1 //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements loop fusion.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Analysis/AffineAnalysis.h"
15 #include "mlir/Analysis/AffineStructures.h"
16 #include "mlir/Analysis/LoopAnalysis.h"
17 #include "mlir/Analysis/Utils.h"
18 #include "mlir/Dialect/Affine/IR/AffineOps.h"
19 #include "mlir/IR/AffineExpr.h"
20 #include "mlir/IR/AffineMap.h"
21 #include "mlir/IR/Builders.h"
22 #include "mlir/Transforms/LoopFusionUtils.h"
23 #include "mlir/Transforms/LoopUtils.h"
24 #include "mlir/Transforms/Passes.h"
25 #include "mlir/Transforms/Utils.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <iomanip>
33 #include <sstream>
34 #define DEBUG_TYPE "affine-loop-fusion"
35 
36 using llvm::SetVector;
37 
38 using namespace mlir;
39 
40 namespace {
41 /// Loop fusion pass. This pass currently supports a greedy fusion policy,
42 /// which fuses loop nests with single-writer/single-reader memref dependences
43 /// with the goal of improving locality.
44 
45 // TODO: Support fusion of source loop nests which write to multiple
46 // memrefs, where each memref can have multiple users (if profitable).
47 // TODO: Extend this pass to check for fusion preventing dependences,
48 // and add support for more general loop fusion algorithms.
49 
50 struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
51   LoopFusion() = default;
LoopFusion__anon09a5bc2d0111::LoopFusion52   LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
53              bool maximalFusion) {
54     this->fastMemorySpace = fastMemorySpace;
55     this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
56     this->maximalFusion = maximalFusion;
57   }
58 
59   void runOnFunction() override;
60 };
61 
62 } // end anonymous namespace
63 
64 std::unique_ptr<OperationPass<FuncOp>>
createLoopFusionPass(unsigned fastMemorySpace,uint64_t localBufSizeThreshold,bool maximalFusion)65 mlir::createLoopFusionPass(unsigned fastMemorySpace,
66                            uint64_t localBufSizeThreshold, bool maximalFusion) {
67   return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
68                                       maximalFusion);
69 }
70 
71 // TODO: Replace when this is modeled through side-effects/op traits
isMemRefDereferencingOp(Operation & op)72 static bool isMemRefDereferencingOp(Operation &op) {
73   return isa<AffineReadOpInterface, AffineWriteOpInterface, AffineDmaStartOp,
74              AffineDmaWaitOp>(op);
75 }
76 
77 namespace {
78 
79 // LoopNestStateCollector walks loop nests and collects load and store
80 // operations, and whether or not an IfInst was encountered in the loop nest.
81 struct LoopNestStateCollector {
82   SmallVector<AffineForOp, 4> forOps;
83   SmallVector<Operation *, 4> loadOpInsts;
84   SmallVector<Operation *, 4> storeOpInsts;
85   bool hasNonForRegion = false;
86 
collect__anon09a5bc2d0211::LoopNestStateCollector87   void collect(Operation *opToWalk) {
88     opToWalk->walk([&](Operation *op) {
89       if (isa<AffineForOp>(op))
90         forOps.push_back(cast<AffineForOp>(op));
91       else if (op->getNumRegions() != 0)
92         hasNonForRegion = true;
93       else if (isa<AffineReadOpInterface>(op))
94         loadOpInsts.push_back(op);
95       else if (isa<AffineWriteOpInterface>(op))
96         storeOpInsts.push_back(op);
97     });
98   }
99 };
100 
101 // MemRefDependenceGraph is a graph data structure where graph nodes are
102 // top-level operations in a FuncOp which contain load/store ops, and edges
103 // are memref dependences between the nodes.
104 // TODO: Add a more flexible dependence graph representation.
105 // TODO: Add a depth parameter to dependence graph construction.
106 struct MemRefDependenceGraph {
107 public:
108   // Node represents a node in the graph. A Node is either an entire loop nest
109   // rooted at the top level which contains loads/stores, or a top level
110   // load/store.
111   struct Node {
112     // The unique identifier of this node in the graph.
113     unsigned id;
114     // The top-level statement which is (or contains) a load/store.
115     Operation *op;
116     // List of load operations.
117     SmallVector<Operation *, 4> loads;
118     // List of store op insts.
119     SmallVector<Operation *, 4> stores;
Node__anon09a5bc2d0211::MemRefDependenceGraph::Node120     Node(unsigned id, Operation *op) : id(id), op(op) {}
121 
122     // Returns the load op count for 'memref'.
getLoadOpCount__anon09a5bc2d0211::MemRefDependenceGraph::Node123     unsigned getLoadOpCount(Value memref) {
124       unsigned loadOpCount = 0;
125       for (auto *loadOpInst : loads) {
126         if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
127           ++loadOpCount;
128       }
129       return loadOpCount;
130     }
131 
132     // Returns the store op count for 'memref'.
getStoreOpCount__anon09a5bc2d0211::MemRefDependenceGraph::Node133     unsigned getStoreOpCount(Value memref) {
134       unsigned storeOpCount = 0;
135       for (auto *storeOpInst : stores) {
136         if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
137           ++storeOpCount;
138       }
139       return storeOpCount;
140     }
141 
142     // Returns all store ops in 'storeOps' which access 'memref'.
getStoreOpsForMemref__anon09a5bc2d0211::MemRefDependenceGraph::Node143     void getStoreOpsForMemref(Value memref,
144                               SmallVectorImpl<Operation *> *storeOps) {
145       for (auto *storeOpInst : stores) {
146         if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
147           storeOps->push_back(storeOpInst);
148       }
149     }
150 
151     // Returns all load ops in 'loadOps' which access 'memref'.
getLoadOpsForMemref__anon09a5bc2d0211::MemRefDependenceGraph::Node152     void getLoadOpsForMemref(Value memref,
153                              SmallVectorImpl<Operation *> *loadOps) {
154       for (auto *loadOpInst : loads) {
155         if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
156           loadOps->push_back(loadOpInst);
157       }
158     }
159 
160     // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
161     // has at least one load and store operation.
getLoadAndStoreMemrefSet__anon09a5bc2d0211::MemRefDependenceGraph::Node162     void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
163       llvm::SmallDenseSet<Value, 2> loadMemrefs;
164       for (auto *loadOpInst : loads) {
165         loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
166       }
167       for (auto *storeOpInst : stores) {
168         auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
169         if (loadMemrefs.count(memref) > 0)
170           loadAndStoreMemrefSet->insert(memref);
171       }
172     }
173   };
174 
175   // Edge represents a data dependence between nodes in the graph.
176   struct Edge {
177     // The id of the node at the other end of the edge.
178     // If this edge is stored in Edge = Node.inEdges[i], then
179     // 'Node.inEdges[i].id' is the identifier of the source node of the edge.
180     // If this edge is stored in Edge = Node.outEdges[i], then
181     // 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
182     unsigned id;
183     // The SSA value on which this edge represents a dependence.
184     // If the value is a memref, then the dependence is between graph nodes
185     // which contain accesses to the same memref 'value'. If the value is a
186     // non-memref value, then the dependence is between a graph node which
187     // defines an SSA value and another graph node which uses the SSA value
188     // (e.g. a constant operation defining a value which is used inside a loop
189     // nest).
190     Value value;
191   };
192 
193   // Map from node id to Node.
194   DenseMap<unsigned, Node> nodes;
195   // Map from node id to list of input edges.
196   DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
197   // Map from node id to list of output edges.
198   DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
199   // Map from memref to a count on the dependence edges associated with that
200   // memref.
201   DenseMap<Value, unsigned> memrefEdgeCount;
202   // The next unique identifier to use for newly created graph nodes.
203   unsigned nextNodeId = 0;
204 
MemRefDependenceGraph__anon09a5bc2d0211::MemRefDependenceGraph205   MemRefDependenceGraph() {}
206 
207   // Initializes the dependence graph based on operations in 'f'.
208   // Returns true on success, false otherwise.
209   bool init(FuncOp f);
210 
211   // Returns the graph node for 'id'.
getNode__anon09a5bc2d0211::MemRefDependenceGraph212   Node *getNode(unsigned id) {
213     auto it = nodes.find(id);
214     assert(it != nodes.end());
215     return &it->second;
216   }
217 
218   // Returns the graph node for 'forOp'.
getForOpNode__anon09a5bc2d0211::MemRefDependenceGraph219   Node *getForOpNode(AffineForOp forOp) {
220     for (auto &idAndNode : nodes)
221       if (idAndNode.second.op == forOp.getOperation())
222         return &idAndNode.second;
223     return nullptr;
224   }
225 
226   // Adds a node with 'op' to the graph and returns its unique identifier.
addNode__anon09a5bc2d0211::MemRefDependenceGraph227   unsigned addNode(Operation *op) {
228     Node node(nextNodeId++, op);
229     nodes.insert({node.id, node});
230     return node.id;
231   }
232 
233   // Remove node 'id' (and its associated edges) from graph.
removeNode__anon09a5bc2d0211::MemRefDependenceGraph234   void removeNode(unsigned id) {
235     // Remove each edge in 'inEdges[id]'.
236     if (inEdges.count(id) > 0) {
237       SmallVector<Edge, 2> oldInEdges = inEdges[id];
238       for (auto &inEdge : oldInEdges) {
239         removeEdge(inEdge.id, id, inEdge.value);
240       }
241     }
242     // Remove each edge in 'outEdges[id]'.
243     if (outEdges.count(id) > 0) {
244       SmallVector<Edge, 2> oldOutEdges = outEdges[id];
245       for (auto &outEdge : oldOutEdges) {
246         removeEdge(id, outEdge.id, outEdge.value);
247       }
248     }
249     // Erase remaining node state.
250     inEdges.erase(id);
251     outEdges.erase(id);
252     nodes.erase(id);
253   }
254 
255   // Returns true if node 'id' writes to any memref which escapes (or is an
256   // argument to) the function/block. Returns false otherwise.
writesToLiveInOrEscapingMemrefs__anon09a5bc2d0211::MemRefDependenceGraph257   bool writesToLiveInOrEscapingMemrefs(unsigned id) {
258     Node *node = getNode(id);
259     for (auto *storeOpInst : node->stores) {
260       auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
261       auto *op = memref.getDefiningOp();
262       // Return true if 'memref' is a block argument.
263       if (!op)
264         return true;
265       // Return true if any use of 'memref' escapes the function.
266       for (auto *user : memref.getUsers())
267         if (!isMemRefDereferencingOp(*user))
268           return true;
269     }
270     return false;
271   }
272 
273   // Returns true iff there is an edge from node 'srcId' to node 'dstId' which
274   // is for 'value' if non-null, or for any value otherwise. Returns false
275   // otherwise.
hasEdge__anon09a5bc2d0211::MemRefDependenceGraph276   bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
277     if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
278       return false;
279     }
280     bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
281       return edge.id == dstId && (!value || edge.value == value);
282     });
283     bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
284       return edge.id == srcId && (!value || edge.value == value);
285     });
286     return hasOutEdge && hasInEdge;
287   }
288 
289   // Adds an edge from node 'srcId' to node 'dstId' for 'value'.
addEdge__anon09a5bc2d0211::MemRefDependenceGraph290   void addEdge(unsigned srcId, unsigned dstId, Value value) {
291     if (!hasEdge(srcId, dstId, value)) {
292       outEdges[srcId].push_back({dstId, value});
293       inEdges[dstId].push_back({srcId, value});
294       if (value.getType().isa<MemRefType>())
295         memrefEdgeCount[value]++;
296     }
297   }
298 
299   // Removes an edge from node 'srcId' to node 'dstId' for 'value'.
removeEdge__anon09a5bc2d0211::MemRefDependenceGraph300   void removeEdge(unsigned srcId, unsigned dstId, Value value) {
301     assert(inEdges.count(dstId) > 0);
302     assert(outEdges.count(srcId) > 0);
303     if (value.getType().isa<MemRefType>()) {
304       assert(memrefEdgeCount.count(value) > 0);
305       memrefEdgeCount[value]--;
306     }
307     // Remove 'srcId' from 'inEdges[dstId]'.
308     for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
309       if ((*it).id == srcId && (*it).value == value) {
310         inEdges[dstId].erase(it);
311         break;
312       }
313     }
314     // Remove 'dstId' from 'outEdges[srcId]'.
315     for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
316       if ((*it).id == dstId && (*it).value == value) {
317         outEdges[srcId].erase(it);
318         break;
319       }
320     }
321   }
322 
323   // Returns true if there is a path in the dependence graph from node 'srcId'
324   // to node 'dstId'. Returns false otherwise.
hasDependencePath__anon09a5bc2d0211::MemRefDependenceGraph325   bool hasDependencePath(unsigned srcId, unsigned dstId) {
326     // Worklist state is: <node-id, next-output-edge-index-to-visit>
327     SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
328     worklist.push_back({srcId, 0});
329     // Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
330     while (!worklist.empty()) {
331       auto &idAndIndex = worklist.back();
332       // Return true if we have reached 'dstId'.
333       if (idAndIndex.first == dstId)
334         return true;
335       // Pop and continue if node has no out edges, or if all out edges have
336       // already been visited.
337       if (outEdges.count(idAndIndex.first) == 0 ||
338           idAndIndex.second == outEdges[idAndIndex.first].size()) {
339         worklist.pop_back();
340         continue;
341       }
342       // Get graph edge to traverse.
343       Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
344       // Increment next output edge index for 'idAndIndex'.
345       ++idAndIndex.second;
346       // Add node at 'edge.id' to worklist.
347       worklist.push_back({edge.id, 0});
348     }
349     return false;
350   }
351 
352   // Returns the input edge count for node 'id' and 'memref' from src nodes
353   // which access 'memref' with a store operation.
getIncomingMemRefAccesses__anon09a5bc2d0211::MemRefDependenceGraph354   unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
355     unsigned inEdgeCount = 0;
356     if (inEdges.count(id) > 0)
357       for (auto &inEdge : inEdges[id])
358         if (inEdge.value == memref) {
359           Node *srcNode = getNode(inEdge.id);
360           // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
361           if (srcNode->getStoreOpCount(memref) > 0)
362             ++inEdgeCount;
363         }
364     return inEdgeCount;
365   }
366 
367   // Returns the output edge count for node 'id' and 'memref' (if non-null),
368   // otherwise returns the total output edge count from node 'id'.
getOutEdgeCount__anon09a5bc2d0211::MemRefDependenceGraph369   unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
370     unsigned outEdgeCount = 0;
371     if (outEdges.count(id) > 0)
372       for (auto &outEdge : outEdges[id])
373         if (!memref || outEdge.value == memref)
374           ++outEdgeCount;
375     return outEdgeCount;
376   }
377 
378   // Computes and returns an insertion point operation, before which the
379   // the fused <srcId, dstId> loop nest can be inserted while preserving
380   // dependences. Returns nullptr if no such insertion point is found.
getFusedLoopNestInsertionPoint__anon09a5bc2d0211::MemRefDependenceGraph381   Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
382     if (outEdges.count(srcId) == 0)
383       return getNode(dstId)->op;
384 
385     // Build set of insts in range (srcId, dstId) which depend on 'srcId'.
386     SmallPtrSet<Operation *, 2> srcDepInsts;
387     for (auto &outEdge : outEdges[srcId])
388       if (outEdge.id != dstId)
389         srcDepInsts.insert(getNode(outEdge.id)->op);
390 
391     // Build set of insts in range (srcId, dstId) on which 'dstId' depends.
392     SmallPtrSet<Operation *, 2> dstDepInsts;
393     for (auto &inEdge : inEdges[dstId])
394       if (inEdge.id != srcId)
395         dstDepInsts.insert(getNode(inEdge.id)->op);
396 
397     Operation *srcNodeInst = getNode(srcId)->op;
398     Operation *dstNodeInst = getNode(dstId)->op;
399 
400     // Computing insertion point:
401     // *) Walk all operation positions in Block operation list in the
402     //    range (src, dst). For each operation 'op' visited in this search:
403     //   *) Store in 'firstSrcDepPos' the first position where 'op' has a
404     //      dependence edge from 'srcNode'.
405     //   *) Store in 'lastDstDepPost' the last position where 'op' has a
406     //      dependence edge to 'dstNode'.
407     // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
408     //    operation insertion point (or return null pointer if no such
409     //    insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
410     SmallVector<Operation *, 2> depInsts;
411     Optional<unsigned> firstSrcDepPos;
412     Optional<unsigned> lastDstDepPos;
413     unsigned pos = 0;
414     for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
415          it != Block::iterator(dstNodeInst); ++it) {
416       Operation *op = &(*it);
417       if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
418         firstSrcDepPos = pos;
419       if (dstDepInsts.count(op) > 0)
420         lastDstDepPos = pos;
421       depInsts.push_back(op);
422       ++pos;
423     }
424 
425     if (firstSrcDepPos.hasValue()) {
426       if (lastDstDepPos.hasValue()) {
427         if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
428           // No valid insertion point exists which preserves dependences.
429           return nullptr;
430         }
431       }
432       // Return the insertion point at 'firstSrcDepPos'.
433       return depInsts[firstSrcDepPos.getValue()];
434     }
435     // No dependence targets in range (or only dst deps in range), return
436     // 'dstNodInst' insertion point.
437     return dstNodeInst;
438   }
439 
440   // Updates edge mappings from node 'srcId' to node 'dstId' after fusing them,
441   // taking into account that:
442   //   *) if 'removeSrcId' is true, 'srcId' will be removed after fusion,
443   //   *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a
444   //      private memref.
updateEdges__anon09a5bc2d0211::MemRefDependenceGraph445   void updateEdges(unsigned srcId, unsigned dstId,
446                    const DenseSet<Value> &privateMemRefs, bool removeSrcId) {
447     // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
448     if (inEdges.count(srcId) > 0) {
449       SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
450       for (auto &inEdge : oldInEdges) {
451         // Add edge from 'inEdge.id' to 'dstId' if it's not a private memref.
452         if (privateMemRefs.count(inEdge.value) == 0)
453           addEdge(inEdge.id, dstId, inEdge.value);
454       }
455     }
456     // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
457     // If 'srcId' is going to be removed, remap all the out edges to 'dstId'.
458     if (outEdges.count(srcId) > 0) {
459       SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
460       for (auto &outEdge : oldOutEdges) {
461         // Remove any out edges from 'srcId' to 'dstId' across memrefs.
462         if (outEdge.id == dstId)
463           removeEdge(srcId, outEdge.id, outEdge.value);
464         else if (removeSrcId) {
465           addEdge(dstId, outEdge.id, outEdge.value);
466           removeEdge(srcId, outEdge.id, outEdge.value);
467         }
468       }
469     }
470     // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
471     // replaced by a private memref). These edges could come from nodes
472     // other than 'srcId' which were removed in the previous step.
473     if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) {
474       SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
475       for (auto &inEdge : oldInEdges)
476         if (privateMemRefs.count(inEdge.value) > 0)
477           removeEdge(inEdge.id, dstId, inEdge.value);
478     }
479   }
480 
481   // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
482   // of sibling node 'sibId' into node 'dstId'.
updateEdges__anon09a5bc2d0211::MemRefDependenceGraph483   void updateEdges(unsigned sibId, unsigned dstId) {
484     // For each edge in 'inEdges[sibId]':
485     // *) Add new edge from source node 'inEdge.id' to 'dstNode'.
486     // *) Remove edge from source node 'inEdge.id' to 'sibNode'.
487     if (inEdges.count(sibId) > 0) {
488       SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
489       for (auto &inEdge : oldInEdges) {
490         addEdge(inEdge.id, dstId, inEdge.value);
491         removeEdge(inEdge.id, sibId, inEdge.value);
492       }
493     }
494 
495     // For each edge in 'outEdges[sibId]' to node 'id'
496     // *) Add new edge from 'dstId' to 'outEdge.id'.
497     // *) Remove edge from 'sibId' to 'outEdge.id'.
498     if (outEdges.count(sibId) > 0) {
499       SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
500       for (auto &outEdge : oldOutEdges) {
501         addEdge(dstId, outEdge.id, outEdge.value);
502         removeEdge(sibId, outEdge.id, outEdge.value);
503       }
504     }
505   }
506 
507   // Adds ops in 'loads' and 'stores' to node at 'id'.
addToNode__anon09a5bc2d0211::MemRefDependenceGraph508   void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
509                  const SmallVectorImpl<Operation *> &stores) {
510     Node *node = getNode(id);
511     for (auto *loadOpInst : loads)
512       node->loads.push_back(loadOpInst);
513     for (auto *storeOpInst : stores)
514       node->stores.push_back(storeOpInst);
515   }
516 
clearNodeLoadAndStores__anon09a5bc2d0211::MemRefDependenceGraph517   void clearNodeLoadAndStores(unsigned id) {
518     Node *node = getNode(id);
519     node->loads.clear();
520     node->stores.clear();
521   }
522 
523   // Calls 'callback' for each input edge incident to node 'id' which carries a
524   // memref dependence.
forEachMemRefInputEdge__anon09a5bc2d0211::MemRefDependenceGraph525   void forEachMemRefInputEdge(unsigned id,
526                               const std::function<void(Edge)> &callback) {
527     if (inEdges.count(id) > 0)
528       forEachMemRefEdge(inEdges[id], callback);
529   }
530 
531   // Calls 'callback' for each output edge from node 'id' which carries a
532   // memref dependence.
forEachMemRefOutputEdge__anon09a5bc2d0211::MemRefDependenceGraph533   void forEachMemRefOutputEdge(unsigned id,
534                                const std::function<void(Edge)> &callback) {
535     if (outEdges.count(id) > 0)
536       forEachMemRefEdge(outEdges[id], callback);
537   }
538 
539   // Calls 'callback' for each edge in 'edges' which carries a memref
540   // dependence.
forEachMemRefEdge__anon09a5bc2d0211::MemRefDependenceGraph541   void forEachMemRefEdge(ArrayRef<Edge> edges,
542                          const std::function<void(Edge)> &callback) {
543     for (const auto &edge : edges) {
544       // Skip if 'edge' is not a memref dependence edge.
545       if (!edge.value.getType().isa<MemRefType>())
546         continue;
547       assert(nodes.count(edge.id) > 0);
548       // Skip if 'edge.id' is not a loop nest.
549       if (!isa<AffineForOp>(getNode(edge.id)->op))
550         continue;
551       // Visit current input edge 'edge'.
552       callback(edge);
553     }
554   }
555 
print__anon09a5bc2d0211::MemRefDependenceGraph556   void print(raw_ostream &os) const {
557     os << "\nMemRefDependenceGraph\n";
558     os << "\nNodes:\n";
559     for (const auto &idAndNode : nodes) {
560       os << "Node: " << idAndNode.first << "\n";
561       auto it = inEdges.find(idAndNode.first);
562       if (it != inEdges.end()) {
563         for (const auto &e : it->second)
564           os << "  InEdge: " << e.id << " " << e.value << "\n";
565       }
566       it = outEdges.find(idAndNode.first);
567       if (it != outEdges.end()) {
568         for (const auto &e : it->second)
569           os << "  OutEdge: " << e.id << " " << e.value << "\n";
570       }
571     }
572   }
dump__anon09a5bc2d0211::MemRefDependenceGraph573   void dump() const { print(llvm::errs()); }
574 };
575 
576 /// Returns true if node 'srcId' can be removed after fusing it with node
577 /// 'dstId'. The node can be removed if any of the following conditions are met:
578 ///   1. 'srcId' has no output dependences after fusion and no escaping memrefs.
579 ///   2. 'srcId' has no output dependences after fusion, has escaping memrefs
580 ///       and the fusion slice is maximal.
581 ///   3. 'srcId' has output dependences after fusion, the fusion slice is
582 ///      maximal and the fusion insertion point dominates all the dependences.
canRemoveSrcNodeAfterFusion(unsigned srcId,unsigned dstId,const ComputationSliceState & fusionSlice,Operation * fusedLoopInsPoint,const DenseSet<Value> & escapingMemRefs,MemRefDependenceGraph * mdg)583 static bool canRemoveSrcNodeAfterFusion(
584     unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice,
585     Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs,
586     MemRefDependenceGraph *mdg) {
587 
588   Operation *dstNodeOp = mdg->getNode(dstId)->op;
589   bool hasOutDepsAfterFusion = false;
590 
591   for (auto &outEdge : mdg->outEdges[srcId]) {
592     Operation *depNodeOp = mdg->getNode(outEdge.id)->op;
593     // Skip dependence with dstOp since it will be removed after fusion.
594     if (depNodeOp == dstNodeOp)
595       continue;
596 
597     // Only fusion within the same block is supported. Use domination analysis
598     // when needed.
599     if (depNodeOp->getBlock() != dstNodeOp->getBlock())
600       return false;
601 
602     // Check if the insertion point of the fused loop dominates the dependence.
603     // Otherwise, the src loop can't be removed.
604     if (fusedLoopInsPoint != depNodeOp &&
605         !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) {
606       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't "
607                                  "dominate dependence\n");
608       return false;
609     }
610 
611     hasOutDepsAfterFusion = true;
612   }
613 
614   // If src loop has dependences after fusion or it writes to an live-out or
615   // escaping memref, we can only remove it if the fusion slice is maximal so
616   // that all the dependences are preserved.
617   if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) {
618     Optional<bool> isMaximal = fusionSlice.isMaximal();
619     if (!isMaximal.hasValue()) {
620       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine "
621                                  "if fusion is maximal\n");
622       return false;
623     }
624 
625     if (!isMaximal.getValue()) {
626       LLVM_DEBUG(llvm::dbgs()
627                  << "Src loop can't be removed: fusion is not maximal\n");
628       return false;
629     }
630   }
631 
632   return true;
633 }
634 
635 /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer
636 /// 'dstId'. Candidates are sorted by node id order. This order corresponds to
637 /// the program order when the 'mdg' is created. However, program order is not
638 /// guaranteed and must not be required by the client. Program order won't be
639 /// held if the 'mdg' is reused from a previous fusion step or if the node
640 /// creation order changes in the future to support more advance cases.
641 // TODO: Move this to a loop fusion utility once 'mdg' is also moved.
getProducerCandidates(unsigned dstId,MemRefDependenceGraph * mdg,SmallVectorImpl<unsigned> & srcIdCandidates)642 static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg,
643                                   SmallVectorImpl<unsigned> &srcIdCandidates) {
644   // Skip if no input edges along which to fuse.
645   if (mdg->inEdges.count(dstId) == 0)
646     return;
647 
648   // Gather memrefs from loads in 'dstId'.
649   auto *dstNode = mdg->getNode(dstId);
650   DenseSet<Value> consumedMemrefs;
651   for (Operation *load : dstNode->loads)
652     consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef());
653 
654   // Traverse 'dstId' incoming edges and gather the nodes that contain a store
655   // to one of the consumed memrefs.
656   for (auto &srcEdge : mdg->inEdges[dstId]) {
657     auto *srcNode = mdg->getNode(srcEdge.id);
658     // Skip if 'srcNode' is not a loop nest.
659     if (!isa<AffineForOp>(srcNode->op))
660       continue;
661 
662     if (any_of(srcNode->stores, [&](Operation *op) {
663           auto storeOp = cast<AffineWriteOpInterface>(op);
664           return consumedMemrefs.count(storeOp.getMemRef()) > 0;
665         }))
666       srcIdCandidates.push_back(srcNode->id);
667   }
668 
669   std::sort(srcIdCandidates.begin(), srcIdCandidates.end());
670   srcIdCandidates.erase(
671       std::unique(srcIdCandidates.begin(), srcIdCandidates.end()),
672       srcIdCandidates.end());
673 }
674 
675 /// Returns in 'producerConsumerMemrefs' the memrefs involved in a
676 /// producer-consumer dependence between 'srcId' and 'dstId'.
677 static void
gatherProducerConsumerMemrefs(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg,DenseSet<Value> & producerConsumerMemrefs)678 gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId,
679                               MemRefDependenceGraph *mdg,
680                               DenseSet<Value> &producerConsumerMemrefs) {
681   auto *dstNode = mdg->getNode(dstId);
682   auto *srcNode = mdg->getNode(srcId);
683   gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads,
684                                 producerConsumerMemrefs);
685 }
686 
687 /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id'
688 /// that escape the function. A memref escapes the function if either:
689 ///   1. It's a function argument, or
690 ///   2. It's used by a non-affine op (e.g., std load/store, std call, etc.)
gatherEscapingMemrefs(unsigned id,MemRefDependenceGraph * mdg,DenseSet<Value> & escapingMemRefs)691 void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg,
692                            DenseSet<Value> &escapingMemRefs) {
693   auto *node = mdg->getNode(id);
694   for (auto *storeOpInst : node->stores) {
695     auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
696     if (escapingMemRefs.count(memref))
697       continue;
698     // Check if 'memref' escapes because it's a block argument.
699     if (memref.isa<BlockArgument>()) {
700       escapingMemRefs.insert(memref);
701       continue;
702     }
703     // Check if 'memref' escapes through a non-affine op (e.g., std load/store,
704     // call op, etc.).
705     for (Operation *user : memref.getUsers())
706       if (!isMemRefDereferencingOp(*user))
707         escapingMemRefs.insert(memref);
708   }
709 }
710 
711 } // end anonymous namespace
712 
713 // Initializes the data dependence graph by walking operations in 'f'.
714 // Assigns each node in the graph a node id based on program order in 'f'.
715 // TODO: Add support for taking a Block arg to construct the
716 // dependence graph at a different depth.
init(FuncOp f)717 bool MemRefDependenceGraph::init(FuncOp f) {
718   LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n");
719   DenseMap<Value, SetVector<unsigned>> memrefAccesses;
720 
721   // TODO: support multi-block functions.
722   if (!llvm::hasSingleElement(f))
723     return false;
724 
725   DenseMap<Operation *, unsigned> forToNodeMap;
726   for (auto &op : f.front()) {
727     if (auto forOp = dyn_cast<AffineForOp>(op)) {
728       // Create graph node 'id' to represent top-level 'forOp' and record
729       // all loads and store accesses it contains.
730       LoopNestStateCollector collector;
731       collector.collect(&op);
732       // Return false if a non 'affine.for' region was found (not currently
733       // supported).
734       if (collector.hasNonForRegion)
735         return false;
736       Node node(nextNodeId++, &op);
737       for (auto *opInst : collector.loadOpInsts) {
738         node.loads.push_back(opInst);
739         auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
740         memrefAccesses[memref].insert(node.id);
741       }
742       for (auto *opInst : collector.storeOpInsts) {
743         node.stores.push_back(opInst);
744         auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
745         memrefAccesses[memref].insert(node.id);
746       }
747       forToNodeMap[&op] = node.id;
748       nodes.insert({node.id, node});
749     } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
750       // Create graph node for top-level load op.
751       Node node(nextNodeId++, &op);
752       node.loads.push_back(&op);
753       auto memref = cast<AffineReadOpInterface>(op).getMemRef();
754       memrefAccesses[memref].insert(node.id);
755       nodes.insert({node.id, node});
756     } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
757       // Create graph node for top-level store op.
758       Node node(nextNodeId++, &op);
759       node.stores.push_back(&op);
760       auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
761       memrefAccesses[memref].insert(node.id);
762       nodes.insert({node.id, node});
763     } else if (op.getNumRegions() != 0) {
764       // Return false if another region is found (not currently supported).
765       return false;
766     } else if (op.getNumResults() > 0 && !op.use_empty()) {
767       // Create graph node for top-level producer of SSA values, which
768       // could be used by loop nest nodes.
769       Node node(nextNodeId++, &op);
770       nodes.insert({node.id, node});
771     }
772   }
773 
774   for (auto &idAndNode : nodes) {
775     LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n"
776                             << *(idAndNode.second.op) << "\n");
777     (void)idAndNode;
778   }
779 
780   // Add dependence edges between nodes which produce SSA values and their
781   // users.
782   for (auto &idAndNode : nodes) {
783     const Node &node = idAndNode.second;
784     if (!node.loads.empty() || !node.stores.empty())
785       continue;
786     auto *opInst = node.op;
787     for (auto value : opInst->getResults()) {
788       for (auto *user : value.getUsers()) {
789         SmallVector<AffineForOp, 4> loops;
790         getLoopIVs(*user, &loops);
791         if (loops.empty())
792           continue;
793         assert(forToNodeMap.count(loops[0].getOperation()) > 0);
794         unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
795         addEdge(node.id, userLoopNestId, value);
796       }
797     }
798   }
799 
800   // Walk memref access lists and add graph edges between dependent nodes.
801   for (auto &memrefAndList : memrefAccesses) {
802     unsigned n = memrefAndList.second.size();
803     for (unsigned i = 0; i < n; ++i) {
804       unsigned srcId = memrefAndList.second[i];
805       bool srcHasStore =
806           getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
807       for (unsigned j = i + 1; j < n; ++j) {
808         unsigned dstId = memrefAndList.second[j];
809         bool dstHasStore =
810             getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
811         if (srcHasStore || dstHasStore)
812           addEdge(srcId, dstId, memrefAndList.first);
813       }
814     }
815   }
816   return true;
817 }
818 
819 // Sinks all sequential loops to the innermost levels (while preserving
820 // relative order among them) and moves all parallel loops to the
821 // outermost (while again preserving relative order among them).
822 // This can increase the loop depth at which we can fuse a slice, since we are
823 // pushing loop carried dependence to a greater depth in the loop nest.
sinkSequentialLoops(MemRefDependenceGraph::Node * node)824 static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
825   assert(isa<AffineForOp>(node->op));
826   AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
827   node->op = newRootForOp.getOperation();
828 }
829 
830 //  TODO: improve/complete this when we have target data.
getMemRefEltSizeInBytes(MemRefType memRefType)831 static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
832   auto elementType = memRefType.getElementType();
833 
834   unsigned sizeInBits;
835   if (elementType.isIntOrFloat()) {
836     sizeInBits = elementType.getIntOrFloatBitWidth();
837   } else {
838     auto vectorType = elementType.cast<VectorType>();
839     sizeInBits =
840         vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
841   }
842   return llvm::divideCeil(sizeInBits, 8);
843 }
844 
845 // Creates and returns a private (single-user) memref for fused loop rooted
846 // at 'forOp', with (potentially reduced) memref size based on the
847 // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
848 // TODO: consider refactoring the common code from generateDma and
849 // this one.
createPrivateMemRef(AffineForOp forOp,Operation * srcStoreOpInst,unsigned dstLoopDepth,Optional<unsigned> fastMemorySpace,uint64_t localBufSizeThreshold)850 static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
851                                  unsigned dstLoopDepth,
852                                  Optional<unsigned> fastMemorySpace,
853                                  uint64_t localBufSizeThreshold) {
854   auto *forInst = forOp.getOperation();
855 
856   // Create builder to insert alloc op just before 'forOp'.
857   OpBuilder b(forInst);
858   // Builder to create constants at the top level.
859   OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
860   // Create new memref type based on slice bounds.
861   auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
862   auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
863   unsigned rank = oldMemRefType.getRank();
864 
865   // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
866   MemRefRegion region(srcStoreOpInst->getLoc());
867   bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
868   (void)validRegion;
869   assert(validRegion && "unexpected memref region failure");
870   SmallVector<int64_t, 4> newShape;
871   std::vector<SmallVector<int64_t, 4>> lbs;
872   SmallVector<int64_t, 8> lbDivisors;
873   lbs.reserve(rank);
874   // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
875   // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
876   Optional<int64_t> numElements =
877       region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
878   assert(numElements.hasValue() &&
879          "non-constant number of elts in local buffer");
880 
881   const FlatAffineConstraints *cst = region.getConstraints();
882   // 'outerIVs' holds the values that this memory region is symbolic/parametric
883   // on; this would correspond to loop IVs surrounding the level at which the
884   // slice is being materialized.
885   SmallVector<Value, 8> outerIVs;
886   cst->getIdValues(rank, cst->getNumIds(), &outerIVs);
887 
888   // Build 'rank' AffineExprs from MemRefRegion 'lbs'
889   SmallVector<AffineExpr, 4> offsets;
890   offsets.reserve(rank);
891   for (unsigned d = 0; d < rank; ++d) {
892     assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
893 
894     AffineExpr offset = top.getAffineConstantExpr(0);
895     for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
896       offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
897     }
898     assert(lbDivisors[d] > 0);
899     offset =
900         (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
901     offsets.push_back(offset);
902   }
903 
904   // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
905   // by 'srcStoreOpInst'.
906   uint64_t bufSize =
907       getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
908   unsigned newMemSpace;
909   if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
910     newMemSpace = fastMemorySpace.getValue();
911   } else {
912     newMemSpace = oldMemRefType.getMemorySpace();
913   }
914   auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
915                                        {}, newMemSpace);
916 
917   // Create new private memref for fused loop 'forOp'. 'newShape' is always
918   // a constant shape.
919   // TODO: Create/move alloc ops for private memrefs closer to their
920   // consumer loop nests to reduce their live range. Currently they are added
921   // at the beginning of the function, because loop nests can be reordered
922   // during the fusion pass.
923   Value newMemRef = top.create<AllocOp>(forOp.getLoc(), newMemRefType);
924 
925   // Build an AffineMap to remap access functions based on lower bound offsets.
926   SmallVector<AffineExpr, 4> remapExprs;
927   remapExprs.reserve(rank);
928   for (unsigned i = 0; i < rank; i++) {
929     auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
930 
931     auto remapExpr =
932         simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
933     remapExprs.push_back(remapExpr);
934   }
935 
936   auto indexRemap =
937       AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
938 
939   // Replace all users of 'oldMemRef' with 'newMemRef'.
940   LogicalResult res =
941       replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
942                                /*extraOperands=*/outerIVs,
943                                /*symbolOperands=*/{},
944                                /*domInstFilter=*/&*forOp.getBody()->begin());
945   assert(succeeded(res) &&
946          "replaceAllMemrefUsesWith should always succeed here");
947   (void)res;
948   return newMemRef;
949 }
950 
951 /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
952 /// 'dstId'), if there is any non-affine operation accessing 'memref', return
953 /// false. Otherwise, return true.
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,Value memref,MemRefDependenceGraph * mdg)954 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
955                                        Value memref,
956                                        MemRefDependenceGraph *mdg) {
957   auto *srcNode = mdg->getNode(srcId);
958   auto *dstNode = mdg->getNode(dstId);
959   Value::user_range users = memref.getUsers();
960   // For each MemRefDependenceGraph's node that is between 'srcNode' and
961   // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
962   // non-affine operation in the node accesses the 'memref'.
963   for (auto &idAndNode : mdg->nodes) {
964     Operation *op = idAndNode.second.op;
965     // Take care of operations between 'srcNode' and 'dstNode'.
966     if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
967       // Walk inside the operation to find any use of the memref.
968       // Interrupt the walk if found.
969       auto walkResult = op->walk([&](Operation *user) {
970         // Skip affine ops.
971         if (isMemRefDereferencingOp(*user))
972           return WalkResult::advance();
973         // Find a non-affine op that uses the memref.
974         if (llvm::is_contained(users, user))
975           return WalkResult::interrupt();
976         return WalkResult::advance();
977       });
978       if (walkResult.wasInterrupted())
979         return true;
980     }
981   }
982   return false;
983 }
984 
985 /// Check whether a memref value in node 'srcId' has a non-affine that
986 /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
987 /// 'dstNode').
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg)988 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
989                                        MemRefDependenceGraph *mdg) {
990   // Collect memref values in node 'srcId'.
991   auto *srcNode = mdg->getNode(srcId);
992   llvm::SmallDenseSet<Value, 2> memRefValues;
993   srcNode->op->walk([&](Operation *op) {
994     // Skip affine ops.
995     if (isa<AffineForOp>(op))
996       return WalkResult::advance();
997     for (Value v : op->getOperands())
998       // Collect memref values only.
999       if (v.getType().isa<MemRefType>())
1000         memRefValues.insert(v);
1001     return WalkResult::advance();
1002   });
1003   // Looking for users between node 'srcId' and node 'dstId'.
1004   for (Value memref : memRefValues)
1005     if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
1006       return true;
1007   return false;
1008 }
1009 
1010 // Checks the profitability of fusing a backwards slice of the loop nest
1011 // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
1012 // The argument 'srcStoreOpInst' is used to calculate the storage reduction on
1013 // the memref being produced and consumed, which is an input to the cost model.
1014 // For producer-consumer fusion, 'srcStoreOpInst' will be the same as
1015 // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
1016 // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
1017 // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
1018 // unique store op in the src node, which will be used to check that the write
1019 // region is the same after input-reuse fusion. Computation slices are provided
1020 // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
1021 // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
1022 // profitable to fuse the candidate loop nests. Returns false otherwise.
1023 // `dstLoopDepth` is set to the most profitable depth at which to materialize
1024 // the source loop nest slice.
1025 // The profitability model executes the following steps:
1026 // *) Computes the backward computation slice at 'srcOpInst'. This
1027 //    computation slice of the loop nest surrounding 'srcOpInst' is
1028 //    represented by modified src loop bounds in 'sliceState', which are
1029 //    functions of loop IVs in the loop nest surrounding 'srcOpInst'.
1030 // *) Computes the cost of unfused src/dst loop nests (currently the cost of a
1031 //    loop nest is the total number of dynamic operation instances in the loop
1032 //    nest).
1033 // *) Computes the cost of fusing a slice of the src loop nest into the dst
1034 //    loop nest at various values of dst loop depth, attempting to fuse
1035 //    the largest computation slice at the maximal dst loop depth (closest to
1036 //    the load) to minimize reuse distance and potentially enable subsequent
1037 //    load/store forwarding.
1038 //    NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
1039 //    nest, at which the src computation slice is inserted/fused.
1040 //    NOTE: We attempt to maximize the dst loop depth, but there are cases
1041 //    where a particular setting for 'dstLoopNest' might fuse an unsliced
1042 //    loop (within the src computation slice) at a depth which results in
1043 //    excessive recomputation (see unit tests for examples).
1044 // *) Compares the total cost of the unfused loop nests to the min cost fused
1045 //    loop nest computed in the previous step, and returns true if the latter
1046 //    is lower.
1047 // TODO: Extend profitability analysis to support scenarios with multiple
1048 // stores.
isFusionProfitable(Operation * srcOpInst,Operation * srcStoreOpInst,AffineForOp dstForOp,ArrayRef<ComputationSliceState> depthSliceUnions,unsigned maxLegalFusionDepth,unsigned * dstLoopDepth,double computeToleranceThreshold)1049 static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
1050                                AffineForOp dstForOp,
1051                                ArrayRef<ComputationSliceState> depthSliceUnions,
1052                                unsigned maxLegalFusionDepth,
1053                                unsigned *dstLoopDepth,
1054                                double computeToleranceThreshold) {
1055   LLVM_DEBUG({
1056     llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
1057     llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n";
1058     llvm::dbgs() << dstForOp << "\n";
1059   });
1060 
1061   if (maxLegalFusionDepth == 0) {
1062     LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth == 0 .\n");
1063     return false;
1064   }
1065 
1066   // Compute cost of sliced and unsliced src loop nest.
1067   SmallVector<AffineForOp, 4> srcLoopIVs;
1068   getLoopIVs(*srcOpInst, &srcLoopIVs);
1069 
1070   // Walk src loop nest and collect stats.
1071   LoopNestStats srcLoopNestStats;
1072   if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
1073     return false;
1074 
1075   // Compute cost of dst loop nest.
1076   LoopNestStats dstLoopNestStats;
1077   if (!getLoopNestStats(dstForOp, &dstLoopNestStats))
1078     return false;
1079 
1080   // Search for min cost value for 'dstLoopDepth'. At each value of
1081   // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
1082   // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
1083   // of these bounds). Next the union slice bounds are used to calculate
1084   // the cost of the slice and the cost of the slice inserted into the dst
1085   // loop nest at 'dstLoopDepth'.
1086   uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
1087   double maxStorageReduction = 0.0;
1088   Optional<uint64_t> sliceMemEstimate = None;
1089 
1090   // The best loop depth at which to materialize the slice.
1091   Optional<unsigned> bestDstLoopDepth = None;
1092 
1093   // Compute op instance count for the src loop nest without iteration slicing.
1094   uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
1095 
1096   // Compute src loop nest write region size.
1097   MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
1098   if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
1099     LLVM_DEBUG(llvm::dbgs()
1100                << "Unable to compute MemRefRegion for source operation\n.");
1101     return false;
1102   }
1103 
1104   Optional<int64_t> maybeSrcWriteRegionSizeBytes =
1105       srcWriteRegion.getRegionSize();
1106   if (!maybeSrcWriteRegionSizeBytes.hasValue())
1107     return false;
1108   int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();
1109 
1110   // Compute op instance count for the src loop nest.
1111   uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats);
1112 
1113   // Evaluate all depth choices for materializing the slice in the destination
1114   // loop nest.
1115   for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
1116     const ComputationSliceState &slice = depthSliceUnions[i - 1];
1117     // Skip slice union if it wasn't computed for this depth.
1118     if (slice.isEmpty())
1119       continue;
1120 
1121     int64_t fusedLoopNestComputeCost;
1122     if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp,
1123                               dstLoopNestStats, slice,
1124                               &fusedLoopNestComputeCost)) {
1125       LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
1126       continue;
1127     }
1128 
1129     double additionalComputeFraction =
1130         fusedLoopNestComputeCost /
1131             (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1132         1;
1133 
1134     // Determine what the slice write MemRefRegion would be, if the src loop
1135     // nest slice 'slice' were to be inserted into the dst loop nest at loop
1136     // depth 'i'.
1137     MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
1138     if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
1139                                         &slice))) {
1140       LLVM_DEBUG(llvm::dbgs()
1141                  << "Failed to compute slice write region at loopDepth: " << i
1142                  << "\n");
1143       continue;
1144     }
1145 
1146     Optional<int64_t> maybeSliceWriteRegionSizeBytes =
1147         sliceWriteRegion.getRegionSize();
1148     if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
1149         maybeSliceWriteRegionSizeBytes.getValue() == 0) {
1150       LLVM_DEBUG(llvm::dbgs()
1151                  << "Failed to get slice write region size at loopDepth: " << i
1152                  << "\n");
1153       continue;
1154     }
1155     int64_t sliceWriteRegionSizeBytes =
1156         maybeSliceWriteRegionSizeBytes.getValue();
1157 
1158     // If we are fusing for reuse, check that write regions remain the same.
1159     // TODO: Write region check should check sizes and offsets in
1160     // each dimension, so that we are sure they are covering the same memref
1161     // region. Also, move this out to a isMemRefRegionSuperSet helper function.
1162     if (srcOpInst != srcStoreOpInst &&
1163         sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
1164       continue;
1165 
1166     double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
1167                               static_cast<double>(sliceWriteRegionSizeBytes);
1168 
1169     LLVM_DEBUG({
1170       std::stringstream msg;
1171       msg << "  evaluating fusion profitability at depth : " << i << "\n"
1172           << std::fixed << std::setprecision(2)
1173           << "   additional compute fraction: "
1174           << 100.0 * additionalComputeFraction << "%\n"
1175           << "   storage reduction factor: " << storageReduction << "x\n"
1176           << "   fused nest cost: " << fusedLoopNestComputeCost << "\n"
1177           << "   src write region size: " << srcWriteRegionSizeBytes << "\n"
1178           << "   slice write region size: " << sliceWriteRegionSizeBytes
1179           << "\n";
1180       llvm::dbgs() << msg.str();
1181     });
1182 
1183     // TODO: This is a placeholder cost model.
1184     // Among all choices that add an acceptable amount of redundant computation
1185     // (as per computeToleranceThreshold), we will simply pick the one that
1186     // reduces the intermediary size the most.
1187     if ((storageReduction > maxStorageReduction) &&
1188         (additionalComputeFraction < computeToleranceThreshold)) {
1189       maxStorageReduction = storageReduction;
1190       bestDstLoopDepth = i;
1191       minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
1192       sliceMemEstimate = sliceWriteRegionSizeBytes;
1193     }
1194   }
1195 
1196   // A simple cost model: fuse if it reduces the memory footprint.
1197 
1198   if (!bestDstLoopDepth.hasValue()) {
1199     LLVM_DEBUG(
1200         llvm::dbgs()
1201         << "All fusion choices involve more than the threshold amount of "
1202            "redundant computation; NOT fusing.\n");
1203     return false;
1204   }
1205 
1206   if (!bestDstLoopDepth.hasValue()) {
1207     LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
1208     return false;
1209   }
1210 
1211   // Set dstLoopDepth based on best values from search.
1212   *dstLoopDepth = bestDstLoopDepth.getValue();
1213 
1214   LLVM_DEBUG(
1215       llvm::dbgs() << " LoopFusion fusion stats:"
1216                    << "\n  best loop depth: " << bestDstLoopDepth
1217                    << "\n  src loop nest compute cost: " << srcLoopNestCost
1218                    << "\n  dst loop nest compute cost: " << dstLoopNestCost
1219                    << "\n  fused loop nest compute cost: "
1220                    << minFusedLoopNestComputeCost << "\n");
1221 
1222   auto dstMemSize = getMemoryFootprintBytes(dstForOp);
1223   auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
1224 
1225   Optional<double> storageReduction = None;
1226 
1227   if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
1228     LLVM_DEBUG(llvm::dbgs()
1229                << "  fusion memory benefit cannot be evaluated; NOT fusing.\n");
1230     return false;
1231   }
1232 
1233   auto srcMemSizeVal = srcMemSize.getValue();
1234   auto dstMemSizeVal = dstMemSize.getValue();
1235 
1236   assert(sliceMemEstimate.hasValue() && "expected value");
1237   auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
1238 
1239   LLVM_DEBUG(llvm::dbgs() << "   src mem: " << srcMemSizeVal << "\n"
1240                           << "   dst mem: " << dstMemSizeVal << "\n"
1241                           << "   fused mem: " << fusedMem << "\n"
1242                           << "   slice mem: " << sliceMemEstimate << "\n");
1243 
1244   if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
1245     LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
1246     return false;
1247   }
1248   storageReduction =
1249       100.0 *
1250       (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
1251 
1252   double additionalComputeFraction =
1253       100.0 * (minFusedLoopNestComputeCost /
1254                    (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1255                1);
1256   (void)additionalComputeFraction;
1257   LLVM_DEBUG({
1258     std::stringstream msg;
1259     msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
1260         << std::setprecision(2) << additionalComputeFraction
1261         << "% redundant computation and a ";
1262     msg << (storageReduction.hasValue()
1263                 ? std::to_string(storageReduction.getValue())
1264                 : "<unknown>");
1265     msg << "% storage reduction.\n";
1266     llvm::dbgs() << msg.str();
1267   });
1268 
1269   return true;
1270 }
1271 
1272 namespace {
1273 
1274 // GreedyFusion greedily fuses loop nests which have a producer/consumer or
1275 // input-reuse relationship on a memref, with the goal of improving locality.
1276 //
1277 // The steps of the producer-consumer fusion algorithm are as follows:
1278 //
1279 // *) A worklist is initialized with node ids from the dependence graph.
1280 // *) For each node id in the worklist:
1281 //   *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
1282 //      candidate destination AffineForOp into which fusion will be attempted.
1283 //   *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
1284 //   *) For each LoadOp in 'dstLoadOps' do:
1285 //      *) Look up dependent loop nests which have a single store op to the same
1286 //         memref.
1287 //      *) Check if dependences would be violated by the fusion.
1288 //      *) Get a computation slice of 'srcLoopNest', which adjusts its loop
1289 //         bounds to be functions of 'dstLoopNest' IVs and symbols.
1290 //      *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
1291 //         at a loop depth determined by the cost model in 'isFusionProfitable'.
1292 //      *) Add the newly fused load/store operations to the state,
1293 //         and also add newly fused load ops to 'dstLoopOps' to be considered
1294 //         as fusion dst load ops in another iteration.
1295 //      *) Remove old src loop nest and its associated state.
1296 //
1297 // The steps of the input-reuse fusion algorithm are as follows:
1298 //
1299 // *) Initialize 'worklist' with node ids from the dependence graph.
1300 // *) For each 'dstNode' in the worklist:
1301 //   *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
1302 //      loads from the same memref, but which has no dependence paths to/from.
1303 //   *) Get a computation slice of 'sibLoopNest', which adjusts its loop
1304 //      bounds to be functions of 'dstLoopNest' IVs and symbols.
1305 //   *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
1306 //      at a loop depth determined by the cost model in 'isFusionProfitable'.
1307 //      This function also checks that the memref write region of 'sibLoopNest',
1308 //      is preserved in the fused loop nest.
1309 //   *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
1310 //
1311 // Given a graph where top-level operations are vertices in the set 'V' and
1312 // edges in the set 'E' are dependences between vertices, this algorithm
1313 // takes O(V) time for initialization, and has runtime O(V + E).
1314 //
1315 // This greedy algorithm is not 'maximal' due to the current restriction of
1316 // fusing along single producer consumer edges, but there is a TODO: to fix
1317 // this.
1318 //
1319 // TODO: Experiment with other fusion policies.
1320 struct GreedyFusion {
1321 public:
1322   // The data dependence graph to traverse during fusion.
1323   MemRefDependenceGraph *mdg;
1324   // Worklist of graph nodes visited during the fusion pass.
1325   SmallVector<unsigned, 8> worklist;
1326   // Parameter for local buffer size threshold.
1327   unsigned localBufSizeThreshold;
1328   // Parameter for fast memory space.
1329   Optional<unsigned> fastMemorySpace;
1330   // If true, ignore any additional (redundant) computation tolerance threshold
1331   // that would have prevented fusion.
1332   bool maximalFusion;
1333   // The amount of additional computation that is tolerated while fusing
1334   // pair-wise as a fraction of the total computation.
1335   double computeToleranceThreshold;
1336 
1337   using Node = MemRefDependenceGraph::Node;
1338 
GreedyFusion__anon09a5bc2d0911::GreedyFusion1339   GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
1340                Optional<unsigned> fastMemorySpace, bool maximalFusion,
1341                double computeToleranceThreshold)
1342       : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
1343         fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
1344         computeToleranceThreshold(computeToleranceThreshold) {}
1345 
1346   /// Initializes 'worklist' with nodes from 'mdg'.
init__anon09a5bc2d0911::GreedyFusion1347   void init() {
1348     // TODO: Add a priority queue for prioritizing nodes by different
1349     // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
1350     worklist.clear();
1351     for (auto &idAndNode : mdg->nodes) {
1352       const Node &node = idAndNode.second;
1353       worklist.push_back(node.id);
1354     }
1355   }
1356 
1357   // Run the GreedyFusion pass.
1358   // *) First pass through the nodes fuses single-use producer nodes into their
1359   //    unique consumer.
1360   // *) Second pass fuses sibling nodes which share no dependence edges.
1361   // *) Third pass fuses any remaining producer nodes into their users.
run__anon09a5bc2d0911::GreedyFusion1362   void run() {
1363     // TODO: Run this repeatedly until a fixed-point is reached.
1364     fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
1365     fuseSiblingNodes();
1366     fuseProducerConsumerNodes(
1367         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1368     eraseUnusedMemRefAllocations();
1369   }
1370 
fuseProducerConsumerNodes__anon09a5bc2d0911::GreedyFusion1371   void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1372     LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n");
1373     init();
1374     while (!worklist.empty()) {
1375       unsigned dstId = worklist.back();
1376       worklist.pop_back();
1377 
1378       // Skip if this node was removed (fused into another node).
1379       if (mdg->nodes.count(dstId) == 0)
1380         continue;
1381       // Get 'dstNode' into which to attempt fusion.
1382       auto *dstNode = mdg->getNode(dstId);
1383       // Skip if 'dstNode' is not a loop nest.
1384       if (!isa<AffineForOp>(dstNode->op))
1385         continue;
1386 
1387       LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
1388 
1389       // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
1390       // while preserving relative order. This can increase the maximum loop
1391       // depth at which we can fuse a slice of a producer loop nest into a
1392       // consumer loop nest.
1393       sinkSequentialLoops(dstNode);
1394       auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1395 
1396       // Try to fuse 'dstNode' with candidate producer loops until a fixed point
1397       // is reached. Fusing two loops may expose new fusion opportunities.
1398       bool dstNodeChanged;
1399       do {
1400         // Gather src loop candidates for 'dstNode' and visit them in "quasi"
1401         // reverse program order to minimize the number of iterations needed to
1402         // reach the fixed point. Note that this is a best effort approach since
1403         // 'getProducerCandidates' does not always guarantee that program order
1404         // in 'srcIdCandidates'.
1405         dstNodeChanged = false;
1406         SmallVector<unsigned, 16> srcIdCandidates;
1407         getProducerCandidates(dstId, mdg, srcIdCandidates);
1408 
1409         for (unsigned srcId : llvm::reverse(srcIdCandidates)) {
1410           // Get 'srcNode' from which to attempt fusion into 'dstNode'.
1411           auto *srcNode = mdg->getNode(srcId);
1412           auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
1413           LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId
1414                                   << " for dst loop " << dstId << "\n");
1415 
1416           DenseSet<Value> producerConsumerMemrefs;
1417           gatherProducerConsumerMemrefs(srcId, dstId, mdg,
1418                                         producerConsumerMemrefs);
1419 
1420           // Skip if 'srcNode' out edge count on any memref is greater than
1421           // 'maxSrcUserCount'.
1422           if (any_of(producerConsumerMemrefs, [&](Value memref) {
1423                 return mdg->getOutEdgeCount(srcNode->id, memref) >
1424                        maxSrcUserCount;
1425               }))
1426             continue;
1427 
1428           // Gather memrefs in 'srcNode' that are written and escape to the
1429           // function (e.g., memref function arguments, returned memrefs,
1430           // memrefs passed to function calls, etc.).
1431           DenseSet<Value> srcEscapingMemRefs;
1432           gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs);
1433 
1434           // Skip if there are non-affine operations in between the 'srcNode'
1435           // and 'dstNode' using their memrefs. If so, we wouldn't be able to
1436           // compute a legal insertion point for now. 'srcNode' and 'dstNode'
1437           // memrefs with non-affine operation users would be considered
1438           // escaping memrefs so we can limit this check to only scenarios with
1439           // escaping memrefs.
1440           if (!srcEscapingMemRefs.empty() &&
1441               hasNonAffineUsersOnThePath(srcId, dstId, mdg)) {
1442             LLVM_DEBUG(
1443                 llvm::dbgs()
1444                 << "Can't fuse: non-affine users in between the loops\n.");
1445             continue;
1446           }
1447 
1448           // Compute an operation list insertion point for the fused loop
1449           // nest which preserves dependences.
1450           Operation *fusedLoopInsPoint =
1451               mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
1452           if (fusedLoopInsPoint == nullptr)
1453             continue;
1454 
1455           // Compute the innermost common loop depth for dstNode
1456           // producer-consumer loads/stores.
1457           SmallVector<Operation *, 2> dstMemrefOps;
1458           for (Operation *op : dstNode->loads)
1459             if (producerConsumerMemrefs.count(
1460                     cast<AffineReadOpInterface>(op).getMemRef()) > 0)
1461               dstMemrefOps.push_back(op);
1462           for (Operation *op : dstNode->stores)
1463             if (producerConsumerMemrefs.count(
1464                     cast<AffineWriteOpInterface>(op).getMemRef()))
1465               dstMemrefOps.push_back(op);
1466           unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps);
1467 
1468           // Check the feasibility of fusing src loop nest into dst loop nest
1469           // at loop depths in range [1, dstLoopDepthTest].
1470           unsigned maxLegalFusionDepth = 0;
1471           SmallVector<ComputationSliceState, 8> depthSliceUnions;
1472           depthSliceUnions.resize(dstLoopDepthTest);
1473           FusionStrategy strategy(FusionStrategy::ProducerConsumer);
1474           for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1475             FusionResult result = mlir::canFuseLoops(
1476                 srcAffineForOp, dstAffineForOp,
1477                 /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1478 
1479             if (result.value == FusionResult::Success)
1480               maxLegalFusionDepth = i;
1481           }
1482 
1483           if (maxLegalFusionDepth == 0) {
1484             LLVM_DEBUG(llvm::dbgs()
1485                        << "Can't fuse: fusion is not legal at any depth\n");
1486             continue;
1487           }
1488 
1489           // Check if fusion would be profitable. We skip profitability analysis
1490           // for maximal fusion since we already know the maximal legal depth to
1491           // fuse.
1492           unsigned bestDstLoopDepth = maxLegalFusionDepth;
1493           if (!maximalFusion) {
1494             // Retrieve producer stores from the src loop.
1495             SmallVector<Operation *, 2> producerStores;
1496             for (Operation *op : srcNode->stores)
1497               if (producerConsumerMemrefs.count(
1498                       cast<AffineWriteOpInterface>(op).getMemRef()))
1499                 producerStores.push_back(op);
1500 
1501             // TODO: Suppport multiple producer stores in profitability
1502             // analysis. We limit profitability analysis to only scenarios with
1503             // a single producer store for now. Note that some multi-store
1504             // producer scenarios will still go through profitability analysis
1505             // if only one of the stores is involved the producer-consumer
1506             // relationship of the candidate loops.
1507             assert(producerStores.size() > 0 && "Expected producer store");
1508             if (producerStores.size() > 1)
1509               LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not "
1510                                          "supported for this case\n");
1511             else if (!isFusionProfitable(producerStores[0], producerStores[0],
1512                                          dstAffineForOp, depthSliceUnions,
1513                                          maxLegalFusionDepth, &bestDstLoopDepth,
1514                                          computeToleranceThreshold))
1515               continue;
1516           }
1517 
1518           assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1519           ComputationSliceState &bestSlice =
1520               depthSliceUnions[bestDstLoopDepth - 1];
1521           assert(!bestSlice.isEmpty() && "Missing slice union for depth");
1522 
1523           // Determine if 'srcId' can be removed after fusion, taking into
1524           // account remaining dependences, escaping memrefs and the fusion
1525           // insertion point.
1526           bool removeSrcNode = canRemoveSrcNodeAfterFusion(
1527               srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs,
1528               mdg);
1529 
1530           DenseSet<Value> privateMemrefs;
1531           for (Value memref : producerConsumerMemrefs) {
1532             // Don't create a private memref if 'srcNode' writes to escaping
1533             // memrefs.
1534             if (srcEscapingMemRefs.count(memref) > 0)
1535               continue;
1536 
1537             // Don't create a private memref if 'srcNode' has in edges on
1538             // 'memref' or 'dstNode' has out edges on 'memref'.
1539             if (mdg->getIncomingMemRefAccesses(srcId, memref) > 0 ||
1540                 mdg->getOutEdgeCount(dstId, memref) > 0)
1541               continue;
1542 
1543             // If 'srcNode' will be removed but it has out edges on 'memref' to
1544             // nodes other than 'dstNode', we have to preserve dependences and
1545             // cannot create a private memref.
1546             if (removeSrcNode &&
1547                 any_of(mdg->outEdges[srcId], [&](const auto &edge) {
1548                   return edge.value == memref && edge.id != dstId;
1549                 }))
1550               continue;
1551 
1552             // Create a private version of this memref.
1553             privateMemrefs.insert(memref);
1554           }
1555 
1556           // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
1557           fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice);
1558           dstNodeChanged = true;
1559 
1560           LLVM_DEBUG(llvm::dbgs()
1561                      << "Fused src loop " << srcId << " into dst loop " << dstId
1562                      << " at depth " << bestDstLoopDepth << ":\n"
1563                      << dstAffineForOp << "\n");
1564 
1565           // Move 'dstAffineForOp' before 'insertPointInst' if needed.
1566           if (fusedLoopInsPoint != dstAffineForOp.getOperation())
1567             dstAffineForOp.getOperation()->moveBefore(fusedLoopInsPoint);
1568 
1569           // Update edges between 'srcNode' and 'dstNode'.
1570           mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs,
1571                            removeSrcNode);
1572 
1573           // Create private memrefs.
1574           if (!privateMemrefs.empty()) {
1575             // Gather stores for all the private-to-be memrefs.
1576             DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores;
1577             dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) {
1578               Value storeMemRef = storeOp.getMemRef();
1579               if (privateMemrefs.count(storeMemRef) > 0)
1580                 privateMemRefToStores[storeMemRef].push_back(
1581                     storeOp.getOperation());
1582             });
1583 
1584             // Replace original memrefs with private memrefs. Note that all the
1585             // loads and stores on these memrefs will be replaced with a new
1586             // loads and stores. Any reference to the original ones becomes
1587             // invalid after this point.
1588             for (auto &memrefToStoresPair : privateMemRefToStores) {
1589               // TODO: Use union of memref write regions to compute
1590               // private memref footprint.
1591               SmallVector<Operation *, 4> &storesForMemref =
1592                   memrefToStoresPair.second;
1593               Value newMemRef = createPrivateMemRef(
1594                   dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1595                   fastMemorySpace, localBufSizeThreshold);
1596               // Create new node in dependence graph for 'newMemRef' alloc op.
1597               unsigned newMemRefNodeId =
1598                   mdg->addNode(newMemRef.getDefiningOp());
1599               // Add edge from 'newMemRef' node to dstNode.
1600               mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
1601             }
1602           }
1603 
1604           // Collect dst loop stats after memref privatization transformation.
1605           LoopNestStateCollector dstLoopCollector;
1606           dstLoopCollector.collect(dstAffineForOp.getOperation());
1607 
1608           // Clear and add back loads and stores.
1609           mdg->clearNodeLoadAndStores(dstNode->id);
1610           mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1611                          dstLoopCollector.storeOpInsts);
1612 
1613           if (removeSrcNode) {
1614             LLVM_DEBUG(llvm::dbgs()
1615                        << "Removing src loop " << srcId << " after fusion\n");
1616             // srcNode is no longer valid after it is removed from mdg.
1617             srcAffineForOp.erase();
1618             mdg->removeNode(srcId);
1619             srcNode = nullptr;
1620           }
1621         }
1622       } while (dstNodeChanged);
1623     }
1624   }
1625 
1626   // Visits each node in the graph, and for each node, attempts to fuse it with
1627   // its sibling nodes (nodes which share a parent, but no dependence edges).
fuseSiblingNodes__anon09a5bc2d0911::GreedyFusion1628   void fuseSiblingNodes() {
1629     init();
1630     while (!worklist.empty()) {
1631       unsigned dstId = worklist.back();
1632       worklist.pop_back();
1633 
1634       // Skip if this node was removed (fused into another node).
1635       if (mdg->nodes.count(dstId) == 0)
1636         continue;
1637       // Get 'dstNode' into which to attempt fusion.
1638       auto *dstNode = mdg->getNode(dstId);
1639       // Skip if 'dstNode' is not a loop nest.
1640       if (!isa<AffineForOp>(dstNode->op))
1641         continue;
1642       // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1643       fuseWithSiblingNodes(dstNode);
1644     }
1645   }
1646 
1647   // Attempt to fuse 'dstNode' with sibling nodes in the graph.
fuseWithSiblingNodes__anon09a5bc2d0911::GreedyFusion1648   void fuseWithSiblingNodes(Node *dstNode) {
1649     DenseSet<unsigned> visitedSibNodeIds;
1650     std::pair<unsigned, Value> idAndMemref;
1651     auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1652 
1653     while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1654       unsigned sibId = idAndMemref.first;
1655       Value memref = idAndMemref.second;
1656       // TODO: Check that 'sibStoreOpInst' post-dominates all other
1657       // stores to the same memref in 'sibNode' loop nest.
1658       auto *sibNode = mdg->getNode(sibId);
1659       // Compute an operation list insertion point for the fused loop
1660       // nest which preserves dependences.
1661       assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1662       Operation *insertPointInst =
1663           sibNode->op->isBeforeInBlock(dstNode->op)
1664               ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1665               : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1666       if (insertPointInst == nullptr)
1667         continue;
1668 
1669       // Check if fusion would be profitable and at what depth.
1670 
1671       // Get unique 'sibNode' load op to 'memref'.
1672       SmallVector<Operation *, 2> sibLoadOpInsts;
1673       sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1674       // Currently findSiblingNodeToFuse searches for siblings with one load.
1675       assert(sibLoadOpInsts.size() == 1);
1676       Operation *sibLoadOpInst = sibLoadOpInsts[0];
1677       assert(!sibNode->stores.empty());
1678       // TODO: Choose the store which postdominates all other stores.
1679       auto *sibStoreOpInst = sibNode->stores.back();
1680 
1681       // Gather 'dstNode' load ops to 'memref'.
1682       SmallVector<Operation *, 2> dstLoadOpInsts;
1683       dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1684 
1685       SmallVector<AffineForOp, 4> dstLoopIVs;
1686       getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
1687       unsigned dstLoopDepthTest = dstLoopIVs.size();
1688       auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
1689 
1690       // Compute loop depth and slice union for fusion.
1691       SmallVector<ComputationSliceState, 8> depthSliceUnions;
1692       depthSliceUnions.resize(dstLoopDepthTest);
1693       unsigned maxLegalFusionDepth = 0;
1694       FusionStrategy strategy(memref);
1695       for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1696         FusionResult result = mlir::canFuseLoops(
1697             sibAffineForOp, dstAffineForOp,
1698             /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1699 
1700         if (result.value == FusionResult::Success)
1701           maxLegalFusionDepth = i;
1702       }
1703 
1704       // Skip if fusion is not feasible at any loop depths.
1705       if (maxLegalFusionDepth == 0)
1706         continue;
1707 
1708       unsigned bestDstLoopDepth = maxLegalFusionDepth;
1709       if (!maximalFusion) {
1710         // Check if fusion would be profitable.
1711         if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstAffineForOp,
1712                                 depthSliceUnions, maxLegalFusionDepth,
1713                                 &bestDstLoopDepth, computeToleranceThreshold))
1714           continue;
1715       }
1716 
1717       assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1718       assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
1719              "Fusion depth has no computed slice union");
1720 
1721       // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1722       mlir::fuseLoops(sibAffineForOp, dstAffineForOp,
1723                       depthSliceUnions[bestDstLoopDepth - 1]);
1724 
1725       auto dstForInst = cast<AffineForOp>(dstNode->op);
1726       // Update operation position of fused loop nest (if needed).
1727       if (insertPointInst != dstForInst.getOperation()) {
1728         dstForInst->moveBefore(insertPointInst);
1729       }
1730       // Update data dependence graph state post fusion.
1731       updateStateAfterSiblingFusion(sibNode, dstNode);
1732     }
1733   }
1734 
1735   // Searches function argument uses and the graph from 'dstNode' looking for a
1736   // fusion candidate sibling node which shares no dependences with 'dstNode'
1737   // but which loads from the same memref. Returns true and sets
1738   // 'idAndMemrefToFuse' on success. Returns false otherwise.
findSiblingNodeToFuse__anon09a5bc2d0911::GreedyFusion1739   bool findSiblingNodeToFuse(Node *dstNode,
1740                              DenseSet<unsigned> *visitedSibNodeIds,
1741                              std::pair<unsigned, Value> *idAndMemrefToFuse) {
1742     // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1743     // on 'memref'.
1744     auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
1745       // Skip if 'outEdge' is not a read-after-write dependence.
1746       // TODO: Remove restrict to single load op restriction.
1747       if (sibNode->getLoadOpCount(memref) != 1)
1748         return false;
1749       // Skip if there exists a path of dependent edges between
1750       // 'sibNode' and 'dstNode'.
1751       if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1752           mdg->hasDependencePath(dstNode->id, sibNode->id))
1753         return false;
1754       // Skip sib node if it loads to (and stores from) the same memref on
1755       // which it also has an input dependence edge.
1756       DenseSet<Value> loadAndStoreMemrefSet;
1757       sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
1758       if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
1759             return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1760           }))
1761         return false;
1762 
1763       // Check that all stores are to the same memref.
1764       DenseSet<Value> storeMemrefs;
1765       for (auto *storeOpInst : sibNode->stores) {
1766         storeMemrefs.insert(
1767             cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
1768       }
1769       if (storeMemrefs.size() != 1)
1770         return false;
1771 
1772       // Skip if a memref value in one node is used by a non-affine memref
1773       // access that lies between 'dstNode' and 'sibNode'.
1774       if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
1775           hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
1776         return false;
1777       return true;
1778     };
1779 
1780     // Search for siblings which load the same memref function argument.
1781     auto fn = dstNode->op->getParentOfType<FuncOp>();
1782     for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
1783       for (auto *user : fn.getArgument(i).getUsers()) {
1784         if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
1785           // Gather loops surrounding 'use'.
1786           SmallVector<AffineForOp, 4> loops;
1787           getLoopIVs(*user, &loops);
1788           // Skip 'use' if it is not within a loop nest.
1789           if (loops.empty())
1790             continue;
1791           Node *sibNode = mdg->getForOpNode(loops[0]);
1792           assert(sibNode != nullptr);
1793           // Skip 'use' if it not a sibling to 'dstNode'.
1794           if (sibNode->id == dstNode->id)
1795             continue;
1796           // Skip 'use' if it has been visited.
1797           if (visitedSibNodeIds->count(sibNode->id) > 0)
1798             continue;
1799           // Skip 'use' if it does not load from the same memref as 'dstNode'.
1800           auto memref = loadOp.getMemRef();
1801           if (dstNode->getLoadOpCount(memref) == 0)
1802             continue;
1803           // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1804           if (canFuseWithSibNode(sibNode, memref)) {
1805             visitedSibNodeIds->insert(sibNode->id);
1806             idAndMemrefToFuse->first = sibNode->id;
1807             idAndMemrefToFuse->second = memref;
1808             return true;
1809           }
1810         }
1811       }
1812     }
1813 
1814     // Search for siblings by following edges through an intermediate src node.
1815     // Collect candidate 'dstNode' input edges in 'inEdges'.
1816     SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1817     mdg->forEachMemRefInputEdge(
1818         dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1819           // Add 'inEdge' if it is a read-after-write dependence.
1820           if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1821               mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1822             inEdges.push_back(inEdge);
1823         });
1824 
1825     // Search for sibling nodes to fuse by visiting output edges from each input
1826     // edge in 'inEdges'.
1827     for (auto &inEdge : inEdges) {
1828       // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1829       SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1830       mdg->forEachMemRefOutputEdge(
1831           inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1832             unsigned sibNodeId = outEdge.id;
1833             if (visitedSibNodeIds->count(sibNodeId) > 0)
1834               return;
1835             // Skip output edge if not a sibling using the same memref.
1836             if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1837               return;
1838             auto *sibNode = mdg->getNode(sibNodeId);
1839             if (!isa<AffineForOp>(sibNode->op))
1840               return;
1841             // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1842             if (canFuseWithSibNode(sibNode, outEdge.value)) {
1843               // Add candidate 'outEdge' to sibling node.
1844               outEdges.push_back(outEdge);
1845             }
1846           });
1847 
1848       // Add first candidate if any were returned.
1849       if (!outEdges.empty()) {
1850         visitedSibNodeIds->insert(outEdges[0].id);
1851         idAndMemrefToFuse->first = outEdges[0].id;
1852         idAndMemrefToFuse->second = outEdges[0].value;
1853         return true;
1854       }
1855     }
1856     return false;
1857   }
1858 
1859   /// Update data dependence graph state to reflect sibling fusion of 'sibNode'
1860   /// into 'dstNode'.
updateStateAfterSiblingFusion__anon09a5bc2d0911::GreedyFusion1861   void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
1862     // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1863     mdg->updateEdges(sibNode->id, dstNode->id);
1864 
1865     // Collect dst loop stats after memref privatization transformation.
1866     auto dstForInst = cast<AffineForOp>(dstNode->op);
1867     LoopNestStateCollector dstLoopCollector;
1868     dstLoopCollector.collect(dstForInst.getOperation());
1869     // Clear and add back loads and stores
1870     mdg->clearNodeLoadAndStores(dstNode->id);
1871     mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1872                    dstLoopCollector.storeOpInsts);
1873     // Remove old sibling loop nest if it no longer has outgoing dependence
1874     // edges, and it does not write to a memref which escapes the
1875     // function.
1876     if (mdg->getOutEdgeCount(sibNode->id) == 0) {
1877       mdg->removeNode(sibNode->id);
1878       sibNode->op->erase();
1879     }
1880   }
1881 
1882   // Clean up any allocs with no users.
eraseUnusedMemRefAllocations__anon09a5bc2d0911::GreedyFusion1883   void eraseUnusedMemRefAllocations() {
1884     for (auto &pair : mdg->memrefEdgeCount) {
1885       if (pair.second > 0)
1886         continue;
1887       auto memref = pair.first;
1888       // Skip if there exist other uses (return operation or function calls).
1889       if (!memref.use_empty())
1890         continue;
1891       // Use list expected to match the dep graph info.
1892       auto *op = memref.getDefiningOp();
1893       if (isa_and_nonnull<AllocOp>(op))
1894         op->erase();
1895     }
1896   }
1897 };
1898 
1899 } // end anonymous namespace
1900 
runOnFunction()1901 void LoopFusion::runOnFunction() {
1902   MemRefDependenceGraph g;
1903   if (!g.init(getFunction()))
1904     return;
1905 
1906   Optional<unsigned> fastMemorySpaceOpt;
1907   if (fastMemorySpace.hasValue())
1908     fastMemorySpaceOpt = fastMemorySpace;
1909   unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
1910   GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
1911                       maximalFusion, computeToleranceThreshold);
1912   fusion.run();
1913 }
1914