1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
11
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMacroFusion.h"
15 #include "ARMSubtarget.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "MCTargetDesc/ARMMCTargetDesc.h"
19 #include "TargetInfo/ARMTargetInfo.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
30 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetParser.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/CFGuard.h"
50 #include "llvm/Transforms/IPO.h"
51 #include "llvm/Transforms/Scalar.h"
52 #include <cassert>
53 #include <memory>
54 #include <string>
55
56 using namespace llvm;
57
58 static cl::opt<bool>
59 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
60 cl::desc("Inhibit optimization of S->D register accesses on A15"),
61 cl::init(false));
62
63 static cl::opt<bool>
64 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
65 cl::desc("Run SimplifyCFG after expanding atomic operations"
66 " to make use of cmpxchg flow-based information"),
67 cl::init(true));
68
69 static cl::opt<bool>
70 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
71 cl::desc("Enable ARM load/store optimization pass"),
72 cl::init(true));
73
74 // FIXME: Unify control over GlobalMerge.
75 static cl::opt<cl::boolOrDefault>
76 EnableGlobalMerge("arm-global-merge", cl::Hidden,
77 cl::desc("Enable the global merge pass"));
78
79 namespace llvm {
80 void initializeARMExecutionDomainFixPass(PassRegistry&);
81 }
82
LLVMInitializeARMTarget()83 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() {
84 // Register the target.
85 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
86 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
87 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
88 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
89
90 PassRegistry &Registry = *PassRegistry::getPassRegistry();
91 initializeGlobalISel(Registry);
92 initializeARMLoadStoreOptPass(Registry);
93 initializeARMPreAllocLoadStoreOptPass(Registry);
94 initializeARMParallelDSPPass(Registry);
95 initializeARMConstantIslandsPass(Registry);
96 initializeARMExecutionDomainFixPass(Registry);
97 initializeARMExpandPseudoPass(Registry);
98 initializeThumb2SizeReducePass(Registry);
99 initializeMVEVPTBlockPass(Registry);
100 initializeMVETPAndVPTOptimisationsPass(Registry);
101 initializeMVETailPredicationPass(Registry);
102 initializeARMLowOverheadLoopsPass(Registry);
103 initializeARMBlockPlacementPass(Registry);
104 initializeMVEGatherScatterLoweringPass(Registry);
105 initializeARMSLSHardeningPass(Registry);
106 initializeMVELaneInterleavingPass(Registry);
107 }
108
createTLOF(const Triple & TT)109 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
110 if (TT.isOSBinFormatMachO())
111 return std::make_unique<TargetLoweringObjectFileMachO>();
112 if (TT.isOSWindows())
113 return std::make_unique<TargetLoweringObjectFileCOFF>();
114 return std::make_unique<ARMElfTargetObjectFile>();
115 }
116
117 static ARMBaseTargetMachine::ARMABI
computeTargetABI(const Triple & TT,StringRef CPU,const TargetOptions & Options)118 computeTargetABI(const Triple &TT, StringRef CPU,
119 const TargetOptions &Options) {
120 StringRef ABIName = Options.MCOptions.getABIName();
121
122 if (ABIName.empty())
123 ABIName = ARM::computeDefaultTargetABI(TT, CPU);
124
125 if (ABIName == "aapcs16")
126 return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
127 else if (ABIName.startswith("aapcs"))
128 return ARMBaseTargetMachine::ARM_ABI_AAPCS;
129 else if (ABIName.startswith("apcs"))
130 return ARMBaseTargetMachine::ARM_ABI_APCS;
131
132 llvm_unreachable("Unhandled/unknown ABI Name!");
133 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
134 }
135
computeDataLayout(const Triple & TT,StringRef CPU,const TargetOptions & Options,bool isLittle)136 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
137 const TargetOptions &Options,
138 bool isLittle) {
139 auto ABI = computeTargetABI(TT, CPU, Options);
140 std::string Ret;
141
142 if (isLittle)
143 // Little endian.
144 Ret += "e";
145 else
146 // Big endian.
147 Ret += "E";
148
149 Ret += DataLayout::getManglingComponent(TT);
150
151 // Pointers are 32 bits and aligned to 32 bits.
152 Ret += "-p:32:32";
153
154 // Function pointers are aligned to 8 bits (because the LSB stores the
155 // ARM/Thumb state).
156 Ret += "-Fi8";
157
158 // ABIs other than APCS have 64 bit integers with natural alignment.
159 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
160 Ret += "-i64:64";
161
162 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
163 // bits, others to 64 bits. We always try to align to 64 bits.
164 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
165 Ret += "-f64:32:64";
166
167 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
168 // to 64. We always ty to give them natural alignment.
169 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
170 Ret += "-v64:32:64-v128:32:128";
171 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
172 Ret += "-v128:64:128";
173
174 // Try to align aggregates to 32 bits (the default is 64 bits, which has no
175 // particular hardware support on 32-bit ARM).
176 Ret += "-a:0:32";
177
178 // Integer registers are 32 bits.
179 Ret += "-n32";
180
181 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
182 // aligned everywhere else.
183 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
184 Ret += "-S128";
185 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
186 Ret += "-S64";
187 else
188 Ret += "-S32";
189
190 return Ret;
191 }
192
getEffectiveRelocModel(const Triple & TT,Optional<Reloc::Model> RM)193 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
194 Optional<Reloc::Model> RM) {
195 if (!RM.hasValue())
196 // Default relocation model on Darwin is PIC.
197 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
198
199 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
200 assert(TT.isOSBinFormatELF() &&
201 "ROPI/RWPI currently only supported for ELF");
202
203 // DynamicNoPIC is only used on darwin.
204 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
205 return Reloc::Static;
206
207 return *RM;
208 }
209
210 /// Create an ARM architecture model.
211 ///
ARMBaseTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool isLittle)212 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
213 StringRef CPU, StringRef FS,
214 const TargetOptions &Options,
215 Optional<Reloc::Model> RM,
216 Optional<CodeModel::Model> CM,
217 CodeGenOpt::Level OL, bool isLittle)
218 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
219 CPU, FS, Options, getEffectiveRelocModel(TT, RM),
220 getEffectiveCodeModel(CM, CodeModel::Small), OL),
221 TargetABI(computeTargetABI(TT, CPU, Options)),
222 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
223
224 // Default to triple-appropriate float ABI
225 if (Options.FloatABIType == FloatABI::Default) {
226 if (isTargetHardFloat())
227 this->Options.FloatABIType = FloatABI::Hard;
228 else
229 this->Options.FloatABIType = FloatABI::Soft;
230 }
231
232 // Default to triple-appropriate EABI
233 if (Options.EABIVersion == EABI::Default ||
234 Options.EABIVersion == EABI::Unknown) {
235 // musl is compatible with glibc with regard to EABI version
236 if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
237 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
238 TargetTriple.getEnvironment() == Triple::MuslEABI ||
239 TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
240 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
241 this->Options.EABIVersion = EABI::GNU;
242 else
243 this->Options.EABIVersion = EABI::EABI5;
244 }
245
246 if (TT.isOSBinFormatMachO()) {
247 this->Options.TrapUnreachable = true;
248 this->Options.NoTrapAfterNoreturn = true;
249 }
250
251 // ARM supports the debug entry values.
252 setSupportsDebugEntryValues(true);
253
254 initAsmInfo();
255
256 // ARM supports the MachineOutliner.
257 setMachineOutliner(true);
258 setSupportsDefaultOutlining(true);
259 }
260
261 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
262
263 const ARMSubtarget *
getSubtargetImpl(const Function & F) const264 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
265 Attribute CPUAttr = F.getFnAttribute("target-cpu");
266 Attribute FSAttr = F.getFnAttribute("target-features");
267
268 std::string CPU =
269 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
270 std::string FS =
271 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
272
273 // FIXME: This is related to the code below to reset the target options,
274 // we need to know whether or not the soft float flag is set on the
275 // function before we can generate a subtarget. We also need to use
276 // it as a key for the subtarget since that can be the only difference
277 // between two functions.
278 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
279 // If the soft float attribute is set on the function turn on the soft float
280 // subtarget feature.
281 if (SoftFloat)
282 FS += FS.empty() ? "+soft-float" : ",+soft-float";
283
284 // Use the optminsize to identify the subtarget, but don't use it in the
285 // feature string.
286 std::string Key = CPU + FS;
287 if (F.hasMinSize())
288 Key += "+minsize";
289
290 auto &I = SubtargetMap[Key];
291 if (!I) {
292 // This needs to be done before we create a new subtarget since any
293 // creation will depend on the TM and the code generation flags on the
294 // function that reside in TargetOptions.
295 resetTargetOptions(F);
296 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
297 F.hasMinSize());
298
299 if (!I->isThumb() && !I->hasARMOps())
300 F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
301 "instructions, but the target does not support ARM mode execution.");
302 }
303
304 return I.get();
305 }
306
307 TargetTransformInfo
getTargetTransformInfo(const Function & F)308 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
309 return TargetTransformInfo(ARMTTIImpl(this, F));
310 }
311
ARMLETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)312 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
313 StringRef CPU, StringRef FS,
314 const TargetOptions &Options,
315 Optional<Reloc::Model> RM,
316 Optional<CodeModel::Model> CM,
317 CodeGenOpt::Level OL, bool JIT)
318 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
319
ARMBETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)320 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
321 StringRef CPU, StringRef FS,
322 const TargetOptions &Options,
323 Optional<Reloc::Model> RM,
324 Optional<CodeModel::Model> CM,
325 CodeGenOpt::Level OL, bool JIT)
326 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
327
328 namespace {
329
330 /// ARM Code Generator Pass Configuration Options.
331 class ARMPassConfig : public TargetPassConfig {
332 public:
ARMPassConfig(ARMBaseTargetMachine & TM,PassManagerBase & PM)333 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
334 : TargetPassConfig(TM, PM) {}
335
getARMTargetMachine() const336 ARMBaseTargetMachine &getARMTargetMachine() const {
337 return getTM<ARMBaseTargetMachine>();
338 }
339
340 ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext * C) const341 createMachineScheduler(MachineSchedContext *C) const override {
342 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
343 // add DAG Mutations here.
344 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
345 if (ST.hasFusion())
346 DAG->addMutation(createARMMacroFusionDAGMutation());
347 return DAG;
348 }
349
350 ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext * C) const351 createPostMachineScheduler(MachineSchedContext *C) const override {
352 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
353 // add DAG Mutations here.
354 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
355 if (ST.hasFusion())
356 DAG->addMutation(createARMMacroFusionDAGMutation());
357 return DAG;
358 }
359
360 void addIRPasses() override;
361 void addCodeGenPrepare() override;
362 bool addPreISel() override;
363 bool addInstSelector() override;
364 bool addIRTranslator() override;
365 bool addLegalizeMachineIR() override;
366 bool addRegBankSelect() override;
367 bool addGlobalInstructionSelect() override;
368 void addPreRegAlloc() override;
369 void addPreSched2() override;
370 void addPreEmitPass() override;
371 void addPreEmitPass2() override;
372
373 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
374 };
375
376 class ARMExecutionDomainFix : public ExecutionDomainFix {
377 public:
378 static char ID;
ARMExecutionDomainFix()379 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
getPassName() const380 StringRef getPassName() const override {
381 return "ARM Execution Domain Fix";
382 }
383 };
384 char ARMExecutionDomainFix::ID;
385
386 } // end anonymous namespace
387
388 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
389 "ARM Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)390 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
391 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
392 "ARM Execution Domain Fix", false, false)
393
394 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
395 return new ARMPassConfig(*this, PM);
396 }
397
getCSEConfig() const398 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
399 return getStandardCSEConfigForOpt(TM->getOptLevel());
400 }
401
addIRPasses()402 void ARMPassConfig::addIRPasses() {
403 if (TM->Options.ThreadModel == ThreadModel::Single)
404 addPass(createLowerAtomicPass());
405 else
406 addPass(createAtomicExpandPass());
407
408 // Cmpxchg instructions are often used with a subsequent comparison to
409 // determine whether it succeeded. We can exploit existing control-flow in
410 // ldrex/strex loops to simplify this, but it needs tidying up.
411 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
412 addPass(createCFGSimplificationPass(
413 SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true),
414 [this](const Function &F) {
415 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
416 return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
417 }));
418
419 addPass(createMVEGatherScatterLoweringPass());
420 addPass(createMVELaneInterleavingPass());
421
422 TargetPassConfig::addIRPasses();
423
424 // Run the parallel DSP pass.
425 if (getOptLevel() == CodeGenOpt::Aggressive)
426 addPass(createARMParallelDSPPass());
427
428 // Match interleaved memory accesses to ldN/stN intrinsics.
429 if (TM->getOptLevel() != CodeGenOpt::None)
430 addPass(createInterleavedAccessPass());
431
432 // Add Control Flow Guard checks.
433 if (TM->getTargetTriple().isOSWindows())
434 addPass(createCFGuardCheckPass());
435 }
436
addCodeGenPrepare()437 void ARMPassConfig::addCodeGenPrepare() {
438 if (getOptLevel() != CodeGenOpt::None)
439 addPass(createTypePromotionPass());
440 TargetPassConfig::addCodeGenPrepare();
441 }
442
addPreISel()443 bool ARMPassConfig::addPreISel() {
444 if ((TM->getOptLevel() != CodeGenOpt::None &&
445 EnableGlobalMerge == cl::BOU_UNSET) ||
446 EnableGlobalMerge == cl::BOU_TRUE) {
447 // FIXME: This is using the thumb1 only constant value for
448 // maximal global offset for merging globals. We may want
449 // to look into using the old value for non-thumb1 code of
450 // 4095 based on the TargetMachine, but this starts to become
451 // tricky when doing code gen per function.
452 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
453 (EnableGlobalMerge == cl::BOU_UNSET);
454 // Merging of extern globals is enabled by default on non-Mach-O as we
455 // expect it to be generally either beneficial or harmless. On Mach-O it
456 // is disabled as we emit the .subsections_via_symbols directive which
457 // means that merging extern globals is not safe.
458 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
459 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
460 MergeExternalByDefault));
461 }
462
463 if (TM->getOptLevel() != CodeGenOpt::None) {
464 addPass(createHardwareLoopsPass());
465 addPass(createMVETailPredicationPass());
466 // FIXME: IR passes can delete address-taken basic blocks, deleting
467 // corresponding blockaddresses. ARMConstantPoolConstant holds references to
468 // address-taken basic blocks which can be invalidated if the function
469 // containing the blockaddress has already been codegen'd and the basic
470 // block is removed. Work around this by forcing all IR passes to run before
471 // any ISel takes place. We should have a more principled way of handling
472 // this. See D99707 for more details.
473 addPass(createBarrierNoopPass());
474 }
475
476 return false;
477 }
478
addInstSelector()479 bool ARMPassConfig::addInstSelector() {
480 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
481 return false;
482 }
483
addIRTranslator()484 bool ARMPassConfig::addIRTranslator() {
485 addPass(new IRTranslator(getOptLevel()));
486 return false;
487 }
488
addLegalizeMachineIR()489 bool ARMPassConfig::addLegalizeMachineIR() {
490 addPass(new Legalizer());
491 return false;
492 }
493
addRegBankSelect()494 bool ARMPassConfig::addRegBankSelect() {
495 addPass(new RegBankSelect());
496 return false;
497 }
498
addGlobalInstructionSelect()499 bool ARMPassConfig::addGlobalInstructionSelect() {
500 addPass(new InstructionSelect(getOptLevel()));
501 return false;
502 }
503
addPreRegAlloc()504 void ARMPassConfig::addPreRegAlloc() {
505 if (getOptLevel() != CodeGenOpt::None) {
506 addPass(createMVETPAndVPTOptimisationsPass());
507
508 addPass(createMLxExpansionPass());
509
510 if (EnableARMLoadStoreOpt)
511 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
512
513 if (!DisableA15SDOptimization)
514 addPass(createA15SDOptimizerPass());
515 }
516 }
517
addPreSched2()518 void ARMPassConfig::addPreSched2() {
519 if (getOptLevel() != CodeGenOpt::None) {
520 if (EnableARMLoadStoreOpt)
521 addPass(createARMLoadStoreOptimizationPass());
522
523 addPass(new ARMExecutionDomainFix());
524 addPass(createBreakFalseDeps());
525 }
526
527 // Expand some pseudo instructions into multiple instructions to allow
528 // proper scheduling.
529 addPass(createARMExpandPseudoPass());
530
531 if (getOptLevel() != CodeGenOpt::None) {
532 // When optimising for size, always run the Thumb2SizeReduction pass before
533 // IfConversion. Otherwise, check whether IT blocks are restricted
534 // (e.g. in v8, IfConversion depends on Thumb instruction widths)
535 addPass(createThumb2SizeReductionPass([this](const Function &F) {
536 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() ||
537 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
538 }));
539
540 addPass(createIfConverter([](const MachineFunction &MF) {
541 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
542 }));
543 }
544 addPass(createMVEVPTBlockPass());
545 addPass(createThumb2ITBlockPass());
546
547 // Add both scheduling passes to give the subtarget an opportunity to pick
548 // between them.
549 if (getOptLevel() != CodeGenOpt::None) {
550 addPass(&PostMachineSchedulerID);
551 addPass(&PostRASchedulerID);
552 }
553
554 addPass(createARMIndirectThunks());
555 addPass(createARMSLSHardeningPass());
556 }
557
addPreEmitPass()558 void ARMPassConfig::addPreEmitPass() {
559 addPass(createThumb2SizeReductionPass());
560
561 // Constant island pass work on unbundled instructions.
562 addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
563 return MF.getSubtarget<ARMSubtarget>().isThumb2();
564 }));
565
566 // Don't optimize barriers or block placement at -O0.
567 if (getOptLevel() != CodeGenOpt::None) {
568 addPass(createARMBlockPlacementPass());
569 addPass(createARMOptimizeBarriersPass());
570 }
571 }
572
addPreEmitPass2()573 void ARMPassConfig::addPreEmitPass2() {
574 addPass(createARMConstantIslandPass());
575 addPass(createARMLowOverheadLoopsPass());
576
577 if (TM->getTargetTriple().isOSWindows()) {
578 // Identify valid longjmp targets for Windows Control Flow Guard.
579 addPass(createCFGuardLongjmpPass());
580 // Identify valid eh continuation targets for Windows EHCont Guard.
581 addPass(createEHContGuardCatchretPass());
582 }
583 }
584