1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/LoopPassManager.h"
10 #include "llvm/Analysis/AliasAnalysis.h"
11 #include "llvm/Analysis/AssumptionCache.h"
12 #include "llvm/Analysis/BlockFrequencyInfo.h"
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/Analysis/PostDominators.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/AsmParser/Parser.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/SourceMgr.h"
26 
27 #include "gmock/gmock.h"
28 #include "gtest/gtest.h"
29 
30 using namespace llvm;
31 
32 namespace {
33 
34 using testing::DoDefault;
35 using testing::Return;
36 using testing::Expectation;
37 using testing::Invoke;
38 using testing::InvokeWithoutArgs;
39 using testing::_;
40 
41 template <typename DerivedT, typename IRUnitT,
42           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
43           typename... ExtraArgTs>
44 class MockAnalysisHandleBase {
45 public:
46   class Analysis : public AnalysisInfoMixin<Analysis> {
47     friend AnalysisInfoMixin<Analysis>;
48     friend MockAnalysisHandleBase;
49     static AnalysisKey Key;
50 
51     DerivedT *Handle;
52 
Analysis(DerivedT & Handle)53     Analysis(DerivedT &Handle) : Handle(&Handle) {
54       static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
55                     "Must pass the derived type to this template!");
56     }
57 
58   public:
59     class Result {
60       friend MockAnalysisHandleBase;
61 
62       DerivedT *Handle;
63 
Result(DerivedT & Handle)64       Result(DerivedT &Handle) : Handle(&Handle) {}
65 
66     public:
67       // Forward invalidation events to the mock handle.
invalidate(IRUnitT & IR,const PreservedAnalyses & PA,typename AnalysisManagerT::Invalidator & Inv)68       bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
69                       typename AnalysisManagerT::Invalidator &Inv) {
70         return Handle->invalidate(IR, PA, Inv);
71       }
72     };
73 
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)74     Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
75       return Handle->run(IR, AM, ExtraArgs...);
76     }
77   };
78 
getAnalysis()79   Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
getResult()80   typename Analysis::Result getResult() {
81     return typename Analysis::Result(static_cast<DerivedT &>(*this));
82   }
83 
84 protected:
85   // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
86   // the template, so we use a boring static function.
invalidateCallback(IRUnitT & IR,const PreservedAnalyses & PA,typename AnalysisManagerT::Invalidator & Inv)87   static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
88                                  typename AnalysisManagerT::Invalidator &Inv) {
89     auto PAC = PA.template getChecker<Analysis>();
90     return !PAC.preserved() &&
91            !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
92   }
93 
94   /// Derived classes should call this in their constructor to set up default
95   /// mock actions. (We can't do this in our constructor because this has to
96   /// run after the DerivedT is constructed.)
setDefaults()97   void setDefaults() {
98     ON_CALL(static_cast<DerivedT &>(*this),
99             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
100         .WillByDefault(Return(this->getResult()));
101     ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
102         .WillByDefault(Invoke(&invalidateCallback));
103   }
104 };
105 
106 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
107           typename... ExtraArgTs>
108 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
109                                    ExtraArgTs...>::Analysis::Key;
110 
111 /// Mock handle for loop analyses.
112 ///
113 /// This is provided as a template accepting an (optional) integer. Because
114 /// analyses are identified and queried by type, this allows constructing
115 /// multiple handles with distinctly typed nested 'Analysis' types that can be
116 /// registered and queried. If you want to register multiple loop analysis
117 /// passes, you'll need to instantiate this type with different values for I.
118 /// For example:
119 ///
120 ///   MockLoopAnalysisHandleTemplate<0> h0;
121 ///   MockLoopAnalysisHandleTemplate<1> h1;
122 ///   typedef decltype(h0)::Analysis Analysis0;
123 ///   typedef decltype(h1)::Analysis Analysis1;
124 template <size_t I = static_cast<size_t>(-1)>
125 struct MockLoopAnalysisHandleTemplate
126     : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
127                              LoopAnalysisManager,
128                              LoopStandardAnalysisResults &> {
129   typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
130 
131   MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
132                                                 LoopStandardAnalysisResults &));
133 
134   MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
135                                   LoopAnalysisManager::Invalidator &));
136 
MockLoopAnalysisHandleTemplate__anonb1f49f730111::MockLoopAnalysisHandleTemplate137   MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
138 };
139 
140 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
141 
142 struct MockFunctionAnalysisHandle
143     : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
144   MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
145 
146   MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
147                                 FunctionAnalysisManager::Invalidator &));
148 
MockFunctionAnalysisHandle__anonb1f49f730111::MockFunctionAnalysisHandle149   MockFunctionAnalysisHandle() { setDefaults(); }
150 };
151 
152 template <typename DerivedT, typename IRUnitT,
153           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
154           typename... ExtraArgTs>
155 class MockPassHandleBase {
156 public:
157   class Pass : public PassInfoMixin<Pass> {
158     friend MockPassHandleBase;
159 
160     DerivedT *Handle;
161 
Pass(DerivedT & Handle)162     Pass(DerivedT &Handle) : Handle(&Handle) {
163       static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
164                     "Must pass the derived type to this template!");
165     }
166 
167   public:
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)168     PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
169                           ExtraArgTs... ExtraArgs) {
170       return Handle->run(IR, AM, ExtraArgs...);
171     }
172   };
173 
getPass()174   Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
175 
176 protected:
177   /// Derived classes should call this in their constructor to set up default
178   /// mock actions. (We can't do this in our constructor because this has to
179   /// run after the DerivedT is constructed.)
setDefaults()180   void setDefaults() {
181     ON_CALL(static_cast<DerivedT &>(*this),
182             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
183         .WillByDefault(Return(PreservedAnalyses::all()));
184   }
185 };
186 
187 struct MockLoopPassHandle
188     : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
189                          LoopStandardAnalysisResults &, LPMUpdater &> {
190   MOCK_METHOD4(run,
191                PreservedAnalyses(Loop &, LoopAnalysisManager &,
192                                  LoopStandardAnalysisResults &, LPMUpdater &));
MockLoopPassHandle__anonb1f49f730111::MockLoopPassHandle193   MockLoopPassHandle() { setDefaults(); }
194 };
195 
196 struct MockLoopNestPassHandle
197     : MockPassHandleBase<MockLoopNestPassHandle, LoopNest, LoopAnalysisManager,
198                          LoopStandardAnalysisResults &, LPMUpdater &> {
199   MOCK_METHOD4(run,
200                PreservedAnalyses(LoopNest &, LoopAnalysisManager &,
201                                  LoopStandardAnalysisResults &, LPMUpdater &));
202 
MockLoopNestPassHandle__anonb1f49f730111::MockLoopNestPassHandle203   MockLoopNestPassHandle() { setDefaults(); }
204 };
205 
206 struct MockFunctionPassHandle
207     : MockPassHandleBase<MockFunctionPassHandle, Function> {
208   MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
209 
MockFunctionPassHandle__anonb1f49f730111::MockFunctionPassHandle210   MockFunctionPassHandle() { setDefaults(); }
211 };
212 
213 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
214   MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
215 
MockModulePassHandle__anonb1f49f730111::MockModulePassHandle216   MockModulePassHandle() { setDefaults(); }
217 };
218 
219 /// Define a custom matcher for objects which support a 'getName' method
220 /// returning a StringRef.
221 ///
222 /// LLVM often has IR objects or analysis objects which expose a StringRef name
223 /// and in tests it is convenient to match these by name for readability. This
224 /// matcher supports any type exposing a getName() method of this form.
225 ///
226 /// It should be used as:
227 ///
228 ///   HasName("my_function")
229 ///
230 /// No namespace or other qualification is required.
231 MATCHER_P(HasName, Name, "") {
232   // The matcher's name and argument are printed in the case of failure, but we
233   // also want to print out the name of the argument. This uses an implicitly
234   // avaiable std::ostream, so we have to construct a std::string.
235   *result_listener << "has name '" << arg.getName().str() << "'";
236   return Name == arg.getName();
237 }
238 
parseIR(LLVMContext & C,const char * IR)239 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
240   SMDiagnostic Err;
241   return parseAssemblyString(IR, Err, C);
242 }
243 
244 class LoopPassManagerTest : public ::testing::Test {
245 protected:
246   LLVMContext Context;
247   std::unique_ptr<Module> M;
248 
249   LoopAnalysisManager LAM;
250   FunctionAnalysisManager FAM;
251   ModuleAnalysisManager MAM;
252 
253   MockLoopAnalysisHandle MLAHandle;
254   MockLoopPassHandle MLPHandle;
255   MockLoopNestPassHandle MLNPHandle;
256   MockFunctionPassHandle MFPHandle;
257   MockModulePassHandle MMPHandle;
258 
259   static PreservedAnalyses
getLoopAnalysisResult(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)260   getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
261                         LoopStandardAnalysisResults &AR, LPMUpdater &) {
262     (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
263     return PreservedAnalyses::all();
264   };
265 
266 public:
LoopPassManagerTest()267   LoopPassManagerTest()
268       : M(parseIR(Context,
269                   "define void @f(i1* %ptr) {\n"
270                   "entry:\n"
271                   "  br label %loop.0\n"
272                   "loop.0:\n"
273                   "  %cond.0 = load volatile i1, i1* %ptr\n"
274                   "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
275                   "loop.0.0.ph:\n"
276                   "  br label %loop.0.0\n"
277                   "loop.0.0:\n"
278                   "  %cond.0.0 = load volatile i1, i1* %ptr\n"
279                   "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
280                   "loop.0.1.ph:\n"
281                   "  br label %loop.0.1\n"
282                   "loop.0.1:\n"
283                   "  %cond.0.1 = load volatile i1, i1* %ptr\n"
284                   "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
285                   "loop.0.latch:\n"
286                   "  br label %loop.0\n"
287                   "end:\n"
288                   "  ret void\n"
289                   "}\n"
290                   "\n"
291                   "define void @g(i1* %ptr) {\n"
292                   "entry:\n"
293                   "  br label %loop.g.0\n"
294                   "loop.g.0:\n"
295                   "  %cond.0 = load volatile i1, i1* %ptr\n"
296                   "  br i1 %cond.0, label %loop.g.0, label %end\n"
297                   "end:\n"
298                   "  ret void\n"
299                   "}\n")),
300         LAM(true), FAM(true), MAM(true) {
301     // Register our mock analysis.
302     LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
303 
304     // We need DominatorTreeAnalysis for LoopAnalysis.
305     FAM.registerPass([&] { return DominatorTreeAnalysis(); });
306     FAM.registerPass([&] { return LoopAnalysis(); });
307     // We also allow loop passes to assume a set of other analyses and so need
308     // those.
309     FAM.registerPass([&] { return AAManager(); });
310     FAM.registerPass([&] { return AssumptionAnalysis(); });
311     FAM.registerPass([&] { return BlockFrequencyAnalysis(); });
312     FAM.registerPass([&] { return BranchProbabilityAnalysis(); });
313     FAM.registerPass([&] { return PostDominatorTreeAnalysis(); });
314     FAM.registerPass([&] { return MemorySSAAnalysis(); });
315     FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
316     FAM.registerPass([&] { return TargetLibraryAnalysis(); });
317     FAM.registerPass([&] { return TargetIRAnalysis(); });
318 
319     // Register required pass instrumentation analysis.
320     LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
321     FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
322     MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
323 
324     // Cross-register proxies.
325     LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
326     FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
327     FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
328     MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
329   }
330 };
331 
TEST_F(LoopPassManagerTest,Basic)332 TEST_F(LoopPassManagerTest, Basic) {
333   ModulePassManager MPM(true);
334   ::testing::InSequence MakeExpectationsSequenced;
335 
336   // First we just visit all the loops in all the functions and get their
337   // analysis results. This will run the analysis a total of four times,
338   // once for each loop.
339   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
340       .WillOnce(Invoke(getLoopAnalysisResult));
341   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
342   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
343       .WillOnce(Invoke(getLoopAnalysisResult));
344   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
345   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
346       .WillOnce(Invoke(getLoopAnalysisResult));
347   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
348   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
349       .WillOnce(Invoke(getLoopAnalysisResult));
350   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
351   // Wire the loop pass through pass managers into the module pipeline.
352   {
353     LoopPassManager LPM(true);
354     LPM.addPass(MLPHandle.getPass());
355     FunctionPassManager FPM(true);
356     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
357     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
358   }
359 
360   // Next we run two passes over the loops. The first one invalidates the
361   // analyses for one loop, the second ones try to get the analysis results.
362   // This should force only one analysis to re-run within the loop PM, but will
363   // also invalidate everything after the loop pass manager finishes.
364   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
365       .WillOnce(DoDefault())
366       .WillOnce(Invoke(getLoopAnalysisResult));
367   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
368       .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
369       .WillOnce(Invoke(getLoopAnalysisResult));
370   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
371   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
372       .WillOnce(DoDefault())
373       .WillOnce(Invoke(getLoopAnalysisResult));
374   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
375       .WillOnce(DoDefault())
376       .WillOnce(Invoke(getLoopAnalysisResult));
377   // Wire two loop pass runs into the module pipeline.
378   {
379     LoopPassManager LPM(true);
380     LPM.addPass(MLPHandle.getPass());
381     LPM.addPass(MLPHandle.getPass());
382     FunctionPassManager FPM(true);
383     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
384     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
385   }
386 
387   // And now run the pipeline across the module.
388   MPM.run(*M, MAM);
389 }
390 
TEST_F(LoopPassManagerTest,FunctionPassInvalidationOfLoopAnalyses)391 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
392   ModulePassManager MPM(true);
393   FunctionPassManager FPM(true);
394   // We process each function completely in sequence.
395   ::testing::Sequence FSequence, GSequence;
396 
397   // First, force the analysis result to be computed for each loop.
398   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
399       .InSequence(FSequence)
400       .WillOnce(DoDefault());
401   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
402       .InSequence(FSequence)
403       .WillOnce(DoDefault());
404   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
405       .InSequence(FSequence)
406       .WillOnce(DoDefault());
407   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
408       .InSequence(GSequence)
409       .WillOnce(DoDefault());
410   FPM.addPass(createFunctionToLoopPassAdaptor(
411       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
412 
413   // No need to re-run if we require again from a fresh loop pass manager.
414   FPM.addPass(createFunctionToLoopPassAdaptor(
415       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
416   // For 'f', preserve most things but not the specific loop analyses.
417   auto PA = getLoopPassPreservedAnalyses();
418   if (EnableMSSALoopDependency)
419     PA.preserve<MemorySSAAnalysis>();
420   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
421       .InSequence(FSequence)
422       .WillOnce(Return(PA));
423   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
424       .InSequence(FSequence)
425       .WillOnce(DoDefault());
426   // On one loop, skip the invalidation (as though we did an internal update).
427   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
428       .InSequence(FSequence)
429       .WillOnce(Return(false));
430   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
431       .InSequence(FSequence)
432       .WillOnce(DoDefault());
433   // Now two loops still have to be recomputed.
434   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
435       .InSequence(FSequence)
436       .WillOnce(DoDefault());
437   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
438       .InSequence(FSequence)
439       .WillOnce(DoDefault());
440   // Preserve things in the second function to ensure invalidation remains
441   // isolated to one function.
442   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
443       .InSequence(GSequence)
444       .WillOnce(DoDefault());
445   FPM.addPass(MFPHandle.getPass());
446   FPM.addPass(createFunctionToLoopPassAdaptor(
447       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
448 
449   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
450       .InSequence(FSequence)
451       .WillOnce(DoDefault());
452   // For 'g', fail to preserve anything, causing the loops themselves to be
453   // cleared. We don't get an invalidation event here as the loop is gone, but
454   // we should still have to recompute the analysis.
455   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
456       .InSequence(GSequence)
457       .WillOnce(Return(PreservedAnalyses::none()));
458   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
459       .InSequence(GSequence)
460       .WillOnce(DoDefault());
461   FPM.addPass(MFPHandle.getPass());
462   FPM.addPass(createFunctionToLoopPassAdaptor(
463       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
464 
465   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
466 
467   // Verify with a separate function pass run that we didn't mess up 'f's
468   // cache. No analysis runs should be necessary here.
469   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
470       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
471 
472   MPM.run(*M, MAM);
473 }
474 
TEST_F(LoopPassManagerTest,ModulePassInvalidationOfLoopAnalyses)475 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
476   ModulePassManager MPM(true);
477   ::testing::InSequence MakeExpectationsSequenced;
478 
479   // First, force the analysis result to be computed for each loop.
480   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
481   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
482   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
483   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
484   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
485       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
486 
487   // Walking all the way out and all the way back in doesn't re-run the
488   // analysis.
489   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
490       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
491 
492   // But a module pass that doesn't preserve the actual mock loop analysis
493   // invalidates all the way down and forces recomputing.
494   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
495     auto PA = getLoopPassPreservedAnalyses();
496     PA.preserve<FunctionAnalysisManagerModuleProxy>();
497     if (EnableMSSALoopDependency)
498       PA.preserve<MemorySSAAnalysis>();
499     return PA;
500   }));
501   // All the loop analyses from both functions get invalidated before we
502   // recompute anything.
503   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
504   // On one loop, again skip the invalidation (as though we did an internal
505   // update).
506   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
507       .WillOnce(Return(false));
508   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
509   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
510   // Now all but one of the loops gets re-analyzed.
511   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
512   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
513   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
514   MPM.addPass(MMPHandle.getPass());
515   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
516       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
517 
518   // Verify that the cached values persist.
519   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
520       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
521 
522   // Now we fail to preserve the loop analysis and observe that the loop
523   // analyses are cleared (so no invalidation event) as the loops themselves
524   // are no longer valid.
525   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
526     auto PA = PreservedAnalyses::none();
527     PA.preserve<FunctionAnalysisManagerModuleProxy>();
528     return PA;
529   }));
530   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
531   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
532   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
533   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
534   MPM.addPass(MMPHandle.getPass());
535   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
536       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
537 
538   // Verify that the cached values persist.
539   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
540       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
541 
542   // Next, check that even if we preserve everything within the function itelf,
543   // if the function's module pass proxy isn't preserved and the potential set
544   // of functions changes, the clear reaches the loop analyses as well. This
545   // will again trigger re-runs but not invalidation events.
546   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
547     auto PA = PreservedAnalyses::none();
548     PA.preserveSet<AllAnalysesOn<Function>>();
549     PA.preserveSet<AllAnalysesOn<Loop>>();
550     return PA;
551   }));
552   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
553   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
554   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
555   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
556   MPM.addPass(MMPHandle.getPass());
557   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
558       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
559 
560   MPM.run(*M, MAM);
561 }
562 
563 // Test that if any of the bundled analyses provided in the LPM's signature
564 // become invalid, the analysis proxy itself becomes invalid and we clear all
565 // loop analysis results.
TEST_F(LoopPassManagerTest,InvalidationOfBundledAnalyses)566 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
567   ModulePassManager MPM(true);
568   FunctionPassManager FPM(true);
569   ::testing::InSequence MakeExpectationsSequenced;
570 
571   // First, force the analysis result to be computed for each loop.
572   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
573   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
574   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
575   FPM.addPass(createFunctionToLoopPassAdaptor(
576       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
577 
578   // No need to re-run if we require again from a fresh loop pass manager.
579   FPM.addPass(createFunctionToLoopPassAdaptor(
580       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
581 
582   // Preserving everything but the loop analyses themselves results in
583   // invalidation and running.
584   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
585       .WillOnce(Return(getLoopPassPreservedAnalyses()));
586   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
587   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
588   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
589   FPM.addPass(MFPHandle.getPass());
590   FPM.addPass(createFunctionToLoopPassAdaptor(
591       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
592 
593   // The rest don't invalidate analyses, they only trigger re-runs because we
594   // clear the cache completely.
595   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
596     auto PA = PreservedAnalyses::none();
597     // Not preserving `AAManager`.
598     PA.preserve<DominatorTreeAnalysis>();
599     PA.preserve<LoopAnalysis>();
600     PA.preserve<LoopAnalysisManagerFunctionProxy>();
601     PA.preserve<ScalarEvolutionAnalysis>();
602     return PA;
603   }));
604   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
605   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
606   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
607   FPM.addPass(MFPHandle.getPass());
608   FPM.addPass(createFunctionToLoopPassAdaptor(
609       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
610 
611   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
612     auto PA = PreservedAnalyses::none();
613     PA.preserve<AAManager>();
614     // Not preserving `DominatorTreeAnalysis`.
615     PA.preserve<LoopAnalysis>();
616     PA.preserve<LoopAnalysisManagerFunctionProxy>();
617     PA.preserve<ScalarEvolutionAnalysis>();
618     return PA;
619   }));
620   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
621   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
622   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
623   FPM.addPass(MFPHandle.getPass());
624   FPM.addPass(createFunctionToLoopPassAdaptor(
625       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
626 
627   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
628     auto PA = PreservedAnalyses::none();
629     PA.preserve<AAManager>();
630     PA.preserve<DominatorTreeAnalysis>();
631     // Not preserving the `LoopAnalysis`.
632     PA.preserve<LoopAnalysisManagerFunctionProxy>();
633     PA.preserve<ScalarEvolutionAnalysis>();
634     return PA;
635   }));
636   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
637   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
638   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
639   FPM.addPass(MFPHandle.getPass());
640   FPM.addPass(createFunctionToLoopPassAdaptor(
641       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
642 
643   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
644     auto PA = PreservedAnalyses::none();
645     PA.preserve<AAManager>();
646     PA.preserve<DominatorTreeAnalysis>();
647     PA.preserve<LoopAnalysis>();
648     // Not preserving the `LoopAnalysisManagerFunctionProxy`.
649     PA.preserve<ScalarEvolutionAnalysis>();
650     return PA;
651   }));
652   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
653   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
654   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
655   FPM.addPass(MFPHandle.getPass());
656   FPM.addPass(createFunctionToLoopPassAdaptor(
657       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
658 
659   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
660     auto PA = PreservedAnalyses::none();
661     PA.preserve<AAManager>();
662     PA.preserve<DominatorTreeAnalysis>();
663     PA.preserve<LoopAnalysis>();
664     PA.preserve<LoopAnalysisManagerFunctionProxy>();
665     // Not preserving `ScalarEvolutionAnalysis`.
666     return PA;
667   }));
668   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
669   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
670   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
671   FPM.addPass(MFPHandle.getPass());
672   FPM.addPass(createFunctionToLoopPassAdaptor(
673       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
674 
675   // After all the churn on 'f', we'll compute the loop analysis results for
676   // 'g' once with a requires pass and then run our mock pass over g a bunch
677   // but just get cached results each time.
678   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
679   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
680 
681   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
682   MPM.run(*M, MAM);
683 }
684 
TEST_F(LoopPassManagerTest,IndirectInvalidation)685 TEST_F(LoopPassManagerTest, IndirectInvalidation) {
686   // We need two distinct analysis types and handles.
687   enum { A, B };
688   MockLoopAnalysisHandleTemplate<A> MLAHandleA;
689   MockLoopAnalysisHandleTemplate<B> MLAHandleB;
690   LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
691   LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
692   typedef decltype(MLAHandleA)::Analysis AnalysisA;
693   typedef decltype(MLAHandleB)::Analysis AnalysisB;
694 
695   // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
696   // need to get the AnalysisB results in AnalysisA's run method and check if
697   // AnalysisB gets invalidated in AnalysisA's invalidate method.
698   ON_CALL(MLAHandleA, run(_, _, _))
699       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
700                                 LoopStandardAnalysisResults &AR) {
701         (void)AM.getResult<AnalysisB>(L, AR);
702         return MLAHandleA.getResult();
703       }));
704   ON_CALL(MLAHandleA, invalidate(_, _, _))
705       .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
706                                LoopAnalysisManager::Invalidator &Inv) {
707         auto PAC = PA.getChecker<AnalysisA>();
708         return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
709                Inv.invalidate<AnalysisB>(L, PA);
710       }));
711 
712   ::testing::InSequence MakeExpectationsSequenced;
713 
714   // Compute the analyses across all of 'f' first.
715   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
716   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
717   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
718   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
719   EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
720   EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
721 
722   // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
723   // preserve everything for the rest. This in turn triggers that one loop to
724   // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
725   // working.
726   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
727       .WillOnce(InvokeWithoutArgs([] {
728         auto PA = getLoopPassPreservedAnalyses();
729         // Specifically preserve AnalysisA so that it would survive if it
730         // didn't depend on AnalysisB.
731         PA.preserve<AnalysisA>();
732         return PA;
733       }));
734   // It happens that AnalysisB is invalidated first. That shouldn't matter
735   // though, and we should still call AnalysisA's invalidation.
736   EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
737   EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
738   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
739       .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
740                           LoopStandardAnalysisResults &AR, LPMUpdater &) {
741         (void)AM.getResult<AnalysisA>(L, AR);
742         return PreservedAnalyses::all();
743       }));
744   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
745   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
746   // The rest of the loops should run and get cached results.
747   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
748       .Times(2)
749       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
750                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
751         (void)AM.getResult<AnalysisA>(L, AR);
752         return PreservedAnalyses::all();
753       }));
754   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
755       .Times(2)
756       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
757                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
758         (void)AM.getResult<AnalysisA>(L, AR);
759         return PreservedAnalyses::all();
760       }));
761 
762   // The run over 'g' should be boring, with us just computing the analyses once
763   // up front and then running loop passes and getting cached results.
764   EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
765   EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
766   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
767       .Times(2)
768       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
769                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
770         (void)AM.getResult<AnalysisA>(L, AR);
771         return PreservedAnalyses::all();
772       }));
773 
774   // Build the pipeline and run it.
775   ModulePassManager MPM(true);
776   FunctionPassManager FPM(true);
777   FPM.addPass(
778       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
779   LoopPassManager LPM(true);
780   LPM.addPass(MLPHandle.getPass());
781   LPM.addPass(MLPHandle.getPass());
782   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
783   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
784   MPM.run(*M, MAM);
785 }
786 
TEST_F(LoopPassManagerTest,IndirectOuterPassInvalidation)787 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
788   typedef decltype(MLAHandle)::Analysis LoopAnalysis;
789 
790   MockFunctionAnalysisHandle MFAHandle;
791   FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
792   typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
793 
794   // Set up the loop analysis to depend on both the function and module
795   // analysis.
796   ON_CALL(MLAHandle, run(_, _, _))
797       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
798                                 LoopStandardAnalysisResults &AR) {
799         auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
800         Function &F = *L.getHeader()->getParent();
801         // This call will assert when trying to get the actual analysis if the
802         // FunctionAnalysis can be invalidated. Only check its existence.
803         // Alternatively, use FAM above, for the purposes of this unittest.
804         if (FAMP.cachedResultExists<FunctionAnalysis>(F))
805           FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
806                                                  LoopAnalysis>();
807         return MLAHandle.getResult();
808       }));
809 
810   ::testing::InSequence MakeExpectationsSequenced;
811 
812   // Compute the analyses across all of 'f' first.
813   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
814       .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
815         // Force the computing of the function analysis so it is available in
816         // this function.
817         (void)AM.getResult<FunctionAnalysis>(F);
818         return PreservedAnalyses::all();
819       }));
820   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
821   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
822   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
823 
824   // Now invalidate the function analysis but preserve the loop analyses.
825   // This should trigger immediate invalidation of the loop analyses, despite
826   // the fact that they were preserved.
827   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
828     auto PA = getLoopPassPreservedAnalyses();
829     if (EnableMSSALoopDependency)
830       PA.preserve<MemorySSAAnalysis>();
831     PA.preserveSet<AllAnalysesOn<Loop>>();
832     return PA;
833   }));
834   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
835   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
836   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
837 
838   // And re-running a requires pass recomputes them.
839   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
840   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
841   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
842 
843   // When we run over 'g' we don't populate the cache with the function
844   // analysis.
845   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
846       .WillOnce(Return(PreservedAnalyses::all()));
847   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
848 
849   // Which means that no extra invalidation occurs and cached values are used.
850   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
851     auto PA = getLoopPassPreservedAnalyses();
852     if (EnableMSSALoopDependency)
853       PA.preserve<MemorySSAAnalysis>();
854     PA.preserveSet<AllAnalysesOn<Loop>>();
855     return PA;
856   }));
857 
858   // Build the pipeline and run it.
859   ModulePassManager MPM(true);
860   FunctionPassManager FPM(true);
861   FPM.addPass(MFPHandle.getPass());
862   FPM.addPass(
863       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
864   FPM.addPass(MFPHandle.getPass());
865   FPM.addPass(
866       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
867   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
868   MPM.run(*M, MAM);
869 }
870 
TEST_F(LoopPassManagerTest,LoopChildInsertion)871 TEST_F(LoopPassManagerTest, LoopChildInsertion) {
872   // Super boring module with three loops in a single loop nest.
873   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
874                        "entry:\n"
875                        "  br label %loop.0\n"
876                        "loop.0:\n"
877                        "  %cond.0 = load volatile i1, i1* %ptr\n"
878                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
879                        "loop.0.0.ph:\n"
880                        "  br label %loop.0.0\n"
881                        "loop.0.0:\n"
882                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
883                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
884                        "loop.0.1.ph:\n"
885                        "  br label %loop.0.1\n"
886                        "loop.0.1:\n"
887                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
888                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
889                        "loop.0.2.ph:\n"
890                        "  br label %loop.0.2\n"
891                        "loop.0.2:\n"
892                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
893                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
894                        "loop.0.latch:\n"
895                        "  br label %loop.0\n"
896                        "end:\n"
897                        "  ret void\n"
898                        "}\n");
899 
900   // Build up variables referring into the IR so we can rewrite it below
901   // easily.
902   Function &F = *M->begin();
903   ASSERT_THAT(F, HasName("f"));
904   Argument &Ptr = *F.arg_begin();
905   auto BBI = F.begin();
906   BasicBlock &EntryBB = *BBI++;
907   ASSERT_THAT(EntryBB, HasName("entry"));
908   BasicBlock &Loop0BB = *BBI++;
909   ASSERT_THAT(Loop0BB, HasName("loop.0"));
910   BasicBlock &Loop00PHBB = *BBI++;
911   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
912   BasicBlock &Loop00BB = *BBI++;
913   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
914   BasicBlock &Loop01PHBB = *BBI++;
915   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
916   BasicBlock &Loop01BB = *BBI++;
917   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
918   BasicBlock &Loop02PHBB = *BBI++;
919   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
920   BasicBlock &Loop02BB = *BBI++;
921   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
922   BasicBlock &Loop0LatchBB = *BBI++;
923   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
924   BasicBlock &EndBB = *BBI++;
925   ASSERT_THAT(EndBB, HasName("end"));
926   ASSERT_THAT(BBI, F.end());
927   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
928                           const char *Name, BasicBlock *BB) {
929     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
930                               /*isVolatile*/ true, BB);
931     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
932   };
933 
934   // Build the pass managers and register our pipeline. We build a single loop
935   // pass pipeline consisting of three mock pass runs over each loop. After
936   // this we run both domtree and loop verification passes to make sure that
937   // the IR remained valid during our mutations.
938   ModulePassManager MPM(true);
939   FunctionPassManager FPM(true);
940   LoopPassManager LPM(true);
941   LPM.addPass(MLPHandle.getPass());
942   LPM.addPass(MLPHandle.getPass());
943   LPM.addPass(MLPHandle.getPass());
944   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
945   FPM.addPass(DominatorTreeVerifierPass());
946   FPM.addPass(LoopVerifierPass());
947   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
948 
949   // All the visit orders are deterministic, so we use simple fully order
950   // expectations.
951   ::testing::InSequence MakeExpectationsSequenced;
952 
953   // We run loop passes three times over each of the loops.
954   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
955       .WillOnce(Invoke(getLoopAnalysisResult));
956   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
957   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
958       .Times(2)
959       .WillRepeatedly(Invoke(getLoopAnalysisResult));
960 
961   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
962       .WillOnce(Invoke(getLoopAnalysisResult));
963   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
964 
965   // When running over the middle loop, the second run inserts two new child
966   // loops, inserting them and itself into the worklist.
967   BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
968   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
969       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
970                            LoopStandardAnalysisResults &AR,
971                            LPMUpdater &Updater) {
972         auto *NewLoop = AR.LI.AllocateLoop();
973         L.addChildLoop(NewLoop);
974         auto *NewLoop010PHBB =
975             BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
976         NewLoop010BB =
977             BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
978         NewLoop01LatchBB =
979             BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
980         Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
981         BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
982         CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
983                      NewLoop010BB);
984         BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
985         AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
986         AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
987         AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
988         EXPECT_TRUE(AR.DT.verify());
989         L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
990         NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
991         L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
992         NewLoop->verifyLoop();
993         L.verifyLoop();
994         Updater.addChildLoops({NewLoop});
995         return PreservedAnalyses::all();
996       }));
997 
998   // We should immediately drop down to fully visit the new inner loop.
999   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
1000       .WillOnce(Invoke(getLoopAnalysisResult));
1001   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
1002   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
1003       .Times(2)
1004       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1005 
1006   // After visiting the inner loop, we should re-visit the second loop
1007   // reflecting its new loop nest structure.
1008   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1009       .WillOnce(Invoke(getLoopAnalysisResult));
1010 
1011   // In the second run over the middle loop after we've visited the new child,
1012   // we add another child to check that we can repeatedly add children, and add
1013   // children to a loop that already has children.
1014   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1015       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1016                            LoopStandardAnalysisResults &AR,
1017                            LPMUpdater &Updater) {
1018         auto *NewLoop = AR.LI.AllocateLoop();
1019         L.addChildLoop(NewLoop);
1020         auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
1021         auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
1022         NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
1023                                                          NewLoop011PHBB);
1024         BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
1025         CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
1026                      NewLoop011BB);
1027         AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
1028         auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
1029         AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
1030         EXPECT_TRUE(AR.DT.verify());
1031         L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
1032         NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
1033         NewLoop->verifyLoop();
1034         L.verifyLoop();
1035         Updater.addChildLoops({NewLoop});
1036         return PreservedAnalyses::all();
1037       }));
1038 
1039   // Again, we should immediately drop down to visit the new, unvisited child
1040   // loop. We don't need to revisit the other child though.
1041   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1042       .WillOnce(Invoke(getLoopAnalysisResult));
1043   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
1044   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1045       .Times(2)
1046       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1047 
1048   // And now we should pop back up to the second loop and do a full pipeline of
1049   // three passes on its current form.
1050   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1051       .Times(3)
1052       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1053 
1054   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1055       .WillOnce(Invoke(getLoopAnalysisResult));
1056   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1057   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1058       .Times(2)
1059       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1060 
1061   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1062       .WillOnce(Invoke(getLoopAnalysisResult));
1063   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1064   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1065       .Times(2)
1066       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1067 
1068   // Now that all the expected actions are registered, run the pipeline over
1069   // our module. All of our expectations are verified when the test finishes.
1070   MPM.run(*M, MAM);
1071 }
1072 
TEST_F(LoopPassManagerTest,LoopPeerInsertion)1073 TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
1074   // Super boring module with two loop nests and loop nest with two child
1075   // loops.
1076   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1077                        "entry:\n"
1078                        "  br label %loop.0\n"
1079                        "loop.0:\n"
1080                        "  %cond.0 = load volatile i1, i1* %ptr\n"
1081                        "  br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
1082                        "loop.0.0.ph:\n"
1083                        "  br label %loop.0.0\n"
1084                        "loop.0.0:\n"
1085                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
1086                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
1087                        "loop.0.2.ph:\n"
1088                        "  br label %loop.0.2\n"
1089                        "loop.0.2:\n"
1090                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
1091                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
1092                        "loop.0.latch:\n"
1093                        "  br label %loop.0\n"
1094                        "loop.2.ph:\n"
1095                        "  br label %loop.2\n"
1096                        "loop.2:\n"
1097                        "  %cond.2 = load volatile i1, i1* %ptr\n"
1098                        "  br i1 %cond.2, label %loop.2, label %end\n"
1099                        "end:\n"
1100                        "  ret void\n"
1101                        "}\n");
1102 
1103   // Build up variables referring into the IR so we can rewrite it below
1104   // easily.
1105   Function &F = *M->begin();
1106   ASSERT_THAT(F, HasName("f"));
1107   Argument &Ptr = *F.arg_begin();
1108   auto BBI = F.begin();
1109   BasicBlock &EntryBB = *BBI++;
1110   ASSERT_THAT(EntryBB, HasName("entry"));
1111   BasicBlock &Loop0BB = *BBI++;
1112   ASSERT_THAT(Loop0BB, HasName("loop.0"));
1113   BasicBlock &Loop00PHBB = *BBI++;
1114   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1115   BasicBlock &Loop00BB = *BBI++;
1116   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1117   BasicBlock &Loop02PHBB = *BBI++;
1118   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1119   BasicBlock &Loop02BB = *BBI++;
1120   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1121   BasicBlock &Loop0LatchBB = *BBI++;
1122   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1123   BasicBlock &Loop2PHBB = *BBI++;
1124   ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
1125   BasicBlock &Loop2BB = *BBI++;
1126   ASSERT_THAT(Loop2BB, HasName("loop.2"));
1127   BasicBlock &EndBB = *BBI++;
1128   ASSERT_THAT(EndBB, HasName("end"));
1129   ASSERT_THAT(BBI, F.end());
1130   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
1131                           const char *Name, BasicBlock *BB) {
1132     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
1133                               /*isVolatile*/ true, BB);
1134     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
1135   };
1136 
1137   // Build the pass managers and register our pipeline. We build a single loop
1138   // pass pipeline consisting of three mock pass runs over each loop. After
1139   // this we run both domtree and loop verification passes to make sure that
1140   // the IR remained valid during our mutations.
1141   ModulePassManager MPM(true);
1142   FunctionPassManager FPM(true);
1143   LoopPassManager LPM(true);
1144   LPM.addPass(MLPHandle.getPass());
1145   LPM.addPass(MLPHandle.getPass());
1146   LPM.addPass(MLPHandle.getPass());
1147   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1148   FPM.addPass(DominatorTreeVerifierPass());
1149   FPM.addPass(LoopVerifierPass());
1150   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1151 
1152   // All the visit orders are deterministic, so we use simple fully order
1153   // expectations.
1154   ::testing::InSequence MakeExpectationsSequenced;
1155 
1156   // We run loop passes three times over each of the loops.
1157   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1158       .WillOnce(Invoke(getLoopAnalysisResult));
1159   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1160 
1161   // On the second run, we insert a sibling loop.
1162   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1163       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1164                            LoopStandardAnalysisResults &AR,
1165                            LPMUpdater &Updater) {
1166         auto *NewLoop = AR.LI.AllocateLoop();
1167         L.getParentLoop()->addChildLoop(NewLoop);
1168         auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
1169         auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
1170         BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
1171         CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
1172         Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
1173         AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
1174         auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
1175         AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
1176         EXPECT_TRUE(AR.DT.verify());
1177         L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
1178         NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
1179         L.getParentLoop()->verifyLoop();
1180         Updater.addSiblingLoops({NewLoop});
1181         return PreservedAnalyses::all();
1182       }));
1183   // We finish processing this loop as sibling loops don't perturb the
1184   // postorder walk.
1185   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1186       .WillOnce(Invoke(getLoopAnalysisResult));
1187 
1188   // We visit the inserted sibling next.
1189   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1190       .WillOnce(Invoke(getLoopAnalysisResult));
1191   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1192   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1193       .Times(2)
1194       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1195 
1196   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1197       .WillOnce(Invoke(getLoopAnalysisResult));
1198   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1199   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1200       .WillOnce(Invoke(getLoopAnalysisResult));
1201   // Next, on the third pass run on the last inner loop we add more new
1202   // siblings, more than one, and one with nested child loops. By doing this at
1203   // the end we make sure that edge case works well.
1204   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1205       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1206                            LoopStandardAnalysisResults &AR,
1207                            LPMUpdater &Updater) {
1208         Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
1209                             AR.LI.AllocateLoop()};
1210         L.getParentLoop()->addChildLoop(NewLoops[0]);
1211         L.getParentLoop()->addChildLoop(NewLoops[1]);
1212         NewLoops[1]->addChildLoop(NewLoops[2]);
1213         auto *NewLoop03PHBB =
1214             BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1215         auto *NewLoop03BB =
1216             BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1217         auto *NewLoop04PHBB =
1218             BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
1219         auto *NewLoop04BB =
1220             BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
1221         auto *NewLoop040PHBB =
1222             BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
1223         auto *NewLoop040BB =
1224             BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
1225         auto *NewLoop04LatchBB =
1226             BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
1227         Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
1228         BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1229         CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
1230         BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
1231         CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
1232         BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
1233         CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
1234         BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
1235         AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
1236         AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1237         AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
1238         auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
1239         AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
1240         AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
1241         AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
1242         AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
1243         EXPECT_TRUE(AR.DT.verify());
1244         L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1245         NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1246         L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
1247         NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
1248         NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
1249         NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
1250         NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
1251         L.getParentLoop()->verifyLoop();
1252         Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
1253         return PreservedAnalyses::all();
1254       }));
1255 
1256   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1257       .WillOnce(Invoke(getLoopAnalysisResult));
1258   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1259   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1260       .Times(2)
1261       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1262 
1263   // Note that we need to visit the inner loop of this added sibling before the
1264   // sibling itself!
1265   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1266       .WillOnce(Invoke(getLoopAnalysisResult));
1267   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
1268   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1269       .Times(2)
1270       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1271 
1272   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1273       .WillOnce(Invoke(getLoopAnalysisResult));
1274   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
1275   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1276       .Times(2)
1277       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1278 
1279   // And only now do we visit the outermost loop of the nest.
1280   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1281       .WillOnce(Invoke(getLoopAnalysisResult));
1282   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1283   // On the second pass, we add sibling loops which become new top-level loops.
1284   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1285       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1286                            LoopStandardAnalysisResults &AR,
1287                            LPMUpdater &Updater) {
1288         auto *NewLoop = AR.LI.AllocateLoop();
1289         AR.LI.addTopLevelLoop(NewLoop);
1290         auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
1291         auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
1292         BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
1293         CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
1294         Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
1295         AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
1296         auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
1297         AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
1298         EXPECT_TRUE(AR.DT.verify());
1299         NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
1300         NewLoop->verifyLoop();
1301         Updater.addSiblingLoops({NewLoop});
1302         return PreservedAnalyses::all();
1303       }));
1304   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1305       .WillOnce(Invoke(getLoopAnalysisResult));
1306 
1307   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1308       .WillOnce(Invoke(getLoopAnalysisResult));
1309   EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
1310   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1311       .Times(2)
1312       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1313 
1314   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1315       .WillOnce(Invoke(getLoopAnalysisResult));
1316   EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
1317   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1318       .Times(2)
1319       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1320 
1321   // Now that all the expected actions are registered, run the pipeline over
1322   // our module. All of our expectations are verified when the test finishes.
1323   MPM.run(*M, MAM);
1324 }
1325 
TEST_F(LoopPassManagerTest,LoopDeletion)1326 TEST_F(LoopPassManagerTest, LoopDeletion) {
1327   // Build a module with a single loop nest that contains one outer loop with
1328   // three subloops, and one of those with its own subloop. We will
1329   // incrementally delete all of these to test different deletion scenarios.
1330   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1331                        "entry:\n"
1332                        "  br label %loop.0\n"
1333                        "loop.0:\n"
1334                        "  %cond.0 = load volatile i1, i1* %ptr\n"
1335                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
1336                        "loop.0.0.ph:\n"
1337                        "  br label %loop.0.0\n"
1338                        "loop.0.0:\n"
1339                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
1340                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
1341                        "loop.0.1.ph:\n"
1342                        "  br label %loop.0.1\n"
1343                        "loop.0.1:\n"
1344                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
1345                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
1346                        "loop.0.2.ph:\n"
1347                        "  br label %loop.0.2\n"
1348                        "loop.0.2:\n"
1349                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
1350                        "  br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
1351                        "loop.0.2.0.ph:\n"
1352                        "  br label %loop.0.2.0\n"
1353                        "loop.0.2.0:\n"
1354                        "  %cond.0.2.0 = load volatile i1, i1* %ptr\n"
1355                        "  br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
1356                        "loop.0.2.latch:\n"
1357                        "  br label %loop.0.2\n"
1358                        "loop.0.latch:\n"
1359                        "  br label %loop.0\n"
1360                        "end:\n"
1361                        "  ret void\n"
1362                        "}\n");
1363 
1364   // Build up variables referring into the IR so we can rewrite it below
1365   // easily.
1366   Function &F = *M->begin();
1367   ASSERT_THAT(F, HasName("f"));
1368   Argument &Ptr = *F.arg_begin();
1369   auto BBI = F.begin();
1370   BasicBlock &EntryBB = *BBI++;
1371   ASSERT_THAT(EntryBB, HasName("entry"));
1372   BasicBlock &Loop0BB = *BBI++;
1373   ASSERT_THAT(Loop0BB, HasName("loop.0"));
1374   BasicBlock &Loop00PHBB = *BBI++;
1375   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1376   BasicBlock &Loop00BB = *BBI++;
1377   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1378   BasicBlock &Loop01PHBB = *BBI++;
1379   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
1380   BasicBlock &Loop01BB = *BBI++;
1381   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
1382   BasicBlock &Loop02PHBB = *BBI++;
1383   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1384   BasicBlock &Loop02BB = *BBI++;
1385   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1386   BasicBlock &Loop020PHBB = *BBI++;
1387   ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
1388   BasicBlock &Loop020BB = *BBI++;
1389   ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
1390   BasicBlock &Loop02LatchBB = *BBI++;
1391   ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
1392   BasicBlock &Loop0LatchBB = *BBI++;
1393   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1394   BasicBlock &EndBB = *BBI++;
1395   ASSERT_THAT(EndBB, HasName("end"));
1396   ASSERT_THAT(BBI, F.end());
1397 
1398   // Helper to do the actual deletion of a loop. We directly encode this here
1399   // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
1400   // egregiously cheat based on knowledge of the test case. For example, we
1401   // have no PHI nodes and there is always a single i-dom.
1402   auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
1403                       LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1404     assert(L.isInnermost() && "Can only delete leaf loops with this routine!");
1405     SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
1406     Updater.markLoopAsDeleted(L, L.getName());
1407     IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
1408                                               L.getUniqueExitBlock());
1409     for (BasicBlock *LoopBB : LoopBBs) {
1410       SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
1411                                                AR.DT[LoopBB]->end());
1412       for (DomTreeNode *ChildNode : ChildNodes)
1413         AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
1414       AR.DT.eraseNode(LoopBB);
1415       AR.LI.removeBlock(LoopBB);
1416       LoopBB->dropAllReferences();
1417     }
1418     for (BasicBlock *LoopBB : LoopBBs)
1419       LoopBB->eraseFromParent();
1420 
1421     AR.LI.erase(&L);
1422   };
1423 
1424   // Build up the pass managers.
1425   ModulePassManager MPM(true);
1426   FunctionPassManager FPM(true);
1427   // We run several loop pass pipelines across the loop nest, but they all take
1428   // the same form of three mock pass runs in a loop pipeline followed by
1429   // domtree and loop verification. We use a lambda to stamp this out each
1430   // time.
1431   auto AddLoopPipelineAndVerificationPasses = [&] {
1432     LoopPassManager LPM(true);
1433     LPM.addPass(MLPHandle.getPass());
1434     LPM.addPass(MLPHandle.getPass());
1435     LPM.addPass(MLPHandle.getPass());
1436     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1437     FPM.addPass(DominatorTreeVerifierPass());
1438     FPM.addPass(LoopVerifierPass());
1439   };
1440 
1441   // All the visit orders are deterministic so we use simple fully order
1442   // expectations.
1443   ::testing::InSequence MakeExpectationsSequenced;
1444 
1445   // We run the loop pipeline with three passes over each of the loops. When
1446   // running over the middle loop, the second pass in the pipeline deletes it.
1447   // This should prevent the third pass from visiting it but otherwise leave
1448   // the process unimpacted.
1449   AddLoopPipelineAndVerificationPasses();
1450   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1451       .WillOnce(Invoke(getLoopAnalysisResult));
1452   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1453   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1454       .Times(2)
1455       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1456 
1457   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1458       .WillOnce(Invoke(getLoopAnalysisResult));
1459   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1460   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1461       .WillOnce(
1462           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1463                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1464             Loop *ParentL = L.getParentLoop();
1465             AR.SE.forgetLoop(&L);
1466             EraseLoop(L, Loop01PHBB, AR, Updater);
1467             ParentL->verifyLoop();
1468             return PreservedAnalyses::all();
1469           }));
1470 
1471   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1472       .WillOnce(Invoke(getLoopAnalysisResult));
1473   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
1474   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1475       .Times(2)
1476       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1477 
1478   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1479       .WillOnce(Invoke(getLoopAnalysisResult));
1480   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1481   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1482       .Times(2)
1483       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1484 
1485   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1486       .WillOnce(Invoke(getLoopAnalysisResult));
1487   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1488   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1489       .Times(2)
1490       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1491 
1492   // Run the loop pipeline again. This time we delete the last loop, which
1493   // contains a nested loop within it and insert a new loop into the nest. This
1494   // makes sure we can handle nested loop deletion.
1495   AddLoopPipelineAndVerificationPasses();
1496   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1497       .Times(3)
1498       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1499 
1500   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1501       .Times(3)
1502       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1503 
1504   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1505       .WillOnce(Invoke(getLoopAnalysisResult));
1506   BasicBlock *NewLoop03PHBB;
1507   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1508       .WillOnce(
1509           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1510                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1511             AR.SE.forgetLoop(*L.begin());
1512             EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
1513 
1514             auto *ParentL = L.getParentLoop();
1515             AR.SE.forgetLoop(&L);
1516             EraseLoop(L, Loop02PHBB, AR, Updater);
1517 
1518             // Now insert a new sibling loop.
1519             auto *NewSibling = AR.LI.AllocateLoop();
1520             ParentL->addChildLoop(NewSibling);
1521             NewLoop03PHBB =
1522                 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1523             auto *NewLoop03BB =
1524                 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1525             BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1526             auto *Cond =
1527                 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
1528                              /*isVolatile*/ true, NewLoop03BB);
1529             BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
1530             Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
1531                                                           NewLoop03PHBB);
1532             AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
1533             AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1534             AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
1535                                            AR.DT[NewLoop03BB]);
1536             EXPECT_TRUE(AR.DT.verify());
1537             ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1538             NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1539             NewSibling->verifyLoop();
1540             ParentL->verifyLoop();
1541             Updater.addSiblingLoops({NewSibling});
1542             return PreservedAnalyses::all();
1543           }));
1544 
1545   // To respect our inner-to-outer traversal order, we must visit the
1546   // newly-inserted sibling of the loop we just deleted before we visit the
1547   // outer loop. When we do so, this must compute a fresh analysis result, even
1548   // though our new loop has the same pointer value as the loop we deleted.
1549   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1550       .WillOnce(Invoke(getLoopAnalysisResult));
1551   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1552   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1553       .Times(2)
1554       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1555 
1556   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1557       .Times(3)
1558       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1559 
1560   // In the final loop pipeline run we delete every loop, including the last
1561   // loop of the nest. We do this again in the second pass in the pipeline, and
1562   // as a consequence we never make it to three runs on any loop. We also cover
1563   // deleting multiple loops in a single pipeline, deleting the first loop and
1564   // deleting the (last) top level loop.
1565   AddLoopPipelineAndVerificationPasses();
1566   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1567       .WillOnce(Invoke(getLoopAnalysisResult));
1568   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1569       .WillOnce(
1570           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1571                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1572             AR.SE.forgetLoop(&L);
1573             EraseLoop(L, Loop00PHBB, AR, Updater);
1574             return PreservedAnalyses::all();
1575           }));
1576 
1577   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1578       .WillOnce(Invoke(getLoopAnalysisResult));
1579   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1580       .WillOnce(
1581           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1582                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1583             AR.SE.forgetLoop(&L);
1584             EraseLoop(L, *NewLoop03PHBB, AR, Updater);
1585             return PreservedAnalyses::all();
1586           }));
1587 
1588   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1589       .WillOnce(Invoke(getLoopAnalysisResult));
1590   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1591       .WillOnce(
1592           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1593                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1594             AR.SE.forgetLoop(&L);
1595             EraseLoop(L, EntryBB, AR, Updater);
1596             return PreservedAnalyses::all();
1597           }));
1598 
1599   // Add the function pass pipeline now that it is fully built up and run it
1600   // over the module's one function.
1601   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1602   MPM.run(*M, MAM);
1603 }
1604 
TEST_F(LoopPassManagerTest,HandleLoopNestPass)1605 TEST_F(LoopPassManagerTest, HandleLoopNestPass) {
1606   ::testing::Sequence FSequence, GSequence;
1607 
1608   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1609       .Times(2)
1610       .InSequence(FSequence);
1611   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1612       .Times(2)
1613       .InSequence(FSequence);
1614   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence);
1615   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1616       .InSequence(FSequence);
1617   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence);
1618   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1619       .InSequence(FSequence);
1620   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
1621       .InSequence(GSequence);
1622   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1623       .InSequence(GSequence);
1624   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
1625       .InSequence(GSequence);
1626   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1627       .InSequence(GSequence);
1628 
1629   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1630       .InSequence(FSequence);
1631   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1632       .InSequence(GSequence);
1633 
1634   EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _))
1635       .InSequence(FSequence);
1636   EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _))
1637       .InSequence(GSequence);
1638 
1639   ModulePassManager MPM(true);
1640   FunctionPassManager FPM(true);
1641 
1642   {
1643     LoopPassManager LPM(true);
1644     LPM.addPass(MLPHandle.getPass());
1645     LPM.addPass(MLNPHandle.getPass());
1646     LPM.addPass(MLPHandle.getPass());
1647     LPM.addPass(MLNPHandle.getPass());
1648 
1649     auto Adaptor = createFunctionToLoopPassAdaptor(std::move(LPM));
1650     ASSERT_FALSE(Adaptor.isLoopNestMode());
1651     FPM.addPass(std::move(Adaptor));
1652   }
1653 
1654   {
1655     auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass());
1656     ASSERT_TRUE(Adaptor.isLoopNestMode());
1657     FPM.addPass(std::move(Adaptor));
1658   }
1659 
1660   {
1661     LoopPassManager LPM(true);
1662     LPM.addPass(MLNPHandle.getPass());
1663     auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass());
1664     ASSERT_TRUE(Adaptor.isLoopNestMode());
1665     FPM.addPass(std::move(Adaptor));
1666   }
1667 
1668   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1669   MPM.run(*M, MAM);
1670 }
1671 
1672 } // namespace
1673