;
188 
189   // Check that there is a single def and a single use.
190   for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) {
191     MachineInstr *MI = MO.getParent();
192     if (MO.isDef()) {
193       if (DefMI && DefMI != MI)
194         return false;
195       if (!MI->canFoldAsLoad())
196         return false;
197       DefMI = MI;
198     } else if (!MO.isUndef()) {
199       if (UseMI && UseMI != MI)
200         return false;
201       // FIXME: Targets don't know how to fold subreg uses.
202       if (MO.getSubReg())
203         return false;
204       UseMI = MI;
205     }
206   }
207   if (!DefMI || !UseMI)
208     return false;
209 
210   // Since we're moving the DefMI load, make sure we're not extending any live
211   // ranges.
212   if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
213                           LIS.getInstructionIndex(*UseMI)))
214     return false;
215 
216   // We also need to make sure it is safe to move the load.
217   // Assume there are stores between DefMI and UseMI.
218   bool SawStore = true;
219   if (!DefMI->isSafeToMove(nullptr, SawStore))
220     return false;
221 
222   LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
223                     << "       into single use: " << *UseMI);
224 
225   SmallVector<unsigned, 8> Ops;
226   if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second)
227     return false;
228 
229   MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
230   if (!FoldMI)
231     return false;
232   LLVM_DEBUG(dbgs() << "                folded: " << *FoldMI);
233   LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
234   // Update the call site info.
235   if (UseMI->shouldUpdateCallSiteInfo())
236     UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI);
237   UseMI->eraseFromParent();
238   DefMI->addRegisterDead(LI->reg(), nullptr);
239   Dead.push_back(DefMI);
240   ++NumDCEFoldedLoads;
241   return true;
242 }
243 
useIsKill(const LiveInterval & LI,const MachineOperand & MO) const244 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
245                               const MachineOperand &MO) const {
246   const MachineInstr &MI = *MO.getParent();
247   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
248   if (LI.Query(Idx).isKill())
249     return true;
250   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
251   unsigned SubReg = MO.getSubReg();
252   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
253   for (const LiveInterval::SubRange &S : LI.subranges()) {
254     if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
255       return true;
256   }
257   return false;
258 }
259 
260 /// Find all live intervals that need to shrink, then remove the instruction.
eliminateDeadDef(MachineInstr * MI,ToShrinkSet & ToShrink,AAResults * AA)261 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
262                                      AAResults *AA) {
263   assert(MI->allDefsAreDead() && "Def isn't really dead");
264   SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
265 
266   // Never delete a bundled instruction.
267   if (MI->isBundled()) {
268     return;
269   }
270   // Never delete inline asm.
271   if (MI->isInlineAsm()) {
272     LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
273     return;
274   }
275 
276   // Use the same criteria as DeadMachineInstructionElim.
277   bool SawStore = false;
278   if (!MI->isSafeToMove(nullptr, SawStore)) {
279     LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
280     return;
281   }
282 
283   LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
284 
285   // Collect virtual registers to be erased after MI is gone.
286   SmallVector<unsigned, 8> RegsToErase;
287   bool ReadsPhysRegs = false;
288   bool isOrigDef = false;
289   unsigned Dest;
290   // Only optimize rematerialize case when the instruction has one def, since
291   // otherwise we could leave some dead defs in the code.  This case is
292   // extremely rare.
293   if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
294       MI->getDesc().getNumDefs() == 1) {
295     Dest = MI->getOperand(0).getReg();
296     unsigned Original = VRM->getOriginal(Dest);
297     LiveInterval &OrigLI = LIS.getInterval(Original);
298     VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
299     // The original live-range may have been shrunk to
300     // an empty live-range. It happens when it is dead, but
301     // we still keep it around to be able to rematerialize
302     // other values that depend on it.
303     if (OrigVNI)
304       isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
305   }
306 
307   // Check for live intervals that may shrink
308   for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
309          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
310     if (!MOI->isReg())
311       continue;
312     Register Reg = MOI->getReg();
313     if (!Register::isVirtualRegister(Reg)) {
314       // Check if MI reads any unreserved physregs.
315       if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
316         ReadsPhysRegs = true;
317       else if (MOI->isDef())
318         LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
319       continue;
320     }
321     LiveInterval &LI = LIS.getInterval(Reg);
322 
323     // Shrink read registers, unless it is likely to be expensive and
324     // unlikely to change anything. We typically don't want to shrink the
325     // PIC base register that has lots of uses everywhere.
326     // Always shrink COPY uses that probably come from live range splitting.
327     if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
328         (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
329       ToShrink.insert(&LI);
330 
331     // Remove defined value.
332     if (MOI->isDef()) {
333       if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
334         TheDelegate->LRE_WillShrinkVirtReg(LI.reg());
335       LIS.removeVRegDefAt(LI, Idx);
336       if (LI.empty())
337         RegsToErase.push_back(Reg);
338     }
339   }
340 
341   // Currently, we don't support DCE of physreg live ranges. If MI reads
342   // any unreserved physregs, don't erase the instruction, but turn it into
343   // a KILL instead. This way, the physreg live ranges don't end up
344   // dangling.
345   // FIXME: It would be better to have something like shrinkToUses() for
346   // physregs. That could potentially enable more DCE and it would free up
347   // the physreg. It would not happen often, though.
348   if (ReadsPhysRegs) {
349     MI->setDesc(TII.get(TargetOpcode::KILL));
350     // Remove all operands that aren't physregs.
351     for (unsigned i = MI->getNumOperands(); i; --i) {
352       const MachineOperand &MO = MI->getOperand(i-1);
353       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg()))
354         continue;
355       MI->RemoveOperand(i-1);
356     }
357     LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
358   } else {
359     // If the dest of MI is an original reg and MI is reMaterializable,
360     // don't delete the inst. Replace the dest with a new reg, and keep
361     // the inst for remat of other siblings. The inst is saved in
362     // LiveRangeEdit::DeadRemats and will be deleted after all the
363     // allocations of the func are done.
364     if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
365       LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
366       VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
367       NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
368       pop_back();
369       DeadRemats->insert(MI);
370       const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
371       MI->substituteRegister(Dest, NewLI.reg(), 0, TRI);
372       MI->getOperand(0).setIsDead(true);
373     } else {
374       if (TheDelegate)
375         TheDelegate->LRE_WillEraseInstruction(MI);
376       LIS.RemoveMachineInstrFromMaps(*MI);
377       MI->eraseFromParent();
378       ++NumDCEDeleted;
379     }
380   }
381 
382   // Erase any virtregs that are now empty and unused. There may be <undef>
383   // uses around. Keep the empty live range in that case.
384   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
385     Register Reg = RegsToErase[i];
386     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
387       ToShrink.remove(&LIS.getInterval(Reg));
388       eraseVirtReg(Reg);
389     }
390   }
391 }
392 
eliminateDeadDefs(SmallVectorImpl<MachineInstr * > & Dead,ArrayRef<Register> RegsBeingSpilled,AAResults * AA)393 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
394                                       ArrayRef<Register> RegsBeingSpilled,
395                                       AAResults *AA) {
396   ToShrinkSet ToShrink;
397 
398   for (;;) {
399     // Erase all dead defs.
400     while (!Dead.empty())
401       eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
402 
403     if (ToShrink.empty())
404       break;
405 
406     // Shrink just one live interval. Then delete new dead defs.
407     LiveInterval *LI = ToShrink.back();
408     ToShrink.pop_back();
409     if (foldAsLoad(LI, Dead))
410       continue;
411     unsigned VReg = LI->reg();
412     if (TheDelegate)
413       TheDelegate->LRE_WillShrinkVirtReg(VReg);
414     if (!LIS.shrinkToUses(LI, &Dead))
415       continue;
416 
417     // Don't create new intervals for a register being spilled.
418     // The new intervals would have to be spilled anyway so its not worth it.
419     // Also they currently aren't spilled so creating them and not spilling
420     // them results in incorrect code.
421     bool BeingSpilled = false;
422     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
423       if (VReg == RegsBeingSpilled[i]) {
424         BeingSpilled = true;
425         break;
426       }
427     }
428 
429     if (BeingSpilled) continue;
430 
431     // LI may have been separated, create new intervals.
432     LI->RenumberValues();
433     SmallVector<LiveInterval*, 8> SplitLIs;
434     LIS.splitSeparateComponents(*LI, SplitLIs);
435     if (!SplitLIs.empty())
436       ++NumFracRanges;
437 
438     Register Original = VRM ? VRM->getOriginal(VReg) : Register();
439     for (const LiveInterval *SplitLI : SplitLIs) {
440       // If LI is an original interval that hasn't been split yet, make the new
441       // intervals their own originals instead of referring to LI. The original
442       // interval must contain all the split products, and LI doesn't.
443       if (Original != VReg && Original != 0)
444         VRM->setIsSplitFromReg(SplitLI->reg(), Original);
445       if (TheDelegate)
446         TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg);
447     }
448   }
449 }
450 
451 // Keep track of new virtual registers created via
452 // MachineRegisterInfo::createVirtualRegister.
453 void
MRI_NoteNewVirtualRegister(Register VReg)454 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) {
455   if (VRM)
456     VRM->grow();
457 
458   NewRegs.push_back(VReg);
459 }
460 
461 void
calculateRegClassAndHint(MachineFunction & MF,const MachineLoopInfo & Loops,const MachineBlockFrequencyInfo & MBFI)462 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
463                                         const MachineLoopInfo &Loops,
464                                         const MachineBlockFrequencyInfo &MBFI) {
465   VirtRegAuxInfo VRAI(MF, LIS, *VRM, Loops, MBFI);
466   for (unsigned I = 0, Size = size(); I < Size; ++I) {
467     LiveInterval &LI = LIS.getInterval(get(I));
468     if (MRI.recomputeRegClass(LI.reg()))
469       LLVM_DEBUG({
470         const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
471         dbgs() << "Inflated " << printReg(LI.reg()) << " to "
472                << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n';
473       });
474     VRAI.calculateSpillWeightAndHint(LI);
475   }
476 }
477