1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header.  This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header).  This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/GlobalsModRef.h"
51 #include "llvm/Analysis/InstructionSimplify.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/IR/CFG.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-simplify"
74 
75 STATISTIC(NumNested  , "Number of nested loops split out");
76 
77 // If the block isn't already, move the new block to right after some 'outside
78 // block' block.  This prevents the preheader from being placed inside the loop
79 // body, e.g. when the loop hasn't been rotated.
placeSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)80 static void placeSplitBlockCarefully(BasicBlock *NewBB,
81                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
82                                      Loop *L) {
83   // Check to see if NewBB is already well placed.
84   Function::iterator BBI = --NewBB->getIterator();
85   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
86     if (&*BBI == SplitPreds[i])
87       return;
88   }
89 
90   // If it isn't already after an outside block, move it after one.  This is
91   // always good as it makes the uncond branch from the outside block into a
92   // fall-through.
93 
94   // Figure out *which* outside block to put this after.  Prefer an outside
95   // block that neighbors a BB actually in the loop.
96   BasicBlock *FoundBB = nullptr;
97   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
98     Function::iterator BBI = SplitPreds[i]->getIterator();
99     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
100       FoundBB = SplitPreds[i];
101       break;
102     }
103   }
104 
105   // If our heuristic for a *good* bb to place this after doesn't find
106   // anything, just pick something.  It's likely better than leaving it within
107   // the loop.
108   if (!FoundBB)
109     FoundBB = SplitPreds[0];
110   NewBB->moveAfter(FoundBB);
111 }
112 
113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
114 /// preheader, this method is called to insert one.  This method has two phases:
115 /// preheader insertion and analysis updating.
116 ///
InsertPreheaderForLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)117 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
118                                          LoopInfo *LI, bool PreserveLCSSA) {
119   BasicBlock *Header = L->getHeader();
120 
121   // Compute the set of predecessors of the loop that are not in the loop.
122   SmallVector<BasicBlock*, 8> OutsideBlocks;
123   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
124        PI != PE; ++PI) {
125     BasicBlock *P = *PI;
126     if (!L->contains(P)) {         // Coming in from outside the loop?
127       // If the loop is branched to from an indirect branch, we won't
128       // be able to fully transform the loop, because it prohibits
129       // edge splitting.
130       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
131 
132       // Keep track of it.
133       OutsideBlocks.push_back(P);
134     }
135   }
136 
137   // Split out the loop pre-header.
138   BasicBlock *PreheaderBB;
139   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
140                                        LI, PreserveLCSSA);
141   if (!PreheaderBB)
142     return nullptr;
143 
144   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
145                     << PreheaderBB->getName() << "\n");
146 
147   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
148   // code layout too horribly.
149   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
150 
151   return PreheaderBB;
152 }
153 
154 /// Add the specified block, and all of its predecessors, to the specified set,
155 /// if it's not already in there.  Stop predecessor traversal when we reach
156 /// StopBlock.
addBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)157 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
158                                   std::set<BasicBlock*> &Blocks) {
159   SmallVector<BasicBlock *, 8> Worklist;
160   Worklist.push_back(InputBB);
161   do {
162     BasicBlock *BB = Worklist.pop_back_val();
163     if (Blocks.insert(BB).second && BB != StopBlock)
164       // If BB is not already processed and it is not a stop block then
165       // insert its predecessor in the work list
166       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
167         BasicBlock *WBB = *I;
168         Worklist.push_back(WBB);
169       }
170   } while (!Worklist.empty());
171 }
172 
173 /// The first part of loop-nestification is to find a PHI node that tells
174 /// us how to partition the loops.
findPHIToPartitionLoops(Loop * L,DominatorTree * DT,AssumptionCache * AC)175 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
176                                         AssumptionCache *AC) {
177   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
178   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
179     PHINode *PN = cast<PHINode>(I);
180     ++I;
181     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
182       // This is a degenerate PHI already, don't modify it!
183       PN->replaceAllUsesWith(V);
184       PN->eraseFromParent();
185       continue;
186     }
187 
188     // Scan this PHI node looking for a use of the PHI node by itself.
189     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
190       if (PN->getIncomingValue(i) == PN &&
191           L->contains(PN->getIncomingBlock(i)))
192         // We found something tasty to remove.
193         return PN;
194   }
195   return nullptr;
196 }
197 
198 /// If this loop has multiple backedges, try to pull one of them out into
199 /// a nested loop.
200 ///
201 /// This is important for code that looks like
202 /// this:
203 ///
204 ///  Loop:
205 ///     ...
206 ///     br cond, Loop, Next
207 ///     ...
208 ///     br cond2, Loop, Out
209 ///
210 /// To identify this common case, we look at the PHI nodes in the header of the
211 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
212 /// that change in the "outer" loop, but not in the "inner" loop.
213 ///
214 /// If we are able to separate out a loop, return the new outer loop that was
215 /// created.
216 ///
separateNestedLoop(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,bool PreserveLCSSA,AssumptionCache * AC)217 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
218                                 DominatorTree *DT, LoopInfo *LI,
219                                 ScalarEvolution *SE, bool PreserveLCSSA,
220                                 AssumptionCache *AC) {
221   // Don't try to separate loops without a preheader.
222   if (!Preheader)
223     return nullptr;
224 
225   // The header is not a landing pad; preheader insertion should ensure this.
226   BasicBlock *Header = L->getHeader();
227   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
228 
229   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
230   if (!PN) return nullptr;  // No known way to partition.
231 
232   // Pull out all predecessors that have varying values in the loop.  This
233   // handles the case when a PHI node has multiple instances of itself as
234   // arguments.
235   SmallVector<BasicBlock*, 8> OuterLoopPreds;
236   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
237     if (PN->getIncomingValue(i) != PN ||
238         !L->contains(PN->getIncomingBlock(i))) {
239       // We can't split indirectbr edges.
240       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
241         return nullptr;
242       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
243     }
244   }
245   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
246 
247   // If ScalarEvolution is around and knows anything about values in
248   // this loop, tell it to forget them, because we're about to
249   // substantially change it.
250   if (SE)
251     SE->forgetLoop(L);
252 
253   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
254                                              DT, LI, PreserveLCSSA);
255 
256   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
257   // code layout too horribly.
258   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
259 
260   // Create the new outer loop.
261   Loop *NewOuter = LI->AllocateLoop();
262 
263   // Change the parent loop to use the outer loop as its child now.
264   if (Loop *Parent = L->getParentLoop())
265     Parent->replaceChildLoopWith(L, NewOuter);
266   else
267     LI->changeTopLevelLoop(L, NewOuter);
268 
269   // L is now a subloop of our outer loop.
270   NewOuter->addChildLoop(L);
271 
272   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
273        I != E; ++I)
274     NewOuter->addBlockEntry(*I);
275 
276   // Now reset the header in L, which had been moved by
277   // SplitBlockPredecessors for the outer loop.
278   L->moveToHeader(Header);
279 
280   // Determine which blocks should stay in L and which should be moved out to
281   // the Outer loop now.
282   std::set<BasicBlock*> BlocksInL;
283   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
284     BasicBlock *P = *PI;
285     if (DT->dominates(Header, P))
286       addBlockAndPredsToSet(P, Header, BlocksInL);
287   }
288 
289   // Scan all of the loop children of L, moving them to OuterLoop if they are
290   // not part of the inner loop.
291   const std::vector<Loop*> &SubLoops = L->getSubLoops();
292   for (size_t I = 0; I != SubLoops.size(); )
293     if (BlocksInL.count(SubLoops[I]->getHeader()))
294       ++I;   // Loop remains in L
295     else
296       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
297 
298   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
299   OuterLoopBlocks.push_back(NewBB);
300   // Now that we know which blocks are in L and which need to be moved to
301   // OuterLoop, move any blocks that need it.
302   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
303     BasicBlock *BB = L->getBlocks()[i];
304     if (!BlocksInL.count(BB)) {
305       // Move this block to the parent, updating the exit blocks sets
306       L->removeBlockFromLoop(BB);
307       if ((*LI)[BB] == L) {
308         LI->changeLoopFor(BB, NewOuter);
309         OuterLoopBlocks.push_back(BB);
310       }
311       --i;
312     }
313   }
314 
315   // Split edges to exit blocks from the inner loop, if they emerged in the
316   // process of separating the outer one.
317   formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
318 
319   if (PreserveLCSSA) {
320     // Fix LCSSA form for L. Some values, which previously were only used inside
321     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
322     // in corresponding exit blocks.
323     // We don't need to form LCSSA recursively, because there cannot be uses
324     // inside a newly created loop of defs from inner loops as those would
325     // already be a use of an LCSSA phi node.
326     formLCSSA(*L, *DT, LI, SE);
327 
328     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
329            "LCSSA is broken after separating nested loops!");
330   }
331 
332   return NewOuter;
333 }
334 
335 /// This method is called when the specified loop has more than one
336 /// backedge in it.
337 ///
338 /// If this occurs, revector all of these backedges to target a new basic block
339 /// and have that block branch to the loop header.  This ensures that loops
340 /// have exactly one backedge.
insertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI)341 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
342                                              DominatorTree *DT, LoopInfo *LI) {
343   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
344 
345   // Get information about the loop
346   BasicBlock *Header = L->getHeader();
347   Function *F = Header->getParent();
348 
349   // Unique backedge insertion currently depends on having a preheader.
350   if (!Preheader)
351     return nullptr;
352 
353   // The header is not an EH pad; preheader insertion should ensure this.
354   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
355 
356   // Figure out which basic blocks contain back-edges to the loop header.
357   std::vector<BasicBlock*> BackedgeBlocks;
358   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
359     BasicBlock *P = *I;
360 
361     // Indirectbr edges cannot be split, so we must fail if we find one.
362     if (isa<IndirectBrInst>(P->getTerminator()))
363       return nullptr;
364 
365     if (P != Preheader) BackedgeBlocks.push_back(P);
366   }
367 
368   // Create and insert the new backedge block...
369   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
370                                            Header->getName() + ".backedge", F);
371   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
372   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
373 
374   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
375                     << BEBlock->getName() << "\n");
376 
377   // Move the new backedge block to right after the last backedge block.
378   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
379   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
380 
381   // Now that the block has been inserted into the function, create PHI nodes in
382   // the backedge block which correspond to any PHI nodes in the header block.
383   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
384     PHINode *PN = cast<PHINode>(I);
385     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
386                                      PN->getName()+".be", BETerminator);
387 
388     // Loop over the PHI node, moving all entries except the one for the
389     // preheader over to the new PHI node.
390     unsigned PreheaderIdx = ~0U;
391     bool HasUniqueIncomingValue = true;
392     Value *UniqueValue = nullptr;
393     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
394       BasicBlock *IBB = PN->getIncomingBlock(i);
395       Value *IV = PN->getIncomingValue(i);
396       if (IBB == Preheader) {
397         PreheaderIdx = i;
398       } else {
399         NewPN->addIncoming(IV, IBB);
400         if (HasUniqueIncomingValue) {
401           if (!UniqueValue)
402             UniqueValue = IV;
403           else if (UniqueValue != IV)
404             HasUniqueIncomingValue = false;
405         }
406       }
407     }
408 
409     // Delete all of the incoming values from the old PN except the preheader's
410     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
411     if (PreheaderIdx != 0) {
412       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
413       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
414     }
415     // Nuke all entries except the zero'th.
416     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
417       PN->removeIncomingValue(e-i, false);
418 
419     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
420     PN->addIncoming(NewPN, BEBlock);
421 
422     // As an optimization, if all incoming values in the new PhiNode (which is a
423     // subset of the incoming values of the old PHI node) have the same value,
424     // eliminate the PHI Node.
425     if (HasUniqueIncomingValue) {
426       NewPN->replaceAllUsesWith(UniqueValue);
427       BEBlock->getInstList().erase(NewPN);
428     }
429   }
430 
431   // Now that all of the PHI nodes have been inserted and adjusted, modify the
432   // backedge blocks to jump to the BEBlock instead of the header.
433   // If one of the backedges has llvm.loop metadata attached, we remove
434   // it from the backedge and add it to BEBlock.
435   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
436   MDNode *LoopMD = nullptr;
437   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
438     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
439     if (!LoopMD)
440       LoopMD = TI->getMetadata(LoopMDKind);
441     TI->setMetadata(LoopMDKind, nullptr);
442     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
443       if (TI->getSuccessor(Op) == Header)
444         TI->setSuccessor(Op, BEBlock);
445   }
446   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
447 
448   //===--- Update all analyses which we must preserve now -----------------===//
449 
450   // Update Loop Information - we know that this block is now in the current
451   // loop and all parent loops.
452   L->addBasicBlockToLoop(BEBlock, *LI);
453 
454   // Update dominator information
455   DT->splitBlock(BEBlock);
456 
457   return BEBlock;
458 }
459 
460 /// Simplify one loop and queue further loops for simplification.
simplifyOneLoop(Loop * L,SmallVectorImpl<Loop * > & Worklist,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)461 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
462                             DominatorTree *DT, LoopInfo *LI,
463                             ScalarEvolution *SE, AssumptionCache *AC,
464                             bool PreserveLCSSA) {
465   bool Changed = false;
466 ReprocessLoop:
467 
468   // Check to see that no blocks (other than the header) in this loop have
469   // predecessors that are not in the loop.  This is not valid for natural
470   // loops, but can occur if the blocks are unreachable.  Since they are
471   // unreachable we can just shamelessly delete those CFG edges!
472   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
473        BB != E; ++BB) {
474     if (*BB == L->getHeader()) continue;
475 
476     SmallPtrSet<BasicBlock*, 4> BadPreds;
477     for (pred_iterator PI = pred_begin(*BB),
478          PE = pred_end(*BB); PI != PE; ++PI) {
479       BasicBlock *P = *PI;
480       if (!L->contains(P))
481         BadPreds.insert(P);
482     }
483 
484     // Delete each unique out-of-loop (and thus dead) predecessor.
485     for (BasicBlock *P : BadPreds) {
486 
487       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
488                         << P->getName() << "\n");
489 
490       // Zap the dead pred's terminator and replace it with unreachable.
491       TerminatorInst *TI = P->getTerminator();
492       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA);
493       Changed = true;
494     }
495   }
496 
497   // If there are exiting blocks with branches on undef, resolve the undef in
498   // the direction which will exit the loop. This will help simplify loop
499   // trip count computations.
500   SmallVector<BasicBlock*, 8> ExitingBlocks;
501   L->getExitingBlocks(ExitingBlocks);
502   for (BasicBlock *ExitingBlock : ExitingBlocks)
503     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
504       if (BI->isConditional()) {
505         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
506 
507           LLVM_DEBUG(dbgs()
508                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
509                      << ExitingBlock->getName() << "\n");
510 
511           BI->setCondition(ConstantInt::get(Cond->getType(),
512                                             !L->contains(BI->getSuccessor(0))));
513 
514           Changed = true;
515         }
516       }
517 
518   // Does the loop already have a preheader?  If so, don't insert one.
519   BasicBlock *Preheader = L->getLoopPreheader();
520   if (!Preheader) {
521     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
522     if (Preheader)
523       Changed = true;
524   }
525 
526   // Next, check to make sure that all exit nodes of the loop only have
527   // predecessors that are inside of the loop.  This check guarantees that the
528   // loop preheader/header will dominate the exit blocks.  If the exit block has
529   // predecessors from outside of the loop, split the edge now.
530   if (formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA))
531     Changed = true;
532 
533   // If the header has more than two predecessors at this point (from the
534   // preheader and from multiple backedges), we must adjust the loop.
535   BasicBlock *LoopLatch = L->getLoopLatch();
536   if (!LoopLatch) {
537     // If this is really a nested loop, rip it out into a child loop.  Don't do
538     // this for loops with a giant number of backedges, just factor them into a
539     // common backedge instead.
540     if (L->getNumBackEdges() < 8) {
541       if (Loop *OuterL =
542               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
543         ++NumNested;
544         // Enqueue the outer loop as it should be processed next in our
545         // depth-first nest walk.
546         Worklist.push_back(OuterL);
547 
548         // This is a big restructuring change, reprocess the whole loop.
549         Changed = true;
550         // GCC doesn't tail recursion eliminate this.
551         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
552         goto ReprocessLoop;
553       }
554     }
555 
556     // If we either couldn't, or didn't want to, identify nesting of the loops,
557     // insert a new block that all backedges target, then make it jump to the
558     // loop header.
559     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
560     if (LoopLatch)
561       Changed = true;
562   }
563 
564   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
565 
566   // Scan over the PHI nodes in the loop header.  Since they now have only two
567   // incoming values (the loop is canonicalized), we may have simplified the PHI
568   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
569   PHINode *PN;
570   for (BasicBlock::iterator I = L->getHeader()->begin();
571        (PN = dyn_cast<PHINode>(I++)); )
572     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
573       if (SE) SE->forgetValue(PN);
574       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
575         PN->replaceAllUsesWith(V);
576         PN->eraseFromParent();
577       }
578     }
579 
580   // If this loop has multiple exits and the exits all go to the same
581   // block, attempt to merge the exits. This helps several passes, such
582   // as LoopRotation, which do not support loops with multiple exits.
583   // SimplifyCFG also does this (and this code uses the same utility
584   // function), however this code is loop-aware, where SimplifyCFG is
585   // not. That gives it the advantage of being able to hoist
586   // loop-invariant instructions out of the way to open up more
587   // opportunities, and the disadvantage of having the responsibility
588   // to preserve dominator information.
589   auto HasUniqueExitBlock = [&]() {
590     BasicBlock *UniqueExit = nullptr;
591     for (auto *ExitingBB : ExitingBlocks)
592       for (auto *SuccBB : successors(ExitingBB)) {
593         if (L->contains(SuccBB))
594           continue;
595 
596         if (!UniqueExit)
597           UniqueExit = SuccBB;
598         else if (UniqueExit != SuccBB)
599           return false;
600       }
601 
602     return true;
603   };
604   if (HasUniqueExitBlock()) {
605     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
606       BasicBlock *ExitingBlock = ExitingBlocks[i];
607       if (!ExitingBlock->getSinglePredecessor()) continue;
608       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
609       if (!BI || !BI->isConditional()) continue;
610       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
611       if (!CI || CI->getParent() != ExitingBlock) continue;
612 
613       // Attempt to hoist out all instructions except for the
614       // comparison and the branch.
615       bool AllInvariant = true;
616       bool AnyInvariant = false;
617       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
618         Instruction *Inst = &*I++;
619         if (Inst == CI)
620           continue;
621         if (!L->makeLoopInvariant(Inst, AnyInvariant,
622                                   Preheader ? Preheader->getTerminator()
623                                             : nullptr)) {
624           AllInvariant = false;
625           break;
626         }
627       }
628       if (AnyInvariant) {
629         Changed = true;
630         // The loop disposition of all SCEV expressions that depend on any
631         // hoisted values have also changed.
632         if (SE)
633           SE->forgetLoopDispositions(L);
634       }
635       if (!AllInvariant) continue;
636 
637       // The block has now been cleared of all instructions except for
638       // a comparison and a conditional branch. SimplifyCFG may be able
639       // to fold it now.
640       if (!FoldBranchToCommonDest(BI))
641         continue;
642 
643       // Success. The block is now dead, so remove it from the loop,
644       // update the dominator tree and delete it.
645       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
646                         << ExitingBlock->getName() << "\n");
647 
648       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
649       Changed = true;
650       LI->removeBlock(ExitingBlock);
651 
652       DomTreeNode *Node = DT->getNode(ExitingBlock);
653       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
654         Node->getChildren();
655       while (!Children.empty()) {
656         DomTreeNode *Child = Children.front();
657         DT->changeImmediateDominator(Child, Node->getIDom());
658       }
659       DT->eraseNode(ExitingBlock);
660 
661       BI->getSuccessor(0)->removePredecessor(
662           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
663       BI->getSuccessor(1)->removePredecessor(
664           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
665       ExitingBlock->eraseFromParent();
666     }
667   }
668 
669   // Changing exit conditions for blocks may affect exit counts of this loop and
670   // any of its paretns, so we must invalidate the entire subtree if we've made
671   // any changes.
672   if (Changed && SE)
673     SE->forgetTopmostLoop(L);
674 
675   return Changed;
676 }
677 
simplifyLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)678 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
679                         ScalarEvolution *SE, AssumptionCache *AC,
680                         bool PreserveLCSSA) {
681   bool Changed = false;
682 
683 #ifndef NDEBUG
684   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
685   // form.
686   if (PreserveLCSSA) {
687     assert(DT && "DT not available.");
688     assert(LI && "LI not available.");
689     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
690            "Requested to preserve LCSSA, but it's already broken.");
691   }
692 #endif
693 
694   // Worklist maintains our depth-first queue of loops in this nest to process.
695   SmallVector<Loop *, 4> Worklist;
696   Worklist.push_back(L);
697 
698   // Walk the worklist from front to back, pushing newly found sub loops onto
699   // the back. This will let us process loops from back to front in depth-first
700   // order. We can use this simple process because loops form a tree.
701   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
702     Loop *L2 = Worklist[Idx];
703     Worklist.append(L2->begin(), L2->end());
704   }
705 
706   while (!Worklist.empty())
707     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
708                                AC, PreserveLCSSA);
709 
710   return Changed;
711 }
712 
713 namespace {
714   struct LoopSimplify : public FunctionPass {
715     static char ID; // Pass identification, replacement for typeid
LoopSimplify__anonaef35a170211::LoopSimplify716     LoopSimplify() : FunctionPass(ID) {
717       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
718     }
719 
720     bool runOnFunction(Function &F) override;
721 
getAnalysisUsage__anonaef35a170211::LoopSimplify722     void getAnalysisUsage(AnalysisUsage &AU) const override {
723       AU.addRequired<AssumptionCacheTracker>();
724 
725       // We need loop information to identify the loops...
726       AU.addRequired<DominatorTreeWrapperPass>();
727       AU.addPreserved<DominatorTreeWrapperPass>();
728 
729       AU.addRequired<LoopInfoWrapperPass>();
730       AU.addPreserved<LoopInfoWrapperPass>();
731 
732       AU.addPreserved<BasicAAWrapperPass>();
733       AU.addPreserved<AAResultsWrapperPass>();
734       AU.addPreserved<GlobalsAAWrapperPass>();
735       AU.addPreserved<ScalarEvolutionWrapperPass>();
736       AU.addPreserved<SCEVAAWrapperPass>();
737       AU.addPreservedID(LCSSAID);
738       AU.addPreserved<DependenceAnalysisWrapperPass>();
739       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
740     }
741 
742     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
743     void verifyAnalysis() const override;
744   };
745 }
746 
747 char LoopSimplify::ID = 0;
748 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
749                 "Canonicalize natural loops", false, false)
750 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
751 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
752 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
753 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
754                 "Canonicalize natural loops", false, false)
755 
756 // Publicly exposed interface to pass...
757 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()758 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
759 
760 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
761 /// it in any convenient order) inserting preheaders...
762 ///
runOnFunction(Function & F)763 bool LoopSimplify::runOnFunction(Function &F) {
764   bool Changed = false;
765   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
766   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
767   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
768   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
769   AssumptionCache *AC =
770       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
771 
772   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
773 
774   // Simplify each loop nest in the function.
775   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
776     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
777 
778 #ifndef NDEBUG
779   if (PreserveLCSSA) {
780     bool InLCSSA = all_of(
781         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
782     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
783   }
784 #endif
785   return Changed;
786 }
787 
run(Function & F,FunctionAnalysisManager & AM)788 PreservedAnalyses LoopSimplifyPass::run(Function &F,
789                                         FunctionAnalysisManager &AM) {
790   bool Changed = false;
791   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
792   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
793   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
794   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
795 
796   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
797   // after simplifying the loops.
798   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
799     Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false);
800 
801   if (!Changed)
802     return PreservedAnalyses::all();
803 
804   PreservedAnalyses PA;
805   PA.preserve<DominatorTreeAnalysis>();
806   PA.preserve<LoopAnalysis>();
807   PA.preserve<BasicAA>();
808   PA.preserve<GlobalsAA>();
809   PA.preserve<SCEVAA>();
810   PA.preserve<ScalarEvolutionAnalysis>();
811   PA.preserve<DependenceAnalysis>();
812   return PA;
813 }
814 
815 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
816 // below.
817 #if 0
818 static void verifyLoop(Loop *L) {
819   // Verify subloops.
820   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
821     verifyLoop(*I);
822 
823   // It used to be possible to just assert L->isLoopSimplifyForm(), however
824   // with the introduction of indirectbr, there are now cases where it's
825   // not possible to transform a loop as necessary. We can at least check
826   // that there is an indirectbr near any time there's trouble.
827 
828   // Indirectbr can interfere with preheader and unique backedge insertion.
829   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
830     bool HasIndBrPred = false;
831     for (pred_iterator PI = pred_begin(L->getHeader()),
832          PE = pred_end(L->getHeader()); PI != PE; ++PI)
833       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
834         HasIndBrPred = true;
835         break;
836       }
837     assert(HasIndBrPred &&
838            "LoopSimplify has no excuse for missing loop header info!");
839     (void)HasIndBrPred;
840   }
841 
842   // Indirectbr can interfere with exit block canonicalization.
843   if (!L->hasDedicatedExits()) {
844     bool HasIndBrExiting = false;
845     SmallVector<BasicBlock*, 8> ExitingBlocks;
846     L->getExitingBlocks(ExitingBlocks);
847     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
848       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
849         HasIndBrExiting = true;
850         break;
851       }
852     }
853 
854     assert(HasIndBrExiting &&
855            "LoopSimplify has no excuse for missing exit block info!");
856     (void)HasIndBrExiting;
857   }
858 }
859 #endif
860 
verifyAnalysis() const861 void LoopSimplify::verifyAnalysis() const {
862   // FIXME: This routine is being called mid-way through the loop pass manager
863   // as loop passes destroy this analysis. That's actually fine, but we have no
864   // way of expressing that here. Once all of the passes that destroy this are
865   // hoisted out of the loop pass manager we can add back verification here.
866 #if 0
867   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
868     verifyLoop(*I);
869 #endif
870 }
871