1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(numJoins    , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends  , "Number of copies extended");
69 STATISTIC(NumReMats   , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74 
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76                                    cl::desc("Coalesce copies (default=true)"),
77                                    cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                      cl::desc("Apply the terminal rule"),
81                                      cl::init(false), cl::Hidden);
82 
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92   cl::init(cl::BOU_UNSET), cl::Hidden);
93 
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96          cl::desc("Verify machine instrs before and after register coalescing"),
97          cl::Hidden);
98 
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100     "late-remat-update-threshold", cl::Hidden,
101     cl::desc("During rematerialization for a copy, if the def instruction has "
102              "many other copy uses to be rematerialized, delay the multiple "
103              "separate live interval update work and do them all at once after "
104              "all those rematerialization are done. It will save a lot of "
105              "repeated work. "),
106     cl::init(100));
107 
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109     "large-interval-size-threshold", cl::Hidden,
110     cl::desc("If the valnos size of an interval is larger than the threshold, "
111              "it is regarded as a large interval. "),
112     cl::init(100));
113 
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115     "large-interval-freq-threshold", cl::Hidden,
116     cl::desc("For a large interval, if it is coalesed with other live "
117              "intervals many times more than the threshold, stop its "
118              "coalescing to control the compile time. "),
119     cl::init(100));
120 
121 namespace {
122 
123   class JoinVals;
124 
125   class RegisterCoalescer : public MachineFunctionPass,
126                             private LiveRangeEdit::Delegate {
127     MachineFunction* MF = nullptr;
128     MachineRegisterInfo* MRI = nullptr;
129     const TargetRegisterInfo* TRI = nullptr;
130     const TargetInstrInfo* TII = nullptr;
131     LiveIntervals *LIS = nullptr;
132     const MachineLoopInfo* Loops = nullptr;
133     AliasAnalysis *AA = nullptr;
134     RegisterClassInfo RegClassInfo;
135 
136     /// Debug variable location tracking -- for each VReg, maintain an
137     /// ordered-by-slot-index set of DBG_VALUEs, to help quick
138     /// identification of whether coalescing may change location validity.
139     using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
140     DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
141 
142     /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
143     /// To avoid repeatedly merging sets of DbgValueLocs, instead record
144     /// which vregs have been coalesced, and where to. This map is from
145     /// vreg => {set of vregs merged in}.
146     DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
147 
148     /// A LaneMask to remember on which subregister live ranges we need to call
149     /// shrinkToUses() later.
150     LaneBitmask ShrinkMask;
151 
152     /// True if the main range of the currently coalesced intervals should be
153     /// checked for smaller live intervals.
154     bool ShrinkMainRange = false;
155 
156     /// True if the coalescer should aggressively coalesce global copies
157     /// in favor of keeping local copies.
158     bool JoinGlobalCopies = false;
159 
160     /// True if the coalescer should aggressively coalesce fall-thru
161     /// blocks exclusively containing copies.
162     bool JoinSplitEdges = false;
163 
164     /// Copy instructions yet to be coalesced.
165     SmallVector<MachineInstr*, 8> WorkList;
166     SmallVector<MachineInstr*, 8> LocalWorkList;
167 
168     /// Set of instruction pointers that have been erased, and
169     /// that may be present in WorkList.
170     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
171 
172     /// Dead instructions that are about to be deleted.
173     SmallVector<MachineInstr*, 8> DeadDefs;
174 
175     /// Virtual registers to be considered for register class inflation.
176     SmallVector<Register, 8> InflateRegs;
177 
178     /// The collection of live intervals which should have been updated
179     /// immediately after rematerialiation but delayed until
180     /// lateLiveIntervalUpdate is called.
181     DenseSet<Register> ToBeUpdated;
182 
183     /// Record how many times the large live interval with many valnos
184     /// has been tried to join with other live interval.
185     DenseMap<Register, unsigned long> LargeLIVisitCounter;
186 
187     /// Recursively eliminate dead defs in DeadDefs.
188     void eliminateDeadDefs();
189 
190     /// LiveRangeEdit callback for eliminateDeadDefs().
191     void LRE_WillEraseInstruction(MachineInstr *MI) override;
192 
193     /// Coalesce the LocalWorkList.
194     void coalesceLocals();
195 
196     /// Join compatible live intervals
197     void joinAllIntervals();
198 
199     /// Coalesce copies in the specified MBB, putting
200     /// copies that cannot yet be coalesced into WorkList.
201     void copyCoalesceInMBB(MachineBasicBlock *MBB);
202 
203     /// Tries to coalesce all copies in CurrList. Returns true if any progress
204     /// was made.
205     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
206 
207     /// If one def has many copy like uses, and those copy uses are all
208     /// rematerialized, the live interval update needed for those
209     /// rematerializations will be delayed and done all at once instead
210     /// of being done multiple times. This is to save compile cost because
211     /// live interval update is costly.
212     void lateLiveIntervalUpdate();
213 
214     /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
215     /// has no value defined in the predecessors. If the incoming value is the
216     /// same as defined by the copy itself, the value is considered undefined.
217     bool copyValueUndefInPredecessors(LiveRange &S,
218                                       const MachineBasicBlock *MBB,
219                                       LiveQueryResult SLRQ);
220 
221     /// Set necessary undef flags on subregister uses after pruning out undef
222     /// lane segments from the subrange.
223     void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
224                                     LaneBitmask PrunedLanes);
225 
226     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
227     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
228     /// was successfully coalesced away. If it is not currently possible to
229     /// coalesce this interval, but it may be possible if other things get
230     /// coalesced, then it returns true by reference in 'Again'.
231     bool joinCopy(MachineInstr *CopyMI, bool &Again);
232 
233     /// Attempt to join these two intervals.  On failure, this
234     /// returns false.  The output "SrcInt" will not have been modified, so we
235     /// can use this information below to update aliases.
236     bool joinIntervals(CoalescerPair &CP);
237 
238     /// Attempt joining two virtual registers. Return true on success.
239     bool joinVirtRegs(CoalescerPair &CP);
240 
241     /// If a live interval has many valnos and is coalesced with other
242     /// live intervals many times, we regard such live interval as having
243     /// high compile time cost.
244     bool isHighCostLiveInterval(LiveInterval &LI);
245 
246     /// Attempt joining with a reserved physreg.
247     bool joinReservedPhysReg(CoalescerPair &CP);
248 
249     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
250     /// Subranges in @p LI which only partially interfere with the desired
251     /// LaneMask are split as necessary. @p LaneMask are the lanes that
252     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
253     /// lanemasks already adjusted to the coalesced register.
254     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
255                            LaneBitmask LaneMask, CoalescerPair &CP,
256                            unsigned DstIdx);
257 
258     /// Join the liveranges of two subregisters. Joins @p RRange into
259     /// @p LRange, @p RRange may be invalid afterwards.
260     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
261                           LaneBitmask LaneMask, const CoalescerPair &CP);
262 
263     /// We found a non-trivially-coalescable copy. If the source value number is
264     /// defined by a copy from the destination reg see if we can merge these two
265     /// destination reg valno# into a single value number, eliminating a copy.
266     /// This returns true if an interval was modified.
267     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
268 
269     /// Return true if there are definitions of IntB
270     /// other than BValNo val# that can reach uses of AValno val# of IntA.
271     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
272                               VNInfo *AValNo, VNInfo *BValNo);
273 
274     /// We found a non-trivially-coalescable copy.
275     /// If the source value number is defined by a commutable instruction and
276     /// its other operand is coalesced to the copy dest register, see if we
277     /// can transform the copy into a noop by commuting the definition.
278     /// This returns a pair of two flags:
279     /// - the first element is true if an interval was modified,
280     /// - the second element is true if the destination interval needs
281     ///   to be shrunk after deleting the copy.
282     std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
283                                                   MachineInstr *CopyMI);
284 
285     /// We found a copy which can be moved to its less frequent predecessor.
286     bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
287 
288     /// If the source of a copy is defined by a
289     /// trivial computation, replace the copy by rematerialize the definition.
290     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
291                                  bool &IsDefCopy);
292 
293     /// Return true if a copy involving a physreg should be joined.
294     bool canJoinPhys(const CoalescerPair &CP);
295 
296     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
297     /// number if it is not zero. If DstReg is a physical register and the
298     /// existing subregister number of the def / use being updated is not zero,
299     /// make sure to set it to the correct physical subregister.
300     void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
301 
302     /// If the given machine operand reads only undefined lanes add an undef
303     /// flag.
304     /// This can happen when undef uses were previously concealed by a copy
305     /// which we coalesced. Example:
306     ///    %0:sub0<def,read-undef> = ...
307     ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
308     ///       = use %1:sub1       <-- hidden undef use
309     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
310                       MachineOperand &MO, unsigned SubRegIdx);
311 
312     /// Handle copies of undef values. If the undef value is an incoming
313     /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
314     /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
315     /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
316     MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
317 
318     /// Check whether or not we should apply the terminal rule on the
319     /// destination (Dst) of \p Copy.
320     /// When the terminal rule applies, Copy is not profitable to
321     /// coalesce.
322     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
323     /// at least one interference (Dst, Dst2). If Dst is terminal, the
324     /// terminal rule consists in checking that at least one of
325     /// interfering node, say Dst2, has an affinity of equal or greater
326     /// weight with Src.
327     /// In that case, Dst2 and Dst will not be able to be both coalesced
328     /// with Src. Since Dst2 exposes more coalescing opportunities than
329     /// Dst, we can drop \p Copy.
330     bool applyTerminalRule(const MachineInstr &Copy) const;
331 
332     /// Wrapper method for \see LiveIntervals::shrinkToUses.
333     /// This method does the proper fixing of the live-ranges when the afore
334     /// mentioned method returns true.
shrinkToUses(LiveInterval * LI,SmallVectorImpl<MachineInstr * > * Dead=nullptr)335     void shrinkToUses(LiveInterval *LI,
336                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
337       NumShrinkToUses++;
338       if (LIS->shrinkToUses(LI, Dead)) {
339         /// Check whether or not \p LI is composed by multiple connected
340         /// components and if that is the case, fix that.
341         SmallVector<LiveInterval*, 8> SplitLIs;
342         LIS->splitSeparateComponents(*LI, SplitLIs);
343       }
344     }
345 
346     /// Wrapper Method to do all the necessary work when an Instruction is
347     /// deleted.
348     /// Optimizations should use this to make sure that deleted instructions
349     /// are always accounted for.
deleteInstr(MachineInstr * MI)350     void deleteInstr(MachineInstr* MI) {
351       ErasedInstrs.insert(MI);
352       LIS->RemoveMachineInstrFromMaps(*MI);
353       MI->eraseFromParent();
354     }
355 
356     /// Walk over function and initialize the DbgVRegToValues map.
357     void buildVRegToDbgValueMap(MachineFunction &MF);
358 
359     /// Test whether, after merging, any DBG_VALUEs would refer to a
360     /// different value number than before merging, and whether this can
361     /// be resolved. If not, mark the DBG_VALUE as being undef.
362     void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
363                                       JoinVals &LHSVals, LiveRange &RHS,
364                                       JoinVals &RHSVals);
365 
366     void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
367                                           LiveRange &RegRange, JoinVals &Vals2);
368 
369   public:
370     static char ID; ///< Class identification, replacement for typeinfo
371 
RegisterCoalescer()372     RegisterCoalescer() : MachineFunctionPass(ID) {
373       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
374     }
375 
376     void getAnalysisUsage(AnalysisUsage &AU) const override;
377 
378     void releaseMemory() override;
379 
380     /// This is the pass entry point.
381     bool runOnMachineFunction(MachineFunction&) override;
382 
383     /// Implement the dump method.
384     void print(raw_ostream &O, const Module* = nullptr) const override;
385   };
386 
387 } // end anonymous namespace
388 
389 char RegisterCoalescer::ID = 0;
390 
391 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
392 
393 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
394                       "Simple Register Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)395 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
396 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
397 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
398 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
399 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
400                     "Simple Register Coalescing", false, false)
401 
402 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
403                                        const MachineInstr *MI, Register &Src,
404                                        Register &Dst, unsigned &SrcSub,
405                                        unsigned &DstSub) {
406   if (MI->isCopy()) {
407     Dst = MI->getOperand(0).getReg();
408     DstSub = MI->getOperand(0).getSubReg();
409     Src = MI->getOperand(1).getReg();
410     SrcSub = MI->getOperand(1).getSubReg();
411   } else if (MI->isSubregToReg()) {
412     Dst = MI->getOperand(0).getReg();
413     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
414                                       MI->getOperand(3).getImm());
415     Src = MI->getOperand(2).getReg();
416     SrcSub = MI->getOperand(2).getSubReg();
417   } else
418     return false;
419   return true;
420 }
421 
422 /// Return true if this block should be vacated by the coalescer to eliminate
423 /// branches. The important cases to handle in the coalescer are critical edges
424 /// split during phi elimination which contain only copies. Simple blocks that
425 /// contain non-branches should also be vacated, but this can be handled by an
426 /// earlier pass similar to early if-conversion.
isSplitEdge(const MachineBasicBlock * MBB)427 static bool isSplitEdge(const MachineBasicBlock *MBB) {
428   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
429     return false;
430 
431   for (const auto &MI : *MBB) {
432     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
433       return false;
434   }
435   return true;
436 }
437 
setRegisters(const MachineInstr * MI)438 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
439   SrcReg = DstReg = Register();
440   SrcIdx = DstIdx = 0;
441   NewRC = nullptr;
442   Flipped = CrossClass = false;
443 
444   Register Src, Dst;
445   unsigned SrcSub = 0, DstSub = 0;
446   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
447     return false;
448   Partial = SrcSub || DstSub;
449 
450   // If one register is a physreg, it must be Dst.
451   if (Register::isPhysicalRegister(Src)) {
452     if (Register::isPhysicalRegister(Dst))
453       return false;
454     std::swap(Src, Dst);
455     std::swap(SrcSub, DstSub);
456     Flipped = true;
457   }
458 
459   const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
460 
461   if (Register::isPhysicalRegister(Dst)) {
462     // Eliminate DstSub on a physreg.
463     if (DstSub) {
464       Dst = TRI.getSubReg(Dst, DstSub);
465       if (!Dst) return false;
466       DstSub = 0;
467     }
468 
469     // Eliminate SrcSub by picking a corresponding Dst superregister.
470     if (SrcSub) {
471       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
472       if (!Dst) return false;
473     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
474       return false;
475     }
476   } else {
477     // Both registers are virtual.
478     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
479     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
480 
481     // Both registers have subreg indices.
482     if (SrcSub && DstSub) {
483       // Copies between different sub-registers are never coalescable.
484       if (Src == Dst && SrcSub != DstSub)
485         return false;
486 
487       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
488                                          SrcIdx, DstIdx);
489       if (!NewRC)
490         return false;
491     } else if (DstSub) {
492       // SrcReg will be merged with a sub-register of DstReg.
493       SrcIdx = DstSub;
494       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
495     } else if (SrcSub) {
496       // DstReg will be merged with a sub-register of SrcReg.
497       DstIdx = SrcSub;
498       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
499     } else {
500       // This is a straight copy without sub-registers.
501       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
502     }
503 
504     // The combined constraint may be impossible to satisfy.
505     if (!NewRC)
506       return false;
507 
508     // Prefer SrcReg to be a sub-register of DstReg.
509     // FIXME: Coalescer should support subregs symmetrically.
510     if (DstIdx && !SrcIdx) {
511       std::swap(Src, Dst);
512       std::swap(SrcIdx, DstIdx);
513       Flipped = !Flipped;
514     }
515 
516     CrossClass = NewRC != DstRC || NewRC != SrcRC;
517   }
518   // Check our invariants
519   assert(Register::isVirtualRegister(Src) && "Src must be virtual");
520   assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
521          "Cannot have a physical SubIdx");
522   SrcReg = Src;
523   DstReg = Dst;
524   return true;
525 }
526 
flip()527 bool CoalescerPair::flip() {
528   if (Register::isPhysicalRegister(DstReg))
529     return false;
530   std::swap(SrcReg, DstReg);
531   std::swap(SrcIdx, DstIdx);
532   Flipped = !Flipped;
533   return true;
534 }
535 
isCoalescable(const MachineInstr * MI) const536 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
537   if (!MI)
538     return false;
539   Register Src, Dst;
540   unsigned SrcSub = 0, DstSub = 0;
541   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
542     return false;
543 
544   // Find the virtual register that is SrcReg.
545   if (Dst == SrcReg) {
546     std::swap(Src, Dst);
547     std::swap(SrcSub, DstSub);
548   } else if (Src != SrcReg) {
549     return false;
550   }
551 
552   // Now check that Dst matches DstReg.
553   if (DstReg.isPhysical()) {
554     if (!Dst.isPhysical())
555       return false;
556     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
557     // DstSub could be set for a physreg from INSERT_SUBREG.
558     if (DstSub)
559       Dst = TRI.getSubReg(Dst, DstSub);
560     // Full copy of Src.
561     if (!SrcSub)
562       return DstReg == Dst;
563     // This is a partial register copy. Check that the parts match.
564     return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
565   } else {
566     // DstReg is virtual.
567     if (DstReg != Dst)
568       return false;
569     // Registers match, do the subregisters line up?
570     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
571            TRI.composeSubRegIndices(DstIdx, DstSub);
572   }
573 }
574 
getAnalysisUsage(AnalysisUsage & AU) const575 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
576   AU.setPreservesCFG();
577   AU.addRequired<AAResultsWrapperPass>();
578   AU.addRequired<LiveIntervals>();
579   AU.addPreserved<LiveIntervals>();
580   AU.addPreserved<SlotIndexes>();
581   AU.addRequired<MachineLoopInfo>();
582   AU.addPreserved<MachineLoopInfo>();
583   AU.addPreservedID(MachineDominatorsID);
584   MachineFunctionPass::getAnalysisUsage(AU);
585 }
586 
eliminateDeadDefs()587 void RegisterCoalescer::eliminateDeadDefs() {
588   SmallVector<Register, 8> NewRegs;
589   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
590                 nullptr, this).eliminateDeadDefs(DeadDefs);
591 }
592 
LRE_WillEraseInstruction(MachineInstr * MI)593 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
594   // MI may be in WorkList. Make sure we don't visit it.
595   ErasedInstrs.insert(MI);
596 }
597 
adjustCopiesBackFrom(const CoalescerPair & CP,MachineInstr * CopyMI)598 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
599                                              MachineInstr *CopyMI) {
600   assert(!CP.isPartial() && "This doesn't work for partial copies.");
601   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
602 
603   LiveInterval &IntA =
604     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
605   LiveInterval &IntB =
606     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
607   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
608 
609   // We have a non-trivially-coalescable copy with IntA being the source and
610   // IntB being the dest, thus this defines a value number in IntB.  If the
611   // source value number (in IntA) is defined by a copy from B, see if we can
612   // merge these two pieces of B into a single value number, eliminating a copy.
613   // For example:
614   //
615   //  A3 = B0
616   //    ...
617   //  B1 = A3      <- this copy
618   //
619   // In this case, B0 can be extended to where the B1 copy lives, allowing the
620   // B1 value number to be replaced with B0 (which simplifies the B
621   // liveinterval).
622 
623   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
624   // the example above.
625   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
626   if (BS == IntB.end()) return false;
627   VNInfo *BValNo = BS->valno;
628 
629   // Get the location that B is defined at.  Two options: either this value has
630   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
631   // can't process it.
632   if (BValNo->def != CopyIdx) return false;
633 
634   // AValNo is the value number in A that defines the copy, A3 in the example.
635   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
636   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
637   // The live segment might not exist after fun with physreg coalescing.
638   if (AS == IntA.end()) return false;
639   VNInfo *AValNo = AS->valno;
640 
641   // If AValNo is defined as a copy from IntB, we can potentially process this.
642   // Get the instruction that defines this value number.
643   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
644   // Don't allow any partial copies, even if isCoalescable() allows them.
645   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
646     return false;
647 
648   // Get the Segment in IntB that this value number starts with.
649   LiveInterval::iterator ValS =
650     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
651   if (ValS == IntB.end())
652     return false;
653 
654   // Make sure that the end of the live segment is inside the same block as
655   // CopyMI.
656   MachineInstr *ValSEndInst =
657     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
658   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
659     return false;
660 
661   // Okay, we now know that ValS ends in the same block that the CopyMI
662   // live-range starts.  If there are no intervening live segments between them
663   // in IntB, we can merge them.
664   if (ValS+1 != BS) return false;
665 
666   LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
667 
668   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
669   // We are about to delete CopyMI, so need to remove it as the 'instruction
670   // that defines this value #'. Update the valnum with the new defining
671   // instruction #.
672   BValNo->def = FillerStart;
673 
674   // Okay, we can merge them.  We need to insert a new liverange:
675   // [ValS.end, BS.begin) of either value number, then we merge the
676   // two value numbers.
677   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
678 
679   // Okay, merge "B1" into the same value number as "B0".
680   if (BValNo != ValS->valno)
681     IntB.MergeValueNumberInto(BValNo, ValS->valno);
682 
683   // Do the same for the subregister segments.
684   for (LiveInterval::SubRange &S : IntB.subranges()) {
685     // Check for SubRange Segments of the form [1234r,1234d:0) which can be
686     // removed to prevent creating bogus SubRange Segments.
687     LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
688     if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
689       S.removeSegment(*SS, true);
690       continue;
691     }
692     // The subrange may have ended before FillerStart. If so, extend it.
693     if (!S.getVNInfoAt(FillerStart)) {
694       SlotIndex BBStart =
695           LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
696       S.extendInBlock(BBStart, FillerStart);
697     }
698     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
699     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
700     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
701     if (SubBValNo != SubValSNo)
702       S.MergeValueNumberInto(SubBValNo, SubValSNo);
703   }
704 
705   LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
706 
707   // If the source instruction was killing the source register before the
708   // merge, unset the isKill marker given the live range has been extended.
709   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
710   if (UIdx != -1) {
711     ValSEndInst->getOperand(UIdx).setIsKill(false);
712   }
713 
714   // Rewrite the copy.
715   CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
716   // If the copy instruction was killing the destination register or any
717   // subrange before the merge trim the live range.
718   bool RecomputeLiveRange = AS->end == CopyIdx;
719   if (!RecomputeLiveRange) {
720     for (LiveInterval::SubRange &S : IntA.subranges()) {
721       LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
722       if (SS != S.end() && SS->end == CopyIdx) {
723         RecomputeLiveRange = true;
724         break;
725       }
726     }
727   }
728   if (RecomputeLiveRange)
729     shrinkToUses(&IntA);
730 
731   ++numExtends;
732   return true;
733 }
734 
hasOtherReachingDefs(LiveInterval & IntA,LiveInterval & IntB,VNInfo * AValNo,VNInfo * BValNo)735 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
736                                              LiveInterval &IntB,
737                                              VNInfo *AValNo,
738                                              VNInfo *BValNo) {
739   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
740   // the PHI values.
741   if (LIS->hasPHIKill(IntA, AValNo))
742     return true;
743 
744   for (LiveRange::Segment &ASeg : IntA.segments) {
745     if (ASeg.valno != AValNo) continue;
746     LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
747     if (BI != IntB.begin())
748       --BI;
749     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
750       if (BI->valno == BValNo)
751         continue;
752       if (BI->start <= ASeg.start && BI->end > ASeg.start)
753         return true;
754       if (BI->start > ASeg.start && BI->start < ASeg.end)
755         return true;
756     }
757   }
758   return false;
759 }
760 
761 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
762 /// range @Dst and use value number @p DstValNo there.
763 static std::pair<bool,bool>
addSegmentsWithValNo(LiveRange & Dst,VNInfo * DstValNo,const LiveRange & Src,const VNInfo * SrcValNo)764 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
765                      const VNInfo *SrcValNo) {
766   bool Changed = false;
767   bool MergedWithDead = false;
768   for (const LiveRange::Segment &S : Src.segments) {
769     if (S.valno != SrcValNo)
770       continue;
771     // This is adding a segment from Src that ends in a copy that is about
772     // to be removed. This segment is going to be merged with a pre-existing
773     // segment in Dst. This works, except in cases when the corresponding
774     // segment in Dst is dead. For example: adding [192r,208r:1) from Src
775     // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
776     // Recognized such cases, so that the segments can be shrunk.
777     LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
778     LiveRange::Segment &Merged = *Dst.addSegment(Added);
779     if (Merged.end.isDead())
780       MergedWithDead = true;
781     Changed = true;
782   }
783   return std::make_pair(Changed, MergedWithDead);
784 }
785 
786 std::pair<bool,bool>
removeCopyByCommutingDef(const CoalescerPair & CP,MachineInstr * CopyMI)787 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
788                                             MachineInstr *CopyMI) {
789   assert(!CP.isPhys());
790 
791   LiveInterval &IntA =
792       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
793   LiveInterval &IntB =
794       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
795 
796   // We found a non-trivially-coalescable copy with IntA being the source and
797   // IntB being the dest, thus this defines a value number in IntB.  If the
798   // source value number (in IntA) is defined by a commutable instruction and
799   // its other operand is coalesced to the copy dest register, see if we can
800   // transform the copy into a noop by commuting the definition. For example,
801   //
802   //  A3 = op A2 killed B0
803   //    ...
804   //  B1 = A3      <- this copy
805   //    ...
806   //     = op A3   <- more uses
807   //
808   // ==>
809   //
810   //  B2 = op B0 killed A2
811   //    ...
812   //  B1 = B2      <- now an identity copy
813   //    ...
814   //     = op B2   <- more uses
815 
816   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
817   // the example above.
818   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
819   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
820   assert(BValNo != nullptr && BValNo->def == CopyIdx);
821 
822   // AValNo is the value number in A that defines the copy, A3 in the example.
823   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
824   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
825   if (AValNo->isPHIDef())
826     return { false, false };
827   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
828   if (!DefMI)
829     return { false, false };
830   if (!DefMI->isCommutable())
831     return { false, false };
832   // If DefMI is a two-address instruction then commuting it will change the
833   // destination register.
834   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
835   assert(DefIdx != -1);
836   unsigned UseOpIdx;
837   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
838     return { false, false };
839 
840   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
841   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
842   // passed to the method. That _other_ operand is chosen by
843   // the findCommutedOpIndices() method.
844   //
845   // That is obviously an area for improvement in case of instructions having
846   // more than 2 operands. For example, if some instruction has 3 commutable
847   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
848   // op#2<->op#3) of commute transformation should be considered/tried here.
849   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
850   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
851     return { false, false };
852 
853   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
854   Register NewReg = NewDstMO.getReg();
855   if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
856     return { false, false };
857 
858   // Make sure there are no other definitions of IntB that would reach the
859   // uses which the new definition can reach.
860   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
861     return { false, false };
862 
863   // If some of the uses of IntA.reg is already coalesced away, return false.
864   // It's not possible to determine whether it's safe to perform the coalescing.
865   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
866     MachineInstr *UseMI = MO.getParent();
867     unsigned OpNo = &MO - &UseMI->getOperand(0);
868     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
869     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
870     if (US == IntA.end() || US->valno != AValNo)
871       continue;
872     // If this use is tied to a def, we can't rewrite the register.
873     if (UseMI->isRegTiedToDefOperand(OpNo))
874       return { false, false };
875   }
876 
877   LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
878                     << *DefMI);
879 
880   // At this point we have decided that it is legal to do this
881   // transformation.  Start by commuting the instruction.
882   MachineBasicBlock *MBB = DefMI->getParent();
883   MachineInstr *NewMI =
884       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
885   if (!NewMI)
886     return { false, false };
887   if (Register::isVirtualRegister(IntA.reg()) &&
888       Register::isVirtualRegister(IntB.reg()) &&
889       !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
890     return { false, false };
891   if (NewMI != DefMI) {
892     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
893     MachineBasicBlock::iterator Pos = DefMI;
894     MBB->insert(Pos, NewMI);
895     MBB->erase(DefMI);
896   }
897 
898   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
899   // A = or A, B
900   // ...
901   // B = A
902   // ...
903   // C = killed A
904   // ...
905   //   = B
906 
907   // Update uses of IntA of the specific Val# with IntB.
908   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()),
909                                          UE = MRI->use_end();
910        UI != UE;
911        /* ++UI is below because of possible MI removal */) {
912     MachineOperand &UseMO = *UI;
913     ++UI;
914     if (UseMO.isUndef())
915       continue;
916     MachineInstr *UseMI = UseMO.getParent();
917     if (UseMI->isDebugValue()) {
918       // FIXME These don't have an instruction index.  Not clear we have enough
919       // info to decide whether to do this replacement or not.  For now do it.
920       UseMO.setReg(NewReg);
921       continue;
922     }
923     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
924     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
925     assert(US != IntA.end() && "Use must be live");
926     if (US->valno != AValNo)
927       continue;
928     // Kill flags are no longer accurate. They are recomputed after RA.
929     UseMO.setIsKill(false);
930     if (Register::isPhysicalRegister(NewReg))
931       UseMO.substPhysReg(NewReg, *TRI);
932     else
933       UseMO.setReg(NewReg);
934     if (UseMI == CopyMI)
935       continue;
936     if (!UseMI->isCopy())
937       continue;
938     if (UseMI->getOperand(0).getReg() != IntB.reg() ||
939         UseMI->getOperand(0).getSubReg())
940       continue;
941 
942     // This copy will become a noop. If it's defining a new val#, merge it into
943     // BValNo.
944     SlotIndex DefIdx = UseIdx.getRegSlot();
945     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
946     if (!DVNI)
947       continue;
948     LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
949     assert(DVNI->def == DefIdx);
950     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
951     for (LiveInterval::SubRange &S : IntB.subranges()) {
952       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
953       if (!SubDVNI)
954         continue;
955       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
956       assert(SubBValNo->def == CopyIdx);
957       S.MergeValueNumberInto(SubDVNI, SubBValNo);
958     }
959 
960     deleteInstr(UseMI);
961   }
962 
963   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
964   // is updated.
965   bool ShrinkB = false;
966   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
967   if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
968     if (!IntA.hasSubRanges()) {
969       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
970       IntA.createSubRangeFrom(Allocator, Mask, IntA);
971     } else if (!IntB.hasSubRanges()) {
972       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
973       IntB.createSubRangeFrom(Allocator, Mask, IntB);
974     }
975     SlotIndex AIdx = CopyIdx.getRegSlot(true);
976     LaneBitmask MaskA;
977     const SlotIndexes &Indexes = *LIS->getSlotIndexes();
978     for (LiveInterval::SubRange &SA : IntA.subranges()) {
979       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
980       // Even if we are dealing with a full copy, some lanes can
981       // still be undefined.
982       // E.g.,
983       // undef A.subLow = ...
984       // B = COPY A <== A.subHigh is undefined here and does
985       //                not have a value number.
986       if (!ASubValNo)
987         continue;
988       MaskA |= SA.LaneMask;
989 
990       IntB.refineSubRanges(
991           Allocator, SA.LaneMask,
992           [&Allocator, &SA, CopyIdx, ASubValNo,
993            &ShrinkB](LiveInterval::SubRange &SR) {
994             VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
995                                            : SR.getVNInfoAt(CopyIdx);
996             assert(BSubValNo != nullptr);
997             auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
998             ShrinkB |= P.second;
999             if (P.first)
1000               BSubValNo->def = ASubValNo->def;
1001           },
1002           Indexes, *TRI);
1003     }
1004     // Go over all subranges of IntB that have not been covered by IntA,
1005     // and delete the segments starting at CopyIdx. This can happen if
1006     // IntA has undef lanes that are defined in IntB.
1007     for (LiveInterval::SubRange &SB : IntB.subranges()) {
1008       if ((SB.LaneMask & MaskA).any())
1009         continue;
1010       if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1011         if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1012           SB.removeSegment(*S, true);
1013     }
1014   }
1015 
1016   BValNo->def = AValNo->def;
1017   auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1018   ShrinkB |= P.second;
1019   LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1020 
1021   LIS->removeVRegDefAt(IntA, AValNo->def);
1022 
1023   LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1024   ++numCommutes;
1025   return { true, ShrinkB };
1026 }
1027 
1028 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1029 /// predecessor of BB2, and if B is not redefined on the way from A = B
1030 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1031 /// execution goes through the path from BB0 to BB2. We may move B = A
1032 /// to the predecessor without such reversed copy.
1033 /// So we will transform the program from:
1034 ///   BB0:
1035 ///      A = B;    BB1:
1036 ///       ...         ...
1037 ///     /     \      /
1038 ///             BB2:
1039 ///               ...
1040 ///               B = A;
1041 ///
1042 /// to:
1043 ///
1044 ///   BB0:         BB1:
1045 ///      A = B;        ...
1046 ///       ...          B = A;
1047 ///     /     \       /
1048 ///             BB2:
1049 ///               ...
1050 ///
1051 /// A special case is when BB0 and BB2 are the same BB which is the only
1052 /// BB in a loop:
1053 ///   BB1:
1054 ///        ...
1055 ///   BB0/BB2:  ----
1056 ///        B = A;   |
1057 ///        ...      |
1058 ///        A = B;   |
1059 ///          |-------
1060 ///          |
1061 /// We may hoist B = A from BB0/BB2 to BB1.
1062 ///
1063 /// The major preconditions for correctness to remove such partial
1064 /// redundancy include:
1065 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1066 ///    the PHI is defined by the reversed copy A = B in BB0.
1067 /// 2. No B is referenced from the start of BB2 to B = A.
1068 /// 3. No B is defined from A = B to the end of BB0.
1069 /// 4. BB1 has only one successor.
1070 ///
1071 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1072 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1073 /// colder place, which not only prevent endless loop, but also make sure
1074 /// the movement of copy is beneficial.
removePartialRedundancy(const CoalescerPair & CP,MachineInstr & CopyMI)1075 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1076                                                 MachineInstr &CopyMI) {
1077   assert(!CP.isPhys());
1078   if (!CopyMI.isFullCopy())
1079     return false;
1080 
1081   MachineBasicBlock &MBB = *CopyMI.getParent();
1082   // If this block is the target of an invoke/inlineasm_br, moving the copy into
1083   // the predecessor is tricker, and we don't handle it.
1084   if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1085     return false;
1086 
1087   if (MBB.pred_size() != 2)
1088     return false;
1089 
1090   LiveInterval &IntA =
1091       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1092   LiveInterval &IntB =
1093       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1094 
1095   // A is defined by PHI at the entry of MBB.
1096   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1097   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1098   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1099   if (!AValNo->isPHIDef())
1100     return false;
1101 
1102   // No B is referenced before CopyMI in MBB.
1103   if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1104     return false;
1105 
1106   // MBB has two predecessors: one contains A = B so no copy will be inserted
1107   // for it. The other one will have a copy moved from MBB.
1108   bool FoundReverseCopy = false;
1109   MachineBasicBlock *CopyLeftBB = nullptr;
1110   for (MachineBasicBlock *Pred : MBB.predecessors()) {
1111     VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1112     MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1113     if (!DefMI || !DefMI->isFullCopy()) {
1114       CopyLeftBB = Pred;
1115       continue;
1116     }
1117     // Check DefMI is a reverse copy and it is in BB Pred.
1118     if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1119         DefMI->getOperand(1).getReg() != IntB.reg() ||
1120         DefMI->getParent() != Pred) {
1121       CopyLeftBB = Pred;
1122       continue;
1123     }
1124     // If there is any other def of B after DefMI and before the end of Pred,
1125     // we need to keep the copy of B = A at the end of Pred if we remove
1126     // B = A from MBB.
1127     bool ValB_Changed = false;
1128     for (auto VNI : IntB.valnos) {
1129       if (VNI->isUnused())
1130         continue;
1131       if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1132         ValB_Changed = true;
1133         break;
1134       }
1135     }
1136     if (ValB_Changed) {
1137       CopyLeftBB = Pred;
1138       continue;
1139     }
1140     FoundReverseCopy = true;
1141   }
1142 
1143   // If no reverse copy is found in predecessors, nothing to do.
1144   if (!FoundReverseCopy)
1145     return false;
1146 
1147   // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1148   // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1149   // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1150   // update IntA/IntB.
1151   //
1152   // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1153   // MBB is hotter than CopyLeftBB.
1154   if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1155     return false;
1156 
1157   // Now (almost sure it's) ok to move copy.
1158   if (CopyLeftBB) {
1159     // Position in CopyLeftBB where we should insert new copy.
1160     auto InsPos = CopyLeftBB->getFirstTerminator();
1161 
1162     // Make sure that B isn't referenced in the terminators (if any) at the end
1163     // of the predecessor since we're about to insert a new definition of B
1164     // before them.
1165     if (InsPos != CopyLeftBB->end()) {
1166       SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1167       if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1168         return false;
1169     }
1170 
1171     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1172                       << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1173 
1174     // Insert new copy to CopyLeftBB.
1175     MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1176                                       TII->get(TargetOpcode::COPY), IntB.reg())
1177                                   .addReg(IntA.reg());
1178     SlotIndex NewCopyIdx =
1179         LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1180     IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1181     for (LiveInterval::SubRange &SR : IntB.subranges())
1182       SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1183 
1184     // If the newly created Instruction has an address of an instruction that was
1185     // deleted before (object recycled by the allocator) it needs to be removed from
1186     // the deleted list.
1187     ErasedInstrs.erase(NewCopyMI);
1188   } else {
1189     LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1190                       << printMBBReference(MBB) << '\t' << CopyMI);
1191   }
1192 
1193   // Remove CopyMI.
1194   // Note: This is fine to remove the copy before updating the live-ranges.
1195   // While updating the live-ranges, we only look at slot indices and
1196   // never go back to the instruction.
1197   // Mark instructions as deleted.
1198   deleteInstr(&CopyMI);
1199 
1200   // Update the liveness.
1201   SmallVector<SlotIndex, 8> EndPoints;
1202   VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1203   LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1204                   &EndPoints);
1205   BValNo->markUnused();
1206   // Extend IntB to the EndPoints of its original live interval.
1207   LIS->extendToIndices(IntB, EndPoints);
1208 
1209   // Now, do the same for its subranges.
1210   for (LiveInterval::SubRange &SR : IntB.subranges()) {
1211     EndPoints.clear();
1212     VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1213     assert(BValNo && "All sublanes should be live");
1214     LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1215     BValNo->markUnused();
1216     // We can have a situation where the result of the original copy is live,
1217     // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1218     // the copy appear as an endpoint from pruneValue(), but we don't want it
1219     // to because the copy has been removed.  We can go ahead and remove that
1220     // endpoint; there is no other situation here that there could be a use at
1221     // the same place as we know that the copy is a full copy.
1222     for (unsigned I = 0; I != EndPoints.size(); ) {
1223       if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1224         EndPoints[I] = EndPoints.back();
1225         EndPoints.pop_back();
1226         continue;
1227       }
1228       ++I;
1229     }
1230     SmallVector<SlotIndex, 8> Undefs;
1231     IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1232                                *LIS->getSlotIndexes());
1233     LIS->extendToIndices(SR, EndPoints, Undefs);
1234   }
1235   // If any dead defs were extended, truncate them.
1236   shrinkToUses(&IntB);
1237 
1238   // Finally, update the live-range of IntA.
1239   shrinkToUses(&IntA);
1240   return true;
1241 }
1242 
1243 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1244 /// defining a subregister.
definesFullReg(const MachineInstr & MI,Register Reg)1245 static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1246   assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1247 
1248   for (const MachineOperand &Op : MI.operands()) {
1249     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1250       continue;
1251     // Return true if we define the full register or don't care about the value
1252     // inside other subregisters.
1253     if (Op.getSubReg() == 0 || Op.isUndef())
1254       return true;
1255   }
1256   return false;
1257 }
1258 
reMaterializeTrivialDef(const CoalescerPair & CP,MachineInstr * CopyMI,bool & IsDefCopy)1259 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1260                                                 MachineInstr *CopyMI,
1261                                                 bool &IsDefCopy) {
1262   IsDefCopy = false;
1263   Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1264   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1265   Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1266   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1267   if (Register::isPhysicalRegister(SrcReg))
1268     return false;
1269 
1270   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1271   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1272   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1273   if (!ValNo)
1274     return false;
1275   if (ValNo->isPHIDef() || ValNo->isUnused())
1276     return false;
1277   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1278   if (!DefMI)
1279     return false;
1280   if (DefMI->isCopyLike()) {
1281     IsDefCopy = true;
1282     return false;
1283   }
1284   if (!TII->isAsCheapAsAMove(*DefMI))
1285     return false;
1286   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1287     return false;
1288   if (!definesFullReg(*DefMI, SrcReg))
1289     return false;
1290   bool SawStore = false;
1291   if (!DefMI->isSafeToMove(AA, SawStore))
1292     return false;
1293   const MCInstrDesc &MCID = DefMI->getDesc();
1294   if (MCID.getNumDefs() != 1)
1295     return false;
1296   // Only support subregister destinations when the def is read-undef.
1297   MachineOperand &DstOperand = CopyMI->getOperand(0);
1298   Register CopyDstReg = DstOperand.getReg();
1299   if (DstOperand.getSubReg() && !DstOperand.isUndef())
1300     return false;
1301 
1302   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1303   // the register substantially (beyond both source and dest size). This is bad
1304   // for performance since it can cascade through a function, introducing many
1305   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1306   // around after a few subreg copies).
1307   if (SrcIdx && DstIdx)
1308     return false;
1309 
1310   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1311   if (!DefMI->isImplicitDef()) {
1312     if (DstReg.isPhysical()) {
1313       Register NewDstReg = DstReg;
1314 
1315       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1316                                               DefMI->getOperand(0).getSubReg());
1317       if (NewDstIdx)
1318         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1319 
1320       // Finally, make sure that the physical subregister that will be
1321       // constructed later is permitted for the instruction.
1322       if (!DefRC->contains(NewDstReg))
1323         return false;
1324     } else {
1325       // Theoretically, some stack frame reference could exist. Just make sure
1326       // it hasn't actually happened.
1327       assert(Register::isVirtualRegister(DstReg) &&
1328              "Only expect to deal with virtual or physical registers");
1329     }
1330   }
1331 
1332   DebugLoc DL = CopyMI->getDebugLoc();
1333   MachineBasicBlock *MBB = CopyMI->getParent();
1334   MachineBasicBlock::iterator MII =
1335     std::next(MachineBasicBlock::iterator(CopyMI));
1336   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1337   MachineInstr &NewMI = *std::prev(MII);
1338   NewMI.setDebugLoc(DL);
1339 
1340   // In a situation like the following:
1341   //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1342   //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1343   // instead of widening %1 to the register class of %0 simply do:
1344   //     %1 = instr
1345   const TargetRegisterClass *NewRC = CP.getNewRC();
1346   if (DstIdx != 0) {
1347     MachineOperand &DefMO = NewMI.getOperand(0);
1348     if (DefMO.getSubReg() == DstIdx) {
1349       assert(SrcIdx == 0 && CP.isFlipped()
1350              && "Shouldn't have SrcIdx+DstIdx at this point");
1351       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1352       const TargetRegisterClass *CommonRC =
1353         TRI->getCommonSubClass(DefRC, DstRC);
1354       if (CommonRC != nullptr) {
1355         NewRC = CommonRC;
1356         DstIdx = 0;
1357         DefMO.setSubReg(0);
1358         DefMO.setIsUndef(false); // Only subregs can have def+undef.
1359       }
1360     }
1361   }
1362 
1363   // CopyMI may have implicit operands, save them so that we can transfer them
1364   // over to the newly materialized instruction after CopyMI is removed.
1365   SmallVector<MachineOperand, 4> ImplicitOps;
1366   ImplicitOps.reserve(CopyMI->getNumOperands() -
1367                       CopyMI->getDesc().getNumOperands());
1368   for (unsigned I = CopyMI->getDesc().getNumOperands(),
1369                 E = CopyMI->getNumOperands();
1370        I != E; ++I) {
1371     MachineOperand &MO = CopyMI->getOperand(I);
1372     if (MO.isReg()) {
1373       assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1374       // Discard VReg implicit defs.
1375       if (Register::isPhysicalRegister(MO.getReg()))
1376         ImplicitOps.push_back(MO);
1377     }
1378   }
1379 
1380   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1381   CopyMI->eraseFromParent();
1382   ErasedInstrs.insert(CopyMI);
1383 
1384   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1385   // We need to remember these so we can add intervals once we insert
1386   // NewMI into SlotIndexes.
1387   SmallVector<MCRegister, 4> NewMIImplDefs;
1388   for (unsigned i = NewMI.getDesc().getNumOperands(),
1389                 e = NewMI.getNumOperands();
1390        i != e; ++i) {
1391     MachineOperand &MO = NewMI.getOperand(i);
1392     if (MO.isReg() && MO.isDef()) {
1393       assert(MO.isImplicit() && MO.isDead() &&
1394              Register::isPhysicalRegister(MO.getReg()));
1395       NewMIImplDefs.push_back(MO.getReg().asMCReg());
1396     }
1397   }
1398 
1399   if (DstReg.isVirtual()) {
1400     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1401 
1402     if (DefRC != nullptr) {
1403       if (NewIdx)
1404         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1405       else
1406         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1407       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1408     }
1409     // Remap subranges to new lanemask and change register class.
1410     LiveInterval &DstInt = LIS->getInterval(DstReg);
1411     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1412       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1413     }
1414     MRI->setRegClass(DstReg, NewRC);
1415 
1416     // Update machine operands and add flags.
1417     updateRegDefsUses(DstReg, DstReg, DstIdx);
1418     NewMI.getOperand(0).setSubReg(NewIdx);
1419     // updateRegDefUses can add an "undef" flag to the definition, since
1420     // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1421     // sure that "undef" is not set.
1422     if (NewIdx == 0)
1423       NewMI.getOperand(0).setIsUndef(false);
1424     // Add dead subregister definitions if we are defining the whole register
1425     // but only part of it is live.
1426     // This could happen if the rematerialization instruction is rematerializing
1427     // more than actually is used in the register.
1428     // An example would be:
1429     // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1430     // ; Copying only part of the register here, but the rest is undef.
1431     // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1432     // ==>
1433     // ; Materialize all the constants but only using one
1434     // %2 = LOAD_CONSTANTS 5, 8
1435     //
1436     // at this point for the part that wasn't defined before we could have
1437     // subranges missing the definition.
1438     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1439       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1440       SlotIndex DefIndex =
1441           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1442       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1443       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1444       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1445         if (!SR.liveAt(DefIndex))
1446           SR.createDeadDef(DefIndex, Alloc);
1447         MaxMask &= ~SR.LaneMask;
1448       }
1449       if (MaxMask.any()) {
1450         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1451         SR->createDeadDef(DefIndex, Alloc);
1452       }
1453     }
1454 
1455     // Make sure that the subrange for resultant undef is removed
1456     // For example:
1457     //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1458     //   %2 = COPY %1
1459     // ==>
1460     //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1461     //     ; Correct but need to remove the subrange for %2:sub0
1462     //     ; as it is now undef
1463     if (NewIdx != 0 && DstInt.hasSubRanges()) {
1464       // The affected subregister segments can be removed.
1465       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1466       LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1467       bool UpdatedSubRanges = false;
1468       SlotIndex DefIndex =
1469           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1470       VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1471       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1472         if ((SR.LaneMask & DstMask).none()) {
1473           LLVM_DEBUG(dbgs()
1474                      << "Removing undefined SubRange "
1475                      << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1476           // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1477           if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1478             SR.removeValNo(RmValNo);
1479             UpdatedSubRanges = true;
1480           }
1481         } else {
1482           // We know that this lane is defined by this instruction,
1483           // but at this point it may be empty because it is not used by
1484           // anything. This happens when updateRegDefUses adds the missing
1485           // lanes. Assign that lane a dead def so that the interferences
1486           // are properly modeled.
1487           if (SR.empty())
1488             SR.createDeadDef(DefIndex, Alloc);
1489         }
1490       }
1491       if (UpdatedSubRanges)
1492         DstInt.removeEmptySubRanges();
1493     }
1494   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1495     // The New instruction may be defining a sub-register of what's actually
1496     // been asked for. If so it must implicitly define the whole thing.
1497     assert(Register::isPhysicalRegister(DstReg) &&
1498            "Only expect virtual or physical registers in remat");
1499     NewMI.getOperand(0).setIsDead(true);
1500     NewMI.addOperand(MachineOperand::CreateReg(
1501         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1502     // Record small dead def live-ranges for all the subregisters
1503     // of the destination register.
1504     // Otherwise, variables that live through may miss some
1505     // interferences, thus creating invalid allocation.
1506     // E.g., i386 code:
1507     // %1 = somedef ; %1 GR8
1508     // %2 = remat ; %2 GR32
1509     // CL = COPY %2.sub_8bit
1510     // = somedef %1 ; %1 GR8
1511     // =>
1512     // %1 = somedef ; %1 GR8
1513     // dead ECX = remat ; implicit-def CL
1514     // = somedef %1 ; %1 GR8
1515     // %1 will see the interferences with CL but not with CH since
1516     // no live-ranges would have been created for ECX.
1517     // Fix that!
1518     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1519     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1520          Units.isValid(); ++Units)
1521       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1522         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1523   }
1524 
1525   if (NewMI.getOperand(0).getSubReg())
1526     NewMI.getOperand(0).setIsUndef();
1527 
1528   // Transfer over implicit operands to the rematerialized instruction.
1529   for (MachineOperand &MO : ImplicitOps)
1530     NewMI.addOperand(MO);
1531 
1532   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1533   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1534     MCRegister Reg = NewMIImplDefs[i];
1535     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1536       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1537         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1538   }
1539 
1540   LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1541   ++NumReMats;
1542 
1543   // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1544   // to describe DstReg instead.
1545   if (MRI->use_nodbg_empty(SrcReg)) {
1546     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1547       MachineInstr *UseMI = UseMO.getParent();
1548       if (UseMI->isDebugValue()) {
1549         if (Register::isPhysicalRegister(DstReg))
1550           UseMO.substPhysReg(DstReg, *TRI);
1551         else
1552           UseMO.setReg(DstReg);
1553         // Move the debug value directly after the def of the rematerialized
1554         // value in DstReg.
1555         MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1556         LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1557       }
1558     }
1559   }
1560 
1561   if (ToBeUpdated.count(SrcReg))
1562     return true;
1563 
1564   unsigned NumCopyUses = 0;
1565   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1566     if (UseMO.getParent()->isCopyLike())
1567       NumCopyUses++;
1568   }
1569   if (NumCopyUses < LateRematUpdateThreshold) {
1570     // The source interval can become smaller because we removed a use.
1571     shrinkToUses(&SrcInt, &DeadDefs);
1572     if (!DeadDefs.empty())
1573       eliminateDeadDefs();
1574   } else {
1575     ToBeUpdated.insert(SrcReg);
1576   }
1577   return true;
1578 }
1579 
eliminateUndefCopy(MachineInstr * CopyMI)1580 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1581   // ProcessImplicitDefs may leave some copies of <undef> values, it only
1582   // removes local variables. When we have a copy like:
1583   //
1584   //   %1 = COPY undef %2
1585   //
1586   // We delete the copy and remove the corresponding value number from %1.
1587   // Any uses of that value number are marked as <undef>.
1588 
1589   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1590   // CoalescerPair may have a new register class with adjusted subreg indices
1591   // at this point.
1592   Register SrcReg, DstReg;
1593   unsigned SrcSubIdx = 0, DstSubIdx = 0;
1594   if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1595     return nullptr;
1596 
1597   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1598   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1599   // CopyMI is undef iff SrcReg is not live before the instruction.
1600   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1601     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1602     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1603       if ((SR.LaneMask & SrcMask).none())
1604         continue;
1605       if (SR.liveAt(Idx))
1606         return nullptr;
1607     }
1608   } else if (SrcLI.liveAt(Idx))
1609     return nullptr;
1610 
1611   // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1612   // then replace it with an IMPLICIT_DEF.
1613   LiveInterval &DstLI = LIS->getInterval(DstReg);
1614   SlotIndex RegIndex = Idx.getRegSlot();
1615   LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1616   assert(Seg != nullptr && "No segment for defining instruction");
1617   if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1618     if (V->isPHIDef()) {
1619       CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1620       for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1621         MachineOperand &MO = CopyMI->getOperand(i-1);
1622         if (MO.isReg() && MO.isUse())
1623           CopyMI->RemoveOperand(i-1);
1624       }
1625       LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1626                            "implicit def\n");
1627       return CopyMI;
1628     }
1629   }
1630 
1631   // Remove any DstReg segments starting at the instruction.
1632   LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1633 
1634   // Remove value or merge with previous one in case of a subregister def.
1635   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1636     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1637     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1638 
1639     // The affected subregister segments can be removed.
1640     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1641     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1642       if ((SR.LaneMask & DstMask).none())
1643         continue;
1644 
1645       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1646       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1647       SR.removeValNo(SVNI);
1648     }
1649     DstLI.removeEmptySubRanges();
1650   } else
1651     LIS->removeVRegDefAt(DstLI, RegIndex);
1652 
1653   // Mark uses as undef.
1654   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1655     if (MO.isDef() /*|| MO.isUndef()*/)
1656       continue;
1657     const MachineInstr &MI = *MO.getParent();
1658     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1659     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1660     bool isLive;
1661     if (!UseMask.all() && DstLI.hasSubRanges()) {
1662       isLive = false;
1663       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1664         if ((SR.LaneMask & UseMask).none())
1665           continue;
1666         if (SR.liveAt(UseIdx)) {
1667           isLive = true;
1668           break;
1669         }
1670       }
1671     } else
1672       isLive = DstLI.liveAt(UseIdx);
1673     if (isLive)
1674       continue;
1675     MO.setIsUndef(true);
1676     LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1677   }
1678 
1679   // A def of a subregister may be a use of the other subregisters, so
1680   // deleting a def of a subregister may also remove uses. Since CopyMI
1681   // is still part of the function (but about to be erased), mark all
1682   // defs of DstReg in it as <undef>, so that shrinkToUses would
1683   // ignore them.
1684   for (MachineOperand &MO : CopyMI->operands())
1685     if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1686       MO.setIsUndef(true);
1687   LIS->shrinkToUses(&DstLI);
1688 
1689   return CopyMI;
1690 }
1691 
addUndefFlag(const LiveInterval & Int,SlotIndex UseIdx,MachineOperand & MO,unsigned SubRegIdx)1692 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1693                                      MachineOperand &MO, unsigned SubRegIdx) {
1694   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1695   if (MO.isDef())
1696     Mask = ~Mask;
1697   bool IsUndef = true;
1698   for (const LiveInterval::SubRange &S : Int.subranges()) {
1699     if ((S.LaneMask & Mask).none())
1700       continue;
1701     if (S.liveAt(UseIdx)) {
1702       IsUndef = false;
1703       break;
1704     }
1705   }
1706   if (IsUndef) {
1707     MO.setIsUndef(true);
1708     // We found out some subregister use is actually reading an undefined
1709     // value. In some cases the whole vreg has become undefined at this
1710     // point so we have to potentially shrink the main range if the
1711     // use was ending a live segment there.
1712     LiveQueryResult Q = Int.Query(UseIdx);
1713     if (Q.valueOut() == nullptr)
1714       ShrinkMainRange = true;
1715   }
1716 }
1717 
updateRegDefsUses(Register SrcReg,Register DstReg,unsigned SubIdx)1718 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1719                                           unsigned SubIdx) {
1720   bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1721   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1722 
1723   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1724     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1725       unsigned SubReg = MO.getSubReg();
1726       if (SubReg == 0 || MO.isUndef())
1727         continue;
1728       MachineInstr &MI = *MO.getParent();
1729       if (MI.isDebugValue())
1730         continue;
1731       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1732       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1733     }
1734   }
1735 
1736   SmallPtrSet<MachineInstr*, 8> Visited;
1737   for (MachineRegisterInfo::reg_instr_iterator
1738        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1739        I != E; ) {
1740     MachineInstr *UseMI = &*(I++);
1741 
1742     // Each instruction can only be rewritten once because sub-register
1743     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1744     // the UseMI operands removes them from the SrcReg use-def chain, but when
1745     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1746     // operands mentioning the virtual register.
1747     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1748       continue;
1749 
1750     SmallVector<unsigned,8> Ops;
1751     bool Reads, Writes;
1752     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1753 
1754     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1755     // because SrcReg is a sub-register.
1756     if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1757       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1758 
1759     // Replace SrcReg with DstReg in all UseMI operands.
1760     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1761       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1762 
1763       // Adjust <undef> flags in case of sub-register joins. We don't want to
1764       // turn a full def into a read-modify-write sub-register def and vice
1765       // versa.
1766       if (SubIdx && MO.isDef())
1767         MO.setIsUndef(!Reads);
1768 
1769       // A subreg use of a partially undef (super) register may be a complete
1770       // undef use now and then has to be marked that way.
1771       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1772         if (!DstInt->hasSubRanges()) {
1773           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1774           LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1775           LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1776           LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1777           DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1778           // The unused lanes are just empty live-ranges at this point.
1779           // It is the caller responsibility to set the proper
1780           // dead segments if there is an actual dead def of the
1781           // unused lanes. This may happen with rematerialization.
1782           DstInt->createSubRange(Allocator, UnusedLanes);
1783         }
1784         SlotIndex MIIdx = UseMI->isDebugValue()
1785                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1786                               : LIS->getInstructionIndex(*UseMI);
1787         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1788         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1789       }
1790 
1791       if (DstIsPhys)
1792         MO.substPhysReg(DstReg, *TRI);
1793       else
1794         MO.substVirtReg(DstReg, SubIdx, *TRI);
1795     }
1796 
1797     LLVM_DEBUG({
1798       dbgs() << "\t\tupdated: ";
1799       if (!UseMI->isDebugValue())
1800         dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1801       dbgs() << *UseMI;
1802     });
1803   }
1804 }
1805 
canJoinPhys(const CoalescerPair & CP)1806 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1807   // Always join simple intervals that are defined by a single copy from a
1808   // reserved register. This doesn't increase register pressure, so it is
1809   // always beneficial.
1810   if (!MRI->isReserved(CP.getDstReg())) {
1811     LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1812     return false;
1813   }
1814 
1815   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1816   if (JoinVInt.containsOneValue())
1817     return true;
1818 
1819   LLVM_DEBUG(
1820       dbgs() << "\tCannot join complex intervals into reserved register.\n");
1821   return false;
1822 }
1823 
copyValueUndefInPredecessors(LiveRange & S,const MachineBasicBlock * MBB,LiveQueryResult SLRQ)1824 bool RegisterCoalescer::copyValueUndefInPredecessors(
1825     LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1826   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1827     SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1828     if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1829       // If this is a self loop, we may be reading the same value.
1830       if (V->id != SLRQ.valueOutOrDead()->id)
1831         return false;
1832     }
1833   }
1834 
1835   return true;
1836 }
1837 
setUndefOnPrunedSubRegUses(LiveInterval & LI,Register Reg,LaneBitmask PrunedLanes)1838 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1839                                                    Register Reg,
1840                                                    LaneBitmask PrunedLanes) {
1841   // If we had other instructions in the segment reading the undef sublane
1842   // value, we need to mark them with undef.
1843   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1844     unsigned SubRegIdx = MO.getSubReg();
1845     if (SubRegIdx == 0 || MO.isUndef())
1846       continue;
1847 
1848     LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1849     SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1850     for (LiveInterval::SubRange &S : LI.subranges()) {
1851       if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1852         MO.setIsUndef();
1853         break;
1854       }
1855     }
1856   }
1857 
1858   LI.removeEmptySubRanges();
1859 
1860   // A def of a subregister may be a use of other register lanes. Replacing
1861   // such a def with a def of a different register will eliminate the use,
1862   // and may cause the recorded live range to be larger than the actual
1863   // liveness in the program IR.
1864   LIS->shrinkToUses(&LI);
1865 }
1866 
joinCopy(MachineInstr * CopyMI,bool & Again)1867 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1868   Again = false;
1869   LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1870 
1871   CoalescerPair CP(*TRI);
1872   if (!CP.setRegisters(CopyMI)) {
1873     LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1874     return false;
1875   }
1876 
1877   if (CP.getNewRC()) {
1878     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1879     auto DstRC = MRI->getRegClass(CP.getDstReg());
1880     unsigned SrcIdx = CP.getSrcIdx();
1881     unsigned DstIdx = CP.getDstIdx();
1882     if (CP.isFlipped()) {
1883       std::swap(SrcIdx, DstIdx);
1884       std::swap(SrcRC, DstRC);
1885     }
1886     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1887                              CP.getNewRC(), *LIS)) {
1888       LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1889       return false;
1890     }
1891   }
1892 
1893   // Dead code elimination. This really should be handled by MachineDCE, but
1894   // sometimes dead copies slip through, and we can't generate invalid live
1895   // ranges.
1896   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1897     LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1898     DeadDefs.push_back(CopyMI);
1899     eliminateDeadDefs();
1900     return true;
1901   }
1902 
1903   // Eliminate undefs.
1904   if (!CP.isPhys()) {
1905     // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1906     if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1907       if (UndefMI->isImplicitDef())
1908         return false;
1909       deleteInstr(CopyMI);
1910       return false;  // Not coalescable.
1911     }
1912   }
1913 
1914   // Coalesced copies are normally removed immediately, but transformations
1915   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1916   // When that happens, just join the values and remove the copy.
1917   if (CP.getSrcReg() == CP.getDstReg()) {
1918     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1919     LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1920     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1921     LiveQueryResult LRQ = LI.Query(CopyIdx);
1922     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1923       VNInfo *ReadVNI = LRQ.valueIn();
1924       assert(ReadVNI && "No value before copy and no <undef> flag.");
1925       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1926 
1927       // Track incoming undef lanes we need to eliminate from the subrange.
1928       LaneBitmask PrunedLanes;
1929       MachineBasicBlock *MBB = CopyMI->getParent();
1930 
1931       // Process subregister liveranges.
1932       for (LiveInterval::SubRange &S : LI.subranges()) {
1933         LiveQueryResult SLRQ = S.Query(CopyIdx);
1934         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1935           if (VNInfo *SReadVNI = SLRQ.valueIn())
1936             SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
1937 
1938           // If this copy introduced an undef subrange from an incoming value,
1939           // we need to eliminate the undef live in values from the subrange.
1940           if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
1941             LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
1942             PrunedLanes |= S.LaneMask;
1943             S.removeValNo(SDefVNI);
1944           }
1945         }
1946       }
1947 
1948       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1949       if (PrunedLanes.any()) {
1950         LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
1951                           << PrunedLanes << '\n');
1952         setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
1953       }
1954 
1955       LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1956     }
1957     deleteInstr(CopyMI);
1958     return true;
1959   }
1960 
1961   // Enforce policies.
1962   if (CP.isPhys()) {
1963     LLVM_DEBUG(dbgs() << "\tConsidering merging "
1964                       << printReg(CP.getSrcReg(), TRI) << " with "
1965                       << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1966     if (!canJoinPhys(CP)) {
1967       // Before giving up coalescing, if definition of source is defined by
1968       // trivial computation, try rematerializing it.
1969       bool IsDefCopy = false;
1970       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1971         return true;
1972       if (IsDefCopy)
1973         Again = true;  // May be possible to coalesce later.
1974       return false;
1975     }
1976   } else {
1977     // When possible, let DstReg be the larger interval.
1978     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1979                            LIS->getInterval(CP.getDstReg()).size())
1980       CP.flip();
1981 
1982     LLVM_DEBUG({
1983       dbgs() << "\tConsidering merging to "
1984              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1985       if (CP.getDstIdx() && CP.getSrcIdx())
1986         dbgs() << printReg(CP.getDstReg()) << " in "
1987                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1988                << printReg(CP.getSrcReg()) << " in "
1989                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1990       else
1991         dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1992                << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1993     });
1994   }
1995 
1996   ShrinkMask = LaneBitmask::getNone();
1997   ShrinkMainRange = false;
1998 
1999   // Okay, attempt to join these two intervals.  On failure, this returns false.
2000   // Otherwise, if one of the intervals being joined is a physreg, this method
2001   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
2002   // been modified, so we can use this information below to update aliases.
2003   if (!joinIntervals(CP)) {
2004     // Coalescing failed.
2005 
2006     // If definition of source is defined by trivial computation, try
2007     // rematerializing it.
2008     bool IsDefCopy = false;
2009     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2010       return true;
2011 
2012     // If we can eliminate the copy without merging the live segments, do so
2013     // now.
2014     if (!CP.isPartial() && !CP.isPhys()) {
2015       bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2016       bool Shrink = false;
2017       if (!Changed)
2018         std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2019       if (Changed) {
2020         deleteInstr(CopyMI);
2021         if (Shrink) {
2022           Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2023           LiveInterval &DstLI = LIS->getInterval(DstReg);
2024           shrinkToUses(&DstLI);
2025           LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
2026         }
2027         LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2028         return true;
2029       }
2030     }
2031 
2032     // Try and see if we can partially eliminate the copy by moving the copy to
2033     // its predecessor.
2034     if (!CP.isPartial() && !CP.isPhys())
2035       if (removePartialRedundancy(CP, *CopyMI))
2036         return true;
2037 
2038     // Otherwise, we are unable to join the intervals.
2039     LLVM_DEBUG(dbgs() << "\tInterference!\n");
2040     Again = true;  // May be possible to coalesce later.
2041     return false;
2042   }
2043 
2044   // Coalescing to a virtual register that is of a sub-register class of the
2045   // other. Make sure the resulting register is set to the right register class.
2046   if (CP.isCrossClass()) {
2047     ++numCrossRCs;
2048     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2049   }
2050 
2051   // Removing sub-register copies can ease the register class constraints.
2052   // Make sure we attempt to inflate the register class of DstReg.
2053   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2054     InflateRegs.push_back(CP.getDstReg());
2055 
2056   // CopyMI has been erased by joinIntervals at this point. Remove it from
2057   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2058   // to the work list. This keeps ErasedInstrs from growing needlessly.
2059   ErasedInstrs.erase(CopyMI);
2060 
2061   // Rewrite all SrcReg operands to DstReg.
2062   // Also update DstReg operands to include DstIdx if it is set.
2063   if (CP.getDstIdx())
2064     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2065   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2066 
2067   // Shrink subregister ranges if necessary.
2068   if (ShrinkMask.any()) {
2069     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2070     for (LiveInterval::SubRange &S : LI.subranges()) {
2071       if ((S.LaneMask & ShrinkMask).none())
2072         continue;
2073       LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2074                         << ")\n");
2075       LIS->shrinkToUses(S, LI.reg());
2076     }
2077     LI.removeEmptySubRanges();
2078   }
2079 
2080   // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2081   // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2082   // is not up-to-date, need to update the merged live interval here.
2083   if (ToBeUpdated.count(CP.getSrcReg()))
2084     ShrinkMainRange = true;
2085 
2086   if (ShrinkMainRange) {
2087     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2088     shrinkToUses(&LI);
2089   }
2090 
2091   // SrcReg is guaranteed to be the register whose live interval that is
2092   // being merged.
2093   LIS->removeInterval(CP.getSrcReg());
2094 
2095   // Update regalloc hint.
2096   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2097 
2098   LLVM_DEBUG({
2099     dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2100            << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2101     dbgs() << "\tResult = ";
2102     if (CP.isPhys())
2103       dbgs() << printReg(CP.getDstReg(), TRI);
2104     else
2105       dbgs() << LIS->getInterval(CP.getDstReg());
2106     dbgs() << '\n';
2107   });
2108 
2109   ++numJoins;
2110   return true;
2111 }
2112 
joinReservedPhysReg(CoalescerPair & CP)2113 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2114   Register DstReg = CP.getDstReg();
2115   Register SrcReg = CP.getSrcReg();
2116   assert(CP.isPhys() && "Must be a physreg copy");
2117   assert(MRI->isReserved(DstReg) && "Not a reserved register");
2118   LiveInterval &RHS = LIS->getInterval(SrcReg);
2119   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2120 
2121   assert(RHS.containsOneValue() && "Invalid join with reserved register");
2122 
2123   // Optimization for reserved registers like ESP. We can only merge with a
2124   // reserved physreg if RHS has a single value that is a copy of DstReg.
2125   // The live range of the reserved register will look like a set of dead defs
2126   // - we don't properly track the live range of reserved registers.
2127 
2128   // Deny any overlapping intervals.  This depends on all the reserved
2129   // register live ranges to look like dead defs.
2130   if (!MRI->isConstantPhysReg(DstReg)) {
2131     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2132       // Abort if not all the regunits are reserved.
2133       for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2134         if (!MRI->isReserved(*RI))
2135           return false;
2136       }
2137       if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2138         LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2139                           << '\n');
2140         return false;
2141       }
2142     }
2143 
2144     // We must also check for overlaps with regmask clobbers.
2145     BitVector RegMaskUsable;
2146     if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2147         !RegMaskUsable.test(DstReg)) {
2148       LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2149       return false;
2150     }
2151   }
2152 
2153   // Skip any value computations, we are not adding new values to the
2154   // reserved register.  Also skip merging the live ranges, the reserved
2155   // register live range doesn't need to be accurate as long as all the
2156   // defs are there.
2157 
2158   // Delete the identity copy.
2159   MachineInstr *CopyMI;
2160   if (CP.isFlipped()) {
2161     // Physreg is copied into vreg
2162     //   %y = COPY %physreg_x
2163     //   ...  //< no other def of %physreg_x here
2164     //   use %y
2165     // =>
2166     //   ...
2167     //   use %physreg_x
2168     CopyMI = MRI->getVRegDef(SrcReg);
2169   } else {
2170     // VReg is copied into physreg:
2171     //   %y = def
2172     //   ... //< no other def or use of %physreg_x here
2173     //   %physreg_x = COPY %y
2174     // =>
2175     //   %physreg_x = def
2176     //   ...
2177     if (!MRI->hasOneNonDBGUse(SrcReg)) {
2178       LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2179       return false;
2180     }
2181 
2182     if (!LIS->intervalIsInOneMBB(RHS)) {
2183       LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2184       return false;
2185     }
2186 
2187     MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2188     CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2189     SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2190     SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2191 
2192     if (!MRI->isConstantPhysReg(DstReg)) {
2193       // We checked above that there are no interfering defs of the physical
2194       // register. However, for this case, where we intend to move up the def of
2195       // the physical register, we also need to check for interfering uses.
2196       SlotIndexes *Indexes = LIS->getSlotIndexes();
2197       for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2198            SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2199         MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2200         if (MI->readsRegister(DstReg, TRI)) {
2201           LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2202           return false;
2203         }
2204       }
2205     }
2206 
2207     // We're going to remove the copy which defines a physical reserved
2208     // register, so remove its valno, etc.
2209     LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2210                       << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2211 
2212     LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2213     // Create a new dead def at the new def location.
2214     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2215       LiveRange &LR = LIS->getRegUnit(*UI);
2216       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2217     }
2218   }
2219 
2220   deleteInstr(CopyMI);
2221 
2222   // We don't track kills for reserved registers.
2223   MRI->clearKillFlags(CP.getSrcReg());
2224 
2225   return true;
2226 }
2227 
2228 //===----------------------------------------------------------------------===//
2229 //                 Interference checking and interval joining
2230 //===----------------------------------------------------------------------===//
2231 //
2232 // In the easiest case, the two live ranges being joined are disjoint, and
2233 // there is no interference to consider. It is quite common, though, to have
2234 // overlapping live ranges, and we need to check if the interference can be
2235 // resolved.
2236 //
2237 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2238 // This means that two SSA values overlap if and only if the def of one value
2239 // is contained in the live range of the other value. As a special case, the
2240 // overlapping values can be defined at the same index.
2241 //
2242 // The interference from an overlapping def can be resolved in these cases:
2243 //
2244 // 1. Coalescable copies. The value is defined by a copy that would become an
2245 //    identity copy after joining SrcReg and DstReg. The copy instruction will
2246 //    be removed, and the value will be merged with the source value.
2247 //
2248 //    There can be several copies back and forth, causing many values to be
2249 //    merged into one. We compute a list of ultimate values in the joined live
2250 //    range as well as a mappings from the old value numbers.
2251 //
2252 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2253 //    predecessors have a live out value. It doesn't cause real interference,
2254 //    and can be merged into the value it overlaps. Like a coalescable copy, it
2255 //    can be erased after joining.
2256 //
2257 // 3. Copy of external value. The overlapping def may be a copy of a value that
2258 //    is already in the other register. This is like a coalescable copy, but
2259 //    the live range of the source register must be trimmed after erasing the
2260 //    copy instruction:
2261 //
2262 //      %src = COPY %ext
2263 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2264 //
2265 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2266 //    defining one lane at a time:
2267 //
2268 //      %dst:ssub0<def,read-undef> = FOO
2269 //      %src = BAR
2270 //      %dst:ssub1 = COPY %src
2271 //
2272 //    The live range of %src overlaps the %dst value defined by FOO, but
2273 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2274 //    which was undef anyway.
2275 //
2276 //    The value mapping is more complicated in this case. The final live range
2277 //    will have different value numbers for both FOO and BAR, but there is no
2278 //    simple mapping from old to new values. It may even be necessary to add
2279 //    new PHI values.
2280 //
2281 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2282 //    is live, but never read. This can happen because we don't compute
2283 //    individual live ranges per lane.
2284 //
2285 //      %dst = FOO
2286 //      %src = BAR
2287 //      %dst:ssub1 = COPY %src
2288 //
2289 //    This kind of interference is only resolved locally. If the clobbered
2290 //    lane value escapes the block, the join is aborted.
2291 
2292 namespace {
2293 
2294 /// Track information about values in a single virtual register about to be
2295 /// joined. Objects of this class are always created in pairs - one for each
2296 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2297 /// pair)
2298 class JoinVals {
2299   /// Live range we work on.
2300   LiveRange &LR;
2301 
2302   /// (Main) register we work on.
2303   const Register Reg;
2304 
2305   /// Reg (and therefore the values in this liverange) will end up as
2306   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2307   /// CP.SrcIdx.
2308   const unsigned SubIdx;
2309 
2310   /// The LaneMask that this liverange will occupy the coalesced register. May
2311   /// be smaller than the lanemask produced by SubIdx when merging subranges.
2312   const LaneBitmask LaneMask;
2313 
2314   /// This is true when joining sub register ranges, false when joining main
2315   /// ranges.
2316   const bool SubRangeJoin;
2317 
2318   /// Whether the current LiveInterval tracks subregister liveness.
2319   const bool TrackSubRegLiveness;
2320 
2321   /// Values that will be present in the final live range.
2322   SmallVectorImpl<VNInfo*> &NewVNInfo;
2323 
2324   const CoalescerPair &CP;
2325   LiveIntervals *LIS;
2326   SlotIndexes *Indexes;
2327   const TargetRegisterInfo *TRI;
2328 
2329   /// Value number assignments. Maps value numbers in LI to entries in
2330   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2331   SmallVector<int, 8> Assignments;
2332 
2333   public:
2334   /// Conflict resolution for overlapping values.
2335   enum ConflictResolution {
2336     /// No overlap, simply keep this value.
2337     CR_Keep,
2338 
2339     /// Merge this value into OtherVNI and erase the defining instruction.
2340     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2341     /// values.
2342     CR_Erase,
2343 
2344     /// Merge this value into OtherVNI but keep the defining instruction.
2345     /// This is for the special case where OtherVNI is defined by the same
2346     /// instruction.
2347     CR_Merge,
2348 
2349     /// Keep this value, and have it replace OtherVNI where possible. This
2350     /// complicates value mapping since OtherVNI maps to two different values
2351     /// before and after this def.
2352     /// Used when clobbering undefined or dead lanes.
2353     CR_Replace,
2354 
2355     /// Unresolved conflict. Visit later when all values have been mapped.
2356     CR_Unresolved,
2357 
2358     /// Unresolvable conflict. Abort the join.
2359     CR_Impossible
2360   };
2361 
2362   private:
2363   /// Per-value info for LI. The lane bit masks are all relative to the final
2364   /// joined register, so they can be compared directly between SrcReg and
2365   /// DstReg.
2366   struct Val {
2367     ConflictResolution Resolution = CR_Keep;
2368 
2369     /// Lanes written by this def, 0 for unanalyzed values.
2370     LaneBitmask WriteLanes;
2371 
2372     /// Lanes with defined values in this register. Other lanes are undef and
2373     /// safe to clobber.
2374     LaneBitmask ValidLanes;
2375 
2376     /// Value in LI being redefined by this def.
2377     VNInfo *RedefVNI = nullptr;
2378 
2379     /// Value in the other live range that overlaps this def, if any.
2380     VNInfo *OtherVNI = nullptr;
2381 
2382     /// Is this value an IMPLICIT_DEF that can be erased?
2383     ///
2384     /// IMPLICIT_DEF values should only exist at the end of a basic block that
2385     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2386     /// safely erased if they are overlapping a live value in the other live
2387     /// interval.
2388     ///
2389     /// Weird control flow graphs and incomplete PHI handling in
2390     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2391     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2392     /// normal values.
2393     bool ErasableImplicitDef = false;
2394 
2395     /// True when the live range of this value will be pruned because of an
2396     /// overlapping CR_Replace value in the other live range.
2397     bool Pruned = false;
2398 
2399     /// True once Pruned above has been computed.
2400     bool PrunedComputed = false;
2401 
2402     /// True if this value is determined to be identical to OtherVNI
2403     /// (in valuesIdentical). This is used with CR_Erase where the erased
2404     /// copy is redundant, i.e. the source value is already the same as
2405     /// the destination. In such cases the subranges need to be updated
2406     /// properly. See comment at pruneSubRegValues for more info.
2407     bool Identical = false;
2408 
2409     Val() = default;
2410 
isAnalyzed__anon583695820311::JoinVals::Val2411     bool isAnalyzed() const { return WriteLanes.any(); }
2412   };
2413 
2414   /// One entry per value number in LI.
2415   SmallVector<Val, 8> Vals;
2416 
2417   /// Compute the bitmask of lanes actually written by DefMI.
2418   /// Set Redef if there are any partial register definitions that depend on the
2419   /// previous value of the register.
2420   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2421 
2422   /// Find the ultimate value that VNI was copied from.
2423   std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2424 
2425   bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2426 
2427   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2428   /// Return a conflict resolution when possible, but leave the hard cases as
2429   /// CR_Unresolved.
2430   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2431   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2432   /// The recursion always goes upwards in the dominator tree, making loops
2433   /// impossible.
2434   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2435 
2436   /// Compute the value assignment for ValNo in RI.
2437   /// This may be called recursively by analyzeValue(), but never for a ValNo on
2438   /// the stack.
2439   void computeAssignment(unsigned ValNo, JoinVals &Other);
2440 
2441   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2442   /// the extent of the tainted lanes in the block.
2443   ///
2444   /// Multiple values in Other.LR can be affected since partial redefinitions
2445   /// can preserve previously tainted lanes.
2446   ///
2447   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2448   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2449   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2450   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2451   ///
2452   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2453   /// entry to TaintedVals.
2454   ///
2455   /// Returns false if the tainted lanes extend beyond the basic block.
2456   bool
2457   taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2458               SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2459 
2460   /// Return true if MI uses any of the given Lanes from Reg.
2461   /// This does not include partial redefinitions of Reg.
2462   bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2463 
2464   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2465   /// be pruned:
2466   ///
2467   ///   %dst = COPY %src
2468   ///   %src = COPY %dst  <-- This value to be pruned.
2469   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2470   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2471 
2472 public:
JoinVals(LiveRange & LR,Register Reg,unsigned SubIdx,LaneBitmask LaneMask,SmallVectorImpl<VNInfo * > & newVNInfo,const CoalescerPair & cp,LiveIntervals * lis,const TargetRegisterInfo * TRI,bool SubRangeJoin,bool TrackSubRegLiveness)2473   JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2474            SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2475            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2476            bool TrackSubRegLiveness)
2477       : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2478         SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2479         NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2480         TRI(TRI), Assignments(LR.getNumValNums(), -1),
2481         Vals(LR.getNumValNums()) {}
2482 
2483   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2484   /// Returns false if any conflicts were impossible to resolve.
2485   bool mapValues(JoinVals &Other);
2486 
2487   /// Try to resolve conflicts that require all values to be mapped.
2488   /// Returns false if any conflicts were impossible to resolve.
2489   bool resolveConflicts(JoinVals &Other);
2490 
2491   /// Prune the live range of values in Other.LR where they would conflict with
2492   /// CR_Replace values in LR. Collect end points for restoring the live range
2493   /// after joining.
2494   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2495                    bool changeInstrs);
2496 
2497   /// Removes subranges starting at copies that get removed. This sometimes
2498   /// happens when undefined subranges are copied around. These ranges contain
2499   /// no useful information and can be removed.
2500   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2501 
2502   /// Pruning values in subranges can lead to removing segments in these
2503   /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2504   /// the main range also need to be removed. This function will mark
2505   /// the corresponding values in the main range as pruned, so that
2506   /// eraseInstrs can do the final cleanup.
2507   /// The parameter @p LI must be the interval whose main range is the
2508   /// live range LR.
2509   void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2510 
2511   /// Erase any machine instructions that have been coalesced away.
2512   /// Add erased instructions to ErasedInstrs.
2513   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2514   /// the erased instrs.
2515   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2516                    SmallVectorImpl<Register> &ShrinkRegs,
2517                    LiveInterval *LI = nullptr);
2518 
2519   /// Remove liverange defs at places where implicit defs will be removed.
2520   void removeImplicitDefs();
2521 
2522   /// Get the value assignments suitable for passing to LiveInterval::join.
getAssignments() const2523   const int *getAssignments() const { return Assignments.data(); }
2524 
2525   /// Get the conflict resolution for a value number.
getResolution(unsigned Num) const2526   ConflictResolution getResolution(unsigned Num) const {
2527     return Vals[Num].Resolution;
2528   }
2529 };
2530 
2531 } // end anonymous namespace
2532 
computeWriteLanes(const MachineInstr * DefMI,bool & Redef) const2533 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2534   const {
2535   LaneBitmask L;
2536   for (const MachineOperand &MO : DefMI->operands()) {
2537     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2538       continue;
2539     L |= TRI->getSubRegIndexLaneMask(
2540            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2541     if (MO.readsReg())
2542       Redef = true;
2543   }
2544   return L;
2545 }
2546 
2547 std::pair<const VNInfo *, Register>
followCopyChain(const VNInfo * VNI) const2548 JoinVals::followCopyChain(const VNInfo *VNI) const {
2549   Register TrackReg = Reg;
2550 
2551   while (!VNI->isPHIDef()) {
2552     SlotIndex Def = VNI->def;
2553     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2554     assert(MI && "No defining instruction");
2555     if (!MI->isFullCopy())
2556       return std::make_pair(VNI, TrackReg);
2557     Register SrcReg = MI->getOperand(1).getReg();
2558     if (!SrcReg.isVirtual())
2559       return std::make_pair(VNI, TrackReg);
2560 
2561     const LiveInterval &LI = LIS->getInterval(SrcReg);
2562     const VNInfo *ValueIn;
2563     // No subrange involved.
2564     if (!SubRangeJoin || !LI.hasSubRanges()) {
2565       LiveQueryResult LRQ = LI.Query(Def);
2566       ValueIn = LRQ.valueIn();
2567     } else {
2568       // Query subranges. Ensure that all matching ones take us to the same def
2569       // (allowing some of them to be undef).
2570       ValueIn = nullptr;
2571       for (const LiveInterval::SubRange &S : LI.subranges()) {
2572         // Transform lanemask to a mask in the joined live interval.
2573         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2574         if ((SMask & LaneMask).none())
2575           continue;
2576         LiveQueryResult LRQ = S.Query(Def);
2577         if (!ValueIn) {
2578           ValueIn = LRQ.valueIn();
2579           continue;
2580         }
2581         if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2582           return std::make_pair(VNI, TrackReg);
2583       }
2584     }
2585     if (ValueIn == nullptr) {
2586       // Reaching an undefined value is legitimate, for example:
2587       //
2588       // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2589       // 2   %1 = COPY %0         ;; %1 is defined here.
2590       // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2591       //                          ;; but it's equivalent to "undef".
2592       return std::make_pair(nullptr, SrcReg);
2593     }
2594     VNI = ValueIn;
2595     TrackReg = SrcReg;
2596   }
2597   return std::make_pair(VNI, TrackReg);
2598 }
2599 
valuesIdentical(VNInfo * Value0,VNInfo * Value1,const JoinVals & Other) const2600 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2601                                const JoinVals &Other) const {
2602   const VNInfo *Orig0;
2603   Register Reg0;
2604   std::tie(Orig0, Reg0) = followCopyChain(Value0);
2605   if (Orig0 == Value1 && Reg0 == Other.Reg)
2606     return true;
2607 
2608   const VNInfo *Orig1;
2609   Register Reg1;
2610   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2611   // If both values are undefined, and the source registers are the same
2612   // register, the values are identical. Filter out cases where only one
2613   // value is defined.
2614   if (Orig0 == nullptr || Orig1 == nullptr)
2615     return Orig0 == Orig1 && Reg0 == Reg1;
2616 
2617   // The values are equal if they are defined at the same place and use the
2618   // same register. Note that we cannot compare VNInfos directly as some of
2619   // them might be from a copy created in mergeSubRangeInto()  while the other
2620   // is from the original LiveInterval.
2621   return Orig0->def == Orig1->def && Reg0 == Reg1;
2622 }
2623 
2624 JoinVals::ConflictResolution
analyzeValue(unsigned ValNo,JoinVals & Other)2625 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2626   Val &V = Vals[ValNo];
2627   assert(!V.isAnalyzed() && "Value has already been analyzed!");
2628   VNInfo *VNI = LR.getValNumInfo(ValNo);
2629   if (VNI->isUnused()) {
2630     V.WriteLanes = LaneBitmask::getAll();
2631     return CR_Keep;
2632   }
2633 
2634   // Get the instruction defining this value, compute the lanes written.
2635   const MachineInstr *DefMI = nullptr;
2636   if (VNI->isPHIDef()) {
2637     // Conservatively assume that all lanes in a PHI are valid.
2638     LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2639                                      : TRI->getSubRegIndexLaneMask(SubIdx);
2640     V.ValidLanes = V.WriteLanes = Lanes;
2641   } else {
2642     DefMI = Indexes->getInstructionFromIndex(VNI->def);
2643     assert(DefMI != nullptr);
2644     if (SubRangeJoin) {
2645       // We don't care about the lanes when joining subregister ranges.
2646       V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2647       if (DefMI->isImplicitDef()) {
2648         V.ValidLanes = LaneBitmask::getNone();
2649         V.ErasableImplicitDef = true;
2650       }
2651     } else {
2652       bool Redef = false;
2653       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2654 
2655       // If this is a read-modify-write instruction, there may be more valid
2656       // lanes than the ones written by this instruction.
2657       // This only covers partial redef operands. DefMI may have normal use
2658       // operands reading the register. They don't contribute valid lanes.
2659       //
2660       // This adds ssub1 to the set of valid lanes in %src:
2661       //
2662       //   %src:ssub1 = FOO
2663       //
2664       // This leaves only ssub1 valid, making any other lanes undef:
2665       //
2666       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2667       //
2668       // The <read-undef> flag on the def operand means that old lane values are
2669       // not important.
2670       if (Redef) {
2671         V.RedefVNI = LR.Query(VNI->def).valueIn();
2672         assert((TrackSubRegLiveness || V.RedefVNI) &&
2673                "Instruction is reading nonexistent value");
2674         if (V.RedefVNI != nullptr) {
2675           computeAssignment(V.RedefVNI->id, Other);
2676           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2677         }
2678       }
2679 
2680       // An IMPLICIT_DEF writes undef values.
2681       if (DefMI->isImplicitDef()) {
2682         // We normally expect IMPLICIT_DEF values to be live only until the end
2683         // of their block. If the value is really live longer and gets pruned in
2684         // another block, this flag is cleared again.
2685         //
2686         // Clearing the valid lanes is deferred until it is sure this can be
2687         // erased.
2688         V.ErasableImplicitDef = true;
2689       }
2690     }
2691   }
2692 
2693   // Find the value in Other that overlaps VNI->def, if any.
2694   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2695 
2696   // It is possible that both values are defined by the same instruction, or
2697   // the values are PHIs defined in the same block. When that happens, the two
2698   // values should be merged into one, but not into any preceding value.
2699   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2700   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2701     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2702 
2703     // One value stays, the other is merged. Keep the earlier one, or the first
2704     // one we see.
2705     if (OtherVNI->def < VNI->def)
2706       Other.computeAssignment(OtherVNI->id, *this);
2707     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2708       // This is an early-clobber def overlapping a live-in value in the other
2709       // register. Not mergeable.
2710       V.OtherVNI = OtherLRQ.valueIn();
2711       return CR_Impossible;
2712     }
2713     V.OtherVNI = OtherVNI;
2714     Val &OtherV = Other.Vals[OtherVNI->id];
2715     // Keep this value, check for conflicts when analyzing OtherVNI.
2716     if (!OtherV.isAnalyzed())
2717       return CR_Keep;
2718     // Both sides have been analyzed now.
2719     // Allow overlapping PHI values. Any real interference would show up in a
2720     // predecessor, the PHI itself can't introduce any conflicts.
2721     if (VNI->isPHIDef())
2722       return CR_Merge;
2723     if ((V.ValidLanes & OtherV.ValidLanes).any())
2724       // Overlapping lanes can't be resolved.
2725       return CR_Impossible;
2726     else
2727       return CR_Merge;
2728   }
2729 
2730   // No simultaneous def. Is Other live at the def?
2731   V.OtherVNI = OtherLRQ.valueIn();
2732   if (!V.OtherVNI)
2733     // No overlap, no conflict.
2734     return CR_Keep;
2735 
2736   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2737 
2738   // We have overlapping values, or possibly a kill of Other.
2739   // Recursively compute assignments up the dominator tree.
2740   Other.computeAssignment(V.OtherVNI->id, *this);
2741   Val &OtherV = Other.Vals[V.OtherVNI->id];
2742 
2743   if (OtherV.ErasableImplicitDef) {
2744     // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2745     // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2746     // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2747     // technically.
2748     //
2749     // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2750     // to erase the IMPLICIT_DEF instruction.
2751     if (DefMI &&
2752         DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2753       LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2754                  << " extends into "
2755                  << printMBBReference(*DefMI->getParent())
2756                  << ", keeping it.\n");
2757       OtherV.ErasableImplicitDef = false;
2758     } else {
2759       // We deferred clearing these lanes in case we needed to save them
2760       OtherV.ValidLanes &= ~OtherV.WriteLanes;
2761     }
2762   }
2763 
2764   // Allow overlapping PHI values. Any real interference would show up in a
2765   // predecessor, the PHI itself can't introduce any conflicts.
2766   if (VNI->isPHIDef())
2767     return CR_Replace;
2768 
2769   // Check for simple erasable conflicts.
2770   if (DefMI->isImplicitDef())
2771     return CR_Erase;
2772 
2773   // Include the non-conflict where DefMI is a coalescable copy that kills
2774   // OtherVNI. We still want the copy erased and value numbers merged.
2775   if (CP.isCoalescable(DefMI)) {
2776     // Some of the lanes copied from OtherVNI may be undef, making them undef
2777     // here too.
2778     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2779     return CR_Erase;
2780   }
2781 
2782   // This may not be a real conflict if DefMI simply kills Other and defines
2783   // VNI.
2784   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2785     return CR_Keep;
2786 
2787   // Handle the case where VNI and OtherVNI can be proven to be identical:
2788   //
2789   //   %other = COPY %ext
2790   //   %this  = COPY %ext <-- Erase this copy
2791   //
2792   if (DefMI->isFullCopy() && !CP.isPartial() &&
2793       valuesIdentical(VNI, V.OtherVNI, Other)) {
2794     V.Identical = true;
2795     return CR_Erase;
2796   }
2797 
2798   // The remaining checks apply to the lanes, which aren't tracked here.  This
2799   // was already decided to be OK via the following CR_Replace condition.
2800   // CR_Replace.
2801   if (SubRangeJoin)
2802     return CR_Replace;
2803 
2804   // If the lanes written by this instruction were all undef in OtherVNI, it is
2805   // still safe to join the live ranges. This can't be done with a simple value
2806   // mapping, though - OtherVNI will map to multiple values:
2807   //
2808   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2809   //   2 %src = BAR                      <-- VNI
2810   //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2811   //   4 BAZ killed %dst
2812   //   5 QUUX killed %src
2813   //
2814   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2815   // handles this complex value mapping.
2816   if ((V.WriteLanes & OtherV.ValidLanes).none())
2817     return CR_Replace;
2818 
2819   // If the other live range is killed by DefMI and the live ranges are still
2820   // overlapping, it must be because we're looking at an early clobber def:
2821   //
2822   //   %dst<def,early-clobber> = ASM killed %src
2823   //
2824   // In this case, it is illegal to merge the two live ranges since the early
2825   // clobber def would clobber %src before it was read.
2826   if (OtherLRQ.isKill()) {
2827     // This case where the def doesn't overlap the kill is handled above.
2828     assert(VNI->def.isEarlyClobber() &&
2829            "Only early clobber defs can overlap a kill");
2830     return CR_Impossible;
2831   }
2832 
2833   // VNI is clobbering live lanes in OtherVNI, but there is still the
2834   // possibility that no instructions actually read the clobbered lanes.
2835   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2836   // Otherwise Other.RI wouldn't be live here.
2837   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2838     return CR_Impossible;
2839 
2840   // We need to verify that no instructions are reading the clobbered lanes. To
2841   // save compile time, we'll only check that locally. Don't allow the tainted
2842   // value to escape the basic block.
2843   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2844   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2845     return CR_Impossible;
2846 
2847   // There are still some things that could go wrong besides clobbered lanes
2848   // being read, for example OtherVNI may be only partially redefined in MBB,
2849   // and some clobbered lanes could escape the block. Save this analysis for
2850   // resolveConflicts() when all values have been mapped. We need to know
2851   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2852   // that now - the recursive analyzeValue() calls must go upwards in the
2853   // dominator tree.
2854   return CR_Unresolved;
2855 }
2856 
computeAssignment(unsigned ValNo,JoinVals & Other)2857 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2858   Val &V = Vals[ValNo];
2859   if (V.isAnalyzed()) {
2860     // Recursion should always move up the dominator tree, so ValNo is not
2861     // supposed to reappear before it has been assigned.
2862     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2863     return;
2864   }
2865   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2866   case CR_Erase:
2867   case CR_Merge:
2868     // Merge this ValNo into OtherVNI.
2869     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2870     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2871     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2872     LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2873                       << LR.getValNumInfo(ValNo)->def << " into "
2874                       << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2875                       << V.OtherVNI->def << " --> @"
2876                       << NewVNInfo[Assignments[ValNo]]->def << '\n');
2877     break;
2878   case CR_Replace:
2879   case CR_Unresolved: {
2880     // The other value is going to be pruned if this join is successful.
2881     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2882     Val &OtherV = Other.Vals[V.OtherVNI->id];
2883     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2884     // its lanes.
2885     if (OtherV.ErasableImplicitDef &&
2886         TrackSubRegLiveness &&
2887         (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2888       LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2889 
2890       OtherV.ErasableImplicitDef = false;
2891       // The valid lanes written by the implicit_def were speculatively cleared
2892       // before, so make this more conservative. It may be better to track this,
2893       // I haven't found a testcase where it matters.
2894       OtherV.ValidLanes = LaneBitmask::getAll();
2895     }
2896 
2897     OtherV.Pruned = true;
2898     LLVM_FALLTHROUGH;
2899   }
2900   default:
2901     // This value number needs to go in the final joined live range.
2902     Assignments[ValNo] = NewVNInfo.size();
2903     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2904     break;
2905   }
2906 }
2907 
mapValues(JoinVals & Other)2908 bool JoinVals::mapValues(JoinVals &Other) {
2909   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2910     computeAssignment(i, Other);
2911     if (Vals[i].Resolution == CR_Impossible) {
2912       LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2913                         << '@' << LR.getValNumInfo(i)->def << '\n');
2914       return false;
2915     }
2916   }
2917   return true;
2918 }
2919 
2920 bool JoinVals::
taintExtent(unsigned ValNo,LaneBitmask TaintedLanes,JoinVals & Other,SmallVectorImpl<std::pair<SlotIndex,LaneBitmask>> & TaintExtent)2921 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2922             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2923   VNInfo *VNI = LR.getValNumInfo(ValNo);
2924   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2925   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2926 
2927   // Scan Other.LR from VNI.def to MBBEnd.
2928   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2929   assert(OtherI != Other.LR.end() && "No conflict?");
2930   do {
2931     // OtherI is pointing to a tainted value. Abort the join if the tainted
2932     // lanes escape the block.
2933     SlotIndex End = OtherI->end;
2934     if (End >= MBBEnd) {
2935       LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2936                         << OtherI->valno->id << '@' << OtherI->start << '\n');
2937       return false;
2938     }
2939     LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2940                       << OtherI->valno->id << '@' << OtherI->start << " to "
2941                       << End << '\n');
2942     // A dead def is not a problem.
2943     if (End.isDead())
2944       break;
2945     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2946 
2947     // Check for another def in the MBB.
2948     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2949       break;
2950 
2951     // Lanes written by the new def are no longer tainted.
2952     const Val &OV = Other.Vals[OtherI->valno->id];
2953     TaintedLanes &= ~OV.WriteLanes;
2954     if (!OV.RedefVNI)
2955       break;
2956   } while (TaintedLanes.any());
2957   return true;
2958 }
2959 
usesLanes(const MachineInstr & MI,Register Reg,unsigned SubIdx,LaneBitmask Lanes) const2960 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
2961                          LaneBitmask Lanes) const {
2962   if (MI.isDebugInstr())
2963     return false;
2964   for (const MachineOperand &MO : MI.operands()) {
2965     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2966       continue;
2967     if (!MO.readsReg())
2968       continue;
2969     unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2970     if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2971       return true;
2972   }
2973   return false;
2974 }
2975 
resolveConflicts(JoinVals & Other)2976 bool JoinVals::resolveConflicts(JoinVals &Other) {
2977   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2978     Val &V = Vals[i];
2979     assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2980     if (V.Resolution != CR_Unresolved)
2981       continue;
2982     LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2983                       << LR.getValNumInfo(i)->def
2984                       << ' ' << PrintLaneMask(LaneMask) << '\n');
2985     if (SubRangeJoin)
2986       return false;
2987 
2988     ++NumLaneConflicts;
2989     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2990     VNInfo *VNI = LR.getValNumInfo(i);
2991     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2992 
2993     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2994     // join, those lanes will be tainted with a wrong value. Get the extent of
2995     // the tainted lanes.
2996     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2997     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2998     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2999       // Tainted lanes would extend beyond the basic block.
3000       return false;
3001 
3002     assert(!TaintExtent.empty() && "There should be at least one conflict.");
3003 
3004     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3005     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3006     MachineBasicBlock::iterator MI = MBB->begin();
3007     if (!VNI->isPHIDef()) {
3008       MI = Indexes->getInstructionFromIndex(VNI->def);
3009       // No need to check the instruction defining VNI for reads.
3010       ++MI;
3011     }
3012     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3013            "Interference ends on VNI->def. Should have been handled earlier");
3014     MachineInstr *LastMI =
3015       Indexes->getInstructionFromIndex(TaintExtent.front().first);
3016     assert(LastMI && "Range must end at a proper instruction");
3017     unsigned TaintNum = 0;
3018     while (true) {
3019       assert(MI != MBB->end() && "Bad LastMI");
3020       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3021         LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3022         return false;
3023       }
3024       // LastMI is the last instruction to use the current value.
3025       if (&*MI == LastMI) {
3026         if (++TaintNum == TaintExtent.size())
3027           break;
3028         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3029         assert(LastMI && "Range must end at a proper instruction");
3030         TaintedLanes = TaintExtent[TaintNum].second;
3031       }
3032       ++MI;
3033     }
3034 
3035     // The tainted lanes are unused.
3036     V.Resolution = CR_Replace;
3037     ++NumLaneResolves;
3038   }
3039   return true;
3040 }
3041 
isPrunedValue(unsigned ValNo,JoinVals & Other)3042 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3043   Val &V = Vals[ValNo];
3044   if (V.Pruned || V.PrunedComputed)
3045     return V.Pruned;
3046 
3047   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3048     return V.Pruned;
3049 
3050   // Follow copies up the dominator tree and check if any intermediate value
3051   // has been pruned.
3052   V.PrunedComputed = true;
3053   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3054   return V.Pruned;
3055 }
3056 
pruneValues(JoinVals & Other,SmallVectorImpl<SlotIndex> & EndPoints,bool changeInstrs)3057 void JoinVals::pruneValues(JoinVals &Other,
3058                            SmallVectorImpl<SlotIndex> &EndPoints,
3059                            bool changeInstrs) {
3060   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3061     SlotIndex Def = LR.getValNumInfo(i)->def;
3062     switch (Vals[i].Resolution) {
3063     case CR_Keep:
3064       break;
3065     case CR_Replace: {
3066       // This value takes precedence over the value in Other.LR.
3067       LIS->pruneValue(Other.LR, Def, &EndPoints);
3068       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3069       // instructions are only inserted to provide a live-out value for PHI
3070       // predecessors, so the instruction should simply go away once its value
3071       // has been replaced.
3072       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3073       bool EraseImpDef = OtherV.ErasableImplicitDef &&
3074                          OtherV.Resolution == CR_Keep;
3075       if (!Def.isBlock()) {
3076         if (changeInstrs) {
3077           // Remove <def,read-undef> flags. This def is now a partial redef.
3078           // Also remove dead flags since the joined live range will
3079           // continue past this instruction.
3080           for (MachineOperand &MO :
3081                Indexes->getInstructionFromIndex(Def)->operands()) {
3082             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3083               if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3084                 MO.setIsUndef(false);
3085               MO.setIsDead(false);
3086             }
3087           }
3088         }
3089         // This value will reach instructions below, but we need to make sure
3090         // the live range also reaches the instruction at Def.
3091         if (!EraseImpDef)
3092           EndPoints.push_back(Def);
3093       }
3094       LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3095                         << ": " << Other.LR << '\n');
3096       break;
3097     }
3098     case CR_Erase:
3099     case CR_Merge:
3100       if (isPrunedValue(i, Other)) {
3101         // This value is ultimately a copy of a pruned value in LR or Other.LR.
3102         // We can no longer trust the value mapping computed by
3103         // computeAssignment(), the value that was originally copied could have
3104         // been replaced.
3105         LIS->pruneValue(LR, Def, &EndPoints);
3106         LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3107                           << Def << ": " << LR << '\n');
3108       }
3109       break;
3110     case CR_Unresolved:
3111     case CR_Impossible:
3112       llvm_unreachable("Unresolved conflicts");
3113     }
3114   }
3115 }
3116 
3117 /// Consider the following situation when coalescing the copy between
3118 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3119 ///
3120 ///                              Main range         Subrange 0004 (sub2)
3121 ///                              %31    %45           %31    %45
3122 ///  544    %45 = COPY %28               +                    +
3123 ///                                      | v1                 | v1
3124 ///  560B bb.1:                          +                    +
3125 ///  624        = %45.sub2               | v2                 | v2
3126 ///  800    %31 = COPY %45        +      +             +      +
3127 ///                               | v0                 | v0
3128 ///  816    %31.sub1 = ...        +                    |
3129 ///  880    %30 = COPY %31        | v1                 +
3130 ///  928    %45 = COPY %30        |      +                    +
3131 ///                               |      | v0                 | v0  <--+
3132 ///  992B   ; backedge -> bb.1    |      +                    +        |
3133 /// 1040        = %31.sub0        +                                    |
3134 ///                                                 This value must remain
3135 ///                                                 live-out!
3136 ///
3137 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3138 /// redundant, since it copies the value from %45 back into it. The
3139 /// conflict resolution for the main range determines that %45.v0 is
3140 /// to be erased, which is ok since %31.v1 is identical to it.
3141 /// The problem happens with the subrange for sub2: it has to be live
3142 /// on exit from the block, but since 928 was actually a point of
3143 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3144 /// to that definition. As a result, when 928 was erased, the value v0
3145 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3146 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3147 /// providing an incorrect value to the use at 624.
3148 ///
3149 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3150 /// identical, the corresponding values in subranges must also be the
3151 /// same. A redundant copy is removed because it's not needed, and not
3152 /// because it copied an undefined value, so any liveness that originated
3153 /// from that copy cannot disappear. When pruning a value that started
3154 /// at the removed copy, the corresponding identical value must be
3155 /// extended to replace it.
pruneSubRegValues(LiveInterval & LI,LaneBitmask & ShrinkMask)3156 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3157   // Look for values being erased.
3158   bool DidPrune = false;
3159   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3160     Val &V = Vals[i];
3161     // We should trigger in all cases in which eraseInstrs() does something.
3162     // match what eraseInstrs() is doing, print a message so
3163     if (V.Resolution != CR_Erase &&
3164         (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3165       continue;
3166 
3167     // Check subranges at the point where the copy will be removed.
3168     SlotIndex Def = LR.getValNumInfo(i)->def;
3169     SlotIndex OtherDef;
3170     if (V.Identical)
3171       OtherDef = V.OtherVNI->def;
3172 
3173     // Print message so mismatches with eraseInstrs() can be diagnosed.
3174     LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3175                       << '\n');
3176     for (LiveInterval::SubRange &S : LI.subranges()) {
3177       LiveQueryResult Q = S.Query(Def);
3178 
3179       // If a subrange starts at the copy then an undefined value has been
3180       // copied and we must remove that subrange value as well.
3181       VNInfo *ValueOut = Q.valueOutOrDead();
3182       if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3183                                   (V.Identical && V.Resolution == CR_Erase &&
3184                                    ValueOut->def == Def))) {
3185         LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3186                           << " at " << Def << "\n");
3187         SmallVector<SlotIndex,8> EndPoints;
3188         LIS->pruneValue(S, Def, &EndPoints);
3189         DidPrune = true;
3190         // Mark value number as unused.
3191         ValueOut->markUnused();
3192 
3193         if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3194           // If V is identical to V.OtherVNI (and S was live at OtherDef),
3195           // then we can't simply prune V from S. V needs to be replaced
3196           // with V.OtherVNI.
3197           LIS->extendToIndices(S, EndPoints);
3198         }
3199         continue;
3200       }
3201       // If a subrange ends at the copy, then a value was copied but only
3202       // partially used later. Shrink the subregister range appropriately.
3203       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3204         LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3205                           << PrintLaneMask(S.LaneMask) << " at " << Def
3206                           << "\n");
3207         ShrinkMask |= S.LaneMask;
3208       }
3209     }
3210   }
3211   if (DidPrune)
3212     LI.removeEmptySubRanges();
3213 }
3214 
3215 /// Check if any of the subranges of @p LI contain a definition at @p Def.
isDefInSubRange(LiveInterval & LI,SlotIndex Def)3216 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3217   for (LiveInterval::SubRange &SR : LI.subranges()) {
3218     if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3219       if (VNI->def == Def)
3220         return true;
3221   }
3222   return false;
3223 }
3224 
pruneMainSegments(LiveInterval & LI,bool & ShrinkMainRange)3225 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3226   assert(&static_cast<LiveRange&>(LI) == &LR);
3227 
3228   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3229     if (Vals[i].Resolution != CR_Keep)
3230       continue;
3231     VNInfo *VNI = LR.getValNumInfo(i);
3232     if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3233       continue;
3234     Vals[i].Pruned = true;
3235     ShrinkMainRange = true;
3236   }
3237 }
3238 
removeImplicitDefs()3239 void JoinVals::removeImplicitDefs() {
3240   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3241     Val &V = Vals[i];
3242     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3243       continue;
3244 
3245     VNInfo *VNI = LR.getValNumInfo(i);
3246     VNI->markUnused();
3247     LR.removeValNo(VNI);
3248   }
3249 }
3250 
eraseInstrs(SmallPtrSetImpl<MachineInstr * > & ErasedInstrs,SmallVectorImpl<Register> & ShrinkRegs,LiveInterval * LI)3251 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3252                            SmallVectorImpl<Register> &ShrinkRegs,
3253                            LiveInterval *LI) {
3254   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3255     // Get the def location before markUnused() below invalidates it.
3256     VNInfo *VNI = LR.getValNumInfo(i);
3257     SlotIndex Def = VNI->def;
3258     switch (Vals[i].Resolution) {
3259     case CR_Keep: {
3260       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3261       // longer. The IMPLICIT_DEF instructions are only inserted by
3262       // PHIElimination to guarantee that all PHI predecessors have a value.
3263       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3264         break;
3265       // Remove value number i from LR.
3266       // For intervals with subranges, removing a segment from the main range
3267       // may require extending the previous segment: for each definition of
3268       // a subregister, there will be a corresponding def in the main range.
3269       // That def may fall in the middle of a segment from another subrange.
3270       // In such cases, removing this def from the main range must be
3271       // complemented by extending the main range to account for the liveness
3272       // of the other subrange.
3273       // The new end point of the main range segment to be extended.
3274       SlotIndex NewEnd;
3275       if (LI != nullptr) {
3276         LiveRange::iterator I = LR.FindSegmentContaining(Def);
3277         assert(I != LR.end());
3278         // Do not extend beyond the end of the segment being removed.
3279         // The segment may have been pruned in preparation for joining
3280         // live ranges.
3281         NewEnd = I->end;
3282       }
3283 
3284       LR.removeValNo(VNI);
3285       // Note that this VNInfo is reused and still referenced in NewVNInfo,
3286       // make it appear like an unused value number.
3287       VNI->markUnused();
3288 
3289       if (LI != nullptr && LI->hasSubRanges()) {
3290         assert(static_cast<LiveRange*>(LI) == &LR);
3291         // Determine the end point based on the subrange information:
3292         // minimum of (earliest def of next segment,
3293         //             latest end point of containing segment)
3294         SlotIndex ED, LE;
3295         for (LiveInterval::SubRange &SR : LI->subranges()) {
3296           LiveRange::iterator I = SR.find(Def);
3297           if (I == SR.end())
3298             continue;
3299           if (I->start > Def)
3300             ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3301           else
3302             LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3303         }
3304         if (LE.isValid())
3305           NewEnd = std::min(NewEnd, LE);
3306         if (ED.isValid())
3307           NewEnd = std::min(NewEnd, ED);
3308 
3309         // We only want to do the extension if there was a subrange that
3310         // was live across Def.
3311         if (LE.isValid()) {
3312           LiveRange::iterator S = LR.find(Def);
3313           if (S != LR.begin())
3314             std::prev(S)->end = NewEnd;
3315         }
3316       }
3317       LLVM_DEBUG({
3318         dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3319         if (LI != nullptr)
3320           dbgs() << "\t\t  LHS = " << *LI << '\n';
3321       });
3322       LLVM_FALLTHROUGH;
3323     }
3324 
3325     case CR_Erase: {
3326       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3327       assert(MI && "No instruction to erase");
3328       if (MI->isCopy()) {
3329         Register Reg = MI->getOperand(1).getReg();
3330         if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3331             Reg != CP.getDstReg())
3332           ShrinkRegs.push_back(Reg);
3333       }
3334       ErasedInstrs.insert(MI);
3335       LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3336       LIS->RemoveMachineInstrFromMaps(*MI);
3337       MI->eraseFromParent();
3338       break;
3339     }
3340     default:
3341       break;
3342     }
3343   }
3344 }
3345 
joinSubRegRanges(LiveRange & LRange,LiveRange & RRange,LaneBitmask LaneMask,const CoalescerPair & CP)3346 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3347                                          LaneBitmask LaneMask,
3348                                          const CoalescerPair &CP) {
3349   SmallVector<VNInfo*, 16> NewVNInfo;
3350   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3351                    NewVNInfo, CP, LIS, TRI, true, true);
3352   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3353                    NewVNInfo, CP, LIS, TRI, true, true);
3354 
3355   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3356   // We should be able to resolve all conflicts here as we could successfully do
3357   // it on the mainrange already. There is however a problem when multiple
3358   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3359   // interferences.
3360   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3361     // We already determined that it is legal to merge the intervals, so this
3362     // should never fail.
3363     llvm_unreachable("*** Couldn't join subrange!\n");
3364   }
3365   if (!LHSVals.resolveConflicts(RHSVals) ||
3366       !RHSVals.resolveConflicts(LHSVals)) {
3367     // We already determined that it is legal to merge the intervals, so this
3368     // should never fail.
3369     llvm_unreachable("*** Couldn't join subrange!\n");
3370   }
3371 
3372   // The merging algorithm in LiveInterval::join() can't handle conflicting
3373   // value mappings, so we need to remove any live ranges that overlap a
3374   // CR_Replace resolution. Collect a set of end points that can be used to
3375   // restore the live range after joining.
3376   SmallVector<SlotIndex, 8> EndPoints;
3377   LHSVals.pruneValues(RHSVals, EndPoints, false);
3378   RHSVals.pruneValues(LHSVals, EndPoints, false);
3379 
3380   LHSVals.removeImplicitDefs();
3381   RHSVals.removeImplicitDefs();
3382 
3383   LRange.verify();
3384   RRange.verify();
3385 
3386   // Join RRange into LHS.
3387   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3388               NewVNInfo);
3389 
3390   LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3391                     << ' ' << LRange << "\n");
3392   if (EndPoints.empty())
3393     return;
3394 
3395   // Recompute the parts of the live range we had to remove because of
3396   // CR_Replace conflicts.
3397   LLVM_DEBUG({
3398     dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3399     for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3400       dbgs() << EndPoints[i];
3401       if (i != n-1)
3402         dbgs() << ',';
3403     }
3404     dbgs() << ":  " << LRange << '\n';
3405   });
3406   LIS->extendToIndices(LRange, EndPoints);
3407 }
3408 
mergeSubRangeInto(LiveInterval & LI,const LiveRange & ToMerge,LaneBitmask LaneMask,CoalescerPair & CP,unsigned ComposeSubRegIdx)3409 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3410                                           const LiveRange &ToMerge,
3411                                           LaneBitmask LaneMask,
3412                                           CoalescerPair &CP,
3413                                           unsigned ComposeSubRegIdx) {
3414   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3415   LI.refineSubRanges(
3416       Allocator, LaneMask,
3417       [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3418         if (SR.empty()) {
3419           SR.assign(ToMerge, Allocator);
3420         } else {
3421           // joinSubRegRange() destroys the merged range, so we need a copy.
3422           LiveRange RangeCopy(ToMerge, Allocator);
3423           joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3424         }
3425       },
3426       *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3427 }
3428 
isHighCostLiveInterval(LiveInterval & LI)3429 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3430   if (LI.valnos.size() < LargeIntervalSizeThreshold)
3431     return false;
3432   auto &Counter = LargeLIVisitCounter[LI.reg()];
3433   if (Counter < LargeIntervalFreqThreshold) {
3434     Counter++;
3435     return false;
3436   }
3437   return true;
3438 }
3439 
joinVirtRegs(CoalescerPair & CP)3440 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3441   SmallVector<VNInfo*, 16> NewVNInfo;
3442   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3443   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3444   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3445   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3446                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3447   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3448                    NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3449 
3450   LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3451 
3452   if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3453     return false;
3454 
3455   // First compute NewVNInfo and the simple value mappings.
3456   // Detect impossible conflicts early.
3457   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3458     return false;
3459 
3460   // Some conflicts can only be resolved after all values have been mapped.
3461   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3462     return false;
3463 
3464   // All clear, the live ranges can be merged.
3465   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3466     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3467 
3468     // Transform lanemasks from the LHS to masks in the coalesced register and
3469     // create initial subranges if necessary.
3470     unsigned DstIdx = CP.getDstIdx();
3471     if (!LHS.hasSubRanges()) {
3472       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3473                                      : TRI->getSubRegIndexLaneMask(DstIdx);
3474       // LHS must support subregs or we wouldn't be in this codepath.
3475       assert(Mask.any());
3476       LHS.createSubRangeFrom(Allocator, Mask, LHS);
3477     } else if (DstIdx != 0) {
3478       // Transform LHS lanemasks to new register class if necessary.
3479       for (LiveInterval::SubRange &R : LHS.subranges()) {
3480         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3481         R.LaneMask = Mask;
3482       }
3483     }
3484     LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3485                       << '\n');
3486 
3487     // Determine lanemasks of RHS in the coalesced register and merge subranges.
3488     unsigned SrcIdx = CP.getSrcIdx();
3489     if (!RHS.hasSubRanges()) {
3490       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3491                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
3492       mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3493     } else {
3494       // Pair up subranges and merge.
3495       for (LiveInterval::SubRange &R : RHS.subranges()) {
3496         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3497         mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3498       }
3499     }
3500     LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3501 
3502     // Pruning implicit defs from subranges may result in the main range
3503     // having stale segments.
3504     LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3505 
3506     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3507     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3508   }
3509 
3510   // The merging algorithm in LiveInterval::join() can't handle conflicting
3511   // value mappings, so we need to remove any live ranges that overlap a
3512   // CR_Replace resolution. Collect a set of end points that can be used to
3513   // restore the live range after joining.
3514   SmallVector<SlotIndex, 8> EndPoints;
3515   LHSVals.pruneValues(RHSVals, EndPoints, true);
3516   RHSVals.pruneValues(LHSVals, EndPoints, true);
3517 
3518   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3519   // registers to require trimming.
3520   SmallVector<Register, 8> ShrinkRegs;
3521   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3522   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3523   while (!ShrinkRegs.empty())
3524     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3525 
3526   // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3527   checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3528 
3529   // Join RHS into LHS.
3530   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3531 
3532   // Kill flags are going to be wrong if the live ranges were overlapping.
3533   // Eventually, we should simply clear all kill flags when computing live
3534   // ranges. They are reinserted after register allocation.
3535   MRI->clearKillFlags(LHS.reg());
3536   MRI->clearKillFlags(RHS.reg());
3537 
3538   if (!EndPoints.empty()) {
3539     // Recompute the parts of the live range we had to remove because of
3540     // CR_Replace conflicts.
3541     LLVM_DEBUG({
3542       dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3543       for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3544         dbgs() << EndPoints[i];
3545         if (i != n-1)
3546           dbgs() << ',';
3547       }
3548       dbgs() << ":  " << LHS << '\n';
3549     });
3550     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3551   }
3552 
3553   return true;
3554 }
3555 
joinIntervals(CoalescerPair & CP)3556 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3557   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3558 }
3559 
buildVRegToDbgValueMap(MachineFunction & MF)3560 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3561 {
3562   const SlotIndexes &Slots = *LIS->getSlotIndexes();
3563   SmallVector<MachineInstr *, 8> ToInsert;
3564 
3565   // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3566   // vreg => DbgValueLoc map.
3567   auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3568     for (auto *X : ToInsert)
3569       DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X});
3570 
3571     ToInsert.clear();
3572   };
3573 
3574   // Iterate over all instructions, collecting them into the ToInsert vector.
3575   // Once a non-debug instruction is found, record the slot index of the
3576   // collected DBG_VALUEs.
3577   for (auto &MBB : MF) {
3578     SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3579 
3580     for (auto &MI : MBB) {
3581       if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() &&
3582           MI.getDebugOperand(0).getReg().isVirtual()) {
3583         ToInsert.push_back(&MI);
3584       } else if (!MI.isDebugInstr()) {
3585         CurrentSlot = Slots.getInstructionIndex(MI);
3586         CloseNewDVRange(CurrentSlot);
3587       }
3588     }
3589 
3590     // Close range of DBG_VALUEs at the end of blocks.
3591     CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3592   }
3593 
3594   // Sort all DBG_VALUEs we've seen by slot number.
3595   for (auto &Pair : DbgVRegToValues)
3596     llvm::sort(Pair.second);
3597 }
3598 
checkMergingChangesDbgValues(CoalescerPair & CP,LiveRange & LHS,JoinVals & LHSVals,LiveRange & RHS,JoinVals & RHSVals)3599 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3600                                                      LiveRange &LHS,
3601                                                      JoinVals &LHSVals,
3602                                                      LiveRange &RHS,
3603                                                      JoinVals &RHSVals) {
3604   auto ScanForDstReg = [&](Register Reg) {
3605     checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3606   };
3607 
3608   auto ScanForSrcReg = [&](Register Reg) {
3609     checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3610   };
3611 
3612   // Scan for potentially unsound DBG_VALUEs: examine first the register number
3613   // Reg, and then any other vregs that may have been merged into  it.
3614   auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3615     Func(Reg);
3616     if (DbgMergedVRegNums.count(Reg))
3617       for (Register X : DbgMergedVRegNums[Reg])
3618         Func(X);
3619   };
3620 
3621   // Scan for unsound updates of both the source and destination register.
3622   PerformScan(CP.getSrcReg(), ScanForSrcReg);
3623   PerformScan(CP.getDstReg(), ScanForDstReg);
3624 }
3625 
checkMergingChangesDbgValuesImpl(Register Reg,LiveRange & OtherLR,LiveRange & RegLR,JoinVals & RegVals)3626 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3627                                                          LiveRange &OtherLR,
3628                                                          LiveRange &RegLR,
3629                                                          JoinVals &RegVals) {
3630   // Are there any DBG_VALUEs to examine?
3631   auto VRegMapIt = DbgVRegToValues.find(Reg);
3632   if (VRegMapIt == DbgVRegToValues.end())
3633     return;
3634 
3635   auto &DbgValueSet = VRegMapIt->second;
3636   auto DbgValueSetIt = DbgValueSet.begin();
3637   auto SegmentIt = OtherLR.begin();
3638 
3639   bool LastUndefResult = false;
3640   SlotIndex LastUndefIdx;
3641 
3642   // If the "Other" register is live at a slot Idx, test whether Reg can
3643   // safely be merged with it, or should be marked undef.
3644   auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3645                       &LastUndefIdx](SlotIndex Idx) -> bool {
3646     // Our worst-case performance typically happens with asan, causing very
3647     // many DBG_VALUEs of the same location. Cache a copy of the most recent
3648     // result for this edge-case.
3649     if (LastUndefIdx == Idx)
3650       return LastUndefResult;
3651 
3652     // If the other range was live, and Reg's was not, the register coalescer
3653     // will not have tried to resolve any conflicts. We don't know whether
3654     // the DBG_VALUE will refer to the same value number, so it must be made
3655     // undef.
3656     auto OtherIt = RegLR.find(Idx);
3657     if (OtherIt == RegLR.end())
3658       return true;
3659 
3660     // Both the registers were live: examine the conflict resolution record for
3661     // the value number Reg refers to. CR_Keep meant that this value number
3662     // "won" and the merged register definitely refers to that value. CR_Erase
3663     // means the value number was a redundant copy of the other value, which
3664     // was coalesced and Reg deleted. It's safe to refer to the other register
3665     // (which will be the source of the copy).
3666     auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3667     LastUndefResult = Resolution != JoinVals::CR_Keep &&
3668                       Resolution != JoinVals::CR_Erase;
3669     LastUndefIdx = Idx;
3670     return LastUndefResult;
3671   };
3672 
3673   // Iterate over both the live-range of the "Other" register, and the set of
3674   // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3675   // slot index. This relies on the DbgValueSet being ordered.
3676   while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3677     if (DbgValueSetIt->first < SegmentIt->end) {
3678       // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3679       // set it undef.
3680       if (DbgValueSetIt->first >= SegmentIt->start &&
3681           DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 &&
3682           ShouldUndef(DbgValueSetIt->first)) {
3683         // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3684         DbgValueSetIt->second->setDebugValueUndef();
3685         continue;
3686       }
3687       ++DbgValueSetIt;
3688     } else {
3689       ++SegmentIt;
3690     }
3691   }
3692 }
3693 
3694 namespace {
3695 
3696 /// Information concerning MBB coalescing priority.
3697 struct MBBPriorityInfo {
3698   MachineBasicBlock *MBB;
3699   unsigned Depth;
3700   bool IsSplit;
3701 
MBBPriorityInfo__anon583695820a11::MBBPriorityInfo3702   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3703     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3704 };
3705 
3706 } // end anonymous namespace
3707 
3708 /// C-style comparator that sorts first based on the loop depth of the basic
3709 /// block (the unsigned), and then on the MBB number.
3710 ///
3711 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
compareMBBPriority(const MBBPriorityInfo * LHS,const MBBPriorityInfo * RHS)3712 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3713                               const MBBPriorityInfo *RHS) {
3714   // Deeper loops first
3715   if (LHS->Depth != RHS->Depth)
3716     return LHS->Depth > RHS->Depth ? -1 : 1;
3717 
3718   // Try to unsplit critical edges next.
3719   if (LHS->IsSplit != RHS->IsSplit)
3720     return LHS->IsSplit ? -1 : 1;
3721 
3722   // Prefer blocks that are more connected in the CFG. This takes care of
3723   // the most difficult copies first while intervals are short.
3724   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3725   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3726   if (cl != cr)
3727     return cl > cr ? -1 : 1;
3728 
3729   // As a last resort, sort by block number.
3730   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3731 }
3732 
3733 /// \returns true if the given copy uses or defines a local live range.
isLocalCopy(MachineInstr * Copy,const LiveIntervals * LIS)3734 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3735   if (!Copy->isCopy())
3736     return false;
3737 
3738   if (Copy->getOperand(1).isUndef())
3739     return false;
3740 
3741   Register SrcReg = Copy->getOperand(1).getReg();
3742   Register DstReg = Copy->getOperand(0).getReg();
3743   if (Register::isPhysicalRegister(SrcReg) ||
3744       Register::isPhysicalRegister(DstReg))
3745     return false;
3746 
3747   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3748     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3749 }
3750 
lateLiveIntervalUpdate()3751 void RegisterCoalescer::lateLiveIntervalUpdate() {
3752   for (Register reg : ToBeUpdated) {
3753     if (!LIS->hasInterval(reg))
3754       continue;
3755     LiveInterval &LI = LIS->getInterval(reg);
3756     shrinkToUses(&LI, &DeadDefs);
3757     if (!DeadDefs.empty())
3758       eliminateDeadDefs();
3759   }
3760   ToBeUpdated.clear();
3761 }
3762 
3763 bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr * > CurrList)3764 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3765   bool Progress = false;
3766   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3767     if (!CurrList[i])
3768       continue;
3769     // Skip instruction pointers that have already been erased, for example by
3770     // dead code elimination.
3771     if (ErasedInstrs.count(CurrList[i])) {
3772       CurrList[i] = nullptr;
3773       continue;
3774     }
3775     bool Again = false;
3776     bool Success = joinCopy(CurrList[i], Again);
3777     Progress |= Success;
3778     if (Success || !Again)
3779       CurrList[i] = nullptr;
3780   }
3781   return Progress;
3782 }
3783 
3784 /// Check if DstReg is a terminal node.
3785 /// I.e., it does not have any affinity other than \p Copy.
isTerminalReg(Register DstReg,const MachineInstr & Copy,const MachineRegisterInfo * MRI)3786 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3787                           const MachineRegisterInfo *MRI) {
3788   assert(Copy.isCopyLike());
3789   // Check if the destination of this copy as any other affinity.
3790   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3791     if (&MI != &Copy && MI.isCopyLike())
3792       return false;
3793   return true;
3794 }
3795 
applyTerminalRule(const MachineInstr & Copy) const3796 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3797   assert(Copy.isCopyLike());
3798   if (!UseTerminalRule)
3799     return false;
3800   Register SrcReg, DstReg;
3801   unsigned SrcSubReg = 0, DstSubReg = 0;
3802   if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3803     return false;
3804   // Check if the destination of this copy has any other affinity.
3805   if (DstReg.isPhysical() ||
3806       // If SrcReg is a physical register, the copy won't be coalesced.
3807       // Ignoring it may have other side effect (like missing
3808       // rematerialization). So keep it.
3809       SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3810     return false;
3811 
3812   // DstReg is a terminal node. Check if it interferes with any other
3813   // copy involving SrcReg.
3814   const MachineBasicBlock *OrigBB = Copy.getParent();
3815   const LiveInterval &DstLI = LIS->getInterval(DstReg);
3816   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3817     // Technically we should check if the weight of the new copy is
3818     // interesting compared to the other one and update the weight
3819     // of the copies accordingly. However, this would only work if
3820     // we would gather all the copies first then coalesce, whereas
3821     // right now we interleave both actions.
3822     // For now, just consider the copies that are in the same block.
3823     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3824       continue;
3825     Register OtherSrcReg, OtherReg;
3826     unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
3827     if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3828                 OtherSubReg))
3829       return false;
3830     if (OtherReg == SrcReg)
3831       OtherReg = OtherSrcReg;
3832     // Check if OtherReg is a non-terminal.
3833     if (Register::isPhysicalRegister(OtherReg) ||
3834         isTerminalReg(OtherReg, MI, MRI))
3835       continue;
3836     // Check that OtherReg interfere with DstReg.
3837     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3838       LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3839                         << '\n');
3840       return true;
3841     }
3842   }
3843   return false;
3844 }
3845 
3846 void
copyCoalesceInMBB(MachineBasicBlock * MBB)3847 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3848   LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3849 
3850   // Collect all copy-like instructions in MBB. Don't start coalescing anything
3851   // yet, it might invalidate the iterator.
3852   const unsigned PrevSize = WorkList.size();
3853   if (JoinGlobalCopies) {
3854     SmallVector<MachineInstr*, 2> LocalTerminals;
3855     SmallVector<MachineInstr*, 2> GlobalTerminals;
3856     // Coalesce copies bottom-up to coalesce local defs before local uses. They
3857     // are not inherently easier to resolve, but slightly preferable until we
3858     // have local live range splitting. In particular this is required by
3859     // cmp+jmp macro fusion.
3860     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3861          MII != E; ++MII) {
3862       if (!MII->isCopyLike())
3863         continue;
3864       bool ApplyTerminalRule = applyTerminalRule(*MII);
3865       if (isLocalCopy(&(*MII), LIS)) {
3866         if (ApplyTerminalRule)
3867           LocalTerminals.push_back(&(*MII));
3868         else
3869           LocalWorkList.push_back(&(*MII));
3870       } else {
3871         if (ApplyTerminalRule)
3872           GlobalTerminals.push_back(&(*MII));
3873         else
3874           WorkList.push_back(&(*MII));
3875       }
3876     }
3877     // Append the copies evicted by the terminal rule at the end of the list.
3878     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3879     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3880   }
3881   else {
3882     SmallVector<MachineInstr*, 2> Terminals;
3883     for (MachineInstr &MII : *MBB)
3884       if (MII.isCopyLike()) {
3885         if (applyTerminalRule(MII))
3886           Terminals.push_back(&MII);
3887         else
3888           WorkList.push_back(&MII);
3889       }
3890     // Append the copies evicted by the terminal rule at the end of the list.
3891     WorkList.append(Terminals.begin(), Terminals.end());
3892   }
3893   // Try coalescing the collected copies immediately, and remove the nulls.
3894   // This prevents the WorkList from getting too large since most copies are
3895   // joinable on the first attempt.
3896   MutableArrayRef<MachineInstr*>
3897     CurrList(WorkList.begin() + PrevSize, WorkList.end());
3898   if (copyCoalesceWorkList(CurrList))
3899     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3900                                nullptr), WorkList.end());
3901 }
3902 
coalesceLocals()3903 void RegisterCoalescer::coalesceLocals() {
3904   copyCoalesceWorkList(LocalWorkList);
3905   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3906     if (LocalWorkList[j])
3907       WorkList.push_back(LocalWorkList[j]);
3908   }
3909   LocalWorkList.clear();
3910 }
3911 
joinAllIntervals()3912 void RegisterCoalescer::joinAllIntervals() {
3913   LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3914   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3915 
3916   std::vector<MBBPriorityInfo> MBBs;
3917   MBBs.reserve(MF->size());
3918   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3919     MachineBasicBlock *MBB = &*I;
3920     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3921                                    JoinSplitEdges && isSplitEdge(MBB)));
3922   }
3923   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3924 
3925   // Coalesce intervals in MBB priority order.
3926   unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3927   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3928     // Try coalescing the collected local copies for deeper loops.
3929     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3930       coalesceLocals();
3931       CurrDepth = MBBs[i].Depth;
3932     }
3933     copyCoalesceInMBB(MBBs[i].MBB);
3934   }
3935   lateLiveIntervalUpdate();
3936   coalesceLocals();
3937 
3938   // Joining intervals can allow other intervals to be joined.  Iteratively join
3939   // until we make no progress.
3940   while (copyCoalesceWorkList(WorkList))
3941     /* empty */ ;
3942   lateLiveIntervalUpdate();
3943 }
3944 
releaseMemory()3945 void RegisterCoalescer::releaseMemory() {
3946   ErasedInstrs.clear();
3947   WorkList.clear();
3948   DeadDefs.clear();
3949   InflateRegs.clear();
3950   LargeLIVisitCounter.clear();
3951 }
3952 
runOnMachineFunction(MachineFunction & fn)3953 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3954   LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3955                     << "********** Function: " << fn.getName() << '\n');
3956 
3957   // Variables changed between a setjmp and a longjump can have undefined value
3958   // after the longjmp. This behaviour can be observed if such a variable is
3959   // spilled, so longjmp won't restore the value in the spill slot.
3960   // RegisterCoalescer should not run in functions with a setjmp to avoid
3961   // merging such undefined variables with predictable ones.
3962   //
3963   // TODO: Could specifically disable coalescing registers live across setjmp
3964   // calls
3965   if (fn.exposesReturnsTwice()) {
3966     LLVM_DEBUG(
3967         dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
3968     return false;
3969   }
3970 
3971   MF = &fn;
3972   MRI = &fn.getRegInfo();
3973   const TargetSubtargetInfo &STI = fn.getSubtarget();
3974   TRI = STI.getRegisterInfo();
3975   TII = STI.getInstrInfo();
3976   LIS = &getAnalysis<LiveIntervals>();
3977   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3978   Loops = &getAnalysis<MachineLoopInfo>();
3979   if (EnableGlobalCopies == cl::BOU_UNSET)
3980     JoinGlobalCopies = STI.enableJoinGlobalCopies();
3981   else
3982     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3983 
3984   // The MachineScheduler does not currently require JoinSplitEdges. This will
3985   // either be enabled unconditionally or replaced by a more general live range
3986   // splitting optimization.
3987   JoinSplitEdges = EnableJoinSplits;
3988 
3989   if (VerifyCoalescing)
3990     MF->verify(this, "Before register coalescing");
3991 
3992   DbgVRegToValues.clear();
3993   DbgMergedVRegNums.clear();
3994   buildVRegToDbgValueMap(fn);
3995 
3996   RegClassInfo.runOnMachineFunction(fn);
3997 
3998   // Join (coalesce) intervals if requested.
3999   if (EnableJoining)
4000     joinAllIntervals();
4001 
4002   // After deleting a lot of copies, register classes may be less constrained.
4003   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4004   // DPR inflation.
4005   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4006   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4007                     InflateRegs.end());
4008   LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4009                     << " regs.\n");
4010   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
4011     Register Reg = InflateRegs[i];
4012     if (MRI->reg_nodbg_empty(Reg))
4013       continue;
4014     if (MRI->recomputeRegClass(Reg)) {
4015       LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4016                         << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4017       ++NumInflated;
4018 
4019       LiveInterval &LI = LIS->getInterval(Reg);
4020       if (LI.hasSubRanges()) {
4021         // If the inflated register class does not support subregisters anymore
4022         // remove the subranges.
4023         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4024           LI.clearSubRanges();
4025         } else {
4026 #ifndef NDEBUG
4027           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4028           // If subranges are still supported, then the same subregs
4029           // should still be supported.
4030           for (LiveInterval::SubRange &S : LI.subranges()) {
4031             assert((S.LaneMask & ~MaxMask).none());
4032           }
4033 #endif
4034         }
4035       }
4036     }
4037   }
4038 
4039   LLVM_DEBUG(dump());
4040   if (VerifyCoalescing)
4041     MF->verify(this, "After register coalescing");
4042   return true;
4043 }
4044 
print(raw_ostream & O,const Module * m) const4045 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4046    LIS->print(O, m);
4047 }
4048