1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sparse conditional constant propagation and merging:
10 //
11 // Specifically, this:
12 //   * Assumes values are constant unless proven otherwise
13 //   * Assumes BasicBlocks are dead unless proven otherwise
14 //   * Proves values to be constant, and replaces them with constants
15 //   * Proves conditional branches to be unconditional
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Scalar/SCCP.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/DomTreeUpdater.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/InstructionSimplify.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueLattice.h"
36 #include "llvm/Analysis/ValueLatticeUtils.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InstVisitor.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Scalar.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/PredicateInfo.h"
63 #include <cassert>
64 #include <utility>
65 #include <vector>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "sccp"
70 
71 STATISTIC(NumInstRemoved, "Number of instructions removed");
72 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
73 STATISTIC(NumInstReplaced,
74           "Number of instructions replaced with (simpler) instruction");
75 
76 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
77 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
78 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
79 STATISTIC(
80     IPNumInstReplaced,
81     "Number of instructions replaced with (simpler) instruction by IPSCCP");
82 
83 // Helper to check if \p LV is either a constant or a constant
84 // range with a single element. This should cover exactly the same cases as the
85 // old ValueLatticeElement::isConstant() and is intended to be used in the
86 // transition to ValueLatticeElement.
isConstant(const ValueLatticeElement & LV)87 static bool isConstant(const ValueLatticeElement &LV) {
88   return LV.isConstant() ||
89          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
90 }
91 
92 // Helper to check if \p LV is either overdefined or a constant range with more
93 // than a single element. This should cover exactly the same cases as the old
94 // ValueLatticeElement::isOverdefined() and is intended to be used in the
95 // transition to ValueLatticeElement.
isOverdefined(const ValueLatticeElement & LV)96 static bool isOverdefined(const ValueLatticeElement &LV) {
97   return !LV.isUnknownOrUndef() && !isConstant(LV);
98 }
99 
tryToReplaceWithConstant(SCCPSolver & Solver,Value * V)100 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
101   Constant *Const = nullptr;
102   if (V->getType()->isStructTy()) {
103     std::vector<ValueLatticeElement> IVs = Solver.getStructLatticeValueFor(V);
104     if (any_of(IVs,
105                [](const ValueLatticeElement &LV) { return isOverdefined(LV); }))
106       return false;
107     std::vector<Constant *> ConstVals;
108     auto *ST = cast<StructType>(V->getType());
109     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
110       ValueLatticeElement V = IVs[i];
111       ConstVals.push_back(isConstant(V)
112                               ? Solver.getConstant(V)
113                               : UndefValue::get(ST->getElementType(i)));
114     }
115     Const = ConstantStruct::get(ST, ConstVals);
116   } else {
117     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
118     if (isOverdefined(IV))
119       return false;
120 
121     Const =
122         isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
123   }
124   assert(Const && "Constant is nullptr here!");
125 
126   // Replacing `musttail` instructions with constant breaks `musttail` invariant
127   // unless the call itself can be removed.
128   // Calls with "clang.arc.attachedcall" implicitly use the return value and
129   // those uses cannot be updated with a constant.
130   CallBase *CB = dyn_cast<CallBase>(V);
131   if (CB && ((CB->isMustTailCall() && !CB->isSafeToRemove()) ||
132              CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) {
133     Function *F = CB->getCalledFunction();
134 
135     // Don't zap returns of the callee
136     if (F)
137       Solver.addToMustPreserveReturnsInFunctions(F);
138 
139     LLVM_DEBUG(dbgs() << "  Can\'t treat the result of call " << *CB
140                       << " as a constant\n");
141     return false;
142   }
143 
144   LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');
145 
146   // Replaces all of the uses of a variable with uses of the constant.
147   V->replaceAllUsesWith(Const);
148   return true;
149 }
150 
simplifyInstsInBlock(SCCPSolver & Solver,BasicBlock & BB,SmallPtrSetImpl<Value * > & InsertedValues,Statistic & InstRemovedStat,Statistic & InstReplacedStat)151 static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB,
152                                  SmallPtrSetImpl<Value *> &InsertedValues,
153                                  Statistic &InstRemovedStat,
154                                  Statistic &InstReplacedStat) {
155   bool MadeChanges = false;
156   for (Instruction &Inst : make_early_inc_range(BB)) {
157     if (Inst.getType()->isVoidTy())
158       continue;
159     if (tryToReplaceWithConstant(Solver, &Inst)) {
160       if (Inst.isSafeToRemove())
161         Inst.eraseFromParent();
162 
163       MadeChanges = true;
164       ++InstRemovedStat;
165     } else if (isa<SExtInst>(&Inst)) {
166       Value *ExtOp = Inst.getOperand(0);
167       if (isa<Constant>(ExtOp) || InsertedValues.count(ExtOp))
168         continue;
169       const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp);
170       if (!IV.isConstantRange(/*UndefAllowed=*/false))
171         continue;
172       if (IV.getConstantRange().isAllNonNegative()) {
173         auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst);
174         InsertedValues.insert(ZExt);
175         Inst.replaceAllUsesWith(ZExt);
176         Solver.removeLatticeValueFor(&Inst);
177         Inst.eraseFromParent();
178         InstReplacedStat++;
179         MadeChanges = true;
180       }
181     }
182   }
183   return MadeChanges;
184 }
185 
186 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
187 // and return true if the function was modified.
runSCCP(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI)188 static bool runSCCP(Function &F, const DataLayout &DL,
189                     const TargetLibraryInfo *TLI) {
190   LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
191   SCCPSolver Solver(
192       DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; },
193       F.getContext());
194 
195   // Mark the first block of the function as being executable.
196   Solver.markBlockExecutable(&F.front());
197 
198   // Mark all arguments to the function as being overdefined.
199   for (Argument &AI : F.args())
200     Solver.markOverdefined(&AI);
201 
202   // Solve for constants.
203   bool ResolvedUndefs = true;
204   while (ResolvedUndefs) {
205     Solver.solve();
206     LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
207     ResolvedUndefs = Solver.resolvedUndefsIn(F);
208   }
209 
210   bool MadeChanges = false;
211 
212   // If we decided that there are basic blocks that are dead in this function,
213   // delete their contents now.  Note that we cannot actually delete the blocks,
214   // as we cannot modify the CFG of the function.
215 
216   SmallPtrSet<Value *, 32> InsertedValues;
217   for (BasicBlock &BB : F) {
218     if (!Solver.isBlockExecutable(&BB)) {
219       LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
220 
221       ++NumDeadBlocks;
222       NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB).first;
223 
224       MadeChanges = true;
225       continue;
226     }
227 
228     MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
229                                         NumInstRemoved, NumInstReplaced);
230   }
231 
232   return MadeChanges;
233 }
234 
run(Function & F,FunctionAnalysisManager & AM)235 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
236   const DataLayout &DL = F.getParent()->getDataLayout();
237   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
238   if (!runSCCP(F, DL, &TLI))
239     return PreservedAnalyses::all();
240 
241   auto PA = PreservedAnalyses();
242   PA.preserveSet<CFGAnalyses>();
243   return PA;
244 }
245 
246 namespace {
247 
248 //===--------------------------------------------------------------------===//
249 //
250 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
251 /// Sparse Conditional Constant Propagator.
252 ///
253 class SCCPLegacyPass : public FunctionPass {
254 public:
255   // Pass identification, replacement for typeid
256   static char ID;
257 
SCCPLegacyPass()258   SCCPLegacyPass() : FunctionPass(ID) {
259     initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
260   }
261 
getAnalysisUsage(AnalysisUsage & AU) const262   void getAnalysisUsage(AnalysisUsage &AU) const override {
263     AU.addRequired<TargetLibraryInfoWrapperPass>();
264     AU.addPreserved<GlobalsAAWrapperPass>();
265     AU.setPreservesCFG();
266   }
267 
268   // runOnFunction - Run the Sparse Conditional Constant Propagation
269   // algorithm, and return true if the function was modified.
runOnFunction(Function & F)270   bool runOnFunction(Function &F) override {
271     if (skipFunction(F))
272       return false;
273     const DataLayout &DL = F.getParent()->getDataLayout();
274     const TargetLibraryInfo *TLI =
275         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
276     return runSCCP(F, DL, TLI);
277   }
278 };
279 
280 } // end anonymous namespace
281 
282 char SCCPLegacyPass::ID = 0;
283 
284 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
285                       "Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)286 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
287 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
288                     "Sparse Conditional Constant Propagation", false, false)
289 
290 // createSCCPPass - This is the public interface to this file.
291 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
292 
findReturnsToZap(Function & F,SmallVector<ReturnInst *,8> & ReturnsToZap,SCCPSolver & Solver)293 static void findReturnsToZap(Function &F,
294                              SmallVector<ReturnInst *, 8> &ReturnsToZap,
295                              SCCPSolver &Solver) {
296   // We can only do this if we know that nothing else can call the function.
297   if (!Solver.isArgumentTrackedFunction(&F))
298     return;
299 
300   if (Solver.mustPreserveReturn(&F)) {
301     LLVM_DEBUG(
302         dbgs()
303         << "Can't zap returns of the function : " << F.getName()
304         << " due to present musttail or \"clang.arc.attachedcall\" call of "
305            "it\n");
306     return;
307   }
308 
309   assert(
310       all_of(F.users(),
311              [&Solver](User *U) {
312                if (isa<Instruction>(U) &&
313                    !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
314                  return true;
315                // Non-callsite uses are not impacted by zapping. Also, constant
316                // uses (like blockaddresses) could stuck around, without being
317                // used in the underlying IR, meaning we do not have lattice
318                // values for them.
319                if (!isa<CallBase>(U))
320                  return true;
321                if (U->getType()->isStructTy()) {
322                  return all_of(Solver.getStructLatticeValueFor(U),
323                                [](const ValueLatticeElement &LV) {
324                                  return !isOverdefined(LV);
325                                });
326                }
327                return !isOverdefined(Solver.getLatticeValueFor(U));
328              }) &&
329       "We can only zap functions where all live users have a concrete value");
330 
331   for (BasicBlock &BB : F) {
332     if (CallInst *CI = BB.getTerminatingMustTailCall()) {
333       LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
334                         << "musttail call : " << *CI << "\n");
335       (void)CI;
336       return;
337     }
338 
339     if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
340       if (!isa<UndefValue>(RI->getOperand(0)))
341         ReturnsToZap.push_back(RI);
342   }
343 }
344 
removeNonFeasibleEdges(const SCCPSolver & Solver,BasicBlock * BB,DomTreeUpdater & DTU)345 static bool removeNonFeasibleEdges(const SCCPSolver &Solver, BasicBlock *BB,
346                                    DomTreeUpdater &DTU) {
347   SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
348   bool HasNonFeasibleEdges = false;
349   for (BasicBlock *Succ : successors(BB)) {
350     if (Solver.isEdgeFeasible(BB, Succ))
351       FeasibleSuccessors.insert(Succ);
352     else
353       HasNonFeasibleEdges = true;
354   }
355 
356   // All edges feasible, nothing to do.
357   if (!HasNonFeasibleEdges)
358     return false;
359 
360   // SCCP can only determine non-feasible edges for br, switch and indirectbr.
361   Instruction *TI = BB->getTerminator();
362   assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
363           isa<IndirectBrInst>(TI)) &&
364          "Terminator must be a br, switch or indirectbr");
365 
366   if (FeasibleSuccessors.size() == 1) {
367     // Replace with an unconditional branch to the only feasible successor.
368     BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
369     SmallVector<DominatorTree::UpdateType, 8> Updates;
370     bool HaveSeenOnlyFeasibleSuccessor = false;
371     for (BasicBlock *Succ : successors(BB)) {
372       if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
373         // Don't remove the edge to the only feasible successor the first time
374         // we see it. We still do need to remove any multi-edges to it though.
375         HaveSeenOnlyFeasibleSuccessor = true;
376         continue;
377       }
378 
379       Succ->removePredecessor(BB);
380       Updates.push_back({DominatorTree::Delete, BB, Succ});
381     }
382 
383     BranchInst::Create(OnlyFeasibleSuccessor, BB);
384     TI->eraseFromParent();
385     DTU.applyUpdatesPermissive(Updates);
386   } else if (FeasibleSuccessors.size() > 1) {
387     SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
388     SmallVector<DominatorTree::UpdateType, 8> Updates;
389     for (auto CI = SI->case_begin(); CI != SI->case_end();) {
390       if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
391         ++CI;
392         continue;
393       }
394 
395       BasicBlock *Succ = CI->getCaseSuccessor();
396       Succ->removePredecessor(BB);
397       Updates.push_back({DominatorTree::Delete, BB, Succ});
398       SI.removeCase(CI);
399       // Don't increment CI, as we removed a case.
400     }
401 
402     DTU.applyUpdatesPermissive(Updates);
403   } else {
404     llvm_unreachable("Must have at least one feasible successor");
405   }
406   return true;
407 }
408 
runIPSCCP(Module & M,const DataLayout & DL,std::function<const TargetLibraryInfo & (Function &)> GetTLI,function_ref<AnalysisResultsForFn (Function &)> getAnalysis)409 bool llvm::runIPSCCP(
410     Module &M, const DataLayout &DL,
411     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
412     function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
413   SCCPSolver Solver(DL, GetTLI, M.getContext());
414 
415   // Loop over all functions, marking arguments to those with their addresses
416   // taken or that are external as overdefined.
417   for (Function &F : M) {
418     if (F.isDeclaration())
419       continue;
420 
421     Solver.addAnalysis(F, getAnalysis(F));
422 
423     // Determine if we can track the function's return values. If so, add the
424     // function to the solver's set of return-tracked functions.
425     if (canTrackReturnsInterprocedurally(&F))
426       Solver.addTrackedFunction(&F);
427 
428     // Determine if we can track the function's arguments. If so, add the
429     // function to the solver's set of argument-tracked functions.
430     if (canTrackArgumentsInterprocedurally(&F)) {
431       Solver.addArgumentTrackedFunction(&F);
432       continue;
433     }
434 
435     // Assume the function is called.
436     Solver.markBlockExecutable(&F.front());
437 
438     // Assume nothing about the incoming arguments.
439     for (Argument &AI : F.args())
440       Solver.markOverdefined(&AI);
441   }
442 
443   // Determine if we can track any of the module's global variables. If so, add
444   // the global variables we can track to the solver's set of tracked global
445   // variables.
446   for (GlobalVariable &G : M.globals()) {
447     G.removeDeadConstantUsers();
448     if (canTrackGlobalVariableInterprocedurally(&G))
449       Solver.trackValueOfGlobalVariable(&G);
450   }
451 
452   // Solve for constants.
453   bool ResolvedUndefs = true;
454   Solver.solve();
455   while (ResolvedUndefs) {
456     LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
457     ResolvedUndefs = false;
458     for (Function &F : M) {
459       if (Solver.resolvedUndefsIn(F))
460         ResolvedUndefs = true;
461     }
462     if (ResolvedUndefs)
463       Solver.solve();
464   }
465 
466   bool MadeChanges = false;
467 
468   // Iterate over all of the instructions in the module, replacing them with
469   // constants if we have found them to be of constant values.
470 
471   for (Function &F : M) {
472     if (F.isDeclaration())
473       continue;
474 
475     SmallVector<BasicBlock *, 512> BlocksToErase;
476 
477     if (Solver.isBlockExecutable(&F.front())) {
478       bool ReplacedPointerArg = false;
479       for (Argument &Arg : F.args()) {
480         if (!Arg.use_empty() && tryToReplaceWithConstant(Solver, &Arg)) {
481           ReplacedPointerArg |= Arg.getType()->isPointerTy();
482           ++IPNumArgsElimed;
483         }
484       }
485 
486       // If we replaced an argument, the argmemonly and
487       // inaccessiblemem_or_argmemonly attributes do not hold any longer. Remove
488       // them from both the function and callsites.
489       if (ReplacedPointerArg) {
490         AttrBuilder AttributesToRemove;
491         AttributesToRemove.addAttribute(Attribute::ArgMemOnly);
492         AttributesToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
493         F.removeAttributes(AttributeList::FunctionIndex, AttributesToRemove);
494 
495         for (User *U : F.users()) {
496           auto *CB = dyn_cast<CallBase>(U);
497           if (!CB || CB->getCalledFunction() != &F)
498             continue;
499 
500           CB->removeAttributes(AttributeList::FunctionIndex,
501                                AttributesToRemove);
502         }
503       }
504     }
505 
506     SmallPtrSet<Value *, 32> InsertedValues;
507     for (BasicBlock &BB : F) {
508       if (!Solver.isBlockExecutable(&BB)) {
509         LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
510         ++NumDeadBlocks;
511 
512         MadeChanges = true;
513 
514         if (&BB != &F.front())
515           BlocksToErase.push_back(&BB);
516         continue;
517       }
518 
519       MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
520                                           IPNumInstRemoved, IPNumInstReplaced);
521     }
522 
523     DomTreeUpdater DTU = Solver.getDTU(F);
524     // Change dead blocks to unreachable. We do it after replacing constants
525     // in all executable blocks, because changeToUnreachable may remove PHI
526     // nodes in executable blocks we found values for. The function's entry
527     // block is not part of BlocksToErase, so we have to handle it separately.
528     for (BasicBlock *BB : BlocksToErase) {
529       NumInstRemoved += changeToUnreachable(BB->getFirstNonPHI(),
530                                             /*PreserveLCSSA=*/false, &DTU);
531     }
532     if (!Solver.isBlockExecutable(&F.front()))
533       NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
534                                             /*PreserveLCSSA=*/false, &DTU);
535 
536     for (BasicBlock &BB : F)
537       MadeChanges |= removeNonFeasibleEdges(Solver, &BB, DTU);
538 
539     for (BasicBlock *DeadBB : BlocksToErase)
540       DTU.deleteBB(DeadBB);
541 
542     for (BasicBlock &BB : F) {
543       for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
544         Instruction *Inst = &*BI++;
545         if (Solver.getPredicateInfoFor(Inst)) {
546           if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
547             if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
548               Value *Op = II->getOperand(0);
549               Inst->replaceAllUsesWith(Op);
550               Inst->eraseFromParent();
551             }
552           }
553         }
554       }
555     }
556   }
557 
558   // If we inferred constant or undef return values for a function, we replaced
559   // all call uses with the inferred value.  This means we don't need to bother
560   // actually returning anything from the function.  Replace all return
561   // instructions with return undef.
562   //
563   // Do this in two stages: first identify the functions we should process, then
564   // actually zap their returns.  This is important because we can only do this
565   // if the address of the function isn't taken.  In cases where a return is the
566   // last use of a function, the order of processing functions would affect
567   // whether other functions are optimizable.
568   SmallVector<ReturnInst*, 8> ReturnsToZap;
569 
570   for (const auto &I : Solver.getTrackedRetVals()) {
571     Function *F = I.first;
572     const ValueLatticeElement &ReturnValue = I.second;
573 
574     // If there is a known constant range for the return value, add !range
575     // metadata to the function's call sites.
576     if (ReturnValue.isConstantRange() &&
577         !ReturnValue.getConstantRange().isSingleElement()) {
578       // Do not add range metadata if the return value may include undef.
579       if (ReturnValue.isConstantRangeIncludingUndef())
580         continue;
581 
582       auto &CR = ReturnValue.getConstantRange();
583       for (User *User : F->users()) {
584         auto *CB = dyn_cast<CallBase>(User);
585         if (!CB || CB->getCalledFunction() != F)
586           continue;
587 
588         // Limit to cases where the return value is guaranteed to be neither
589         // poison nor undef. Poison will be outside any range and currently
590         // values outside of the specified range cause immediate undefined
591         // behavior.
592         if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB))
593           continue;
594 
595         // Do not touch existing metadata for now.
596         // TODO: We should be able to take the intersection of the existing
597         // metadata and the inferred range.
598         if (CB->getMetadata(LLVMContext::MD_range))
599           continue;
600 
601         LLVMContext &Context = CB->getParent()->getContext();
602         Metadata *RangeMD[] = {
603             ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
604             ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
605         CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
606       }
607       continue;
608     }
609     if (F->getReturnType()->isVoidTy())
610       continue;
611     if (isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
612       findReturnsToZap(*F, ReturnsToZap, Solver);
613   }
614 
615   for (auto F : Solver.getMRVFunctionsTracked()) {
616     assert(F->getReturnType()->isStructTy() &&
617            "The return type should be a struct");
618     StructType *STy = cast<StructType>(F->getReturnType());
619     if (Solver.isStructLatticeConstant(F, STy))
620       findReturnsToZap(*F, ReturnsToZap, Solver);
621   }
622 
623   // Zap all returns which we've identified as zap to change.
624   SmallSetVector<Function *, 8> FuncZappedReturn;
625   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
626     Function *F = ReturnsToZap[i]->getParent()->getParent();
627     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
628     // Record all functions that are zapped.
629     FuncZappedReturn.insert(F);
630   }
631 
632   // Remove the returned attribute for zapped functions and the
633   // corresponding call sites.
634   for (Function *F : FuncZappedReturn) {
635     for (Argument &A : F->args())
636       F->removeParamAttr(A.getArgNo(), Attribute::Returned);
637     for (Use &U : F->uses()) {
638       // Skip over blockaddr users.
639       if (isa<BlockAddress>(U.getUser()))
640         continue;
641       CallBase *CB = cast<CallBase>(U.getUser());
642       for (Use &Arg : CB->args())
643         CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
644     }
645   }
646 
647   // If we inferred constant or undef values for globals variables, we can
648   // delete the global and any stores that remain to it.
649   for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
650     GlobalVariable *GV = I.first;
651     if (isOverdefined(I.second))
652       continue;
653     LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
654                       << "' is constant!\n");
655     while (!GV->use_empty()) {
656       StoreInst *SI = cast<StoreInst>(GV->user_back());
657       SI->eraseFromParent();
658       MadeChanges = true;
659     }
660     M.getGlobalList().erase(GV);
661     ++IPNumGlobalConst;
662   }
663 
664   return MadeChanges;
665 }
666