1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for the loop memory dependence framework that
11 // was originally developed for the Loop Vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
17 
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AliasSetTracker.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/IR/DiagnosticInfo.h"
26 #include "llvm/IR/ValueHandle.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 namespace llvm {
31 
32 class Value;
33 class DataLayout;
34 class ScalarEvolution;
35 class Loop;
36 class SCEV;
37 class SCEVUnionPredicate;
38 class LoopAccessInfo;
39 class OptimizationRemarkEmitter;
40 
41 /// Collection of parameters shared beetween the Loop Vectorizer and the
42 /// Loop Access Analysis.
43 struct VectorizerParams {
44   /// Maximum SIMD width.
45   static const unsigned MaxVectorWidth;
46 
47   /// VF as overridden by the user.
48   static unsigned VectorizationFactor;
49   /// Interleave factor as overridden by the user.
50   static unsigned VectorizationInterleave;
51   /// True if force-vector-interleave was specified by the user.
52   static bool isInterleaveForced();
53 
54   /// \When performing memory disambiguation checks at runtime do not
55   /// make more than this number of comparisons.
56   static unsigned RuntimeMemoryCheckThreshold;
57 };
58 
59 /// Checks memory dependences among accesses to the same underlying
60 /// object to determine whether there vectorization is legal or not (and at
61 /// which vectorization factor).
62 ///
63 /// Note: This class will compute a conservative dependence for access to
64 /// different underlying pointers. Clients, such as the loop vectorizer, will
65 /// sometimes deal these potential dependencies by emitting runtime checks.
66 ///
67 /// We use the ScalarEvolution framework to symbolically evalutate access
68 /// functions pairs. Since we currently don't restructure the loop we can rely
69 /// on the program order of memory accesses to determine their safety.
70 /// At the moment we will only deem accesses as safe for:
71 ///  * A negative constant distance assuming program order.
72 ///
73 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
74 ///            a[i] = tmp;                y = a[i];
75 ///
76 ///   The latter case is safe because later checks guarantuee that there can't
77 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
78 ///   the same variable: a header phi can only be an induction or a reduction, a
79 ///   reduction can't have a memory sink, an induction can't have a memory
80 ///   source). This is important and must not be violated (or we have to
81 ///   resort to checking for cycles through memory).
82 ///
83 ///  * A positive constant distance assuming program order that is bigger
84 ///    than the biggest memory access.
85 ///
86 ///     tmp = a[i]        OR              b[i] = x
87 ///     a[i+2] = tmp                      y = b[i+2];
88 ///
89 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
90 ///
91 ///  * Zero distances and all accesses have the same size.
92 ///
93 class MemoryDepChecker {
94 public:
95   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
96   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
97   /// Set of potential dependent memory accesses.
98   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
99 
100   /// Dependece between memory access instructions.
101   struct Dependence {
102     /// The type of the dependence.
103     enum DepType {
104       // No dependence.
105       NoDep,
106       // We couldn't determine the direction or the distance.
107       Unknown,
108       // Lexically forward.
109       //
110       // FIXME: If we only have loop-independent forward dependences (e.g. a
111       // read and write of A[i]), LAA will locally deem the dependence "safe"
112       // without querying the MemoryDepChecker.  Therefore we can miss
113       // enumerating loop-independent forward dependences in
114       // getDependences.  Note that as soon as there are different
115       // indices used to access the same array, the MemoryDepChecker *is*
116       // queried and the dependence list is complete.
117       Forward,
118       // Forward, but if vectorized, is likely to prevent store-to-load
119       // forwarding.
120       ForwardButPreventsForwarding,
121       // Lexically backward.
122       Backward,
123       // Backward, but the distance allows a vectorization factor of
124       // MaxSafeDepDistBytes.
125       BackwardVectorizable,
126       // Same, but may prevent store-to-load forwarding.
127       BackwardVectorizableButPreventsForwarding
128     };
129 
130     /// String version of the types.
131     static const char *DepName[];
132 
133     /// Index of the source of the dependence in the InstMap vector.
134     unsigned Source;
135     /// Index of the destination of the dependence in the InstMap vector.
136     unsigned Destination;
137     /// The type of the dependence.
138     DepType Type;
139 
DependenceDependence140     Dependence(unsigned Source, unsigned Destination, DepType Type)
141         : Source(Source), Destination(Destination), Type(Type) {}
142 
143     /// Return the source instruction of the dependence.
144     Instruction *getSource(const LoopAccessInfo &LAI) const;
145     /// Return the destination instruction of the dependence.
146     Instruction *getDestination(const LoopAccessInfo &LAI) const;
147 
148     /// Dependence types that don't prevent vectorization.
149     static bool isSafeForVectorization(DepType Type);
150 
151     /// Lexically forward dependence.
152     bool isForward() const;
153     /// Lexically backward dependence.
154     bool isBackward() const;
155 
156     /// May be a lexically backward dependence type (includes Unknown).
157     bool isPossiblyBackward() const;
158 
159     /// Print the dependence.  \p Instr is used to map the instruction
160     /// indices to instructions.
161     void print(raw_ostream &OS, unsigned Depth,
162                const SmallVectorImpl<Instruction *> &Instrs) const;
163   };
164 
MemoryDepChecker(PredicatedScalarEvolution & PSE,const Loop * L)165   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
166       : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeRegisterWidth(-1U),
167         ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
168         RecordDependences(true) {}
169 
170   /// Register the location (instructions are given increasing numbers)
171   /// of a write access.
addAccess(StoreInst * SI)172   void addAccess(StoreInst *SI) {
173     Value *Ptr = SI->getPointerOperand();
174     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
175     InstMap.push_back(SI);
176     ++AccessIdx;
177   }
178 
179   /// Register the location (instructions are given increasing numbers)
180   /// of a write access.
addAccess(LoadInst * LI)181   void addAccess(LoadInst *LI) {
182     Value *Ptr = LI->getPointerOperand();
183     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
184     InstMap.push_back(LI);
185     ++AccessIdx;
186   }
187 
188   /// Check whether the dependencies between the accesses are safe.
189   ///
190   /// Only checks sets with elements in \p CheckDeps.
191   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
192                    const ValueToValueMap &Strides);
193 
194   /// No memory dependence was encountered that would inhibit
195   /// vectorization.
isSafeForVectorization()196   bool isSafeForVectorization() const { return SafeForVectorization; }
197 
198   /// The maximum number of bytes of a vector register we can vectorize
199   /// the accesses safely with.
getMaxSafeDepDistBytes()200   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
201 
202   /// Return the number of elements that are safe to operate on
203   /// simultaneously, multiplied by the size of the element in bits.
getMaxSafeRegisterWidth()204   uint64_t getMaxSafeRegisterWidth() const { return MaxSafeRegisterWidth; }
205 
206   /// In same cases when the dependency check fails we can still
207   /// vectorize the loop with a dynamic array access check.
shouldRetryWithRuntimeCheck()208   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
209 
210   /// Returns the memory dependences.  If null is returned we exceeded
211   /// the MaxDependences threshold and this information is not
212   /// available.
getDependences()213   const SmallVectorImpl<Dependence> *getDependences() const {
214     return RecordDependences ? &Dependences : nullptr;
215   }
216 
clearDependences()217   void clearDependences() { Dependences.clear(); }
218 
219   /// The vector of memory access instructions.  The indices are used as
220   /// instruction identifiers in the Dependence class.
getMemoryInstructions()221   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
222     return InstMap;
223   }
224 
225   /// Generate a mapping between the memory instructions and their
226   /// indices according to program order.
generateInstructionOrderMap()227   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
228     DenseMap<Instruction *, unsigned> OrderMap;
229 
230     for (unsigned I = 0; I < InstMap.size(); ++I)
231       OrderMap[InstMap[I]] = I;
232 
233     return OrderMap;
234   }
235 
236   /// Find the set of instructions that read or write via \p Ptr.
237   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
238                                                          bool isWrite) const;
239 
240 private:
241   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
242   /// applies dynamic knowledge to simplify SCEV expressions and convert them
243   /// to a more usable form. We need this in case assumptions about SCEV
244   /// expressions need to be made in order to avoid unknown dependences. For
245   /// example we might assume a unit stride for a pointer in order to prove
246   /// that a memory access is strided and doesn't wrap.
247   PredicatedScalarEvolution &PSE;
248   const Loop *InnermostLoop;
249 
250   /// Maps access locations (ptr, read/write) to program order.
251   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
252 
253   /// Memory access instructions in program order.
254   SmallVector<Instruction *, 16> InstMap;
255 
256   /// The program order index to be used for the next instruction.
257   unsigned AccessIdx;
258 
259   // We can access this many bytes in parallel safely.
260   uint64_t MaxSafeDepDistBytes;
261 
262   /// Number of elements (from consecutive iterations) that are safe to
263   /// operate on simultaneously, multiplied by the size of the element in bits.
264   /// The size of the element is taken from the memory access that is most
265   /// restrictive.
266   uint64_t MaxSafeRegisterWidth;
267 
268   /// If we see a non-constant dependence distance we can still try to
269   /// vectorize this loop with runtime checks.
270   bool ShouldRetryWithRuntimeCheck;
271 
272   /// No memory dependence was encountered that would inhibit
273   /// vectorization.
274   bool SafeForVectorization;
275 
276   //// True if Dependences reflects the dependences in the
277   //// loop.  If false we exceeded MaxDependences and
278   //// Dependences is invalid.
279   bool RecordDependences;
280 
281   /// Memory dependences collected during the analysis.  Only valid if
282   /// RecordDependences is true.
283   SmallVector<Dependence, 8> Dependences;
284 
285   /// Check whether there is a plausible dependence between the two
286   /// accesses.
287   ///
288   /// Access \p A must happen before \p B in program order. The two indices
289   /// identify the index into the program order map.
290   ///
291   /// This function checks  whether there is a plausible dependence (or the
292   /// absence of such can't be proved) between the two accesses. If there is a
293   /// plausible dependence but the dependence distance is bigger than one
294   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
295   /// distance is smaller than any other distance encountered so far).
296   /// Otherwise, this function returns true signaling a possible dependence.
297   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
298                                   const MemAccessInfo &B, unsigned BIdx,
299                                   const ValueToValueMap &Strides);
300 
301   /// Check whether the data dependence could prevent store-load
302   /// forwarding.
303   ///
304   /// \return false if we shouldn't vectorize at all or avoid larger
305   /// vectorization factors by limiting MaxSafeDepDistBytes.
306   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
307 };
308 
309 /// Holds information about the memory runtime legality checks to verify
310 /// that a group of pointers do not overlap.
311 class RuntimePointerChecking {
312 public:
313   struct PointerInfo {
314     /// Holds the pointer value that we need to check.
315     TrackingVH<Value> PointerValue;
316     /// Holds the smallest byte address accessed by the pointer throughout all
317     /// iterations of the loop.
318     const SCEV *Start;
319     /// Holds the largest byte address accessed by the pointer throughout all
320     /// iterations of the loop, plus 1.
321     const SCEV *End;
322     /// Holds the information if this pointer is used for writing to memory.
323     bool IsWritePtr;
324     /// Holds the id of the set of pointers that could be dependent because of a
325     /// shared underlying object.
326     unsigned DependencySetId;
327     /// Holds the id of the disjoint alias set to which this pointer belongs.
328     unsigned AliasSetId;
329     /// SCEV for the access.
330     const SCEV *Expr;
331 
PointerInfoPointerInfo332     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
333                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
334                 const SCEV *Expr)
335         : PointerValue(PointerValue), Start(Start), End(End),
336           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
337           AliasSetId(AliasSetId), Expr(Expr) {}
338   };
339 
RuntimePointerChecking(ScalarEvolution * SE)340   RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
341 
342   /// Reset the state of the pointer runtime information.
reset()343   void reset() {
344     Need = false;
345     Pointers.clear();
346     Checks.clear();
347   }
348 
349   /// Insert a pointer and calculate the start and end SCEVs.
350   /// We need \p PSE in order to compute the SCEV expression of the pointer
351   /// according to the assumptions that we've made during the analysis.
352   /// The method might also version the pointer stride according to \p Strides,
353   /// and add new predicates to \p PSE.
354   void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
355               unsigned ASId, const ValueToValueMap &Strides,
356               PredicatedScalarEvolution &PSE);
357 
358   /// No run-time memory checking is necessary.
empty()359   bool empty() const { return Pointers.empty(); }
360 
361   /// A grouping of pointers. A single memcheck is required between
362   /// two groups.
363   struct CheckingPtrGroup {
364     /// Create a new pointer checking group containing a single
365     /// pointer, with index \p Index in RtCheck.
CheckingPtrGroupCheckingPtrGroup366     CheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
367         : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
368           Low(RtCheck.Pointers[Index].Start) {
369       Members.push_back(Index);
370     }
371 
372     /// Tries to add the pointer recorded in RtCheck at index
373     /// \p Index to this pointer checking group. We can only add a pointer
374     /// to a checking group if we will still be able to get
375     /// the upper and lower bounds of the check. Returns true in case
376     /// of success, false otherwise.
377     bool addPointer(unsigned Index);
378 
379     /// Constitutes the context of this pointer checking group. For each
380     /// pointer that is a member of this group we will retain the index
381     /// at which it appears in RtCheck.
382     RuntimePointerChecking &RtCheck;
383     /// The SCEV expression which represents the upper bound of all the
384     /// pointers in this group.
385     const SCEV *High;
386     /// The SCEV expression which represents the lower bound of all the
387     /// pointers in this group.
388     const SCEV *Low;
389     /// Indices of all the pointers that constitute this grouping.
390     SmallVector<unsigned, 2> Members;
391   };
392 
393   /// A memcheck which made up of a pair of grouped pointers.
394   ///
395   /// These *have* to be const for now, since checks are generated from
396   /// CheckingPtrGroups in LAI::addRuntimeChecks which is a const member
397   /// function.  FIXME: once check-generation is moved inside this class (after
398   /// the PtrPartition hack is removed), we could drop const.
399   typedef std::pair<const CheckingPtrGroup *, const CheckingPtrGroup *>
400       PointerCheck;
401 
402   /// Generate the checks and store it.  This also performs the grouping
403   /// of pointers to reduce the number of memchecks necessary.
404   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
405                       bool UseDependencies);
406 
407   /// Returns the checks that generateChecks created.
getChecks()408   const SmallVector<PointerCheck, 4> &getChecks() const { return Checks; }
409 
410   /// Decide if we need to add a check between two groups of pointers,
411   /// according to needsChecking.
412   bool needsChecking(const CheckingPtrGroup &M,
413                      const CheckingPtrGroup &N) const;
414 
415   /// Returns the number of run-time checks required according to
416   /// needsChecking.
getNumberOfChecks()417   unsigned getNumberOfChecks() const { return Checks.size(); }
418 
419   /// Print the list run-time memory checks necessary.
420   void print(raw_ostream &OS, unsigned Depth = 0) const;
421 
422   /// Print \p Checks.
423   void printChecks(raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
424                    unsigned Depth = 0) const;
425 
426   /// This flag indicates if we need to add the runtime check.
427   bool Need;
428 
429   /// Information about the pointers that may require checking.
430   SmallVector<PointerInfo, 2> Pointers;
431 
432   /// Holds a partitioning of pointers into "check groups".
433   SmallVector<CheckingPtrGroup, 2> CheckingGroups;
434 
435   /// Check if pointers are in the same partition
436   ///
437   /// \p PtrToPartition contains the partition number for pointers (-1 if the
438   /// pointer belongs to multiple partitions).
439   static bool
440   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
441                              unsigned PtrIdx1, unsigned PtrIdx2);
442 
443   /// Decide whether we need to issue a run-time check for pointer at
444   /// index \p I and \p J to prove their independence.
445   bool needsChecking(unsigned I, unsigned J) const;
446 
447   /// Return PointerInfo for pointer at index \p PtrIdx.
getPointerInfo(unsigned PtrIdx)448   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
449     return Pointers[PtrIdx];
450   }
451 
452 private:
453   /// Groups pointers such that a single memcheck is required
454   /// between two different groups. This will clear the CheckingGroups vector
455   /// and re-compute it. We will only group dependecies if \p UseDependencies
456   /// is true, otherwise we will create a separate group for each pointer.
457   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
458                    bool UseDependencies);
459 
460   /// Generate the checks and return them.
461   SmallVector<PointerCheck, 4>
462   generateChecks() const;
463 
464   /// Holds a pointer to the ScalarEvolution analysis.
465   ScalarEvolution *SE;
466 
467   /// Set of run-time checks required to establish independence of
468   /// otherwise may-aliasing pointers in the loop.
469   SmallVector<PointerCheck, 4> Checks;
470 };
471 
472 /// Drive the analysis of memory accesses in the loop
473 ///
474 /// This class is responsible for analyzing the memory accesses of a loop.  It
475 /// collects the accesses and then its main helper the AccessAnalysis class
476 /// finds and categorizes the dependences in buildDependenceSets.
477 ///
478 /// For memory dependences that can be analyzed at compile time, it determines
479 /// whether the dependence is part of cycle inhibiting vectorization.  This work
480 /// is delegated to the MemoryDepChecker class.
481 ///
482 /// For memory dependences that cannot be determined at compile time, it
483 /// generates run-time checks to prove independence.  This is done by
484 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
485 /// RuntimePointerCheck class.
486 ///
487 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
488 /// ScalarEvolution, we will generate run-time checks by emitting a
489 /// SCEVUnionPredicate.
490 ///
491 /// Checks for both memory dependences and the SCEV predicates contained in the
492 /// PSE must be emitted in order for the results of this analysis to be valid.
493 class LoopAccessInfo {
494 public:
495   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
496                  AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI);
497 
498   /// Return true we can analyze the memory accesses in the loop and there are
499   /// no memory dependence cycles.
canVectorizeMemory()500   bool canVectorizeMemory() const { return CanVecMem; }
501 
getRuntimePointerChecking()502   const RuntimePointerChecking *getRuntimePointerChecking() const {
503     return PtrRtChecking.get();
504   }
505 
506   /// Number of memchecks required to prove independence of otherwise
507   /// may-alias pointers.
getNumRuntimePointerChecks()508   unsigned getNumRuntimePointerChecks() const {
509     return PtrRtChecking->getNumberOfChecks();
510   }
511 
512   /// Return true if the block BB needs to be predicated in order for the loop
513   /// to be vectorized.
514   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
515                                     DominatorTree *DT);
516 
517   /// Returns true if the value V is uniform within the loop.
518   bool isUniform(Value *V) const;
519 
getMaxSafeDepDistBytes()520   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
getNumStores()521   unsigned getNumStores() const { return NumStores; }
getNumLoads()522   unsigned getNumLoads() const { return NumLoads;}
523 
524   /// Add code that checks at runtime if the accessed arrays overlap.
525   ///
526   /// Returns a pair of instructions where the first element is the first
527   /// instruction generated in possibly a sequence of instructions and the
528   /// second value is the final comparator value or NULL if no check is needed.
529   std::pair<Instruction *, Instruction *>
530   addRuntimeChecks(Instruction *Loc) const;
531 
532   /// Generete the instructions for the checks in \p PointerChecks.
533   ///
534   /// Returns a pair of instructions where the first element is the first
535   /// instruction generated in possibly a sequence of instructions and the
536   /// second value is the final comparator value or NULL if no check is needed.
537   std::pair<Instruction *, Instruction *>
538   addRuntimeChecks(Instruction *Loc,
539                    const SmallVectorImpl<RuntimePointerChecking::PointerCheck>
540                        &PointerChecks) const;
541 
542   /// The diagnostics report generated for the analysis.  E.g. why we
543   /// couldn't analyze the loop.
getReport()544   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
545 
546   /// the Memory Dependence Checker which can determine the
547   /// loop-independent and loop-carried dependences between memory accesses.
getDepChecker()548   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
549 
550   /// Return the list of instructions that use \p Ptr to read or write
551   /// memory.
getInstructionsForAccess(Value * Ptr,bool isWrite)552   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
553                                                          bool isWrite) const {
554     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
555   }
556 
557   /// If an access has a symbolic strides, this maps the pointer value to
558   /// the stride symbol.
getSymbolicStrides()559   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
560 
561   /// Pointer has a symbolic stride.
hasStride(Value * V)562   bool hasStride(Value *V) const { return StrideSet.count(V); }
563 
564   /// Print the information about the memory accesses in the loop.
565   void print(raw_ostream &OS, unsigned Depth = 0) const;
566 
567   /// Checks existence of store to invariant address inside loop.
568   /// If the loop has any store to invariant address, then it returns true,
569   /// else returns false.
hasStoreToLoopInvariantAddress()570   bool hasStoreToLoopInvariantAddress() const {
571     return StoreToLoopInvariantAddress;
572   }
573 
574   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
575   /// them to a more usable form.  All SCEV expressions during the analysis
576   /// should be re-written (and therefore simplified) according to PSE.
577   /// A user of LoopAccessAnalysis will need to emit the runtime checks
578   /// associated with this predicate.
getPSE()579   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
580 
581 private:
582   /// Analyze the loop.
583   void analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
584                    const TargetLibraryInfo *TLI, DominatorTree *DT);
585 
586   /// Check if the structure of the loop allows it to be analyzed by this
587   /// pass.
588   bool canAnalyzeLoop();
589 
590   /// Save the analysis remark.
591   ///
592   /// LAA does not directly emits the remarks.  Instead it stores it which the
593   /// client can retrieve and presents as its own analysis
594   /// (e.g. -Rpass-analysis=loop-vectorize).
595   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
596                                              Instruction *Instr = nullptr);
597 
598   /// Collect memory access with loop invariant strides.
599   ///
600   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
601   /// invariant.
602   void collectStridedAccess(Value *LoadOrStoreInst);
603 
604   std::unique_ptr<PredicatedScalarEvolution> PSE;
605 
606   /// We need to check that all of the pointers in this list are disjoint
607   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
608   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
609 
610   /// the Memory Dependence Checker which can determine the
611   /// loop-independent and loop-carried dependences between memory accesses.
612   std::unique_ptr<MemoryDepChecker> DepChecker;
613 
614   Loop *TheLoop;
615 
616   unsigned NumLoads;
617   unsigned NumStores;
618 
619   uint64_t MaxSafeDepDistBytes;
620 
621   /// Cache the result of analyzeLoop.
622   bool CanVecMem;
623 
624   /// Indicator for storing to uniform addresses.
625   /// If a loop has write to a loop invariant address then it should be true.
626   bool StoreToLoopInvariantAddress;
627 
628   /// The diagnostics report generated for the analysis.  E.g. why we
629   /// couldn't analyze the loop.
630   std::unique_ptr<OptimizationRemarkAnalysis> Report;
631 
632   /// If an access has a symbolic strides, this maps the pointer value to
633   /// the stride symbol.
634   ValueToValueMap SymbolicStrides;
635 
636   /// Set of symbolic strides values.
637   SmallPtrSet<Value *, 8> StrideSet;
638 };
639 
640 Value *stripIntegerCast(Value *V);
641 
642 /// Return the SCEV corresponding to a pointer with the symbolic stride
643 /// replaced with constant one, assuming the SCEV predicate associated with
644 /// \p PSE is true.
645 ///
646 /// If necessary this method will version the stride of the pointer according
647 /// to \p PtrToStride and therefore add further predicates to \p PSE.
648 ///
649 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
650 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
651 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
652 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
653                                       const ValueToValueMap &PtrToStride,
654                                       Value *Ptr, Value *OrigPtr = nullptr);
655 
656 /// If the pointer has a constant stride return it in units of its
657 /// element size.  Otherwise return zero.
658 ///
659 /// Ensure that it does not wrap in the address space, assuming the predicate
660 /// associated with \p PSE is true.
661 ///
662 /// If necessary this method will version the stride of the pointer according
663 /// to \p PtrToStride and therefore add further predicates to \p PSE.
664 /// The \p Assume parameter indicates if we are allowed to make additional
665 /// run-time assumptions.
666 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
667                      const ValueToValueMap &StridesMap = ValueToValueMap(),
668                      bool Assume = false, bool ShouldCheckWrap = true);
669 
670 /// Attempt to sort the pointers in \p VL and return the sorted indices
671 /// in \p SortedIndices, if reordering is required.
672 ///
673 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
674 ///
675 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
676 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
677 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
678 /// saves the mask for actual memory accesses in program order in
679 /// \p SortedIndices as <1,2,0,3>
680 bool sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
681                      ScalarEvolution &SE,
682                      SmallVectorImpl<unsigned> &SortedIndices);
683 
684 /// Returns true if the memory operations \p A and \p B are consecutive.
685 /// This is a simple API that does not depend on the analysis pass.
686 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
687                          ScalarEvolution &SE, bool CheckType = true);
688 
689 /// This analysis provides dependence information for the memory accesses
690 /// of a loop.
691 ///
692 /// It runs the analysis for a loop on demand.  This can be initiated by
693 /// querying the loop access info via LAA::getInfo.  getInfo return a
694 /// LoopAccessInfo object.  See this class for the specifics of what information
695 /// is provided.
696 class LoopAccessLegacyAnalysis : public FunctionPass {
697 public:
698   static char ID;
699 
LoopAccessLegacyAnalysis()700   LoopAccessLegacyAnalysis() : FunctionPass(ID) {
701     initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
702   }
703 
704   bool runOnFunction(Function &F) override;
705 
706   void getAnalysisUsage(AnalysisUsage &AU) const override;
707 
708   /// Query the result of the loop access information for the loop \p L.
709   ///
710   /// If there is no cached result available run the analysis.
711   const LoopAccessInfo &getInfo(Loop *L);
712 
releaseMemory()713   void releaseMemory() override {
714     // Invalidate the cache when the pass is freed.
715     LoopAccessInfoMap.clear();
716   }
717 
718   /// Print the result of the analysis when invoked with -analyze.
719   void print(raw_ostream &OS, const Module *M = nullptr) const override;
720 
721 private:
722   /// The cache.
723   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
724 
725   // The used analysis passes.
726   ScalarEvolution *SE;
727   const TargetLibraryInfo *TLI;
728   AliasAnalysis *AA;
729   DominatorTree *DT;
730   LoopInfo *LI;
731 };
732 
733 /// This analysis provides dependence information for the memory
734 /// accesses of a loop.
735 ///
736 /// It runs the analysis for a loop on demand.  This can be initiated by
737 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
738 /// getResult return a LoopAccessInfo object.  See this class for the
739 /// specifics of what information is provided.
740 class LoopAccessAnalysis
741     : public AnalysisInfoMixin<LoopAccessAnalysis> {
742   friend AnalysisInfoMixin<LoopAccessAnalysis>;
743   static AnalysisKey Key;
744 
745 public:
746   typedef LoopAccessInfo Result;
747 
748   Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
749 };
750 
getSource(const LoopAccessInfo & LAI)751 inline Instruction *MemoryDepChecker::Dependence::getSource(
752     const LoopAccessInfo &LAI) const {
753   return LAI.getDepChecker().getMemoryInstructions()[Source];
754 }
755 
getDestination(const LoopAccessInfo & LAI)756 inline Instruction *MemoryDepChecker::Dependence::getDestination(
757     const LoopAccessInfo &LAI) const {
758   return LAI.getDepChecker().getMemoryInstructions()[Destination];
759 }
760 
761 } // End llvm namespace
762 
763 #endif
764