1 //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the SparseSet class derived from the version described in 11 // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters 12 // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. 13 // 14 // A sparse set holds a small number of objects identified by integer keys from 15 // a moderately sized universe. The sparse set uses more memory than other 16 // containers in order to provide faster operations. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_ADT_SPARSESET_H 21 #define LLVM_ADT_SPARSESET_H 22 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/Allocator.h" 26 #include <cassert> 27 #include <cstdint> 28 #include <cstdlib> 29 #include <limits> 30 #include <utility> 31 32 namespace llvm { 33 34 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can 35 /// be uniquely converted to a small integer less than the set's universe. This 36 /// class allows the set to hold values that differ from the set's key type as 37 /// long as an index can still be derived from the value. SparseSet never 38 /// directly compares ValueT, only their indices, so it can map keys to 39 /// arbitrary values. SparseSetValTraits computes the index from the value 40 /// object. To compute the index from a key, SparseSet uses a separate 41 /// KeyFunctorT template argument. 42 /// 43 /// A simple type declaration, SparseSet<Type>, handles these cases: 44 /// - unsigned key, identity index, identity value 45 /// - unsigned key, identity index, fat value providing getSparseSetIndex() 46 /// 47 /// The type declaration SparseSet<Type, UnaryFunction> handles: 48 /// - unsigned key, remapped index, identity value (virtual registers) 49 /// - pointer key, pointer-derived index, identity value (node+ID) 50 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() 51 /// 52 /// Only other, unexpected cases require specializing SparseSetValTraits. 53 /// 54 /// For best results, ValueT should not require a destructor. 55 /// 56 template<typename ValueT> 57 struct SparseSetValTraits { getValIndexSparseSetValTraits58 static unsigned getValIndex(const ValueT &Val) { 59 return Val.getSparseSetIndex(); 60 } 61 }; 62 63 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The 64 /// generic implementation handles ValueT classes which either provide 65 /// getSparseSetIndex() or specialize SparseSetValTraits<>. 66 /// 67 template<typename KeyT, typename ValueT, typename KeyFunctorT> 68 struct SparseSetValFunctor { operatorSparseSetValFunctor69 unsigned operator()(const ValueT &Val) const { 70 return SparseSetValTraits<ValueT>::getValIndex(Val); 71 } 72 }; 73 74 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of 75 /// identity key/value sets. 76 template<typename KeyT, typename KeyFunctorT> 77 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { 78 unsigned operator()(const KeyT &Key) const { 79 return KeyFunctorT()(Key); 80 } 81 }; 82 83 /// SparseSet - Fast set implmentation for objects that can be identified by 84 /// small unsigned keys. 85 /// 86 /// SparseSet allocates memory proportional to the size of the key universe, so 87 /// it is not recommended for building composite data structures. It is useful 88 /// for algorithms that require a single set with fast operations. 89 /// 90 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast 91 /// clear() and iteration as fast as a vector. The find(), insert(), and 92 /// erase() operations are all constant time, and typically faster than a hash 93 /// table. The iteration order doesn't depend on numerical key values, it only 94 /// depends on the order of insert() and erase() operations. When no elements 95 /// have been erased, the iteration order is the insertion order. 96 /// 97 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but 98 /// offers constant-time clear() and size() operations as well as fast 99 /// iteration independent on the size of the universe. 100 /// 101 /// SparseSet contains a dense vector holding all the objects and a sparse 102 /// array holding indexes into the dense vector. Most of the memory is used by 103 /// the sparse array which is the size of the key universe. The SparseT 104 /// template parameter provides a space/speed tradeoff for sets holding many 105 /// elements. 106 /// 107 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse 108 /// array uses 4 x Universe bytes. 109 /// 110 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache 111 /// lines, but the sparse array is 4x smaller. N is the number of elements in 112 /// the set. 113 /// 114 /// For sets that may grow to thousands of elements, SparseT should be set to 115 /// uint16_t or uint32_t. 116 /// 117 /// @tparam ValueT The type of objects in the set. 118 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 119 /// @tparam SparseT An unsigned integer type. See above. 120 /// 121 template<typename ValueT, 122 typename KeyFunctorT = identity<unsigned>, 123 typename SparseT = uint8_t> 124 class SparseSet { 125 static_assert(std::numeric_limits<SparseT>::is_integer && 126 !std::numeric_limits<SparseT>::is_signed, 127 "SparseT must be an unsigned integer type"); 128 129 using KeyT = typename KeyFunctorT::argument_type; 130 using DenseT = SmallVector<ValueT, 8>; 131 using size_type = unsigned; 132 DenseT Dense; 133 SparseT *Sparse = nullptr; 134 unsigned Universe = 0; 135 KeyFunctorT KeyIndexOf; 136 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 137 138 public: 139 using value_type = ValueT; 140 using reference = ValueT &; 141 using const_reference = const ValueT &; 142 using pointer = ValueT *; 143 using const_pointer = const ValueT *; 144 145 SparseSet() = default; 146 SparseSet(const SparseSet &) = delete; 147 SparseSet &operator=(const SparseSet &) = delete; 148 ~SparseSet() { free(Sparse); } 149 150 /// setUniverse - Set the universe size which determines the largest key the 151 /// set can hold. The universe must be sized before any elements can be 152 /// added. 153 /// 154 /// @param U Universe size. All object keys must be less than U. 155 /// 156 void setUniverse(unsigned U) { 157 // It's not hard to resize the universe on a non-empty set, but it doesn't 158 // seem like a likely use case, so we can add that code when we need it. 159 assert(empty() && "Can only resize universe on an empty map"); 160 // Hysteresis prevents needless reallocations. 161 if (U >= Universe/4 && U <= Universe) 162 return; 163 free(Sparse); 164 // The Sparse array doesn't actually need to be initialized, so malloc 165 // would be enough here, but that will cause tools like valgrind to 166 // complain about branching on uninitialized data. 167 Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); 168 Universe = U; 169 } 170 171 // Import trivial vector stuff from DenseT. 172 using iterator = typename DenseT::iterator; 173 using const_iterator = typename DenseT::const_iterator; 174 175 const_iterator begin() const { return Dense.begin(); } 176 const_iterator end() const { return Dense.end(); } 177 iterator begin() { return Dense.begin(); } 178 iterator end() { return Dense.end(); } 179 180 /// empty - Returns true if the set is empty. 181 /// 182 /// This is not the same as BitVector::empty(). 183 /// 184 bool empty() const { return Dense.empty(); } 185 186 /// size - Returns the number of elements in the set. 187 /// 188 /// This is not the same as BitVector::size() which returns the size of the 189 /// universe. 190 /// 191 size_type size() const { return Dense.size(); } 192 193 /// clear - Clears the set. This is a very fast constant time operation. 194 /// 195 void clear() { 196 // Sparse does not need to be cleared, see find(). 197 Dense.clear(); 198 } 199 200 /// findIndex - Find an element by its index. 201 /// 202 /// @param Idx A valid index to find. 203 /// @returns An iterator to the element identified by key, or end(). 204 /// 205 iterator findIndex(unsigned Idx) { 206 assert(Idx < Universe && "Key out of range"); 207 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 208 for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { 209 const unsigned FoundIdx = ValIndexOf(Dense[i]); 210 assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); 211 if (Idx == FoundIdx) 212 return begin() + i; 213 // Stride is 0 when SparseT >= unsigned. We don't need to loop. 214 if (!Stride) 215 break; 216 } 217 return end(); 218 } 219 220 /// find - Find an element by its key. 221 /// 222 /// @param Key A valid key to find. 223 /// @returns An iterator to the element identified by key, or end(). 224 /// 225 iterator find(const KeyT &Key) { 226 return findIndex(KeyIndexOf(Key)); 227 } 228 229 const_iterator find(const KeyT &Key) const { 230 return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); 231 } 232 233 /// count - Returns 1 if this set contains an element identified by Key, 234 /// 0 otherwise. 235 /// 236 size_type count(const KeyT &Key) const { 237 return find(Key) == end() ? 0 : 1; 238 } 239 240 /// insert - Attempts to insert a new element. 241 /// 242 /// If Val is successfully inserted, return (I, true), where I is an iterator 243 /// pointing to the newly inserted element. 244 /// 245 /// If the set already contains an element with the same key as Val, return 246 /// (I, false), where I is an iterator pointing to the existing element. 247 /// 248 /// Insertion invalidates all iterators. 249 /// 250 std::pair<iterator, bool> insert(const ValueT &Val) { 251 unsigned Idx = ValIndexOf(Val); 252 iterator I = findIndex(Idx); 253 if (I != end()) 254 return std::make_pair(I, false); 255 Sparse[Idx] = size(); 256 Dense.push_back(Val); 257 return std::make_pair(end() - 1, true); 258 } 259 260 /// array subscript - If an element already exists with this key, return it. 261 /// Otherwise, automatically construct a new value from Key, insert it, 262 /// and return the newly inserted element. 263 ValueT &operator[](const KeyT &Key) { 264 return *insert(ValueT(Key)).first; 265 } 266 267 ValueT pop_back_val() { 268 // Sparse does not need to be cleared, see find(). 269 return Dense.pop_back_val(); 270 } 271 272 /// erase - Erases an existing element identified by a valid iterator. 273 /// 274 /// This invalidates all iterators, but erase() returns an iterator pointing 275 /// to the next element. This makes it possible to erase selected elements 276 /// while iterating over the set: 277 /// 278 /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) 279 /// if (test(*I)) 280 /// I = Set.erase(I); 281 /// else 282 /// ++I; 283 /// 284 /// Note that end() changes when elements are erased, unlike std::list. 285 /// 286 iterator erase(iterator I) { 287 assert(unsigned(I - begin()) < size() && "Invalid iterator"); 288 if (I != end() - 1) { 289 *I = Dense.back(); 290 unsigned BackIdx = ValIndexOf(Dense.back()); 291 assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); 292 Sparse[BackIdx] = I - begin(); 293 } 294 // This depends on SmallVector::pop_back() not invalidating iterators. 295 // std::vector::pop_back() doesn't give that guarantee. 296 Dense.pop_back(); 297 return I; 298 } 299 300 /// erase - Erases an element identified by Key, if it exists. 301 /// 302 /// @param Key The key identifying the element to erase. 303 /// @returns True when an element was erased, false if no element was found. 304 /// 305 bool erase(const KeyT &Key) { 306 iterator I = find(Key); 307 if (I == end()) 308 return false; 309 erase(I); 310 return true; 311 } 312 }; 313 314 } // end namespace llvm 315 316 #endif // LLVM_ADT_SPARSESET_H 317