1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Casting.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <string>
43 #include <utility>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 void llvm::DeleteDeadBlock(BasicBlock *BB, DeferredDominance *DDT) {
49   assert((pred_begin(BB) == pred_end(BB) ||
50          // Can delete self loop.
51          BB->getSinglePredecessor() == BB) && "Block is not dead!");
52   TerminatorInst *BBTerm = BB->getTerminator();
53   std::vector<DominatorTree::UpdateType> Updates;
54 
55   // Loop through all of our successors and make sure they know that one
56   // of their predecessors is going away.
57   if (DDT)
58     Updates.reserve(BBTerm->getNumSuccessors());
59   for (BasicBlock *Succ : BBTerm->successors()) {
60     Succ->removePredecessor(BB);
61     if (DDT)
62       Updates.push_back({DominatorTree::Delete, BB, Succ});
63   }
64 
65   // Zap all the instructions in the block.
66   while (!BB->empty()) {
67     Instruction &I = BB->back();
68     // If this instruction is used, replace uses with an arbitrary value.
69     // Because control flow can't get here, we don't care what we replace the
70     // value with.  Note that since this block is unreachable, and all values
71     // contained within it must dominate their uses, that all uses will
72     // eventually be removed (they are themselves dead).
73     if (!I.use_empty())
74       I.replaceAllUsesWith(UndefValue::get(I.getType()));
75     BB->getInstList().pop_back();
76   }
77 
78   if (DDT) {
79     DDT->applyUpdates(Updates);
80     DDT->deleteBB(BB); // Deferred deletion of BB.
81   } else {
82     BB->eraseFromParent(); // Zap the block!
83   }
84 }
85 
86 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
87                                    MemoryDependenceResults *MemDep) {
88   if (!isa<PHINode>(BB->begin())) return;
89 
90   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
91     if (PN->getIncomingValue(0) != PN)
92       PN->replaceAllUsesWith(PN->getIncomingValue(0));
93     else
94       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
95 
96     if (MemDep)
97       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
98 
99     PN->eraseFromParent();
100   }
101 }
102 
103 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
104   // Recursively deleting a PHI may cause multiple PHIs to be deleted
105   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
106   SmallVector<WeakTrackingVH, 8> PHIs;
107   for (PHINode &PN : BB->phis())
108     PHIs.push_back(&PN);
109 
110   bool Changed = false;
111   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
112     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
113       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
114 
115   return Changed;
116 }
117 
118 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
119                                      LoopInfo *LI,
120                                      MemoryDependenceResults *MemDep,
121                                      DeferredDominance *DDT) {
122   assert(!(DT && DDT) && "Cannot call with both DT and DDT.");
123 
124   if (BB->hasAddressTaken())
125     return false;
126 
127   // Can't merge if there are multiple predecessors, or no predecessors.
128   BasicBlock *PredBB = BB->getUniquePredecessor();
129   if (!PredBB) return false;
130 
131   // Don't break self-loops.
132   if (PredBB == BB) return false;
133   // Don't break unwinding instructions.
134   if (PredBB->getTerminator()->isExceptional())
135     return false;
136 
137   // Can't merge if there are multiple distinct successors.
138   if (PredBB->getUniqueSuccessor() != BB)
139     return false;
140 
141   // Can't merge if there is PHI loop.
142   for (PHINode &PN : BB->phis())
143     for (Value *IncValue : PN.incoming_values())
144       if (IncValue == &PN)
145         return false;
146 
147   // Begin by getting rid of unneeded PHIs.
148   SmallVector<AssertingVH<Value>, 4> IncomingValues;
149   if (isa<PHINode>(BB->front())) {
150     for (PHINode &PN : BB->phis())
151       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
152           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
153         IncomingValues.push_back(PN.getIncomingValue(0));
154     FoldSingleEntryPHINodes(BB, MemDep);
155   }
156 
157   // Deferred DT update: Collect all the edges that exit BB. These
158   // dominator edges will be redirected from Pred.
159   std::vector<DominatorTree::UpdateType> Updates;
160   if (DDT) {
161     Updates.reserve(1 + (2 * succ_size(BB)));
162     Updates.push_back({DominatorTree::Delete, PredBB, BB});
163     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
164       Updates.push_back({DominatorTree::Delete, BB, *I});
165       Updates.push_back({DominatorTree::Insert, PredBB, *I});
166     }
167   }
168 
169   // Delete the unconditional branch from the predecessor...
170   PredBB->getInstList().pop_back();
171 
172   // Make all PHI nodes that referred to BB now refer to Pred as their
173   // source...
174   BB->replaceAllUsesWith(PredBB);
175 
176   // Move all definitions in the successor to the predecessor...
177   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
178 
179   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
180   for (auto Incoming : IncomingValues) {
181     if (isa<Instruction>(*Incoming)) {
182       SmallVector<DbgValueInst *, 2> DbgValues;
183       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
184           DbgValueSet;
185       llvm::findDbgValues(DbgValues, Incoming);
186       for (auto &DVI : DbgValues) {
187         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
188         if (!R.second)
189           DVI->eraseFromParent();
190       }
191     }
192   }
193 
194   // Inherit predecessors name if it exists.
195   if (!PredBB->hasName())
196     PredBB->takeName(BB);
197 
198   // Finally, erase the old block and update dominator info.
199   if (DT)
200     if (DomTreeNode *DTN = DT->getNode(BB)) {
201       DomTreeNode *PredDTN = DT->getNode(PredBB);
202       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
203       for (DomTreeNode *DI : Children)
204         DT->changeImmediateDominator(DI, PredDTN);
205 
206       DT->eraseNode(BB);
207     }
208 
209   if (LI)
210     LI->removeBlock(BB);
211 
212   if (MemDep)
213     MemDep->invalidateCachedPredecessors();
214 
215   if (DDT) {
216     DDT->deleteBB(BB); // Deferred deletion of BB.
217     DDT->applyUpdates(Updates);
218   } else {
219     BB->eraseFromParent(); // Nuke BB.
220   }
221   return true;
222 }
223 
224 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
225                                 BasicBlock::iterator &BI, Value *V) {
226   Instruction &I = *BI;
227   // Replaces all of the uses of the instruction with uses of the value
228   I.replaceAllUsesWith(V);
229 
230   // Make sure to propagate a name if there is one already.
231   if (I.hasName() && !V->hasName())
232     V->takeName(&I);
233 
234   // Delete the unnecessary instruction now...
235   BI = BIL.erase(BI);
236 }
237 
238 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
239                                BasicBlock::iterator &BI, Instruction *I) {
240   assert(I->getParent() == nullptr &&
241          "ReplaceInstWithInst: Instruction already inserted into basic block!");
242 
243   // Copy debug location to newly added instruction, if it wasn't already set
244   // by the caller.
245   if (!I->getDebugLoc())
246     I->setDebugLoc(BI->getDebugLoc());
247 
248   // Insert the new instruction into the basic block...
249   BasicBlock::iterator New = BIL.insert(BI, I);
250 
251   // Replace all uses of the old instruction, and delete it.
252   ReplaceInstWithValue(BIL, BI, I);
253 
254   // Move BI back to point to the newly inserted instruction
255   BI = New;
256 }
257 
258 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
259   BasicBlock::iterator BI(From);
260   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
261 }
262 
263 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
264                             LoopInfo *LI) {
265   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
266 
267   // If this is a critical edge, let SplitCriticalEdge do it.
268   TerminatorInst *LatchTerm = BB->getTerminator();
269   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
270                                                 .setPreserveLCSSA()))
271     return LatchTerm->getSuccessor(SuccNum);
272 
273   // If the edge isn't critical, then BB has a single successor or Succ has a
274   // single pred.  Split the block.
275   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
276     // If the successor only has a single pred, split the top of the successor
277     // block.
278     assert(SP == BB && "CFG broken");
279     SP = nullptr;
280     return SplitBlock(Succ, &Succ->front(), DT, LI);
281   }
282 
283   // Otherwise, if BB has a single successor, split it at the bottom of the
284   // block.
285   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
286          "Should have a single succ!");
287   return SplitBlock(BB, BB->getTerminator(), DT, LI);
288 }
289 
290 unsigned
291 llvm::SplitAllCriticalEdges(Function &F,
292                             const CriticalEdgeSplittingOptions &Options) {
293   unsigned NumBroken = 0;
294   for (BasicBlock &BB : F) {
295     TerminatorInst *TI = BB.getTerminator();
296     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
297       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
298         if (SplitCriticalEdge(TI, i, Options))
299           ++NumBroken;
300   }
301   return NumBroken;
302 }
303 
304 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
305                              DominatorTree *DT, LoopInfo *LI) {
306   BasicBlock::iterator SplitIt = SplitPt->getIterator();
307   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
308     ++SplitIt;
309   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
310 
311   // The new block lives in whichever loop the old one did. This preserves
312   // LCSSA as well, because we force the split point to be after any PHI nodes.
313   if (LI)
314     if (Loop *L = LI->getLoopFor(Old))
315       L->addBasicBlockToLoop(New, *LI);
316 
317   if (DT)
318     // Old dominates New. New node dominates all other nodes dominated by Old.
319     if (DomTreeNode *OldNode = DT->getNode(Old)) {
320       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
321 
322       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
323       for (DomTreeNode *I : Children)
324         DT->changeImmediateDominator(I, NewNode);
325     }
326 
327   return New;
328 }
329 
330 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
331 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
332                                       ArrayRef<BasicBlock *> Preds,
333                                       DominatorTree *DT, LoopInfo *LI,
334                                       bool PreserveLCSSA, bool &HasLoopExit) {
335   // Update dominator tree if available.
336   if (DT) {
337     if (OldBB == DT->getRootNode()->getBlock()) {
338       assert(NewBB == &NewBB->getParent()->getEntryBlock());
339       DT->setNewRoot(NewBB);
340     } else {
341       // Split block expects NewBB to have a non-empty set of predecessors.
342       DT->splitBlock(NewBB);
343     }
344   }
345 
346   // The rest of the logic is only relevant for updating the loop structures.
347   if (!LI)
348     return;
349 
350   assert(DT && "DT should be available to update LoopInfo!");
351   Loop *L = LI->getLoopFor(OldBB);
352 
353   // If we need to preserve loop analyses, collect some information about how
354   // this split will affect loops.
355   bool IsLoopEntry = !!L;
356   bool SplitMakesNewLoopHeader = false;
357   for (BasicBlock *Pred : Preds) {
358     // Preds that are not reachable from entry should not be used to identify if
359     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
360     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
361     // as true and make the NewBB the header of some loop. This breaks LI.
362     if (!DT->isReachableFromEntry(Pred))
363       continue;
364     // If we need to preserve LCSSA, determine if any of the preds is a loop
365     // exit.
366     if (PreserveLCSSA)
367       if (Loop *PL = LI->getLoopFor(Pred))
368         if (!PL->contains(OldBB))
369           HasLoopExit = true;
370 
371     // If we need to preserve LoopInfo, note whether any of the preds crosses
372     // an interesting loop boundary.
373     if (!L)
374       continue;
375     if (L->contains(Pred))
376       IsLoopEntry = false;
377     else
378       SplitMakesNewLoopHeader = true;
379   }
380 
381   // Unless we have a loop for OldBB, nothing else to do here.
382   if (!L)
383     return;
384 
385   if (IsLoopEntry) {
386     // Add the new block to the nearest enclosing loop (and not an adjacent
387     // loop). To find this, examine each of the predecessors and determine which
388     // loops enclose them, and select the most-nested loop which contains the
389     // loop containing the block being split.
390     Loop *InnermostPredLoop = nullptr;
391     for (BasicBlock *Pred : Preds) {
392       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
393         // Seek a loop which actually contains the block being split (to avoid
394         // adjacent loops).
395         while (PredLoop && !PredLoop->contains(OldBB))
396           PredLoop = PredLoop->getParentLoop();
397 
398         // Select the most-nested of these loops which contains the block.
399         if (PredLoop && PredLoop->contains(OldBB) &&
400             (!InnermostPredLoop ||
401              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
402           InnermostPredLoop = PredLoop;
403       }
404     }
405 
406     if (InnermostPredLoop)
407       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
408   } else {
409     L->addBasicBlockToLoop(NewBB, *LI);
410     if (SplitMakesNewLoopHeader)
411       L->moveToHeader(NewBB);
412   }
413 }
414 
415 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
416 /// This also updates AliasAnalysis, if available.
417 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
418                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
419                            bool HasLoopExit) {
420   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
421   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
422   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
423     PHINode *PN = cast<PHINode>(I++);
424 
425     // Check to see if all of the values coming in are the same.  If so, we
426     // don't need to create a new PHI node, unless it's needed for LCSSA.
427     Value *InVal = nullptr;
428     if (!HasLoopExit) {
429       InVal = PN->getIncomingValueForBlock(Preds[0]);
430       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
431         if (!PredSet.count(PN->getIncomingBlock(i)))
432           continue;
433         if (!InVal)
434           InVal = PN->getIncomingValue(i);
435         else if (InVal != PN->getIncomingValue(i)) {
436           InVal = nullptr;
437           break;
438         }
439       }
440     }
441 
442     if (InVal) {
443       // If all incoming values for the new PHI would be the same, just don't
444       // make a new PHI.  Instead, just remove the incoming values from the old
445       // PHI.
446 
447       // NOTE! This loop walks backwards for a reason! First off, this minimizes
448       // the cost of removal if we end up removing a large number of values, and
449       // second off, this ensures that the indices for the incoming values
450       // aren't invalidated when we remove one.
451       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
452         if (PredSet.count(PN->getIncomingBlock(i)))
453           PN->removeIncomingValue(i, false);
454 
455       // Add an incoming value to the PHI node in the loop for the preheader
456       // edge.
457       PN->addIncoming(InVal, NewBB);
458       continue;
459     }
460 
461     // If the values coming into the block are not the same, we need a new
462     // PHI.
463     // Create the new PHI node, insert it into NewBB at the end of the block
464     PHINode *NewPHI =
465         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
466 
467     // NOTE! This loop walks backwards for a reason! First off, this minimizes
468     // the cost of removal if we end up removing a large number of values, and
469     // second off, this ensures that the indices for the incoming values aren't
470     // invalidated when we remove one.
471     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
472       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
473       if (PredSet.count(IncomingBB)) {
474         Value *V = PN->removeIncomingValue(i, false);
475         NewPHI->addIncoming(V, IncomingBB);
476       }
477     }
478 
479     PN->addIncoming(NewPHI, NewBB);
480   }
481 }
482 
483 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
484                                          ArrayRef<BasicBlock *> Preds,
485                                          const char *Suffix, DominatorTree *DT,
486                                          LoopInfo *LI, bool PreserveLCSSA) {
487   // Do not attempt to split that which cannot be split.
488   if (!BB->canSplitPredecessors())
489     return nullptr;
490 
491   // For the landingpads we need to act a bit differently.
492   // Delegate this work to the SplitLandingPadPredecessors.
493   if (BB->isLandingPad()) {
494     SmallVector<BasicBlock*, 2> NewBBs;
495     std::string NewName = std::string(Suffix) + ".split-lp";
496 
497     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
498                                 LI, PreserveLCSSA);
499     return NewBBs[0];
500   }
501 
502   // Create new basic block, insert right before the original block.
503   BasicBlock *NewBB = BasicBlock::Create(
504       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
505 
506   // The new block unconditionally branches to the old block.
507   BranchInst *BI = BranchInst::Create(BB, NewBB);
508   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
509 
510   // Move the edges from Preds to point to NewBB instead of BB.
511   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
512     // This is slightly more strict than necessary; the minimum requirement
513     // is that there be no more than one indirectbr branching to BB. And
514     // all BlockAddress uses would need to be updated.
515     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
516            "Cannot split an edge from an IndirectBrInst");
517     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
518   }
519 
520   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
521   // node becomes an incoming value for BB's phi node.  However, if the Preds
522   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
523   // account for the newly created predecessor.
524   if (Preds.empty()) {
525     // Insert dummy values as the incoming value.
526     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
527       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
528   }
529 
530   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
531   bool HasLoopExit = false;
532   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
533                             HasLoopExit);
534 
535   if (!Preds.empty()) {
536     // Update the PHI nodes in BB with the values coming from NewBB.
537     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
538   }
539 
540   return NewBB;
541 }
542 
543 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
544                                        ArrayRef<BasicBlock *> Preds,
545                                        const char *Suffix1, const char *Suffix2,
546                                        SmallVectorImpl<BasicBlock *> &NewBBs,
547                                        DominatorTree *DT, LoopInfo *LI,
548                                        bool PreserveLCSSA) {
549   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
550 
551   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
552   // it right before the original block.
553   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
554                                           OrigBB->getName() + Suffix1,
555                                           OrigBB->getParent(), OrigBB);
556   NewBBs.push_back(NewBB1);
557 
558   // The new block unconditionally branches to the old block.
559   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
560   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
561 
562   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
563   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
564     // This is slightly more strict than necessary; the minimum requirement
565     // is that there be no more than one indirectbr branching to BB. And
566     // all BlockAddress uses would need to be updated.
567     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
568            "Cannot split an edge from an IndirectBrInst");
569     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
570   }
571 
572   bool HasLoopExit = false;
573   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
574                             HasLoopExit);
575 
576   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
577   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
578 
579   // Move the remaining edges from OrigBB to point to NewBB2.
580   SmallVector<BasicBlock*, 8> NewBB2Preds;
581   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
582        i != e; ) {
583     BasicBlock *Pred = *i++;
584     if (Pred == NewBB1) continue;
585     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
586            "Cannot split an edge from an IndirectBrInst");
587     NewBB2Preds.push_back(Pred);
588     e = pred_end(OrigBB);
589   }
590 
591   BasicBlock *NewBB2 = nullptr;
592   if (!NewBB2Preds.empty()) {
593     // Create another basic block for the rest of OrigBB's predecessors.
594     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
595                                 OrigBB->getName() + Suffix2,
596                                 OrigBB->getParent(), OrigBB);
597     NewBBs.push_back(NewBB2);
598 
599     // The new block unconditionally branches to the old block.
600     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
601     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
602 
603     // Move the remaining edges from OrigBB to point to NewBB2.
604     for (BasicBlock *NewBB2Pred : NewBB2Preds)
605       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
606 
607     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
608     HasLoopExit = false;
609     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
610                               PreserveLCSSA, HasLoopExit);
611 
612     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
613     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
614   }
615 
616   LandingPadInst *LPad = OrigBB->getLandingPadInst();
617   Instruction *Clone1 = LPad->clone();
618   Clone1->setName(Twine("lpad") + Suffix1);
619   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
620 
621   if (NewBB2) {
622     Instruction *Clone2 = LPad->clone();
623     Clone2->setName(Twine("lpad") + Suffix2);
624     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
625 
626     // Create a PHI node for the two cloned landingpad instructions only
627     // if the original landingpad instruction has some uses.
628     if (!LPad->use_empty()) {
629       assert(!LPad->getType()->isTokenTy() &&
630              "Split cannot be applied if LPad is token type. Otherwise an "
631              "invalid PHINode of token type would be created.");
632       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
633       PN->addIncoming(Clone1, NewBB1);
634       PN->addIncoming(Clone2, NewBB2);
635       LPad->replaceAllUsesWith(PN);
636     }
637     LPad->eraseFromParent();
638   } else {
639     // There is no second clone. Just replace the landing pad with the first
640     // clone.
641     LPad->replaceAllUsesWith(Clone1);
642     LPad->eraseFromParent();
643   }
644 }
645 
646 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
647                                              BasicBlock *Pred) {
648   Instruction *UncondBranch = Pred->getTerminator();
649   // Clone the return and add it to the end of the predecessor.
650   Instruction *NewRet = RI->clone();
651   Pred->getInstList().push_back(NewRet);
652 
653   // If the return instruction returns a value, and if the value was a
654   // PHI node in "BB", propagate the right value into the return.
655   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
656        i != e; ++i) {
657     Value *V = *i;
658     Instruction *NewBC = nullptr;
659     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
660       // Return value might be bitcasted. Clone and insert it before the
661       // return instruction.
662       V = BCI->getOperand(0);
663       NewBC = BCI->clone();
664       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
665       *i = NewBC;
666     }
667     if (PHINode *PN = dyn_cast<PHINode>(V)) {
668       if (PN->getParent() == BB) {
669         if (NewBC)
670           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
671         else
672           *i = PN->getIncomingValueForBlock(Pred);
673       }
674     }
675   }
676 
677   // Update any PHI nodes in the returning block to realize that we no
678   // longer branch to them.
679   BB->removePredecessor(Pred);
680   UncondBranch->eraseFromParent();
681   return cast<ReturnInst>(NewRet);
682 }
683 
684 TerminatorInst *
685 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
686                                 bool Unreachable, MDNode *BranchWeights,
687                                 DominatorTree *DT, LoopInfo *LI) {
688   BasicBlock *Head = SplitBefore->getParent();
689   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
690   TerminatorInst *HeadOldTerm = Head->getTerminator();
691   LLVMContext &C = Head->getContext();
692   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
693   TerminatorInst *CheckTerm;
694   if (Unreachable)
695     CheckTerm = new UnreachableInst(C, ThenBlock);
696   else
697     CheckTerm = BranchInst::Create(Tail, ThenBlock);
698   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
699   BranchInst *HeadNewTerm =
700     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
701   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
702   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
703 
704   if (DT) {
705     if (DomTreeNode *OldNode = DT->getNode(Head)) {
706       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
707 
708       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
709       for (DomTreeNode *Child : Children)
710         DT->changeImmediateDominator(Child, NewNode);
711 
712       // Head dominates ThenBlock.
713       DT->addNewBlock(ThenBlock, Head);
714     }
715   }
716 
717   if (LI) {
718     if (Loop *L = LI->getLoopFor(Head)) {
719       L->addBasicBlockToLoop(ThenBlock, *LI);
720       L->addBasicBlockToLoop(Tail, *LI);
721     }
722   }
723 
724   return CheckTerm;
725 }
726 
727 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
728                                          TerminatorInst **ThenTerm,
729                                          TerminatorInst **ElseTerm,
730                                          MDNode *BranchWeights) {
731   BasicBlock *Head = SplitBefore->getParent();
732   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
733   TerminatorInst *HeadOldTerm = Head->getTerminator();
734   LLVMContext &C = Head->getContext();
735   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
736   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
737   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
738   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
739   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
740   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
741   BranchInst *HeadNewTerm =
742     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
743   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
744   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
745 }
746 
747 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
748                              BasicBlock *&IfFalse) {
749   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
750   BasicBlock *Pred1 = nullptr;
751   BasicBlock *Pred2 = nullptr;
752 
753   if (SomePHI) {
754     if (SomePHI->getNumIncomingValues() != 2)
755       return nullptr;
756     Pred1 = SomePHI->getIncomingBlock(0);
757     Pred2 = SomePHI->getIncomingBlock(1);
758   } else {
759     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
760     if (PI == PE) // No predecessor
761       return nullptr;
762     Pred1 = *PI++;
763     if (PI == PE) // Only one predecessor
764       return nullptr;
765     Pred2 = *PI++;
766     if (PI != PE) // More than two predecessors
767       return nullptr;
768   }
769 
770   // We can only handle branches.  Other control flow will be lowered to
771   // branches if possible anyway.
772   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
773   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
774   if (!Pred1Br || !Pred2Br)
775     return nullptr;
776 
777   // Eliminate code duplication by ensuring that Pred1Br is conditional if
778   // either are.
779   if (Pred2Br->isConditional()) {
780     // If both branches are conditional, we don't have an "if statement".  In
781     // reality, we could transform this case, but since the condition will be
782     // required anyway, we stand no chance of eliminating it, so the xform is
783     // probably not profitable.
784     if (Pred1Br->isConditional())
785       return nullptr;
786 
787     std::swap(Pred1, Pred2);
788     std::swap(Pred1Br, Pred2Br);
789   }
790 
791   if (Pred1Br->isConditional()) {
792     // The only thing we have to watch out for here is to make sure that Pred2
793     // doesn't have incoming edges from other blocks.  If it does, the condition
794     // doesn't dominate BB.
795     if (!Pred2->getSinglePredecessor())
796       return nullptr;
797 
798     // If we found a conditional branch predecessor, make sure that it branches
799     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
800     if (Pred1Br->getSuccessor(0) == BB &&
801         Pred1Br->getSuccessor(1) == Pred2) {
802       IfTrue = Pred1;
803       IfFalse = Pred2;
804     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
805                Pred1Br->getSuccessor(1) == BB) {
806       IfTrue = Pred2;
807       IfFalse = Pred1;
808     } else {
809       // We know that one arm of the conditional goes to BB, so the other must
810       // go somewhere unrelated, and this must not be an "if statement".
811       return nullptr;
812     }
813 
814     return Pred1Br->getCondition();
815   }
816 
817   // Ok, if we got here, both predecessors end with an unconditional branch to
818   // BB.  Don't panic!  If both blocks only have a single (identical)
819   // predecessor, and THAT is a conditional branch, then we're all ok!
820   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
821   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
822     return nullptr;
823 
824   // Otherwise, if this is a conditional branch, then we can use it!
825   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
826   if (!BI) return nullptr;
827 
828   assert(BI->isConditional() && "Two successors but not conditional?");
829   if (BI->getSuccessor(0) == Pred1) {
830     IfTrue = Pred1;
831     IfFalse = Pred2;
832   } else {
833     IfTrue = Pred2;
834     IfFalse = Pred1;
835   }
836   return BI->getCondition();
837 }
838