1 //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SparseSet class derived from the version described in
11 // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
12 // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec.  1993.
13 //
14 // A sparse set holds a small number of objects identified by integer keys from
15 // a moderately sized universe. The sparse set uses more memory than other
16 // containers in order to provide faster operations.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ADT_SPARSESET_H
21 #define LLVM_ADT_SPARSESET_H
22 
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/Allocator.h"
26 #include <cassert>
27 #include <cstdint>
28 #include <cstdlib>
29 #include <limits>
30 #include <utility>
31 
32 namespace llvm {
33 
34 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
35 /// be uniquely converted to a small integer less than the set's universe. This
36 /// class allows the set to hold values that differ from the set's key type as
37 /// long as an index can still be derived from the value. SparseSet never
38 /// directly compares ValueT, only their indices, so it can map keys to
39 /// arbitrary values. SparseSetValTraits computes the index from the value
40 /// object. To compute the index from a key, SparseSet uses a separate
41 /// KeyFunctorT template argument.
42 ///
43 /// A simple type declaration, SparseSet<Type>, handles these cases:
44 /// - unsigned key, identity index, identity value
45 /// - unsigned key, identity index, fat value providing getSparseSetIndex()
46 ///
47 /// The type declaration SparseSet<Type, UnaryFunction> handles:
48 /// - unsigned key, remapped index, identity value (virtual registers)
49 /// - pointer key, pointer-derived index, identity value (node+ID)
50 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
51 ///
52 /// Only other, unexpected cases require specializing SparseSetValTraits.
53 ///
54 /// For best results, ValueT should not require a destructor.
55 ///
56 template<typename ValueT>
57 struct SparseSetValTraits {
getValIndexSparseSetValTraits58   static unsigned getValIndex(const ValueT &Val) {
59     return Val.getSparseSetIndex();
60   }
61 };
62 
63 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
64 /// generic implementation handles ValueT classes which either provide
65 /// getSparseSetIndex() or specialize SparseSetValTraits<>.
66 ///
67 template<typename KeyT, typename ValueT, typename KeyFunctorT>
68 struct SparseSetValFunctor {
operatorSparseSetValFunctor69   unsigned operator()(const ValueT &Val) const {
70     return SparseSetValTraits<ValueT>::getValIndex(Val);
71   }
72 };
73 
74 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
75 /// identity key/value sets.
76 template<typename KeyT, typename KeyFunctorT>
77 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
78   unsigned operator()(const KeyT &Key) const {
79     return KeyFunctorT()(Key);
80   }
81 };
82 
83 /// SparseSet - Fast set implmentation for objects that can be identified by
84 /// small unsigned keys.
85 ///
86 /// SparseSet allocates memory proportional to the size of the key universe, so
87 /// it is not recommended for building composite data structures.  It is useful
88 /// for algorithms that require a single set with fast operations.
89 ///
90 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
91 /// clear() and iteration as fast as a vector.  The find(), insert(), and
92 /// erase() operations are all constant time, and typically faster than a hash
93 /// table.  The iteration order doesn't depend on numerical key values, it only
94 /// depends on the order of insert() and erase() operations.  When no elements
95 /// have been erased, the iteration order is the insertion order.
96 ///
97 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
98 /// offers constant-time clear() and size() operations as well as fast
99 /// iteration independent on the size of the universe.
100 ///
101 /// SparseSet contains a dense vector holding all the objects and a sparse
102 /// array holding indexes into the dense vector.  Most of the memory is used by
103 /// the sparse array which is the size of the key universe.  The SparseT
104 /// template parameter provides a space/speed tradeoff for sets holding many
105 /// elements.
106 ///
107 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
108 /// array uses 4 x Universe bytes.
109 ///
110 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
111 /// lines, but the sparse array is 4x smaller.  N is the number of elements in
112 /// the set.
113 ///
114 /// For sets that may grow to thousands of elements, SparseT should be set to
115 /// uint16_t or uint32_t.
116 ///
117 /// @tparam ValueT      The type of objects in the set.
118 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
119 /// @tparam SparseT     An unsigned integer type. See above.
120 ///
121 template<typename ValueT,
122          typename KeyFunctorT = identity<unsigned>,
123          typename SparseT = uint8_t>
124 class SparseSet {
125   static_assert(std::numeric_limits<SparseT>::is_integer &&
126                 !std::numeric_limits<SparseT>::is_signed,
127                 "SparseT must be an unsigned integer type");
128 
129   using KeyT = typename KeyFunctorT::argument_type;
130   using DenseT = SmallVector<ValueT, 8>;
131   using size_type = unsigned;
132   DenseT Dense;
133   SparseT *Sparse = nullptr;
134   unsigned Universe = 0;
135   KeyFunctorT KeyIndexOf;
136   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
137 
138 public:
139   using value_type = ValueT;
140   using reference = ValueT &;
141   using const_reference = const ValueT &;
142   using pointer = ValueT *;
143   using const_pointer = const ValueT *;
144 
145   SparseSet() = default;
146   SparseSet(const SparseSet &) = delete;
147   SparseSet &operator=(const SparseSet &) = delete;
148   ~SparseSet() { free(Sparse); }
149 
150   /// setUniverse - Set the universe size which determines the largest key the
151   /// set can hold.  The universe must be sized before any elements can be
152   /// added.
153   ///
154   /// @param U Universe size. All object keys must be less than U.
155   ///
156   void setUniverse(unsigned U) {
157     // It's not hard to resize the universe on a non-empty set, but it doesn't
158     // seem like a likely use case, so we can add that code when we need it.
159     assert(empty() && "Can only resize universe on an empty map");
160     // Hysteresis prevents needless reallocations.
161     if (U >= Universe/4 && U <= Universe)
162       return;
163     free(Sparse);
164     // The Sparse array doesn't actually need to be initialized, so malloc
165     // would be enough here, but that will cause tools like valgrind to
166     // complain about branching on uninitialized data.
167     Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
168     Universe = U;
169   }
170 
171   // Import trivial vector stuff from DenseT.
172   using iterator = typename DenseT::iterator;
173   using const_iterator = typename DenseT::const_iterator;
174 
175   const_iterator begin() const { return Dense.begin(); }
176   const_iterator end() const { return Dense.end(); }
177   iterator begin() { return Dense.begin(); }
178   iterator end() { return Dense.end(); }
179 
180   /// empty - Returns true if the set is empty.
181   ///
182   /// This is not the same as BitVector::empty().
183   ///
184   bool empty() const { return Dense.empty(); }
185 
186   /// size - Returns the number of elements in the set.
187   ///
188   /// This is not the same as BitVector::size() which returns the size of the
189   /// universe.
190   ///
191   size_type size() const { return Dense.size(); }
192 
193   /// clear - Clears the set.  This is a very fast constant time operation.
194   ///
195   void clear() {
196     // Sparse does not need to be cleared, see find().
197     Dense.clear();
198   }
199 
200   /// findIndex - Find an element by its index.
201   ///
202   /// @param   Idx A valid index to find.
203   /// @returns An iterator to the element identified by key, or end().
204   ///
205   iterator findIndex(unsigned Idx) {
206     assert(Idx < Universe && "Key out of range");
207     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
208     for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
209       const unsigned FoundIdx = ValIndexOf(Dense[i]);
210       assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
211       if (Idx == FoundIdx)
212         return begin() + i;
213       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
214       if (!Stride)
215         break;
216     }
217     return end();
218   }
219 
220   /// find - Find an element by its key.
221   ///
222   /// @param   Key A valid key to find.
223   /// @returns An iterator to the element identified by key, or end().
224   ///
225   iterator find(const KeyT &Key) {
226     return findIndex(KeyIndexOf(Key));
227   }
228 
229   const_iterator find(const KeyT &Key) const {
230     return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
231   }
232 
233   /// count - Returns 1 if this set contains an element identified by Key,
234   /// 0 otherwise.
235   ///
236   size_type count(const KeyT &Key) const {
237     return find(Key) == end() ? 0 : 1;
238   }
239 
240   /// insert - Attempts to insert a new element.
241   ///
242   /// If Val is successfully inserted, return (I, true), where I is an iterator
243   /// pointing to the newly inserted element.
244   ///
245   /// If the set already contains an element with the same key as Val, return
246   /// (I, false), where I is an iterator pointing to the existing element.
247   ///
248   /// Insertion invalidates all iterators.
249   ///
250   std::pair<iterator, bool> insert(const ValueT &Val) {
251     unsigned Idx = ValIndexOf(Val);
252     iterator I = findIndex(Idx);
253     if (I != end())
254       return std::make_pair(I, false);
255     Sparse[Idx] = size();
256     Dense.push_back(Val);
257     return std::make_pair(end() - 1, true);
258   }
259 
260   /// array subscript - If an element already exists with this key, return it.
261   /// Otherwise, automatically construct a new value from Key, insert it,
262   /// and return the newly inserted element.
263   ValueT &operator[](const KeyT &Key) {
264     return *insert(ValueT(Key)).first;
265   }
266 
267   ValueT pop_back_val() {
268     // Sparse does not need to be cleared, see find().
269     return Dense.pop_back_val();
270   }
271 
272   /// erase - Erases an existing element identified by a valid iterator.
273   ///
274   /// This invalidates all iterators, but erase() returns an iterator pointing
275   /// to the next element.  This makes it possible to erase selected elements
276   /// while iterating over the set:
277   ///
278   ///   for (SparseSet::iterator I = Set.begin(); I != Set.end();)
279   ///     if (test(*I))
280   ///       I = Set.erase(I);
281   ///     else
282   ///       ++I;
283   ///
284   /// Note that end() changes when elements are erased, unlike std::list.
285   ///
286   iterator erase(iterator I) {
287     assert(unsigned(I - begin()) < size() && "Invalid iterator");
288     if (I != end() - 1) {
289       *I = Dense.back();
290       unsigned BackIdx = ValIndexOf(Dense.back());
291       assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
292       Sparse[BackIdx] = I - begin();
293     }
294     // This depends on SmallVector::pop_back() not invalidating iterators.
295     // std::vector::pop_back() doesn't give that guarantee.
296     Dense.pop_back();
297     return I;
298   }
299 
300   /// erase - Erases an element identified by Key, if it exists.
301   ///
302   /// @param   Key The key identifying the element to erase.
303   /// @returns True when an element was erased, false if no element was found.
304   ///
305   bool erase(const KeyT &Key) {
306     iterator I = find(Key);
307     if (I == end())
308       return false;
309     erase(I);
310     return true;
311   }
312 };
313 
314 } // end namespace llvm
315 
316 #endif // LLVM_ADT_SPARSESET_H
317