1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
MachineVerifier__anone289cf670111::MachineVerifier87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstTerminator;
112     BlockSet FunctionBlocks;
113 
114     BitVector regsReserved;
115     RegSet regsLive;
116     RegVector regsDefined, regsDead, regsKilled;
117     RegMaskVector regMasks;
118 
119     SlotIndex lastIndex;
120 
121     // Add Reg and any sub-registers to RV
addRegWithSubRegs__anone289cf670111::MachineVerifier122     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
123       RV.push_back(Reg);
124       if (TargetRegisterInfo::isPhysicalRegister(Reg))
125         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
126           RV.push_back(*SubRegs);
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user.
135       RegMap vregsLiveIn;
136 
137       // Regs killed in MBB. They may be defined again, and will then be in both
138       // regsKilled and regsLiveOut.
139       RegSet regsKilled;
140 
141       // Regs defined in MBB and live out. Note that vregs passing through may
142       // be live out without being mentioned here.
143       RegSet regsLiveOut;
144 
145       // Vregs that pass through MBB untouched. This set is disjoint from
146       // regsKilled and regsLiveOut.
147       RegSet vregsPassed;
148 
149       // Vregs that must pass through MBB because they are needed by a successor
150       // block. This set is disjoint from regsLiveOut.
151       RegSet vregsRequired;
152 
153       // Set versions of block's predecessor and successor lists.
154       BlockSet Preds, Succs;
155 
156       BBInfo() = default;
157 
158       // Add register to vregsPassed if it belongs there. Return true if
159       // anything changed.
addPassed__anone289cf670111::MachineVerifier::BBInfo160       bool addPassed(unsigned Reg) {
161         if (!TargetRegisterInfo::isVirtualRegister(Reg))
162           return false;
163         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
164           return false;
165         return vregsPassed.insert(Reg).second;
166       }
167 
168       // Same for a full set.
addPassed__anone289cf670111::MachineVerifier::BBInfo169       bool addPassed(const RegSet &RS) {
170         bool changed = false;
171         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
172           if (addPassed(*I))
173             changed = true;
174         return changed;
175       }
176 
177       // Add register to vregsRequired if it belongs there. Return true if
178       // anything changed.
addRequired__anone289cf670111::MachineVerifier::BBInfo179       bool addRequired(unsigned Reg) {
180         if (!TargetRegisterInfo::isVirtualRegister(Reg))
181           return false;
182         if (regsLiveOut.count(Reg))
183           return false;
184         return vregsRequired.insert(Reg).second;
185       }
186 
187       // Same for a full set.
addRequired__anone289cf670111::MachineVerifier::BBInfo188       bool addRequired(const RegSet &RS) {
189         bool changed = false;
190         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
191           if (addRequired(*I))
192             changed = true;
193         return changed;
194       }
195 
196       // Same for a full map.
addRequired__anone289cf670111::MachineVerifier::BBInfo197       bool addRequired(const RegMap &RM) {
198         bool changed = false;
199         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
200           if (addRequired(I->first))
201             changed = true;
202         return changed;
203       }
204 
205       // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anone289cf670111::MachineVerifier::BBInfo206       bool isLiveOut(unsigned Reg) const {
207         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
208       }
209     };
210 
211     // Extra register info per MBB.
212     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
213 
isReserved__anone289cf670111::MachineVerifier214     bool isReserved(unsigned Reg) {
215       return Reg < regsReserved.size() && regsReserved.test(Reg);
216     }
217 
isAllocatable__anone289cf670111::MachineVerifier218     bool isAllocatable(unsigned Reg) const {
219       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
220         !regsReserved.test(Reg);
221     }
222 
223     // Analysis information if available
224     LiveVariables *LiveVars;
225     LiveIntervals *LiveInts;
226     LiveStacks *LiveStks;
227     SlotIndexes *Indexes;
228 
229     void visitMachineFunctionBefore();
230     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
231     void visitMachineBundleBefore(const MachineInstr *MI);
232     void visitMachineInstrBefore(const MachineInstr *MI);
233     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
234     void visitMachineInstrAfter(const MachineInstr *MI);
235     void visitMachineBundleAfter(const MachineInstr *MI);
236     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
237     void visitMachineFunctionAfter();
238 
239     void report(const char *msg, const MachineFunction *MF);
240     void report(const char *msg, const MachineBasicBlock *MBB);
241     void report(const char *msg, const MachineInstr *MI);
242     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
243                 LLT MOVRegType = LLT{});
244 
245     void report_context(const LiveInterval &LI) const;
246     void report_context(const LiveRange &LR, unsigned VRegUnit,
247                         LaneBitmask LaneMask) const;
248     void report_context(const LiveRange::Segment &S) const;
249     void report_context(const VNInfo &VNI) const;
250     void report_context(SlotIndex Pos) const;
251     void report_context_liverange(const LiveRange &LR) const;
252     void report_context_lanemask(LaneBitmask LaneMask) const;
253     void report_context_vreg(unsigned VReg) const;
254     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
255 
256     void verifyInlineAsm(const MachineInstr *MI);
257 
258     void checkLiveness(const MachineOperand *MO, unsigned MONum);
259     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
260                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
261                             LaneBitmask LaneMask = LaneBitmask::getNone());
262     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
263                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
264                             LaneBitmask LaneMask = LaneBitmask::getNone());
265 
266     void markReachable(const MachineBasicBlock *MBB);
267     void calcRegsPassed();
268     void checkPHIOps(const MachineBasicBlock &MBB);
269 
270     void calcRegsRequired();
271     void verifyLiveVariables();
272     void verifyLiveIntervals();
273     void verifyLiveInterval(const LiveInterval&);
274     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
275                               LaneBitmask);
276     void verifyLiveRangeSegment(const LiveRange&,
277                                 const LiveRange::const_iterator I, unsigned,
278                                 LaneBitmask);
279     void verifyLiveRange(const LiveRange&, unsigned,
280                          LaneBitmask LaneMask = LaneBitmask::getNone());
281 
282     void verifyStackFrame();
283 
284     void verifySlotIndexes() const;
285     void verifyProperties(const MachineFunction &MF);
286   };
287 
288   struct MachineVerifierPass : public MachineFunctionPass {
289     static char ID; // Pass ID, replacement for typeid
290 
291     const std::string Banner;
292 
MachineVerifierPass__anone289cf670111::MachineVerifierPass293     MachineVerifierPass(std::string banner = std::string())
294       : MachineFunctionPass(ID), Banner(std::move(banner)) {
295         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
296       }
297 
getAnalysisUsage__anone289cf670111::MachineVerifierPass298     void getAnalysisUsage(AnalysisUsage &AU) const override {
299       AU.setPreservesAll();
300       MachineFunctionPass::getAnalysisUsage(AU);
301     }
302 
runOnMachineFunction__anone289cf670111::MachineVerifierPass303     bool runOnMachineFunction(MachineFunction &MF) override {
304       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
305       if (FoundErrors)
306         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
307       return false;
308     }
309   };
310 
311 } // end anonymous namespace
312 
313 char MachineVerifierPass::ID = 0;
314 
315 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
316                 "Verify generated machine code", false, false)
317 
createMachineVerifierPass(const std::string & Banner)318 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
319   return new MachineVerifierPass(Banner);
320 }
321 
verify(Pass * p,const char * Banner,bool AbortOnErrors) const322 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
323     const {
324   MachineFunction &MF = const_cast<MachineFunction&>(*this);
325   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
326   if (AbortOnErrors && FoundErrors)
327     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
328   return FoundErrors == 0;
329 }
330 
verifySlotIndexes() const331 void MachineVerifier::verifySlotIndexes() const {
332   if (Indexes == nullptr)
333     return;
334 
335   // Ensure the IdxMBB list is sorted by slot indexes.
336   SlotIndex Last;
337   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
338        E = Indexes->MBBIndexEnd(); I != E; ++I) {
339     assert(!Last.isValid() || I->first > Last);
340     Last = I->first;
341   }
342 }
343 
verifyProperties(const MachineFunction & MF)344 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
345   // If a pass has introduced virtual registers without clearing the
346   // NoVRegs property (or set it without allocating the vregs)
347   // then report an error.
348   if (MF.getProperties().hasProperty(
349           MachineFunctionProperties::Property::NoVRegs) &&
350       MRI->getNumVirtRegs())
351     report("Function has NoVRegs property but there are VReg operands", &MF);
352 }
353 
verify(MachineFunction & MF)354 unsigned MachineVerifier::verify(MachineFunction &MF) {
355   foundErrors = 0;
356 
357   this->MF = &MF;
358   TM = &MF.getTarget();
359   TII = MF.getSubtarget().getInstrInfo();
360   TRI = MF.getSubtarget().getRegisterInfo();
361   MRI = &MF.getRegInfo();
362 
363   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
364       MachineFunctionProperties::Property::FailedISel);
365   isFunctionRegBankSelected =
366       !isFunctionFailedISel &&
367       MF.getProperties().hasProperty(
368           MachineFunctionProperties::Property::RegBankSelected);
369   isFunctionSelected = !isFunctionFailedISel &&
370                        MF.getProperties().hasProperty(
371                            MachineFunctionProperties::Property::Selected);
372   LiveVars = nullptr;
373   LiveInts = nullptr;
374   LiveStks = nullptr;
375   Indexes = nullptr;
376   if (PASS) {
377     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
378     // We don't want to verify LiveVariables if LiveIntervals is available.
379     if (!LiveInts)
380       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
381     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
382     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
383   }
384 
385   verifySlotIndexes();
386 
387   verifyProperties(MF);
388 
389   visitMachineFunctionBefore();
390   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
391        MFI!=MFE; ++MFI) {
392     visitMachineBasicBlockBefore(&*MFI);
393     // Keep track of the current bundle header.
394     const MachineInstr *CurBundle = nullptr;
395     // Do we expect the next instruction to be part of the same bundle?
396     bool InBundle = false;
397 
398     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
399            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
400       if (MBBI->getParent() != &*MFI) {
401         report("Bad instruction parent pointer", &*MFI);
402         errs() << "Instruction: " << *MBBI;
403         continue;
404       }
405 
406       // Check for consistent bundle flags.
407       if (InBundle && !MBBI->isBundledWithPred())
408         report("Missing BundledPred flag, "
409                "BundledSucc was set on predecessor",
410                &*MBBI);
411       if (!InBundle && MBBI->isBundledWithPred())
412         report("BundledPred flag is set, "
413                "but BundledSucc not set on predecessor",
414                &*MBBI);
415 
416       // Is this a bundle header?
417       if (!MBBI->isInsideBundle()) {
418         if (CurBundle)
419           visitMachineBundleAfter(CurBundle);
420         CurBundle = &*MBBI;
421         visitMachineBundleBefore(CurBundle);
422       } else if (!CurBundle)
423         report("No bundle header", &*MBBI);
424       visitMachineInstrBefore(&*MBBI);
425       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
426         const MachineInstr &MI = *MBBI;
427         const MachineOperand &Op = MI.getOperand(I);
428         if (Op.getParent() != &MI) {
429           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
430           // functions when replacing operands of a MachineInstr.
431           report("Instruction has operand with wrong parent set", &MI);
432         }
433 
434         visitMachineOperand(&Op, I);
435       }
436 
437       visitMachineInstrAfter(&*MBBI);
438 
439       // Was this the last bundled instruction?
440       InBundle = MBBI->isBundledWithSucc();
441     }
442     if (CurBundle)
443       visitMachineBundleAfter(CurBundle);
444     if (InBundle)
445       report("BundledSucc flag set on last instruction in block", &MFI->back());
446     visitMachineBasicBlockAfter(&*MFI);
447   }
448   visitMachineFunctionAfter();
449 
450   // Clean up.
451   regsLive.clear();
452   regsDefined.clear();
453   regsDead.clear();
454   regsKilled.clear();
455   regMasks.clear();
456   MBBInfoMap.clear();
457 
458   return foundErrors;
459 }
460 
report(const char * msg,const MachineFunction * MF)461 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
462   assert(MF);
463   errs() << '\n';
464   if (!foundErrors++) {
465     if (Banner)
466       errs() << "# " << Banner << '\n';
467     if (LiveInts != nullptr)
468       LiveInts->print(errs());
469     else
470       MF->print(errs(), Indexes);
471   }
472   errs() << "*** Bad machine code: " << msg << " ***\n"
473       << "- function:    " << MF->getName() << "\n";
474 }
475 
report(const char * msg,const MachineBasicBlock * MBB)476 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
477   assert(MBB);
478   report(msg, MBB->getParent());
479   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
480          << MBB->getName() << " (" << (const void *)MBB << ')';
481   if (Indexes)
482     errs() << " [" << Indexes->getMBBStartIdx(MBB)
483         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
484   errs() << '\n';
485 }
486 
report(const char * msg,const MachineInstr * MI)487 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
488   assert(MI);
489   report(msg, MI->getParent());
490   errs() << "- instruction: ";
491   if (Indexes && Indexes->hasIndex(*MI))
492     errs() << Indexes->getInstructionIndex(*MI) << '\t';
493   MI->print(errs(), /*SkipOpers=*/true);
494 }
495 
report(const char * msg,const MachineOperand * MO,unsigned MONum,LLT MOVRegType)496 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
497                              unsigned MONum, LLT MOVRegType) {
498   assert(MO);
499   report(msg, MO->getParent());
500   errs() << "- operand " << MONum << ":   ";
501   MO->print(errs(), MOVRegType, TRI);
502   errs() << "\n";
503 }
504 
report_context(SlotIndex Pos) const505 void MachineVerifier::report_context(SlotIndex Pos) const {
506   errs() << "- at:          " << Pos << '\n';
507 }
508 
report_context(const LiveInterval & LI) const509 void MachineVerifier::report_context(const LiveInterval &LI) const {
510   errs() << "- interval:    " << LI << '\n';
511 }
512 
report_context(const LiveRange & LR,unsigned VRegUnit,LaneBitmask LaneMask) const513 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
514                                      LaneBitmask LaneMask) const {
515   report_context_liverange(LR);
516   report_context_vreg_regunit(VRegUnit);
517   if (LaneMask.any())
518     report_context_lanemask(LaneMask);
519 }
520 
report_context(const LiveRange::Segment & S) const521 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
522   errs() << "- segment:     " << S << '\n';
523 }
524 
report_context(const VNInfo & VNI) const525 void MachineVerifier::report_context(const VNInfo &VNI) const {
526   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
527 }
528 
report_context_liverange(const LiveRange & LR) const529 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
530   errs() << "- liverange:   " << LR << '\n';
531 }
532 
report_context_vreg(unsigned VReg) const533 void MachineVerifier::report_context_vreg(unsigned VReg) const {
534   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
535 }
536 
report_context_vreg_regunit(unsigned VRegOrUnit) const537 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
538   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
539     report_context_vreg(VRegOrUnit);
540   } else {
541     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
542   }
543 }
544 
report_context_lanemask(LaneBitmask LaneMask) const545 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
546   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
547 }
548 
markReachable(const MachineBasicBlock * MBB)549 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
550   BBInfo &MInfo = MBBInfoMap[MBB];
551   if (!MInfo.reachable) {
552     MInfo.reachable = true;
553     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
554            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
555       markReachable(*SuI);
556   }
557 }
558 
visitMachineFunctionBefore()559 void MachineVerifier::visitMachineFunctionBefore() {
560   lastIndex = SlotIndex();
561   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
562                                            : TRI->getReservedRegs(*MF);
563 
564   if (!MF->empty())
565     markReachable(&MF->front());
566 
567   // Build a set of the basic blocks in the function.
568   FunctionBlocks.clear();
569   for (const auto &MBB : *MF) {
570     FunctionBlocks.insert(&MBB);
571     BBInfo &MInfo = MBBInfoMap[&MBB];
572 
573     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
574     if (MInfo.Preds.size() != MBB.pred_size())
575       report("MBB has duplicate entries in its predecessor list.", &MBB);
576 
577     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
578     if (MInfo.Succs.size() != MBB.succ_size())
579       report("MBB has duplicate entries in its successor list.", &MBB);
580   }
581 
582   // Check that the register use lists are sane.
583   MRI->verifyUseLists();
584 
585   if (!MF->empty())
586     verifyStackFrame();
587 }
588 
589 // Does iterator point to a and b as the first two elements?
matchPair(MachineBasicBlock::const_succ_iterator i,const MachineBasicBlock * a,const MachineBasicBlock * b)590 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
591                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
592   if (*i == a)
593     return *++i == b;
594   if (*i == b)
595     return *++i == a;
596   return false;
597 }
598 
599 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)600 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
601   FirstTerminator = nullptr;
602 
603   if (!MF->getProperties().hasProperty(
604       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
605     // If this block has allocatable physical registers live-in, check that
606     // it is an entry block or landing pad.
607     for (const auto &LI : MBB->liveins()) {
608       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
609           MBB->getIterator() != MBB->getParent()->begin()) {
610         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
611       }
612     }
613   }
614 
615   // Count the number of landing pad successors.
616   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
617   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
618        E = MBB->succ_end(); I != E; ++I) {
619     if ((*I)->isEHPad())
620       LandingPadSuccs.insert(*I);
621     if (!FunctionBlocks.count(*I))
622       report("MBB has successor that isn't part of the function.", MBB);
623     if (!MBBInfoMap[*I].Preds.count(MBB)) {
624       report("Inconsistent CFG", MBB);
625       errs() << "MBB is not in the predecessor list of the successor "
626              << printMBBReference(*(*I)) << ".\n";
627     }
628   }
629 
630   // Check the predecessor list.
631   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
632        E = MBB->pred_end(); I != E; ++I) {
633     if (!FunctionBlocks.count(*I))
634       report("MBB has predecessor that isn't part of the function.", MBB);
635     if (!MBBInfoMap[*I].Succs.count(MBB)) {
636       report("Inconsistent CFG", MBB);
637       errs() << "MBB is not in the successor list of the predecessor "
638              << printMBBReference(*(*I)) << ".\n";
639     }
640   }
641 
642   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
643   const BasicBlock *BB = MBB->getBasicBlock();
644   const Function &F = MF->getFunction();
645   if (LandingPadSuccs.size() > 1 &&
646       !(AsmInfo &&
647         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
648         BB && isa<SwitchInst>(BB->getTerminator())) &&
649       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
650     report("MBB has more than one landing pad successor", MBB);
651 
652   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
653   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
654   SmallVector<MachineOperand, 4> Cond;
655   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
656                           Cond)) {
657     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
658     // check whether its answers match up with reality.
659     if (!TBB && !FBB) {
660       // Block falls through to its successor.
661       MachineFunction::const_iterator MBBI = MBB->getIterator();
662       ++MBBI;
663       if (MBBI == MF->end()) {
664         // It's possible that the block legitimately ends with a noreturn
665         // call or an unreachable, in which case it won't actually fall
666         // out the bottom of the function.
667       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
668         // It's possible that the block legitimately ends with a noreturn
669         // call or an unreachable, in which case it won't actuall fall
670         // out of the block.
671       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
672         report("MBB exits via unconditional fall-through but doesn't have "
673                "exactly one CFG successor!", MBB);
674       } else if (!MBB->isSuccessor(&*MBBI)) {
675         report("MBB exits via unconditional fall-through but its successor "
676                "differs from its CFG successor!", MBB);
677       }
678       if (!MBB->empty() && MBB->back().isBarrier() &&
679           !TII->isPredicated(MBB->back())) {
680         report("MBB exits via unconditional fall-through but ends with a "
681                "barrier instruction!", MBB);
682       }
683       if (!Cond.empty()) {
684         report("MBB exits via unconditional fall-through but has a condition!",
685                MBB);
686       }
687     } else if (TBB && !FBB && Cond.empty()) {
688       // Block unconditionally branches somewhere.
689       // If the block has exactly one successor, that happens to be a
690       // landingpad, accept it as valid control flow.
691       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
692           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
693            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
694         report("MBB exits via unconditional branch but doesn't have "
695                "exactly one CFG successor!", MBB);
696       } else if (!MBB->isSuccessor(TBB)) {
697         report("MBB exits via unconditional branch but the CFG "
698                "successor doesn't match the actual successor!", MBB);
699       }
700       if (MBB->empty()) {
701         report("MBB exits via unconditional branch but doesn't contain "
702                "any instructions!", MBB);
703       } else if (!MBB->back().isBarrier()) {
704         report("MBB exits via unconditional branch but doesn't end with a "
705                "barrier instruction!", MBB);
706       } else if (!MBB->back().isTerminator()) {
707         report("MBB exits via unconditional branch but the branch isn't a "
708                "terminator instruction!", MBB);
709       }
710     } else if (TBB && !FBB && !Cond.empty()) {
711       // Block conditionally branches somewhere, otherwise falls through.
712       MachineFunction::const_iterator MBBI = MBB->getIterator();
713       ++MBBI;
714       if (MBBI == MF->end()) {
715         report("MBB conditionally falls through out of function!", MBB);
716       } else if (MBB->succ_size() == 1) {
717         // A conditional branch with only one successor is weird, but allowed.
718         if (&*MBBI != TBB)
719           report("MBB exits via conditional branch/fall-through but only has "
720                  "one CFG successor!", MBB);
721         else if (TBB != *MBB->succ_begin())
722           report("MBB exits via conditional branch/fall-through but the CFG "
723                  "successor don't match the actual successor!", MBB);
724       } else if (MBB->succ_size() != 2) {
725         report("MBB exits via conditional branch/fall-through but doesn't have "
726                "exactly two CFG successors!", MBB);
727       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
728         report("MBB exits via conditional branch/fall-through but the CFG "
729                "successors don't match the actual successors!", MBB);
730       }
731       if (MBB->empty()) {
732         report("MBB exits via conditional branch/fall-through but doesn't "
733                "contain any instructions!", MBB);
734       } else if (MBB->back().isBarrier()) {
735         report("MBB exits via conditional branch/fall-through but ends with a "
736                "barrier instruction!", MBB);
737       } else if (!MBB->back().isTerminator()) {
738         report("MBB exits via conditional branch/fall-through but the branch "
739                "isn't a terminator instruction!", MBB);
740       }
741     } else if (TBB && FBB) {
742       // Block conditionally branches somewhere, otherwise branches
743       // somewhere else.
744       if (MBB->succ_size() == 1) {
745         // A conditional branch with only one successor is weird, but allowed.
746         if (FBB != TBB)
747           report("MBB exits via conditional branch/branch through but only has "
748                  "one CFG successor!", MBB);
749         else if (TBB != *MBB->succ_begin())
750           report("MBB exits via conditional branch/branch through but the CFG "
751                  "successor don't match the actual successor!", MBB);
752       } else if (MBB->succ_size() != 2) {
753         report("MBB exits via conditional branch/branch but doesn't have "
754                "exactly two CFG successors!", MBB);
755       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
756         report("MBB exits via conditional branch/branch but the CFG "
757                "successors don't match the actual successors!", MBB);
758       }
759       if (MBB->empty()) {
760         report("MBB exits via conditional branch/branch but doesn't "
761                "contain any instructions!", MBB);
762       } else if (!MBB->back().isBarrier()) {
763         report("MBB exits via conditional branch/branch but doesn't end with a "
764                "barrier instruction!", MBB);
765       } else if (!MBB->back().isTerminator()) {
766         report("MBB exits via conditional branch/branch but the branch "
767                "isn't a terminator instruction!", MBB);
768       }
769       if (Cond.empty()) {
770         report("MBB exits via conditinal branch/branch but there's no "
771                "condition!", MBB);
772       }
773     } else {
774       report("AnalyzeBranch returned invalid data!", MBB);
775     }
776   }
777 
778   regsLive.clear();
779   if (MRI->tracksLiveness()) {
780     for (const auto &LI : MBB->liveins()) {
781       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
782         report("MBB live-in list contains non-physical register", MBB);
783         continue;
784       }
785       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
786            SubRegs.isValid(); ++SubRegs)
787         regsLive.insert(*SubRegs);
788     }
789   }
790 
791   const MachineFrameInfo &MFI = MF->getFrameInfo();
792   BitVector PR = MFI.getPristineRegs(*MF);
793   for (unsigned I : PR.set_bits()) {
794     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
795          SubRegs.isValid(); ++SubRegs)
796       regsLive.insert(*SubRegs);
797   }
798 
799   regsKilled.clear();
800   regsDefined.clear();
801 
802   if (Indexes)
803     lastIndex = Indexes->getMBBStartIdx(MBB);
804 }
805 
806 // This function gets called for all bundle headers, including normal
807 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)808 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
809   if (Indexes && Indexes->hasIndex(*MI)) {
810     SlotIndex idx = Indexes->getInstructionIndex(*MI);
811     if (!(idx > lastIndex)) {
812       report("Instruction index out of order", MI);
813       errs() << "Last instruction was at " << lastIndex << '\n';
814     }
815     lastIndex = idx;
816   }
817 
818   // Ensure non-terminators don't follow terminators.
819   // Ignore predicated terminators formed by if conversion.
820   // FIXME: If conversion shouldn't need to violate this rule.
821   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
822     if (!FirstTerminator)
823       FirstTerminator = MI;
824   } else if (FirstTerminator) {
825     report("Non-terminator instruction after the first terminator", MI);
826     errs() << "First terminator was:\t" << *FirstTerminator;
827   }
828 }
829 
830 // The operands on an INLINEASM instruction must follow a template.
831 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)832 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
833   // The first two operands on INLINEASM are the asm string and global flags.
834   if (MI->getNumOperands() < 2) {
835     report("Too few operands on inline asm", MI);
836     return;
837   }
838   if (!MI->getOperand(0).isSymbol())
839     report("Asm string must be an external symbol", MI);
840   if (!MI->getOperand(1).isImm())
841     report("Asm flags must be an immediate", MI);
842   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
843   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
844   // and Extra_IsConvergent = 32.
845   if (!isUInt<6>(MI->getOperand(1).getImm()))
846     report("Unknown asm flags", &MI->getOperand(1), 1);
847 
848   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
849 
850   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
851   unsigned NumOps;
852   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
853     const MachineOperand &MO = MI->getOperand(OpNo);
854     // There may be implicit ops after the fixed operands.
855     if (!MO.isImm())
856       break;
857     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
858   }
859 
860   if (OpNo > MI->getNumOperands())
861     report("Missing operands in last group", MI);
862 
863   // An optional MDNode follows the groups.
864   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
865     ++OpNo;
866 
867   // All trailing operands must be implicit registers.
868   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
869     const MachineOperand &MO = MI->getOperand(OpNo);
870     if (!MO.isReg() || !MO.isImplicit())
871       report("Expected implicit register after groups", &MO, OpNo);
872   }
873 }
874 
visitMachineInstrBefore(const MachineInstr * MI)875 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
876   const MCInstrDesc &MCID = MI->getDesc();
877   if (MI->getNumOperands() < MCID.getNumOperands()) {
878     report("Too few operands", MI);
879     errs() << MCID.getNumOperands() << " operands expected, but "
880            << MI->getNumOperands() << " given.\n";
881   }
882 
883   if (MI->isPHI() && MF->getProperties().hasProperty(
884                          MachineFunctionProperties::Property::NoPHIs))
885     report("Found PHI instruction with NoPHIs property set", MI);
886 
887   // Check the tied operands.
888   if (MI->isInlineAsm())
889     verifyInlineAsm(MI);
890 
891   // Check the MachineMemOperands for basic consistency.
892   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
893                                   E = MI->memoperands_end();
894        I != E; ++I) {
895     if ((*I)->isLoad() && !MI->mayLoad())
896       report("Missing mayLoad flag", MI);
897     if ((*I)->isStore() && !MI->mayStore())
898       report("Missing mayStore flag", MI);
899   }
900 
901   // Debug values must not have a slot index.
902   // Other instructions must have one, unless they are inside a bundle.
903   if (LiveInts) {
904     bool mapped = !LiveInts->isNotInMIMap(*MI);
905     if (MI->isDebugInstr()) {
906       if (mapped)
907         report("Debug instruction has a slot index", MI);
908     } else if (MI->isInsideBundle()) {
909       if (mapped)
910         report("Instruction inside bundle has a slot index", MI);
911     } else {
912       if (!mapped)
913         report("Missing slot index", MI);
914     }
915   }
916 
917   if (isPreISelGenericOpcode(MCID.getOpcode())) {
918     if (isFunctionSelected)
919       report("Unexpected generic instruction in a Selected function", MI);
920 
921     // Check types.
922     SmallVector<LLT, 4> Types;
923     for (unsigned I = 0; I < MCID.getNumOperands(); ++I) {
924       if (!MCID.OpInfo[I].isGenericType())
925         continue;
926       // Generic instructions specify type equality constraints between some of
927       // their operands. Make sure these are consistent.
928       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
929       Types.resize(std::max(TypeIdx + 1, Types.size()));
930 
931       const MachineOperand *MO = &MI->getOperand(I);
932       LLT OpTy = MRI->getType(MO->getReg());
933       // Don't report a type mismatch if there is no actual mismatch, only a
934       // type missing, to reduce noise:
935       if (OpTy.isValid()) {
936         // Only the first valid type for a type index will be printed: don't
937         // overwrite it later so it's always clear which type was expected:
938         if (!Types[TypeIdx].isValid())
939           Types[TypeIdx] = OpTy;
940         else if (Types[TypeIdx] != OpTy)
941           report("Type mismatch in generic instruction", MO, I, OpTy);
942       } else {
943         // Generic instructions must have types attached to their operands.
944         report("Generic instruction is missing a virtual register type", MO, I);
945       }
946     }
947 
948     // Generic opcodes must not have physical register operands.
949     for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
950       const MachineOperand *MO = &MI->getOperand(I);
951       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
952         report("Generic instruction cannot have physical register", MO, I);
953     }
954   }
955 
956   StringRef ErrorInfo;
957   if (!TII->verifyInstruction(*MI, ErrorInfo))
958     report(ErrorInfo.data(), MI);
959 
960   // Verify properties of various specific instruction types
961   switch(MI->getOpcode()) {
962   default:
963     break;
964   case TargetOpcode::G_LOAD:
965   case TargetOpcode::G_STORE:
966     // Generic loads and stores must have a single MachineMemOperand
967     // describing that access.
968     if (!MI->hasOneMemOperand())
969       report("Generic instruction accessing memory must have one mem operand",
970              MI);
971     break;
972   case TargetOpcode::G_PHI: {
973     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
974     if (!DstTy.isValid() ||
975         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
976                      [this, &DstTy](const MachineOperand &MO) {
977                        if (!MO.isReg())
978                          return true;
979                        LLT Ty = MRI->getType(MO.getReg());
980                        if (!Ty.isValid() || (Ty != DstTy))
981                          return false;
982                        return true;
983                      }))
984       report("Generic Instruction G_PHI has operands with incompatible/missing "
985              "types",
986              MI);
987     break;
988   }
989   case TargetOpcode::G_SEXT:
990   case TargetOpcode::G_ZEXT:
991   case TargetOpcode::G_ANYEXT:
992   case TargetOpcode::G_TRUNC:
993   case TargetOpcode::G_FPEXT:
994   case TargetOpcode::G_FPTRUNC: {
995     // Number of operands and presense of types is already checked (and
996     // reported in case of any issues), so no need to report them again. As
997     // we're trying to report as many issues as possible at once, however, the
998     // instructions aren't guaranteed to have the right number of operands or
999     // types attached to them at this point
1000     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1001     if (MI->getNumOperands() < MCID.getNumOperands())
1002       break;
1003     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1004     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1005     if (!DstTy.isValid() || !SrcTy.isValid())
1006       break;
1007 
1008     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1009     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1010     if (DstElTy.isPointer() || SrcElTy.isPointer())
1011       report("Generic extend/truncate can not operate on pointers", MI);
1012 
1013     if (DstTy.isVector() != SrcTy.isVector()) {
1014       report("Generic extend/truncate must be all-vector or all-scalar", MI);
1015       // Generally we try to report as many issues as possible at once, but in
1016       // this case it's not clear what should we be comparing the size of the
1017       // scalar with: the size of the whole vector or its lane. Instead of
1018       // making an arbitrary choice and emitting not so helpful message, let's
1019       // avoid the extra noise and stop here.
1020       break;
1021     }
1022     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1023       report("Generic vector extend/truncate must preserve number of lanes",
1024              MI);
1025     unsigned DstSize = DstElTy.getSizeInBits();
1026     unsigned SrcSize = SrcElTy.getSizeInBits();
1027     switch (MI->getOpcode()) {
1028     default:
1029       if (DstSize <= SrcSize)
1030         report("Generic extend has destination type no larger than source", MI);
1031       break;
1032     case TargetOpcode::G_TRUNC:
1033     case TargetOpcode::G_FPTRUNC:
1034       if (DstSize >= SrcSize)
1035         report("Generic truncate has destination type no smaller than source",
1036                MI);
1037       break;
1038     }
1039     break;
1040   }
1041   case TargetOpcode::COPY: {
1042     if (foundErrors)
1043       break;
1044     const MachineOperand &DstOp = MI->getOperand(0);
1045     const MachineOperand &SrcOp = MI->getOperand(1);
1046     LLT DstTy = MRI->getType(DstOp.getReg());
1047     LLT SrcTy = MRI->getType(SrcOp.getReg());
1048     if (SrcTy.isValid() && DstTy.isValid()) {
1049       // If both types are valid, check that the types are the same.
1050       if (SrcTy != DstTy) {
1051         report("Copy Instruction is illegal with mismatching types", MI);
1052         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1053       }
1054     }
1055     if (SrcTy.isValid() || DstTy.isValid()) {
1056       // If one of them have valid types, let's just check they have the same
1057       // size.
1058       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1059       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1060       assert(SrcSize && "Expecting size here");
1061       assert(DstSize && "Expecting size here");
1062       if (SrcSize != DstSize)
1063         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1064           report("Copy Instruction is illegal with mismatching sizes", MI);
1065           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1066                  << "\n";
1067         }
1068     }
1069     break;
1070   }
1071   case TargetOpcode::STATEPOINT:
1072     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1073         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1074         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1075       report("meta operands to STATEPOINT not constant!", MI);
1076     break;
1077 
1078     auto VerifyStackMapConstant = [&](unsigned Offset) {
1079       if (!MI->getOperand(Offset).isImm() ||
1080           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1081           !MI->getOperand(Offset + 1).isImm())
1082         report("stack map constant to STATEPOINT not well formed!", MI);
1083     };
1084     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1085     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1086     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1087     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1088 
1089     // TODO: verify we have properly encoded deopt arguments
1090   };
1091 }
1092 
1093 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)1094 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1095   const MachineInstr *MI = MO->getParent();
1096   const MCInstrDesc &MCID = MI->getDesc();
1097   unsigned NumDefs = MCID.getNumDefs();
1098   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1099     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1100 
1101   // The first MCID.NumDefs operands must be explicit register defines
1102   if (MONum < NumDefs) {
1103     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1104     if (!MO->isReg())
1105       report("Explicit definition must be a register", MO, MONum);
1106     else if (!MO->isDef() && !MCOI.isOptionalDef())
1107       report("Explicit definition marked as use", MO, MONum);
1108     else if (MO->isImplicit())
1109       report("Explicit definition marked as implicit", MO, MONum);
1110   } else if (MONum < MCID.getNumOperands()) {
1111     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1112     // Don't check if it's the last operand in a variadic instruction. See,
1113     // e.g., LDM_RET in the arm back end.
1114     if (MO->isReg() &&
1115         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1116       if (MO->isDef() && !MCOI.isOptionalDef())
1117         report("Explicit operand marked as def", MO, MONum);
1118       if (MO->isImplicit())
1119         report("Explicit operand marked as implicit", MO, MONum);
1120     }
1121 
1122     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1123     if (TiedTo != -1) {
1124       if (!MO->isReg())
1125         report("Tied use must be a register", MO, MONum);
1126       else if (!MO->isTied())
1127         report("Operand should be tied", MO, MONum);
1128       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1129         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1130       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1131         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1132         if (!MOTied.isReg())
1133           report("Tied counterpart must be a register", &MOTied, TiedTo);
1134         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1135                  MO->getReg() != MOTied.getReg())
1136           report("Tied physical registers must match.", &MOTied, TiedTo);
1137       }
1138     } else if (MO->isReg() && MO->isTied())
1139       report("Explicit operand should not be tied", MO, MONum);
1140   } else {
1141     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1142     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1143       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1144   }
1145 
1146   switch (MO->getType()) {
1147   case MachineOperand::MO_Register: {
1148     const unsigned Reg = MO->getReg();
1149     if (!Reg)
1150       return;
1151     if (MRI->tracksLiveness() && !MI->isDebugValue())
1152       checkLiveness(MO, MONum);
1153 
1154     // Verify the consistency of tied operands.
1155     if (MO->isTied()) {
1156       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1157       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1158       if (!OtherMO.isReg())
1159         report("Must be tied to a register", MO, MONum);
1160       if (!OtherMO.isTied())
1161         report("Missing tie flags on tied operand", MO, MONum);
1162       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1163         report("Inconsistent tie links", MO, MONum);
1164       if (MONum < MCID.getNumDefs()) {
1165         if (OtherIdx < MCID.getNumOperands()) {
1166           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1167             report("Explicit def tied to explicit use without tie constraint",
1168                    MO, MONum);
1169         } else {
1170           if (!OtherMO.isImplicit())
1171             report("Explicit def should be tied to implicit use", MO, MONum);
1172         }
1173       }
1174     }
1175 
1176     // Verify two-address constraints after leaving SSA form.
1177     unsigned DefIdx;
1178     if (!MRI->isSSA() && MO->isUse() &&
1179         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1180         Reg != MI->getOperand(DefIdx).getReg())
1181       report("Two-address instruction operands must be identical", MO, MONum);
1182 
1183     // Check register classes.
1184     unsigned SubIdx = MO->getSubReg();
1185 
1186     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1187       if (SubIdx) {
1188         report("Illegal subregister index for physical register", MO, MONum);
1189         return;
1190       }
1191       if (MONum < MCID.getNumOperands()) {
1192         if (const TargetRegisterClass *DRC =
1193               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1194           if (!DRC->contains(Reg)) {
1195             report("Illegal physical register for instruction", MO, MONum);
1196             errs() << printReg(Reg, TRI) << " is not a "
1197                    << TRI->getRegClassName(DRC) << " register.\n";
1198           }
1199         }
1200       }
1201       if (MO->isRenamable()) {
1202         if (MRI->isReserved(Reg)) {
1203           report("isRenamable set on reserved register", MO, MONum);
1204           return;
1205         }
1206       }
1207       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1208         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1209         return;
1210       }
1211     } else {
1212       // Virtual register.
1213       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1214       if (!RC) {
1215         // This is a generic virtual register.
1216 
1217         // If we're post-Select, we can't have gvregs anymore.
1218         if (isFunctionSelected) {
1219           report("Generic virtual register invalid in a Selected function",
1220                  MO, MONum);
1221           return;
1222         }
1223 
1224         // The gvreg must have a type and it must not have a SubIdx.
1225         LLT Ty = MRI->getType(Reg);
1226         if (!Ty.isValid()) {
1227           report("Generic virtual register must have a valid type", MO,
1228                  MONum);
1229           return;
1230         }
1231 
1232         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1233 
1234         // If we're post-RegBankSelect, the gvreg must have a bank.
1235         if (!RegBank && isFunctionRegBankSelected) {
1236           report("Generic virtual register must have a bank in a "
1237                  "RegBankSelected function",
1238                  MO, MONum);
1239           return;
1240         }
1241 
1242         // Make sure the register fits into its register bank if any.
1243         if (RegBank && Ty.isValid() &&
1244             RegBank->getSize() < Ty.getSizeInBits()) {
1245           report("Register bank is too small for virtual register", MO,
1246                  MONum);
1247           errs() << "Register bank " << RegBank->getName() << " too small("
1248                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1249                  << "-bits\n";
1250           return;
1251         }
1252         if (SubIdx)  {
1253           report("Generic virtual register does not subregister index", MO,
1254                  MONum);
1255           return;
1256         }
1257 
1258         // If this is a target specific instruction and this operand
1259         // has register class constraint, the virtual register must
1260         // comply to it.
1261         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1262             MONum < MCID.getNumOperands() &&
1263             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1264           report("Virtual register does not match instruction constraint", MO,
1265                  MONum);
1266           errs() << "Expect register class "
1267                  << TRI->getRegClassName(
1268                         TII->getRegClass(MCID, MONum, TRI, *MF))
1269                  << " but got nothing\n";
1270           return;
1271         }
1272 
1273         break;
1274       }
1275       if (SubIdx) {
1276         const TargetRegisterClass *SRC =
1277           TRI->getSubClassWithSubReg(RC, SubIdx);
1278         if (!SRC) {
1279           report("Invalid subregister index for virtual register", MO, MONum);
1280           errs() << "Register class " << TRI->getRegClassName(RC)
1281               << " does not support subreg index " << SubIdx << "\n";
1282           return;
1283         }
1284         if (RC != SRC) {
1285           report("Invalid register class for subregister index", MO, MONum);
1286           errs() << "Register class " << TRI->getRegClassName(RC)
1287               << " does not fully support subreg index " << SubIdx << "\n";
1288           return;
1289         }
1290       }
1291       if (MONum < MCID.getNumOperands()) {
1292         if (const TargetRegisterClass *DRC =
1293               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1294           if (SubIdx) {
1295             const TargetRegisterClass *SuperRC =
1296                 TRI->getLargestLegalSuperClass(RC, *MF);
1297             if (!SuperRC) {
1298               report("No largest legal super class exists.", MO, MONum);
1299               return;
1300             }
1301             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1302             if (!DRC) {
1303               report("No matching super-reg register class.", MO, MONum);
1304               return;
1305             }
1306           }
1307           if (!RC->hasSuperClassEq(DRC)) {
1308             report("Illegal virtual register for instruction", MO, MONum);
1309             errs() << "Expected a " << TRI->getRegClassName(DRC)
1310                 << " register, but got a " << TRI->getRegClassName(RC)
1311                 << " register\n";
1312           }
1313         }
1314       }
1315     }
1316     break;
1317   }
1318 
1319   case MachineOperand::MO_RegisterMask:
1320     regMasks.push_back(MO->getRegMask());
1321     break;
1322 
1323   case MachineOperand::MO_MachineBasicBlock:
1324     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1325       report("PHI operand is not in the CFG", MO, MONum);
1326     break;
1327 
1328   case MachineOperand::MO_FrameIndex:
1329     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1330         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1331       int FI = MO->getIndex();
1332       LiveInterval &LI = LiveStks->getInterval(FI);
1333       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1334 
1335       bool stores = MI->mayStore();
1336       bool loads = MI->mayLoad();
1337       // For a memory-to-memory move, we need to check if the frame
1338       // index is used for storing or loading, by inspecting the
1339       // memory operands.
1340       if (stores && loads) {
1341         for (auto *MMO : MI->memoperands()) {
1342           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1343           if (PSV == nullptr) continue;
1344           const FixedStackPseudoSourceValue *Value =
1345             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1346           if (Value == nullptr) continue;
1347           if (Value->getFrameIndex() != FI) continue;
1348 
1349           if (MMO->isStore())
1350             loads = false;
1351           else
1352             stores = false;
1353           break;
1354         }
1355         if (loads == stores)
1356           report("Missing fixed stack memoperand.", MI);
1357       }
1358       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1359         report("Instruction loads from dead spill slot", MO, MONum);
1360         errs() << "Live stack: " << LI << '\n';
1361       }
1362       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1363         report("Instruction stores to dead spill slot", MO, MONum);
1364         errs() << "Live stack: " << LI << '\n';
1365       }
1366     }
1367     break;
1368 
1369   default:
1370     break;
1371   }
1372 }
1373 
checkLivenessAtUse(const MachineOperand * MO,unsigned MONum,SlotIndex UseIdx,const LiveRange & LR,unsigned VRegOrUnit,LaneBitmask LaneMask)1374 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1375     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1376     LaneBitmask LaneMask) {
1377   LiveQueryResult LRQ = LR.Query(UseIdx);
1378   // Check if we have a segment at the use, note however that we only need one
1379   // live subregister range, the others may be dead.
1380   if (!LRQ.valueIn() && LaneMask.none()) {
1381     report("No live segment at use", MO, MONum);
1382     report_context_liverange(LR);
1383     report_context_vreg_regunit(VRegOrUnit);
1384     report_context(UseIdx);
1385   }
1386   if (MO->isKill() && !LRQ.isKill()) {
1387     report("Live range continues after kill flag", MO, MONum);
1388     report_context_liverange(LR);
1389     report_context_vreg_regunit(VRegOrUnit);
1390     if (LaneMask.any())
1391       report_context_lanemask(LaneMask);
1392     report_context(UseIdx);
1393   }
1394 }
1395 
checkLivenessAtDef(const MachineOperand * MO,unsigned MONum,SlotIndex DefIdx,const LiveRange & LR,unsigned VRegOrUnit,LaneBitmask LaneMask)1396 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1397     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1398     LaneBitmask LaneMask) {
1399   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1400     assert(VNI && "NULL valno is not allowed");
1401     if (VNI->def != DefIdx) {
1402       report("Inconsistent valno->def", MO, MONum);
1403       report_context_liverange(LR);
1404       report_context_vreg_regunit(VRegOrUnit);
1405       if (LaneMask.any())
1406         report_context_lanemask(LaneMask);
1407       report_context(*VNI);
1408       report_context(DefIdx);
1409     }
1410   } else {
1411     report("No live segment at def", MO, MONum);
1412     report_context_liverange(LR);
1413     report_context_vreg_regunit(VRegOrUnit);
1414     if (LaneMask.any())
1415       report_context_lanemask(LaneMask);
1416     report_context(DefIdx);
1417   }
1418   // Check that, if the dead def flag is present, LiveInts agree.
1419   if (MO->isDead()) {
1420     LiveQueryResult LRQ = LR.Query(DefIdx);
1421     if (!LRQ.isDeadDef()) {
1422       // In case of physregs we can have a non-dead definition on another
1423       // operand.
1424       bool otherDef = false;
1425       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1426         const MachineInstr &MI = *MO->getParent();
1427         for (const MachineOperand &MO : MI.operands()) {
1428           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1429             continue;
1430           unsigned Reg = MO.getReg();
1431           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1432             if (*Units == VRegOrUnit) {
1433               otherDef = true;
1434               break;
1435             }
1436           }
1437         }
1438       }
1439 
1440       if (!otherDef) {
1441         report("Live range continues after dead def flag", MO, MONum);
1442         report_context_liverange(LR);
1443         report_context_vreg_regunit(VRegOrUnit);
1444         if (LaneMask.any())
1445           report_context_lanemask(LaneMask);
1446       }
1447     }
1448   }
1449 }
1450 
checkLiveness(const MachineOperand * MO,unsigned MONum)1451 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1452   const MachineInstr *MI = MO->getParent();
1453   const unsigned Reg = MO->getReg();
1454 
1455   // Both use and def operands can read a register.
1456   if (MO->readsReg()) {
1457     if (MO->isKill())
1458       addRegWithSubRegs(regsKilled, Reg);
1459 
1460     // Check that LiveVars knows this kill.
1461     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1462         MO->isKill()) {
1463       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1464       if (!is_contained(VI.Kills, MI))
1465         report("Kill missing from LiveVariables", MO, MONum);
1466     }
1467 
1468     // Check LiveInts liveness and kill.
1469     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1470       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1471       // Check the cached regunit intervals.
1472       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1473         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1474           if (MRI->isReservedRegUnit(*Units))
1475             continue;
1476           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1477             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1478         }
1479       }
1480 
1481       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1482         if (LiveInts->hasInterval(Reg)) {
1483           // This is a virtual register interval.
1484           const LiveInterval &LI = LiveInts->getInterval(Reg);
1485           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1486 
1487           if (LI.hasSubRanges() && !MO->isDef()) {
1488             unsigned SubRegIdx = MO->getSubReg();
1489             LaneBitmask MOMask = SubRegIdx != 0
1490                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1491                                : MRI->getMaxLaneMaskForVReg(Reg);
1492             LaneBitmask LiveInMask;
1493             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1494               if ((MOMask & SR.LaneMask).none())
1495                 continue;
1496               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1497               LiveQueryResult LRQ = SR.Query(UseIdx);
1498               if (LRQ.valueIn())
1499                 LiveInMask |= SR.LaneMask;
1500             }
1501             // At least parts of the register has to be live at the use.
1502             if ((LiveInMask & MOMask).none()) {
1503               report("No live subrange at use", MO, MONum);
1504               report_context(LI);
1505               report_context(UseIdx);
1506             }
1507           }
1508         } else {
1509           report("Virtual register has no live interval", MO, MONum);
1510         }
1511       }
1512     }
1513 
1514     // Use of a dead register.
1515     if (!regsLive.count(Reg)) {
1516       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1517         // Reserved registers may be used even when 'dead'.
1518         bool Bad = !isReserved(Reg);
1519         // We are fine if just any subregister has a defined value.
1520         if (Bad) {
1521           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1522                ++SubRegs) {
1523             if (regsLive.count(*SubRegs)) {
1524               Bad = false;
1525               break;
1526             }
1527           }
1528         }
1529         // If there is an additional implicit-use of a super register we stop
1530         // here. By definition we are fine if the super register is not
1531         // (completely) dead, if the complete super register is dead we will
1532         // get a report for its operand.
1533         if (Bad) {
1534           for (const MachineOperand &MOP : MI->uses()) {
1535             if (!MOP.isReg())
1536               continue;
1537             if (!MOP.isImplicit())
1538               continue;
1539             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1540                  ++SubRegs) {
1541               if (*SubRegs == Reg) {
1542                 Bad = false;
1543                 break;
1544               }
1545             }
1546           }
1547         }
1548         if (Bad)
1549           report("Using an undefined physical register", MO, MONum);
1550       } else if (MRI->def_empty(Reg)) {
1551         report("Reading virtual register without a def", MO, MONum);
1552       } else {
1553         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1554         // We don't know which virtual registers are live in, so only complain
1555         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1556         // must be live in. PHI instructions are handled separately.
1557         if (MInfo.regsKilled.count(Reg))
1558           report("Using a killed virtual register", MO, MONum);
1559         else if (!MI->isPHI())
1560           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1561       }
1562     }
1563   }
1564 
1565   if (MO->isDef()) {
1566     // Register defined.
1567     // TODO: verify that earlyclobber ops are not used.
1568     if (MO->isDead())
1569       addRegWithSubRegs(regsDead, Reg);
1570     else
1571       addRegWithSubRegs(regsDefined, Reg);
1572 
1573     // Verify SSA form.
1574     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1575         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1576       report("Multiple virtual register defs in SSA form", MO, MONum);
1577 
1578     // Check LiveInts for a live segment, but only for virtual registers.
1579     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1580       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1581       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1582 
1583       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1584         if (LiveInts->hasInterval(Reg)) {
1585           const LiveInterval &LI = LiveInts->getInterval(Reg);
1586           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1587 
1588           if (LI.hasSubRanges()) {
1589             unsigned SubRegIdx = MO->getSubReg();
1590             LaneBitmask MOMask = SubRegIdx != 0
1591               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1592               : MRI->getMaxLaneMaskForVReg(Reg);
1593             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1594               if ((SR.LaneMask & MOMask).none())
1595                 continue;
1596               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1597             }
1598           }
1599         } else {
1600           report("Virtual register has no Live interval", MO, MONum);
1601         }
1602       }
1603     }
1604   }
1605 }
1606 
visitMachineInstrAfter(const MachineInstr * MI)1607 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1608 
1609 // This function gets called after visiting all instructions in a bundle. The
1610 // argument points to the bundle header.
1611 // Normal stand-alone instructions are also considered 'bundles', and this
1612 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)1613 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1614   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1615   set_union(MInfo.regsKilled, regsKilled);
1616   set_subtract(regsLive, regsKilled); regsKilled.clear();
1617   // Kill any masked registers.
1618   while (!regMasks.empty()) {
1619     const uint32_t *Mask = regMasks.pop_back_val();
1620     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1621       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1622           MachineOperand::clobbersPhysReg(Mask, *I))
1623         regsDead.push_back(*I);
1624   }
1625   set_subtract(regsLive, regsDead);   regsDead.clear();
1626   set_union(regsLive, regsDefined);   regsDefined.clear();
1627 }
1628 
1629 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)1630 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1631   MBBInfoMap[MBB].regsLiveOut = regsLive;
1632   regsLive.clear();
1633 
1634   if (Indexes) {
1635     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1636     if (!(stop > lastIndex)) {
1637       report("Block ends before last instruction index", MBB);
1638       errs() << "Block ends at " << stop
1639           << " last instruction was at " << lastIndex << '\n';
1640     }
1641     lastIndex = stop;
1642   }
1643 }
1644 
1645 // Calculate the largest possible vregsPassed sets. These are the registers that
1646 // can pass through an MBB live, but may not be live every time. It is assumed
1647 // that all vregsPassed sets are empty before the call.
calcRegsPassed()1648 void MachineVerifier::calcRegsPassed() {
1649   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1650   // have any vregsPassed.
1651   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1652   for (const auto &MBB : *MF) {
1653     BBInfo &MInfo = MBBInfoMap[&MBB];
1654     if (!MInfo.reachable)
1655       continue;
1656     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1657            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1658       BBInfo &SInfo = MBBInfoMap[*SuI];
1659       if (SInfo.addPassed(MInfo.regsLiveOut))
1660         todo.insert(*SuI);
1661     }
1662   }
1663 
1664   // Iteratively push vregsPassed to successors. This will converge to the same
1665   // final state regardless of DenseSet iteration order.
1666   while (!todo.empty()) {
1667     const MachineBasicBlock *MBB = *todo.begin();
1668     todo.erase(MBB);
1669     BBInfo &MInfo = MBBInfoMap[MBB];
1670     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1671            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1672       if (*SuI == MBB)
1673         continue;
1674       BBInfo &SInfo = MBBInfoMap[*SuI];
1675       if (SInfo.addPassed(MInfo.vregsPassed))
1676         todo.insert(*SuI);
1677     }
1678   }
1679 }
1680 
1681 // Calculate the set of virtual registers that must be passed through each basic
1682 // block in order to satisfy the requirements of successor blocks. This is very
1683 // similar to calcRegsPassed, only backwards.
calcRegsRequired()1684 void MachineVerifier::calcRegsRequired() {
1685   // First push live-in regs to predecessors' vregsRequired.
1686   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1687   for (const auto &MBB : *MF) {
1688     BBInfo &MInfo = MBBInfoMap[&MBB];
1689     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1690            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1691       BBInfo &PInfo = MBBInfoMap[*PrI];
1692       if (PInfo.addRequired(MInfo.vregsLiveIn))
1693         todo.insert(*PrI);
1694     }
1695   }
1696 
1697   // Iteratively push vregsRequired to predecessors. This will converge to the
1698   // same final state regardless of DenseSet iteration order.
1699   while (!todo.empty()) {
1700     const MachineBasicBlock *MBB = *todo.begin();
1701     todo.erase(MBB);
1702     BBInfo &MInfo = MBBInfoMap[MBB];
1703     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1704            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1705       if (*PrI == MBB)
1706         continue;
1707       BBInfo &SInfo = MBBInfoMap[*PrI];
1708       if (SInfo.addRequired(MInfo.vregsRequired))
1709         todo.insert(*PrI);
1710     }
1711   }
1712 }
1713 
1714 // Check PHI instructions at the beginning of MBB. It is assumed that
1715 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock & MBB)1716 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1717   BBInfo &MInfo = MBBInfoMap[&MBB];
1718 
1719   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1720   for (const MachineInstr &Phi : MBB) {
1721     if (!Phi.isPHI())
1722       break;
1723     seen.clear();
1724 
1725     const MachineOperand &MODef = Phi.getOperand(0);
1726     if (!MODef.isReg() || !MODef.isDef()) {
1727       report("Expected first PHI operand to be a register def", &MODef, 0);
1728       continue;
1729     }
1730     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1731         MODef.isEarlyClobber() || MODef.isDebug())
1732       report("Unexpected flag on PHI operand", &MODef, 0);
1733     unsigned DefReg = MODef.getReg();
1734     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1735       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1736 
1737     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1738       const MachineOperand &MO0 = Phi.getOperand(I);
1739       if (!MO0.isReg()) {
1740         report("Expected PHI operand to be a register", &MO0, I);
1741         continue;
1742       }
1743       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1744           MO0.isDebug() || MO0.isTied())
1745         report("Unexpected flag on PHI operand", &MO0, I);
1746 
1747       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1748       if (!MO1.isMBB()) {
1749         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1750         continue;
1751       }
1752 
1753       const MachineBasicBlock &Pre = *MO1.getMBB();
1754       if (!Pre.isSuccessor(&MBB)) {
1755         report("PHI input is not a predecessor block", &MO1, I + 1);
1756         continue;
1757       }
1758 
1759       if (MInfo.reachable) {
1760         seen.insert(&Pre);
1761         BBInfo &PrInfo = MBBInfoMap[&Pre];
1762         if (!MO0.isUndef() && PrInfo.reachable &&
1763             !PrInfo.isLiveOut(MO0.getReg()))
1764           report("PHI operand is not live-out from predecessor", &MO0, I);
1765       }
1766     }
1767 
1768     // Did we see all predecessors?
1769     if (MInfo.reachable) {
1770       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1771         if (!seen.count(Pred)) {
1772           report("Missing PHI operand", &Phi);
1773           errs() << printMBBReference(*Pred)
1774                  << " is a predecessor according to the CFG.\n";
1775         }
1776       }
1777     }
1778   }
1779 }
1780 
visitMachineFunctionAfter()1781 void MachineVerifier::visitMachineFunctionAfter() {
1782   calcRegsPassed();
1783 
1784   for (const MachineBasicBlock &MBB : *MF)
1785     checkPHIOps(MBB);
1786 
1787   // Now check liveness info if available
1788   calcRegsRequired();
1789 
1790   // Check for killed virtual registers that should be live out.
1791   for (const auto &MBB : *MF) {
1792     BBInfo &MInfo = MBBInfoMap[&MBB];
1793     for (RegSet::iterator
1794          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1795          ++I)
1796       if (MInfo.regsKilled.count(*I)) {
1797         report("Virtual register killed in block, but needed live out.", &MBB);
1798         errs() << "Virtual register " << printReg(*I)
1799                << " is used after the block.\n";
1800       }
1801   }
1802 
1803   if (!MF->empty()) {
1804     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1805     for (RegSet::iterator
1806          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1807          ++I) {
1808       report("Virtual register defs don't dominate all uses.", MF);
1809       report_context_vreg(*I);
1810     }
1811   }
1812 
1813   if (LiveVars)
1814     verifyLiveVariables();
1815   if (LiveInts)
1816     verifyLiveIntervals();
1817 }
1818 
verifyLiveVariables()1819 void MachineVerifier::verifyLiveVariables() {
1820   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1821   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1822     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1823     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1824     for (const auto &MBB : *MF) {
1825       BBInfo &MInfo = MBBInfoMap[&MBB];
1826 
1827       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1828       if (MInfo.vregsRequired.count(Reg)) {
1829         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1830           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1831           errs() << "Virtual register " << printReg(Reg)
1832                  << " must be live through the block.\n";
1833         }
1834       } else {
1835         if (VI.AliveBlocks.test(MBB.getNumber())) {
1836           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1837           errs() << "Virtual register " << printReg(Reg)
1838                  << " is not needed live through the block.\n";
1839         }
1840       }
1841     }
1842   }
1843 }
1844 
verifyLiveIntervals()1845 void MachineVerifier::verifyLiveIntervals() {
1846   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1847   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1848     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1849 
1850     // Spilling and splitting may leave unused registers around. Skip them.
1851     if (MRI->reg_nodbg_empty(Reg))
1852       continue;
1853 
1854     if (!LiveInts->hasInterval(Reg)) {
1855       report("Missing live interval for virtual register", MF);
1856       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1857       continue;
1858     }
1859 
1860     const LiveInterval &LI = LiveInts->getInterval(Reg);
1861     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1862     verifyLiveInterval(LI);
1863   }
1864 
1865   // Verify all the cached regunit intervals.
1866   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1867     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1868       verifyLiveRange(*LR, i);
1869 }
1870 
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,unsigned Reg,LaneBitmask LaneMask)1871 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1872                                            const VNInfo *VNI, unsigned Reg,
1873                                            LaneBitmask LaneMask) {
1874   if (VNI->isUnused())
1875     return;
1876 
1877   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1878 
1879   if (!DefVNI) {
1880     report("Value not live at VNInfo def and not marked unused", MF);
1881     report_context(LR, Reg, LaneMask);
1882     report_context(*VNI);
1883     return;
1884   }
1885 
1886   if (DefVNI != VNI) {
1887     report("Live segment at def has different VNInfo", MF);
1888     report_context(LR, Reg, LaneMask);
1889     report_context(*VNI);
1890     return;
1891   }
1892 
1893   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1894   if (!MBB) {
1895     report("Invalid VNInfo definition index", MF);
1896     report_context(LR, Reg, LaneMask);
1897     report_context(*VNI);
1898     return;
1899   }
1900 
1901   if (VNI->isPHIDef()) {
1902     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1903       report("PHIDef VNInfo is not defined at MBB start", MBB);
1904       report_context(LR, Reg, LaneMask);
1905       report_context(*VNI);
1906     }
1907     return;
1908   }
1909 
1910   // Non-PHI def.
1911   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1912   if (!MI) {
1913     report("No instruction at VNInfo def index", MBB);
1914     report_context(LR, Reg, LaneMask);
1915     report_context(*VNI);
1916     return;
1917   }
1918 
1919   if (Reg != 0) {
1920     bool hasDef = false;
1921     bool isEarlyClobber = false;
1922     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1923       if (!MOI->isReg() || !MOI->isDef())
1924         continue;
1925       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1926         if (MOI->getReg() != Reg)
1927           continue;
1928       } else {
1929         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1930             !TRI->hasRegUnit(MOI->getReg(), Reg))
1931           continue;
1932       }
1933       if (LaneMask.any() &&
1934           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1935         continue;
1936       hasDef = true;
1937       if (MOI->isEarlyClobber())
1938         isEarlyClobber = true;
1939     }
1940 
1941     if (!hasDef) {
1942       report("Defining instruction does not modify register", MI);
1943       report_context(LR, Reg, LaneMask);
1944       report_context(*VNI);
1945     }
1946 
1947     // Early clobber defs begin at USE slots, but other defs must begin at
1948     // DEF slots.
1949     if (isEarlyClobber) {
1950       if (!VNI->def.isEarlyClobber()) {
1951         report("Early clobber def must be at an early-clobber slot", MBB);
1952         report_context(LR, Reg, LaneMask);
1953         report_context(*VNI);
1954       }
1955     } else if (!VNI->def.isRegister()) {
1956       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1957       report_context(LR, Reg, LaneMask);
1958       report_context(*VNI);
1959     }
1960   }
1961 }
1962 
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,unsigned Reg,LaneBitmask LaneMask)1963 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1964                                              const LiveRange::const_iterator I,
1965                                              unsigned Reg, LaneBitmask LaneMask)
1966 {
1967   const LiveRange::Segment &S = *I;
1968   const VNInfo *VNI = S.valno;
1969   assert(VNI && "Live segment has no valno");
1970 
1971   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1972     report("Foreign valno in live segment", MF);
1973     report_context(LR, Reg, LaneMask);
1974     report_context(S);
1975     report_context(*VNI);
1976   }
1977 
1978   if (VNI->isUnused()) {
1979     report("Live segment valno is marked unused", MF);
1980     report_context(LR, Reg, LaneMask);
1981     report_context(S);
1982   }
1983 
1984   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1985   if (!MBB) {
1986     report("Bad start of live segment, no basic block", MF);
1987     report_context(LR, Reg, LaneMask);
1988     report_context(S);
1989     return;
1990   }
1991   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1992   if (S.start != MBBStartIdx && S.start != VNI->def) {
1993     report("Live segment must begin at MBB entry or valno def", MBB);
1994     report_context(LR, Reg, LaneMask);
1995     report_context(S);
1996   }
1997 
1998   const MachineBasicBlock *EndMBB =
1999     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2000   if (!EndMBB) {
2001     report("Bad end of live segment, no basic block", MF);
2002     report_context(LR, Reg, LaneMask);
2003     report_context(S);
2004     return;
2005   }
2006 
2007   // No more checks for live-out segments.
2008   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2009     return;
2010 
2011   // RegUnit intervals are allowed dead phis.
2012   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2013       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2014     return;
2015 
2016   // The live segment is ending inside EndMBB
2017   const MachineInstr *MI =
2018     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2019   if (!MI) {
2020     report("Live segment doesn't end at a valid instruction", EndMBB);
2021     report_context(LR, Reg, LaneMask);
2022     report_context(S);
2023     return;
2024   }
2025 
2026   // The block slot must refer to a basic block boundary.
2027   if (S.end.isBlock()) {
2028     report("Live segment ends at B slot of an instruction", EndMBB);
2029     report_context(LR, Reg, LaneMask);
2030     report_context(S);
2031   }
2032 
2033   if (S.end.isDead()) {
2034     // Segment ends on the dead slot.
2035     // That means there must be a dead def.
2036     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2037       report("Live segment ending at dead slot spans instructions", EndMBB);
2038       report_context(LR, Reg, LaneMask);
2039       report_context(S);
2040     }
2041   }
2042 
2043   // A live segment can only end at an early-clobber slot if it is being
2044   // redefined by an early-clobber def.
2045   if (S.end.isEarlyClobber()) {
2046     if (I+1 == LR.end() || (I+1)->start != S.end) {
2047       report("Live segment ending at early clobber slot must be "
2048              "redefined by an EC def in the same instruction", EndMBB);
2049       report_context(LR, Reg, LaneMask);
2050       report_context(S);
2051     }
2052   }
2053 
2054   // The following checks only apply to virtual registers. Physreg liveness
2055   // is too weird to check.
2056   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2057     // A live segment can end with either a redefinition, a kill flag on a
2058     // use, or a dead flag on a def.
2059     bool hasRead = false;
2060     bool hasSubRegDef = false;
2061     bool hasDeadDef = false;
2062     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2063       if (!MOI->isReg() || MOI->getReg() != Reg)
2064         continue;
2065       unsigned Sub = MOI->getSubReg();
2066       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2067                                  : LaneBitmask::getAll();
2068       if (MOI->isDef()) {
2069         if (Sub != 0) {
2070           hasSubRegDef = true;
2071           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2072           // mask for subregister defs. Read-undef defs will be handled by
2073           // readsReg below.
2074           SLM = ~SLM;
2075         }
2076         if (MOI->isDead())
2077           hasDeadDef = true;
2078       }
2079       if (LaneMask.any() && (LaneMask & SLM).none())
2080         continue;
2081       if (MOI->readsReg())
2082         hasRead = true;
2083     }
2084     if (S.end.isDead()) {
2085       // Make sure that the corresponding machine operand for a "dead" live
2086       // range has the dead flag. We cannot perform this check for subregister
2087       // liveranges as partially dead values are allowed.
2088       if (LaneMask.none() && !hasDeadDef) {
2089         report("Instruction ending live segment on dead slot has no dead flag",
2090                MI);
2091         report_context(LR, Reg, LaneMask);
2092         report_context(S);
2093       }
2094     } else {
2095       if (!hasRead) {
2096         // When tracking subregister liveness, the main range must start new
2097         // values on partial register writes, even if there is no read.
2098         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2099             !hasSubRegDef) {
2100           report("Instruction ending live segment doesn't read the register",
2101                  MI);
2102           report_context(LR, Reg, LaneMask);
2103           report_context(S);
2104         }
2105       }
2106     }
2107   }
2108 
2109   // Now check all the basic blocks in this live segment.
2110   MachineFunction::const_iterator MFI = MBB->getIterator();
2111   // Is this live segment the beginning of a non-PHIDef VN?
2112   if (S.start == VNI->def && !VNI->isPHIDef()) {
2113     // Not live-in to any blocks.
2114     if (MBB == EndMBB)
2115       return;
2116     // Skip this block.
2117     ++MFI;
2118   }
2119   while (true) {
2120     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2121     // We don't know how to track physregs into a landing pad.
2122     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2123         MFI->isEHPad()) {
2124       if (&*MFI == EndMBB)
2125         break;
2126       ++MFI;
2127       continue;
2128     }
2129 
2130     // Is VNI a PHI-def in the current block?
2131     bool IsPHI = VNI->isPHIDef() &&
2132       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2133 
2134     // Check that VNI is live-out of all predecessors.
2135     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2136          PE = MFI->pred_end(); PI != PE; ++PI) {
2137       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2138       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2139 
2140       // All predecessors must have a live-out value. However for a phi
2141       // instruction with subregister intervals
2142       // only one of the subregisters (not necessarily the current one) needs to
2143       // be defined.
2144       if (!PVNI && (LaneMask.none() || !IsPHI) ) {
2145         report("Register not marked live out of predecessor", *PI);
2146         report_context(LR, Reg, LaneMask);
2147         report_context(*VNI);
2148         errs() << " live into " << printMBBReference(*MFI) << '@'
2149                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2150                << PEnd << '\n';
2151         continue;
2152       }
2153 
2154       // Only PHI-defs can take different predecessor values.
2155       if (!IsPHI && PVNI != VNI) {
2156         report("Different value live out of predecessor", *PI);
2157         report_context(LR, Reg, LaneMask);
2158         errs() << "Valno #" << PVNI->id << " live out of "
2159                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2160                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2161                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2162       }
2163     }
2164     if (&*MFI == EndMBB)
2165       break;
2166     ++MFI;
2167   }
2168 }
2169 
verifyLiveRange(const LiveRange & LR,unsigned Reg,LaneBitmask LaneMask)2170 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2171                                       LaneBitmask LaneMask) {
2172   for (const VNInfo *VNI : LR.valnos)
2173     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2174 
2175   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2176     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2177 }
2178 
verifyLiveInterval(const LiveInterval & LI)2179 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2180   unsigned Reg = LI.reg;
2181   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2182   verifyLiveRange(LI, Reg);
2183 
2184   LaneBitmask Mask;
2185   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2186   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2187     if ((Mask & SR.LaneMask).any()) {
2188       report("Lane masks of sub ranges overlap in live interval", MF);
2189       report_context(LI);
2190     }
2191     if ((SR.LaneMask & ~MaxMask).any()) {
2192       report("Subrange lanemask is invalid", MF);
2193       report_context(LI);
2194     }
2195     if (SR.empty()) {
2196       report("Subrange must not be empty", MF);
2197       report_context(SR, LI.reg, SR.LaneMask);
2198     }
2199     Mask |= SR.LaneMask;
2200     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2201     if (!LI.covers(SR)) {
2202       report("A Subrange is not covered by the main range", MF);
2203       report_context(LI);
2204     }
2205   }
2206 
2207   // Check the LI only has one connected component.
2208   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2209   unsigned NumComp = ConEQ.Classify(LI);
2210   if (NumComp > 1) {
2211     report("Multiple connected components in live interval", MF);
2212     report_context(LI);
2213     for (unsigned comp = 0; comp != NumComp; ++comp) {
2214       errs() << comp << ": valnos";
2215       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2216            E = LI.vni_end(); I!=E; ++I)
2217         if (comp == ConEQ.getEqClass(*I))
2218           errs() << ' ' << (*I)->id;
2219       errs() << '\n';
2220     }
2221   }
2222 }
2223 
2224 namespace {
2225 
2226   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2227   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2228   // value is zero.
2229   // We use a bool plus an integer to capture the stack state.
2230   struct StackStateOfBB {
2231     StackStateOfBB() = default;
StackStateOfBB__anone289cf670411::StackStateOfBB2232     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2233       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2234       ExitIsSetup(ExitSetup) {}
2235 
2236     // Can be negative, which means we are setting up a frame.
2237     int EntryValue = 0;
2238     int ExitValue = 0;
2239     bool EntryIsSetup = false;
2240     bool ExitIsSetup = false;
2241   };
2242 
2243 } // end anonymous namespace
2244 
2245 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2246 /// by a FrameDestroy <n>, stack adjustments are identical on all
2247 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()2248 void MachineVerifier::verifyStackFrame() {
2249   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2250   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2251   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2252     return;
2253 
2254   SmallVector<StackStateOfBB, 8> SPState;
2255   SPState.resize(MF->getNumBlockIDs());
2256   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2257 
2258   // Visit the MBBs in DFS order.
2259   for (df_ext_iterator<const MachineFunction *,
2260                        df_iterator_default_set<const MachineBasicBlock *>>
2261        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2262        DFI != DFE; ++DFI) {
2263     const MachineBasicBlock *MBB = *DFI;
2264 
2265     StackStateOfBB BBState;
2266     // Check the exit state of the DFS stack predecessor.
2267     if (DFI.getPathLength() >= 2) {
2268       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2269       assert(Reachable.count(StackPred) &&
2270              "DFS stack predecessor is already visited.\n");
2271       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2272       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2273       BBState.ExitValue = BBState.EntryValue;
2274       BBState.ExitIsSetup = BBState.EntryIsSetup;
2275     }
2276 
2277     // Update stack state by checking contents of MBB.
2278     for (const auto &I : *MBB) {
2279       if (I.getOpcode() == FrameSetupOpcode) {
2280         if (BBState.ExitIsSetup)
2281           report("FrameSetup is after another FrameSetup", &I);
2282         BBState.ExitValue -= TII->getFrameTotalSize(I);
2283         BBState.ExitIsSetup = true;
2284       }
2285 
2286       if (I.getOpcode() == FrameDestroyOpcode) {
2287         int Size = TII->getFrameTotalSize(I);
2288         if (!BBState.ExitIsSetup)
2289           report("FrameDestroy is not after a FrameSetup", &I);
2290         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2291                                                BBState.ExitValue;
2292         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2293           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2294           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2295               << AbsSPAdj << ">.\n";
2296         }
2297         BBState.ExitValue += Size;
2298         BBState.ExitIsSetup = false;
2299       }
2300     }
2301     SPState[MBB->getNumber()] = BBState;
2302 
2303     // Make sure the exit state of any predecessor is consistent with the entry
2304     // state.
2305     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2306          E = MBB->pred_end(); I != E; ++I) {
2307       if (Reachable.count(*I) &&
2308           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2309            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2310         report("The exit stack state of a predecessor is inconsistent.", MBB);
2311         errs() << "Predecessor " << printMBBReference(*(*I))
2312                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2313                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2314                << printMBBReference(*MBB) << " has entry state ("
2315                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2316       }
2317     }
2318 
2319     // Make sure the entry state of any successor is consistent with the exit
2320     // state.
2321     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2322          E = MBB->succ_end(); I != E; ++I) {
2323       if (Reachable.count(*I) &&
2324           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2325            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2326         report("The entry stack state of a successor is inconsistent.", MBB);
2327         errs() << "Successor " << printMBBReference(*(*I))
2328                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2329                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2330                << printMBBReference(*MBB) << " has exit state ("
2331                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2332       }
2333     }
2334 
2335     // Make sure a basic block with return ends with zero stack adjustment.
2336     if (!MBB->empty() && MBB->back().isReturn()) {
2337       if (BBState.ExitIsSetup)
2338         report("A return block ends with a FrameSetup.", MBB);
2339       if (BBState.ExitValue)
2340         report("A return block ends with a nonzero stack adjustment.", MBB);
2341     }
2342   }
2343 }
2344