1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the GNU runtime.  The
11 // class in this file generates structures used by the GNU Objective-C runtime
12 // library.  These structures are defined in objc/objc.h and objc/objc-api.h in
13 // the GNU runtime distribution.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CGObjCRuntime.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "CGCXXABI.h"
22 #include "clang/CodeGen/ConstantInitBuilder.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/Basic/FileManager.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringMap.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/ConvertUTF.h"
39 #include <cctype>
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 namespace {
45 
SymbolNameForMethod(StringRef ClassName,StringRef CategoryName,const Selector MethodName,bool isClassMethod)46 std::string SymbolNameForMethod( StringRef ClassName,
47      StringRef CategoryName, const Selector MethodName,
48     bool isClassMethod) {
49   std::string MethodNameColonStripped = MethodName.getAsString();
50   std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
51       ':', '_');
52   return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
53     CategoryName + "_" + MethodNameColonStripped).str();
54 }
55 
56 /// Class that lazily initialises the runtime function.  Avoids inserting the
57 /// types and the function declaration into a module if they're not used, and
58 /// avoids constructing the type more than once if it's used more than once.
59 class LazyRuntimeFunction {
60   CodeGenModule *CGM;
61   llvm::FunctionType *FTy;
62   const char *FunctionName;
63   llvm::Constant *Function;
64 
65 public:
66   /// Constructor leaves this class uninitialized, because it is intended to
67   /// be used as a field in another class and not all of the types that are
68   /// used as arguments will necessarily be available at construction time.
LazyRuntimeFunction()69   LazyRuntimeFunction()
70       : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
71 
72   /// Initialises the lazy function with the name, return type, and the types
73   /// of the arguments.
74   template <typename... Tys>
init(CodeGenModule * Mod,const char * name,llvm::Type * RetTy,Tys * ...Types)75   void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
76             Tys *... Types) {
77     CGM = Mod;
78     FunctionName = name;
79     Function = nullptr;
80     if(sizeof...(Tys)) {
81       SmallVector<llvm::Type *, 8> ArgTys({Types...});
82       FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
83     }
84     else {
85       FTy = llvm::FunctionType::get(RetTy, None, false);
86     }
87   }
88 
getType()89   llvm::FunctionType *getType() { return FTy; }
90 
91   /// Overloaded cast operator, allows the class to be implicitly cast to an
92   /// LLVM constant.
operator llvm::Constant*()93   operator llvm::Constant *() {
94     if (!Function) {
95       if (!FunctionName)
96         return nullptr;
97       Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
98     }
99     return Function;
100   }
operator llvm::Function*()101   operator llvm::Function *() {
102     return cast<llvm::Function>((llvm::Constant *)*this);
103   }
104 };
105 
106 
107 /// GNU Objective-C runtime code generation.  This class implements the parts of
108 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
109 /// GNUstep and ObjFW).
110 class CGObjCGNU : public CGObjCRuntime {
111 protected:
112   /// The LLVM module into which output is inserted
113   llvm::Module &TheModule;
114   /// strut objc_super.  Used for sending messages to super.  This structure
115   /// contains the receiver (object) and the expected class.
116   llvm::StructType *ObjCSuperTy;
117   /// struct objc_super*.  The type of the argument to the superclass message
118   /// lookup functions.
119   llvm::PointerType *PtrToObjCSuperTy;
120   /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
121   /// SEL is included in a header somewhere, in which case it will be whatever
122   /// type is declared in that header, most likely {i8*, i8*}.
123   llvm::PointerType *SelectorTy;
124   /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
125   /// places where it's used
126   llvm::IntegerType *Int8Ty;
127   /// Pointer to i8 - LLVM type of char*, for all of the places where the
128   /// runtime needs to deal with C strings.
129   llvm::PointerType *PtrToInt8Ty;
130   /// struct objc_protocol type
131   llvm::StructType *ProtocolTy;
132   /// Protocol * type.
133   llvm::PointerType *ProtocolPtrTy;
134   /// Instance Method Pointer type.  This is a pointer to a function that takes,
135   /// at a minimum, an object and a selector, and is the generic type for
136   /// Objective-C methods.  Due to differences between variadic / non-variadic
137   /// calling conventions, it must always be cast to the correct type before
138   /// actually being used.
139   llvm::PointerType *IMPTy;
140   /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
141   /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
142   /// but if the runtime header declaring it is included then it may be a
143   /// pointer to a structure.
144   llvm::PointerType *IdTy;
145   /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
146   /// message lookup function and some GC-related functions.
147   llvm::PointerType *PtrToIdTy;
148   /// The clang type of id.  Used when using the clang CGCall infrastructure to
149   /// call Objective-C methods.
150   CanQualType ASTIdTy;
151   /// LLVM type for C int type.
152   llvm::IntegerType *IntTy;
153   /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
154   /// used in the code to document the difference between i8* meaning a pointer
155   /// to a C string and i8* meaning a pointer to some opaque type.
156   llvm::PointerType *PtrTy;
157   /// LLVM type for C long type.  The runtime uses this in a lot of places where
158   /// it should be using intptr_t, but we can't fix this without breaking
159   /// compatibility with GCC...
160   llvm::IntegerType *LongTy;
161   /// LLVM type for C size_t.  Used in various runtime data structures.
162   llvm::IntegerType *SizeTy;
163   /// LLVM type for C intptr_t.
164   llvm::IntegerType *IntPtrTy;
165   /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
166   llvm::IntegerType *PtrDiffTy;
167   /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
168   /// variables.
169   llvm::PointerType *PtrToIntTy;
170   /// LLVM type for Objective-C BOOL type.
171   llvm::Type *BoolTy;
172   /// 32-bit integer type, to save us needing to look it up every time it's used.
173   llvm::IntegerType *Int32Ty;
174   /// 64-bit integer type, to save us needing to look it up every time it's used.
175   llvm::IntegerType *Int64Ty;
176   /// The type of struct objc_property.
177   llvm::StructType *PropertyMetadataTy;
178   /// Metadata kind used to tie method lookups to message sends.  The GNUstep
179   /// runtime provides some LLVM passes that can use this to do things like
180   /// automatic IMP caching and speculative inlining.
181   unsigned msgSendMDKind;
182   /// Does the current target use SEH-based exceptions? False implies
183   /// Itanium-style DWARF unwinding.
184   bool usesSEHExceptions;
185 
186   /// Helper to check if we are targeting a specific runtime version or later.
isRuntime(ObjCRuntime::Kind kind,unsigned major,unsigned minor=0)187   bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
188     const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
189     return (R.getKind() == kind) &&
190       (R.getVersion() >= VersionTuple(major, minor));
191   }
192 
SymbolForProtocol(StringRef Name)193   std::string SymbolForProtocol(StringRef Name) {
194     return (StringRef("._OBJC_PROTOCOL_") + Name).str();
195   }
196 
SymbolForProtocolRef(StringRef Name)197   std::string SymbolForProtocolRef(StringRef Name) {
198     return (StringRef("._OBJC_REF_PROTOCOL_") + Name).str();
199   }
200 
201 
202   /// Helper function that generates a constant string and returns a pointer to
203   /// the start of the string.  The result of this function can be used anywhere
204   /// where the C code specifies const char*.
MakeConstantString(StringRef Str,const char * Name="")205   llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
206     ConstantAddress Array = CGM.GetAddrOfConstantCString(Str, Name);
207     return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
208                                                 Array.getPointer(), Zeros);
209   }
210 
211   /// Emits a linkonce_odr string, whose name is the prefix followed by the
212   /// string value.  This allows the linker to combine the strings between
213   /// different modules.  Used for EH typeinfo names, selector strings, and a
214   /// few other things.
ExportUniqueString(const std::string & Str,const std::string & prefix,bool Private=false)215   llvm::Constant *ExportUniqueString(const std::string &Str,
216                                      const std::string &prefix,
217                                      bool Private=false) {
218     std::string name = prefix + Str;
219     auto *ConstStr = TheModule.getGlobalVariable(name);
220     if (!ConstStr) {
221       llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
222       auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
223               llvm::GlobalValue::LinkOnceODRLinkage, value, name);
224       GV->setComdat(TheModule.getOrInsertComdat(name));
225       if (Private)
226         GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
227       ConstStr = GV;
228     }
229     return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
230                                                 ConstStr, Zeros);
231   }
232 
233   /// Returns a property name and encoding string.
MakePropertyEncodingString(const ObjCPropertyDecl * PD,const Decl * Container)234   llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
235                                              const Decl *Container) {
236     assert(!isRuntime(ObjCRuntime::GNUstep, 2));
237     if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
238       std::string NameAndAttributes;
239       std::string TypeStr =
240         CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
241       NameAndAttributes += '\0';
242       NameAndAttributes += TypeStr.length() + 3;
243       NameAndAttributes += TypeStr;
244       NameAndAttributes += '\0';
245       NameAndAttributes += PD->getNameAsString();
246       return MakeConstantString(NameAndAttributes);
247     }
248     return MakeConstantString(PD->getNameAsString());
249   }
250 
251   /// Push the property attributes into two structure fields.
PushPropertyAttributes(ConstantStructBuilder & Fields,const ObjCPropertyDecl * property,bool isSynthesized=true,bool isDynamic=true)252   void PushPropertyAttributes(ConstantStructBuilder &Fields,
253       const ObjCPropertyDecl *property, bool isSynthesized=true, bool
254       isDynamic=true) {
255     int attrs = property->getPropertyAttributes();
256     // For read-only properties, clear the copy and retain flags
257     if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
258       attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
259       attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
260       attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
261       attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
262     }
263     // The first flags field has the same attribute values as clang uses internally
264     Fields.addInt(Int8Ty, attrs & 0xff);
265     attrs >>= 8;
266     attrs <<= 2;
267     // For protocol properties, synthesized and dynamic have no meaning, so we
268     // reuse these flags to indicate that this is a protocol property (both set
269     // has no meaning, as a property can't be both synthesized and dynamic)
270     attrs |= isSynthesized ? (1<<0) : 0;
271     attrs |= isDynamic ? (1<<1) : 0;
272     // The second field is the next four fields left shifted by two, with the
273     // low bit set to indicate whether the field is synthesized or dynamic.
274     Fields.addInt(Int8Ty, attrs & 0xff);
275     // Two padding fields
276     Fields.addInt(Int8Ty, 0);
277     Fields.addInt(Int8Ty, 0);
278   }
279 
280   virtual llvm::Constant *GenerateCategoryProtocolList(const
281       ObjCCategoryDecl *OCD);
PushPropertyListHeader(ConstantStructBuilder & Fields,int count)282   virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
283       int count) {
284       // int count;
285       Fields.addInt(IntTy, count);
286       // int size; (only in GNUstep v2 ABI.
287       if (isRuntime(ObjCRuntime::GNUstep, 2)) {
288         llvm::DataLayout td(&TheModule);
289         Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
290             CGM.getContext().getCharWidth());
291       }
292       // struct objc_property_list *next;
293       Fields.add(NULLPtr);
294       // struct objc_property properties[]
295       return Fields.beginArray(PropertyMetadataTy);
296   }
PushProperty(ConstantArrayBuilder & PropertiesArray,const ObjCPropertyDecl * property,const Decl * OCD,bool isSynthesized=true,bool isDynamic=true)297   virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
298             const ObjCPropertyDecl *property,
299             const Decl *OCD,
300             bool isSynthesized=true, bool
301             isDynamic=true) {
302     auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
303     ASTContext &Context = CGM.getContext();
304     Fields.add(MakePropertyEncodingString(property, OCD));
305     PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
306     auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
307       if (accessor) {
308         std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
309         llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
310         Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
311         Fields.add(TypeEncoding);
312       } else {
313         Fields.add(NULLPtr);
314         Fields.add(NULLPtr);
315       }
316     };
317     addPropertyMethod(property->getGetterMethodDecl());
318     addPropertyMethod(property->getSetterMethodDecl());
319     Fields.finishAndAddTo(PropertiesArray);
320   }
321 
322   /// Ensures that the value has the required type, by inserting a bitcast if
323   /// required.  This function lets us avoid inserting bitcasts that are
324   /// redundant.
EnforceType(CGBuilderTy & B,llvm::Value * V,llvm::Type * Ty)325   llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
326     if (V->getType() == Ty) return V;
327     return B.CreateBitCast(V, Ty);
328   }
EnforceType(CGBuilderTy & B,Address V,llvm::Type * Ty)329   Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
330     if (V.getType() == Ty) return V;
331     return B.CreateBitCast(V, Ty);
332   }
333 
334   // Some zeros used for GEPs in lots of places.
335   llvm::Constant *Zeros[2];
336   /// Null pointer value.  Mainly used as a terminator in various arrays.
337   llvm::Constant *NULLPtr;
338   /// LLVM context.
339   llvm::LLVMContext &VMContext;
340 
341 protected:
342 
343   /// Placeholder for the class.  Lots of things refer to the class before we've
344   /// actually emitted it.  We use this alias as a placeholder, and then replace
345   /// it with a pointer to the class structure before finally emitting the
346   /// module.
347   llvm::GlobalAlias *ClassPtrAlias;
348   /// Placeholder for the metaclass.  Lots of things refer to the class before
349   /// we've / actually emitted it.  We use this alias as a placeholder, and then
350   /// replace / it with a pointer to the metaclass structure before finally
351   /// emitting the / module.
352   llvm::GlobalAlias *MetaClassPtrAlias;
353   /// All of the classes that have been generated for this compilation units.
354   std::vector<llvm::Constant*> Classes;
355   /// All of the categories that have been generated for this compilation units.
356   std::vector<llvm::Constant*> Categories;
357   /// All of the Objective-C constant strings that have been generated for this
358   /// compilation units.
359   std::vector<llvm::Constant*> ConstantStrings;
360   /// Map from string values to Objective-C constant strings in the output.
361   /// Used to prevent emitting Objective-C strings more than once.  This should
362   /// not be required at all - CodeGenModule should manage this list.
363   llvm::StringMap<llvm::Constant*> ObjCStrings;
364   /// All of the protocols that have been declared.
365   llvm::StringMap<llvm::Constant*> ExistingProtocols;
366   /// For each variant of a selector, we store the type encoding and a
367   /// placeholder value.  For an untyped selector, the type will be the empty
368   /// string.  Selector references are all done via the module's selector table,
369   /// so we create an alias as a placeholder and then replace it with the real
370   /// value later.
371   typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
372   /// Type of the selector map.  This is roughly equivalent to the structure
373   /// used in the GNUstep runtime, which maintains a list of all of the valid
374   /// types for a selector in a table.
375   typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
376     SelectorMap;
377   /// A map from selectors to selector types.  This allows us to emit all
378   /// selectors of the same name and type together.
379   SelectorMap SelectorTable;
380 
381   /// Selectors related to memory management.  When compiling in GC mode, we
382   /// omit these.
383   Selector RetainSel, ReleaseSel, AutoreleaseSel;
384   /// Runtime functions used for memory management in GC mode.  Note that clang
385   /// supports code generation for calling these functions, but neither GNU
386   /// runtime actually supports this API properly yet.
387   LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
388     WeakAssignFn, GlobalAssignFn;
389 
390   typedef std::pair<std::string, std::string> ClassAliasPair;
391   /// All classes that have aliases set for them.
392   std::vector<ClassAliasPair> ClassAliases;
393 
394 protected:
395   /// Function used for throwing Objective-C exceptions.
396   LazyRuntimeFunction ExceptionThrowFn;
397   /// Function used for rethrowing exceptions, used at the end of \@finally or
398   /// \@synchronize blocks.
399   LazyRuntimeFunction ExceptionReThrowFn;
400   /// Function called when entering a catch function.  This is required for
401   /// differentiating Objective-C exceptions and foreign exceptions.
402   LazyRuntimeFunction EnterCatchFn;
403   /// Function called when exiting from a catch block.  Used to do exception
404   /// cleanup.
405   LazyRuntimeFunction ExitCatchFn;
406   /// Function called when entering an \@synchronize block.  Acquires the lock.
407   LazyRuntimeFunction SyncEnterFn;
408   /// Function called when exiting an \@synchronize block.  Releases the lock.
409   LazyRuntimeFunction SyncExitFn;
410 
411 private:
412   /// Function called if fast enumeration detects that the collection is
413   /// modified during the update.
414   LazyRuntimeFunction EnumerationMutationFn;
415   /// Function for implementing synthesized property getters that return an
416   /// object.
417   LazyRuntimeFunction GetPropertyFn;
418   /// Function for implementing synthesized property setters that return an
419   /// object.
420   LazyRuntimeFunction SetPropertyFn;
421   /// Function used for non-object declared property getters.
422   LazyRuntimeFunction GetStructPropertyFn;
423   /// Function used for non-object declared property setters.
424   LazyRuntimeFunction SetStructPropertyFn;
425 
426 protected:
427   /// The version of the runtime that this class targets.  Must match the
428   /// version in the runtime.
429   int RuntimeVersion;
430   /// The version of the protocol class.  Used to differentiate between ObjC1
431   /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
432   /// components and can not contain declared properties.  We always emit
433   /// Objective-C 2 property structures, but we have to pretend that they're
434   /// Objective-C 1 property structures when targeting the GCC runtime or it
435   /// will abort.
436   const int ProtocolVersion;
437   /// The version of the class ABI.  This value is used in the class structure
438   /// and indicates how various fields should be interpreted.
439   const int ClassABIVersion;
440   /// Generates an instance variable list structure.  This is a structure
441   /// containing a size and an array of structures containing instance variable
442   /// metadata.  This is used purely for introspection in the fragile ABI.  In
443   /// the non-fragile ABI, it's used for instance variable fixup.
444   virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
445                              ArrayRef<llvm::Constant *> IvarTypes,
446                              ArrayRef<llvm::Constant *> IvarOffsets,
447                              ArrayRef<llvm::Constant *> IvarAlign,
448                              ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
449 
450   /// Generates a method list structure.  This is a structure containing a size
451   /// and an array of structures containing method metadata.
452   ///
453   /// This structure is used by both classes and categories, and contains a next
454   /// pointer allowing them to be chained together in a linked list.
455   llvm::Constant *GenerateMethodList(StringRef ClassName,
456       StringRef CategoryName,
457       ArrayRef<const ObjCMethodDecl*> Methods,
458       bool isClassMethodList);
459 
460   /// Emits an empty protocol.  This is used for \@protocol() where no protocol
461   /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
462   /// real protocol.
463   virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
464 
465   /// Generates a list of property metadata structures.  This follows the same
466   /// pattern as method and instance variable metadata lists.
467   llvm::Constant *GeneratePropertyList(const Decl *Container,
468       const ObjCContainerDecl *OCD,
469       bool isClassProperty=false,
470       bool protocolOptionalProperties=false);
471 
472   /// Generates a list of referenced protocols.  Classes, categories, and
473   /// protocols all use this structure.
474   llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
475 
476   /// To ensure that all protocols are seen by the runtime, we add a category on
477   /// a class defined in the runtime, declaring no methods, but adopting the
478   /// protocols.  This is a horribly ugly hack, but it allows us to collect all
479   /// of the protocols without changing the ABI.
480   void GenerateProtocolHolderCategory();
481 
482   /// Generates a class structure.
483   llvm::Constant *GenerateClassStructure(
484       llvm::Constant *MetaClass,
485       llvm::Constant *SuperClass,
486       unsigned info,
487       const char *Name,
488       llvm::Constant *Version,
489       llvm::Constant *InstanceSize,
490       llvm::Constant *IVars,
491       llvm::Constant *Methods,
492       llvm::Constant *Protocols,
493       llvm::Constant *IvarOffsets,
494       llvm::Constant *Properties,
495       llvm::Constant *StrongIvarBitmap,
496       llvm::Constant *WeakIvarBitmap,
497       bool isMeta=false);
498 
499   /// Generates a method list.  This is used by protocols to define the required
500   /// and optional methods.
501   virtual llvm::Constant *GenerateProtocolMethodList(
502       ArrayRef<const ObjCMethodDecl*> Methods);
503   /// Emits optional and required method lists.
504   template<class T>
EmitProtocolMethodList(T && Methods,llvm::Constant * & Required,llvm::Constant * & Optional)505   void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
506       llvm::Constant *&Optional) {
507     SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
508     SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
509     for (const auto *I : Methods)
510       if (I->isOptional())
511         OptionalMethods.push_back(I);
512       else
513         RequiredMethods.push_back(I);
514     Required = GenerateProtocolMethodList(RequiredMethods);
515     Optional = GenerateProtocolMethodList(OptionalMethods);
516   }
517 
518   /// Returns a selector with the specified type encoding.  An empty string is
519   /// used to return an untyped selector (with the types field set to NULL).
520   virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
521                                         const std::string &TypeEncoding);
522 
523   /// Returns the name of ivar offset variables.  In the GNUstep v1 ABI, this
524   /// contains the class and ivar names, in the v2 ABI this contains the type
525   /// encoding as well.
GetIVarOffsetVariableName(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)526   virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
527                                                 const ObjCIvarDecl *Ivar) {
528     const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
529       + '.' + Ivar->getNameAsString();
530     return Name;
531   }
532   /// Returns the variable used to store the offset of an instance variable.
533   llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
534       const ObjCIvarDecl *Ivar);
535   /// Emits a reference to a class.  This allows the linker to object if there
536   /// is no class of the matching name.
537   void EmitClassRef(const std::string &className);
538 
539   /// Emits a pointer to the named class
540   virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
541                                      const std::string &Name, bool isWeak);
542 
543   /// Looks up the method for sending a message to the specified object.  This
544   /// mechanism differs between the GCC and GNU runtimes, so this method must be
545   /// overridden in subclasses.
546   virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
547                                  llvm::Value *&Receiver,
548                                  llvm::Value *cmd,
549                                  llvm::MDNode *node,
550                                  MessageSendInfo &MSI) = 0;
551 
552   /// Looks up the method for sending a message to a superclass.  This
553   /// mechanism differs between the GCC and GNU runtimes, so this method must
554   /// be overridden in subclasses.
555   virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
556                                       Address ObjCSuper,
557                                       llvm::Value *cmd,
558                                       MessageSendInfo &MSI) = 0;
559 
560   /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
561   /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
562   /// bits set to their values, LSB first, while larger ones are stored in a
563   /// structure of this / form:
564   ///
565   /// struct { int32_t length; int32_t values[length]; };
566   ///
567   /// The values in the array are stored in host-endian format, with the least
568   /// significant bit being assumed to come first in the bitfield.  Therefore,
569   /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
570   /// while a bitfield / with the 63rd bit set will be 1<<64.
571   llvm::Constant *MakeBitField(ArrayRef<bool> bits);
572 
573 public:
574   CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
575       unsigned protocolClassVersion, unsigned classABI=1);
576 
577   ConstantAddress GenerateConstantString(const StringLiteral *) override;
578 
579   RValue
580   GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
581                       QualType ResultType, Selector Sel,
582                       llvm::Value *Receiver, const CallArgList &CallArgs,
583                       const ObjCInterfaceDecl *Class,
584                       const ObjCMethodDecl *Method) override;
585   RValue
586   GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
587                            QualType ResultType, Selector Sel,
588                            const ObjCInterfaceDecl *Class,
589                            bool isCategoryImpl, llvm::Value *Receiver,
590                            bool IsClassMessage, const CallArgList &CallArgs,
591                            const ObjCMethodDecl *Method) override;
592   llvm::Value *GetClass(CodeGenFunction &CGF,
593                         const ObjCInterfaceDecl *OID) override;
594   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
595   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
596   llvm::Value *GetSelector(CodeGenFunction &CGF,
597                            const ObjCMethodDecl *Method) override;
GetConstantSelector(Selector Sel,const std::string & TypeEncoding)598   virtual llvm::Constant *GetConstantSelector(Selector Sel,
599                                               const std::string &TypeEncoding) {
600     llvm_unreachable("Runtime unable to generate constant selector");
601   }
GetConstantSelector(const ObjCMethodDecl * M)602   llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
603     return GetConstantSelector(M->getSelector(),
604         CGM.getContext().getObjCEncodingForMethodDecl(M));
605   }
606   llvm::Constant *GetEHType(QualType T) override;
607 
608   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
609                                  const ObjCContainerDecl *CD) override;
610   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
611   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
612   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
613   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
614                                    const ObjCProtocolDecl *PD) override;
615   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
616   llvm::Function *ModuleInitFunction() override;
617   llvm::Constant *GetPropertyGetFunction() override;
618   llvm::Constant *GetPropertySetFunction() override;
619   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
620                                                   bool copy) override;
621   llvm::Constant *GetSetStructFunction() override;
622   llvm::Constant *GetGetStructFunction() override;
623   llvm::Constant *GetCppAtomicObjectGetFunction() override;
624   llvm::Constant *GetCppAtomicObjectSetFunction() override;
625   llvm::Constant *EnumerationMutationFunction() override;
626 
627   void EmitTryStmt(CodeGenFunction &CGF,
628                    const ObjCAtTryStmt &S) override;
629   void EmitSynchronizedStmt(CodeGenFunction &CGF,
630                             const ObjCAtSynchronizedStmt &S) override;
631   void EmitThrowStmt(CodeGenFunction &CGF,
632                      const ObjCAtThrowStmt &S,
633                      bool ClearInsertionPoint=true) override;
634   llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
635                                  Address AddrWeakObj) override;
636   void EmitObjCWeakAssign(CodeGenFunction &CGF,
637                           llvm::Value *src, Address dst) override;
638   void EmitObjCGlobalAssign(CodeGenFunction &CGF,
639                             llvm::Value *src, Address dest,
640                             bool threadlocal=false) override;
641   void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
642                           Address dest, llvm::Value *ivarOffset) override;
643   void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
644                                 llvm::Value *src, Address dest) override;
645   void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
646                                 Address SrcPtr,
647                                 llvm::Value *Size) override;
648   LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
649                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
650                               unsigned CVRQualifiers) override;
651   llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
652                               const ObjCInterfaceDecl *Interface,
653                               const ObjCIvarDecl *Ivar) override;
654   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)655   llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
656                                      const CGBlockInfo &blockInfo) override {
657     return NULLPtr;
658   }
BuildRCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)659   llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
660                                      const CGBlockInfo &blockInfo) override {
661     return NULLPtr;
662   }
663 
BuildByrefLayout(CodeGenModule & CGM,QualType T)664   llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
665     return NULLPtr;
666   }
667 };
668 
669 /// Class representing the legacy GCC Objective-C ABI.  This is the default when
670 /// -fobjc-nonfragile-abi is not specified.
671 ///
672 /// The GCC ABI target actually generates code that is approximately compatible
673 /// with the new GNUstep runtime ABI, but refrains from using any features that
674 /// would not work with the GCC runtime.  For example, clang always generates
675 /// the extended form of the class structure, and the extra fields are simply
676 /// ignored by GCC libobjc.
677 class CGObjCGCC : public CGObjCGNU {
678   /// The GCC ABI message lookup function.  Returns an IMP pointing to the
679   /// method implementation for this message.
680   LazyRuntimeFunction MsgLookupFn;
681   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
682   /// structure describing the receiver and the class, and a selector as
683   /// arguments.  Returns the IMP for the corresponding method.
684   LazyRuntimeFunction MsgLookupSuperFn;
685 
686 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)687   llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
688                          llvm::Value *cmd, llvm::MDNode *node,
689                          MessageSendInfo &MSI) override {
690     CGBuilderTy &Builder = CGF.Builder;
691     llvm::Value *args[] = {
692             EnforceType(Builder, Receiver, IdTy),
693             EnforceType(Builder, cmd, SelectorTy) };
694     llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
695     imp->setMetadata(msgSendMDKind, node);
696     return imp.getInstruction();
697   }
698 
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)699   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
700                               llvm::Value *cmd, MessageSendInfo &MSI) override {
701     CGBuilderTy &Builder = CGF.Builder;
702     llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
703         PtrToObjCSuperTy).getPointer(), cmd};
704     return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
705   }
706 
707 public:
CGObjCGCC(CodeGenModule & Mod)708   CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
709     // IMP objc_msg_lookup(id, SEL);
710     MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
711     // IMP objc_msg_lookup_super(struct objc_super*, SEL);
712     MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
713                           PtrToObjCSuperTy, SelectorTy);
714   }
715 };
716 
717 /// Class used when targeting the new GNUstep runtime ABI.
718 class CGObjCGNUstep : public CGObjCGNU {
719     /// The slot lookup function.  Returns a pointer to a cacheable structure
720     /// that contains (among other things) the IMP.
721     LazyRuntimeFunction SlotLookupFn;
722     /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
723     /// a structure describing the receiver and the class, and a selector as
724     /// arguments.  Returns the slot for the corresponding method.  Superclass
725     /// message lookup rarely changes, so this is a good caching opportunity.
726     LazyRuntimeFunction SlotLookupSuperFn;
727     /// Specialised function for setting atomic retain properties
728     LazyRuntimeFunction SetPropertyAtomic;
729     /// Specialised function for setting atomic copy properties
730     LazyRuntimeFunction SetPropertyAtomicCopy;
731     /// Specialised function for setting nonatomic retain properties
732     LazyRuntimeFunction SetPropertyNonAtomic;
733     /// Specialised function for setting nonatomic copy properties
734     LazyRuntimeFunction SetPropertyNonAtomicCopy;
735     /// Function to perform atomic copies of C++ objects with nontrivial copy
736     /// constructors from Objective-C ivars.
737     LazyRuntimeFunction CxxAtomicObjectGetFn;
738     /// Function to perform atomic copies of C++ objects with nontrivial copy
739     /// constructors to Objective-C ivars.
740     LazyRuntimeFunction CxxAtomicObjectSetFn;
741     /// Type of an slot structure pointer.  This is returned by the various
742     /// lookup functions.
743     llvm::Type *SlotTy;
744 
745   public:
746     llvm::Constant *GetEHType(QualType T) override;
747 
748   protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)749     llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
750                            llvm::Value *cmd, llvm::MDNode *node,
751                            MessageSendInfo &MSI) override {
752       CGBuilderTy &Builder = CGF.Builder;
753       llvm::Function *LookupFn = SlotLookupFn;
754 
755       // Store the receiver on the stack so that we can reload it later
756       Address ReceiverPtr =
757         CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
758       Builder.CreateStore(Receiver, ReceiverPtr);
759 
760       llvm::Value *self;
761 
762       if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
763         self = CGF.LoadObjCSelf();
764       } else {
765         self = llvm::ConstantPointerNull::get(IdTy);
766       }
767 
768       // The lookup function is guaranteed not to capture the receiver pointer.
769       LookupFn->addParamAttr(0, llvm::Attribute::NoCapture);
770 
771       llvm::Value *args[] = {
772               EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
773               EnforceType(Builder, cmd, SelectorTy),
774               EnforceType(Builder, self, IdTy) };
775       llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
776       slot.setOnlyReadsMemory();
777       slot->setMetadata(msgSendMDKind, node);
778 
779       // Load the imp from the slot
780       llvm::Value *imp = Builder.CreateAlignedLoad(
781           Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4),
782           CGF.getPointerAlign());
783 
784       // The lookup function may have changed the receiver, so make sure we use
785       // the new one.
786       Receiver = Builder.CreateLoad(ReceiverPtr, true);
787       return imp;
788     }
789 
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)790     llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
791                                 llvm::Value *cmd,
792                                 MessageSendInfo &MSI) override {
793       CGBuilderTy &Builder = CGF.Builder;
794       llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
795 
796       llvm::CallInst *slot =
797         CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
798       slot->setOnlyReadsMemory();
799 
800       return Builder.CreateAlignedLoad(Builder.CreateStructGEP(nullptr, slot, 4),
801                                        CGF.getPointerAlign());
802     }
803 
804   public:
CGObjCGNUstep(CodeGenModule & Mod)805     CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
CGObjCGNUstep(CodeGenModule & Mod,unsigned ABI,unsigned ProtocolABI,unsigned ClassABI)806     CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
807         unsigned ClassABI) :
808       CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
809       const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
810 
811       llvm::StructType *SlotStructTy =
812           llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
813       SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
814       // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
815       SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
816                         SelectorTy, IdTy);
817       // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
818       SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
819                              PtrToObjCSuperTy, SelectorTy);
820       // If we're in ObjC++ mode, then we want to make
821       if (usesSEHExceptions) {
822           llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
823           // void objc_exception_rethrow(void)
824           ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
825       } else if (CGM.getLangOpts().CPlusPlus) {
826         llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
827         // void *__cxa_begin_catch(void *e)
828         EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
829         // void __cxa_end_catch(void)
830         ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
831         // void _Unwind_Resume_or_Rethrow(void*)
832         ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
833                                 PtrTy);
834       } else if (R.getVersion() >= VersionTuple(1, 7)) {
835         llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
836         // id objc_begin_catch(void *e)
837         EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
838         // void objc_end_catch(void)
839         ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
840         // void _Unwind_Resume_or_Rethrow(void*)
841         ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
842       }
843       llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
844       SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
845                              SelectorTy, IdTy, PtrDiffTy);
846       SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
847                                  IdTy, SelectorTy, IdTy, PtrDiffTy);
848       SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
849                                 IdTy, SelectorTy, IdTy, PtrDiffTy);
850       SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
851                                     VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
852       // void objc_setCppObjectAtomic(void *dest, const void *src, void
853       // *helper);
854       CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
855                                 PtrTy, PtrTy);
856       // void objc_getCppObjectAtomic(void *dest, const void *src, void
857       // *helper);
858       CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
859                                 PtrTy, PtrTy);
860     }
861 
GetCppAtomicObjectGetFunction()862     llvm::Constant *GetCppAtomicObjectGetFunction() override {
863       // The optimised functions were added in version 1.7 of the GNUstep
864       // runtime.
865       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
866           VersionTuple(1, 7));
867       return CxxAtomicObjectGetFn;
868     }
869 
GetCppAtomicObjectSetFunction()870     llvm::Constant *GetCppAtomicObjectSetFunction() override {
871       // The optimised functions were added in version 1.7 of the GNUstep
872       // runtime.
873       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
874           VersionTuple(1, 7));
875       return CxxAtomicObjectSetFn;
876     }
877 
GetOptimizedPropertySetFunction(bool atomic,bool copy)878     llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
879                                                     bool copy) override {
880       // The optimised property functions omit the GC check, and so are not
881       // safe to use in GC mode.  The standard functions are fast in GC mode,
882       // so there is less advantage in using them.
883       assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
884       // The optimised functions were added in version 1.7 of the GNUstep
885       // runtime.
886       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
887           VersionTuple(1, 7));
888 
889       if (atomic) {
890         if (copy) return SetPropertyAtomicCopy;
891         return SetPropertyAtomic;
892       }
893 
894       return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
895     }
896 };
897 
898 /// GNUstep Objective-C ABI version 2 implementation.
899 /// This is the ABI that provides a clean break with the legacy GCC ABI and
900 /// cleans up a number of things that were added to work around 1980s linkers.
901 class CGObjCGNUstep2 : public CGObjCGNUstep {
902   enum SectionKind
903   {
904     SelectorSection = 0,
905     ClassSection,
906     ClassReferenceSection,
907     CategorySection,
908     ProtocolSection,
909     ProtocolReferenceSection,
910     ClassAliasSection,
911     ConstantStringSection
912   };
913   static const char *const SectionsBaseNames[8];
914   template<SectionKind K>
sectionName()915   std::string sectionName() {
916     std::string name(SectionsBaseNames[K]);
917     if (CGM.getTriple().isOSBinFormatCOFF())
918       name += "$m";
919     return name;
920   }
921   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
922   /// structure describing the receiver and the class, and a selector as
923   /// arguments.  Returns the IMP for the corresponding method.
924   LazyRuntimeFunction MsgLookupSuperFn;
925   /// A flag indicating if we've emitted at least one protocol.
926   /// If we haven't, then we need to emit an empty protocol, to ensure that the
927   /// __start__objc_protocols and __stop__objc_protocols sections exist.
928   bool EmittedProtocol = false;
929   /// A flag indicating if we've emitted at least one protocol reference.
930   /// If we haven't, then we need to emit an empty protocol, to ensure that the
931   /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
932   /// exist.
933   bool EmittedProtocolRef = false;
934   /// A flag indicating if we've emitted at least one class.
935   /// If we haven't, then we need to emit an empty protocol, to ensure that the
936   /// __start__objc_classes and __stop__objc_classes sections / exist.
937   bool EmittedClass = false;
938   /// Generate the name of a symbol for a reference to a class.  Accesses to
939   /// classes should be indirected via this.
SymbolForClassRef(StringRef Name,bool isWeak)940   std::string SymbolForClassRef(StringRef Name, bool isWeak) {
941     if (isWeak)
942       return (StringRef("._OBJC_WEAK_REF_CLASS_") + Name).str();
943     else
944       return (StringRef("._OBJC_REF_CLASS_") + Name).str();
945   }
946   /// Generate the name of a class symbol.
SymbolForClass(StringRef Name)947   std::string SymbolForClass(StringRef Name) {
948     return (StringRef("._OBJC_CLASS_") + Name).str();
949   }
CallRuntimeFunction(CGBuilderTy & B,StringRef FunctionName,ArrayRef<llvm::Value * > Args)950   void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
951       ArrayRef<llvm::Value*> Args) {
952     SmallVector<llvm::Type *,8> Types;
953     for (auto *Arg : Args)
954       Types.push_back(Arg->getType());
955     llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
956         false);
957     llvm::Value *Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
958     B.CreateCall(Fn, Args);
959   }
960 
GenerateConstantString(const StringLiteral * SL)961   ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
962 
963     auto Str = SL->getString();
964     CharUnits Align = CGM.getPointerAlign();
965 
966     // Look for an existing one
967     llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
968     if (old != ObjCStrings.end())
969       return ConstantAddress(old->getValue(), Align);
970 
971     bool isNonASCII = SL->containsNonAscii();
972 
973     auto LiteralLength = SL->getLength();
974 
975     if ((CGM.getTarget().getPointerWidth(0) == 64) &&
976         (LiteralLength < 9) && !isNonASCII) {
977       // Tiny strings are only used on 64-bit platforms.  They store 8 7-bit
978       // ASCII characters in the high 56 bits, followed by a 4-bit length and a
979       // 3-bit tag (which is always 4).
980       uint64_t str = 0;
981       // Fill in the characters
982       for (unsigned i=0 ; i<LiteralLength ; i++)
983         str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
984       // Fill in the length
985       str |= LiteralLength << 3;
986       // Set the tag
987       str |= 4;
988       auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
989           llvm::ConstantInt::get(Int64Ty, str), IdTy);
990       ObjCStrings[Str] = ObjCStr;
991       return ConstantAddress(ObjCStr, Align);
992     }
993 
994     StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
995 
996     if (StringClass.empty()) StringClass = "NSConstantString";
997 
998     std::string Sym = SymbolForClass(StringClass);
999 
1000     llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1001 
1002     if (!isa)
1003       isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1004               llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1005     else if (isa->getType() != PtrToIdTy)
1006       isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1007 
1008     //  struct
1009     //  {
1010     //    Class isa;
1011     //    uint32_t flags;
1012     //    uint32_t length; // Number of codepoints
1013     //    uint32_t size; // Number of bytes
1014     //    uint32_t hash;
1015     //    const char *data;
1016     //  };
1017 
1018     ConstantInitBuilder Builder(CGM);
1019     auto Fields = Builder.beginStruct();
1020     Fields.add(isa);
1021     // For now, all non-ASCII strings are represented as UTF-16.  As such, the
1022     // number of bytes is simply double the number of UTF-16 codepoints.  In
1023     // ASCII strings, the number of bytes is equal to the number of non-ASCII
1024     // codepoints.
1025     if (isNonASCII) {
1026       unsigned NumU8CodeUnits = Str.size();
1027       // A UTF-16 representation of a unicode string contains at most the same
1028       // number of code units as a UTF-8 representation.  Allocate that much
1029       // space, plus one for the final null character.
1030       SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1031       const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1032       llvm::UTF16 *ToPtr = &ToBuf[0];
1033       (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1034           &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1035       uint32_t StringLength = ToPtr - &ToBuf[0];
1036       // Add null terminator
1037       *ToPtr = 0;
1038       // Flags: 2 indicates UTF-16 encoding
1039       Fields.addInt(Int32Ty, 2);
1040       // Number of UTF-16 codepoints
1041       Fields.addInt(Int32Ty, StringLength);
1042       // Number of bytes
1043       Fields.addInt(Int32Ty, StringLength * 2);
1044       // Hash.  Not currently initialised by the compiler.
1045       Fields.addInt(Int32Ty, 0);
1046       // pointer to the data string.
1047       auto Arr = llvm::makeArrayRef(&ToBuf[0], ToPtr+1);
1048       auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1049       auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1050           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1051       Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1052       Fields.add(Buffer);
1053     } else {
1054       // Flags: 0 indicates ASCII encoding
1055       Fields.addInt(Int32Ty, 0);
1056       // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1057       Fields.addInt(Int32Ty, Str.size());
1058       // Number of bytes
1059       Fields.addInt(Int32Ty, Str.size());
1060       // Hash.  Not currently initialised by the compiler.
1061       Fields.addInt(Int32Ty, 0);
1062       // Data pointer
1063       Fields.add(MakeConstantString(Str));
1064     }
1065     std::string StringName;
1066     bool isNamed = !isNonASCII;
1067     if (isNamed) {
1068       StringName = ".objc_str_";
1069       for (int i=0,e=Str.size() ; i<e ; ++i) {
1070         unsigned char c = Str[i];
1071         if (isalnum(c))
1072           StringName += c;
1073         else if (c == ' ')
1074           StringName += '_';
1075         else {
1076           isNamed = false;
1077           break;
1078         }
1079       }
1080     }
1081     auto *ObjCStrGV =
1082       Fields.finishAndCreateGlobal(
1083           isNamed ? StringRef(StringName) : ".objc_string",
1084           Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1085                                 : llvm::GlobalValue::PrivateLinkage);
1086     ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1087     if (isNamed) {
1088       ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1089       ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1090     }
1091     llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy);
1092     ObjCStrings[Str] = ObjCStr;
1093     ConstantStrings.push_back(ObjCStr);
1094     return ConstantAddress(ObjCStr, Align);
1095   }
1096 
PushProperty(ConstantArrayBuilder & PropertiesArray,const ObjCPropertyDecl * property,const Decl * OCD,bool isSynthesized=true,bool isDynamic=true)1097   void PushProperty(ConstantArrayBuilder &PropertiesArray,
1098             const ObjCPropertyDecl *property,
1099             const Decl *OCD,
1100             bool isSynthesized=true, bool
1101             isDynamic=true) override {
1102     // struct objc_property
1103     // {
1104     //   const char *name;
1105     //   const char *attributes;
1106     //   const char *type;
1107     //   SEL getter;
1108     //   SEL setter;
1109     // };
1110     auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1111     ASTContext &Context = CGM.getContext();
1112     Fields.add(MakeConstantString(property->getNameAsString()));
1113     std::string TypeStr =
1114       CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1115     Fields.add(MakeConstantString(TypeStr));
1116     std::string typeStr;
1117     Context.getObjCEncodingForType(property->getType(), typeStr);
1118     Fields.add(MakeConstantString(typeStr));
1119     auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1120       if (accessor) {
1121         std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1122         Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1123       } else {
1124         Fields.add(NULLPtr);
1125       }
1126     };
1127     addPropertyMethod(property->getGetterMethodDecl());
1128     addPropertyMethod(property->getSetterMethodDecl());
1129     Fields.finishAndAddTo(PropertiesArray);
1130   }
1131 
1132   llvm::Constant *
GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl * > Methods)1133   GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1134     // struct objc_protocol_method_description
1135     // {
1136     //   SEL selector;
1137     //   const char *types;
1138     // };
1139     llvm::StructType *ObjCMethodDescTy =
1140       llvm::StructType::get(CGM.getLLVMContext(),
1141           { PtrToInt8Ty, PtrToInt8Ty });
1142     ASTContext &Context = CGM.getContext();
1143     ConstantInitBuilder Builder(CGM);
1144     // struct objc_protocol_method_description_list
1145     // {
1146     //   int count;
1147     //   int size;
1148     //   struct objc_protocol_method_description methods[];
1149     // };
1150     auto MethodList = Builder.beginStruct();
1151     // int count;
1152     MethodList.addInt(IntTy, Methods.size());
1153     // int size; // sizeof(struct objc_method_description)
1154     llvm::DataLayout td(&TheModule);
1155     MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1156         CGM.getContext().getCharWidth());
1157     // struct objc_method_description[]
1158     auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1159     for (auto *M : Methods) {
1160       auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1161       Method.add(CGObjCGNU::GetConstantSelector(M));
1162       Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1163       Method.finishAndAddTo(MethodArray);
1164     }
1165     MethodArray.finishAndAddTo(MethodList);
1166     return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1167                                             CGM.getPointerAlign());
1168   }
GenerateCategoryProtocolList(const ObjCCategoryDecl * OCD)1169   llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1170     override {
1171     SmallVector<llvm::Constant*, 16> Protocols;
1172     for (const auto *PI : OCD->getReferencedProtocols())
1173       Protocols.push_back(
1174           llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1175             ProtocolPtrTy));
1176     return GenerateProtocolList(Protocols);
1177   }
1178 
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)1179   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1180                               llvm::Value *cmd, MessageSendInfo &MSI) override {
1181     // Don't access the slot unless we're trying to cache the result.
1182     CGBuilderTy &Builder = CGF.Builder;
1183     llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper,
1184         PtrToObjCSuperTy).getPointer(), cmd};
1185     return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1186   }
1187 
GetClassVar(StringRef Name,bool isWeak=false)1188   llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1189     std::string SymbolName = SymbolForClassRef(Name, isWeak);
1190     auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1191     if (ClassSymbol)
1192       return ClassSymbol;
1193     ClassSymbol = new llvm::GlobalVariable(TheModule,
1194         IdTy, false, llvm::GlobalValue::ExternalLinkage,
1195         nullptr, SymbolName);
1196     // If this is a weak symbol, then we are creating a valid definition for
1197     // the symbol, pointing to a weak definition of the real class pointer.  If
1198     // this is not a weak reference, then we are expecting another compilation
1199     // unit to provide the real indirection symbol.
1200     if (isWeak)
1201       ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1202           Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1203           nullptr, SymbolForClass(Name)));
1204     assert(ClassSymbol->getName() == SymbolName);
1205     return ClassSymbol;
1206   }
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)1207   llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1208                              const std::string &Name,
1209                              bool isWeak) override {
1210     return CGF.Builder.CreateLoad(Address(GetClassVar(Name, isWeak),
1211           CGM.getPointerAlign()));
1212   }
FlagsForOwnership(Qualifiers::ObjCLifetime Ownership)1213   int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1214     // typedef enum {
1215     //   ownership_invalid = 0,
1216     //   ownership_strong  = 1,
1217     //   ownership_weak    = 2,
1218     //   ownership_unsafe  = 3
1219     // } ivar_ownership;
1220     int Flag;
1221     switch (Ownership) {
1222       case Qualifiers::OCL_Strong:
1223           Flag = 1;
1224           break;
1225       case Qualifiers::OCL_Weak:
1226           Flag = 2;
1227           break;
1228       case Qualifiers::OCL_ExplicitNone:
1229           Flag = 3;
1230           break;
1231       case Qualifiers::OCL_None:
1232       case Qualifiers::OCL_Autoreleasing:
1233         assert(Ownership != Qualifiers::OCL_Autoreleasing);
1234         Flag = 0;
1235     }
1236     return Flag;
1237   }
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets,ArrayRef<llvm::Constant * > IvarAlign,ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership)1238   llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1239                    ArrayRef<llvm::Constant *> IvarTypes,
1240                    ArrayRef<llvm::Constant *> IvarOffsets,
1241                    ArrayRef<llvm::Constant *> IvarAlign,
1242                    ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1243     llvm_unreachable("Method should not be called!");
1244   }
1245 
GenerateEmptyProtocol(StringRef ProtocolName)1246   llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1247     std::string Name = SymbolForProtocol(ProtocolName);
1248     auto *GV = TheModule.getGlobalVariable(Name);
1249     if (!GV) {
1250       // Emit a placeholder symbol.
1251       GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1252           llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1253       GV->setAlignment(CGM.getPointerAlign().getQuantity());
1254     }
1255     return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy);
1256   }
1257 
1258   /// Existing protocol references.
1259   llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1260 
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)1261   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1262                                    const ObjCProtocolDecl *PD) override {
1263     auto Name = PD->getNameAsString();
1264     auto *&Ref = ExistingProtocolRefs[Name];
1265     if (!Ref) {
1266       auto *&Protocol = ExistingProtocols[Name];
1267       if (!Protocol)
1268         Protocol = GenerateProtocolRef(PD);
1269       std::string RefName = SymbolForProtocolRef(Name);
1270       assert(!TheModule.getGlobalVariable(RefName));
1271       // Emit a reference symbol.
1272       auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy,
1273           false, llvm::GlobalValue::LinkOnceODRLinkage,
1274           llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName);
1275       GV->setComdat(TheModule.getOrInsertComdat(RefName));
1276       GV->setSection(sectionName<ProtocolReferenceSection>());
1277       GV->setAlignment(CGM.getPointerAlign().getQuantity());
1278       Ref = GV;
1279     }
1280     EmittedProtocolRef = true;
1281     return CGF.Builder.CreateAlignedLoad(Ref, CGM.getPointerAlign());
1282   }
1283 
GenerateProtocolList(ArrayRef<llvm::Constant * > Protocols)1284   llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1285     llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1286         Protocols.size());
1287     llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1288         Protocols);
1289     ConstantInitBuilder builder(CGM);
1290     auto ProtocolBuilder = builder.beginStruct();
1291     ProtocolBuilder.addNullPointer(PtrTy);
1292     ProtocolBuilder.addInt(SizeTy, Protocols.size());
1293     ProtocolBuilder.add(ProtocolArray);
1294     return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1295         CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1296   }
1297 
GenerateProtocol(const ObjCProtocolDecl * PD)1298   void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1299     // Do nothing - we only emit referenced protocols.
1300   }
GenerateProtocolRef(const ObjCProtocolDecl * PD)1301   llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) {
1302     std::string ProtocolName = PD->getNameAsString();
1303     auto *&Protocol = ExistingProtocols[ProtocolName];
1304     if (Protocol)
1305       return Protocol;
1306 
1307     EmittedProtocol = true;
1308 
1309     auto SymName = SymbolForProtocol(ProtocolName);
1310     auto *OldGV = TheModule.getGlobalVariable(SymName);
1311 
1312     // Use the protocol definition, if there is one.
1313     if (const ObjCProtocolDecl *Def = PD->getDefinition())
1314       PD = Def;
1315     else {
1316       // If there is no definition, then create an external linkage symbol and
1317       // hope that someone else fills it in for us (and fail to link if they
1318       // don't).
1319       assert(!OldGV);
1320       Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1321         /*isConstant*/false,
1322         llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1323       return Protocol;
1324     }
1325 
1326     SmallVector<llvm::Constant*, 16> Protocols;
1327     for (const auto *PI : PD->protocols())
1328       Protocols.push_back(
1329           llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1330             ProtocolPtrTy));
1331     llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1332 
1333     // Collect information about methods
1334     llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1335     llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1336     EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1337         OptionalInstanceMethodList);
1338     EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1339         OptionalClassMethodList);
1340 
1341     // The isa pointer must be set to a magic number so the runtime knows it's
1342     // the correct layout.
1343     ConstantInitBuilder builder(CGM);
1344     auto ProtocolBuilder = builder.beginStruct();
1345     ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1346           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1347     ProtocolBuilder.add(MakeConstantString(ProtocolName));
1348     ProtocolBuilder.add(ProtocolList);
1349     ProtocolBuilder.add(InstanceMethodList);
1350     ProtocolBuilder.add(ClassMethodList);
1351     ProtocolBuilder.add(OptionalInstanceMethodList);
1352     ProtocolBuilder.add(OptionalClassMethodList);
1353     // Required instance properties
1354     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1355     // Optional instance properties
1356     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1357     // Required class properties
1358     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1359     // Optional class properties
1360     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1361 
1362     auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1363         CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1364     GV->setSection(sectionName<ProtocolSection>());
1365     GV->setComdat(TheModule.getOrInsertComdat(SymName));
1366     if (OldGV) {
1367       OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV,
1368             OldGV->getType()));
1369       OldGV->removeFromParent();
1370       GV->setName(SymName);
1371     }
1372     Protocol = GV;
1373     return GV;
1374   }
EnforceType(llvm::Constant * Val,llvm::Type * Ty)1375   llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) {
1376     if (Val->getType() == Ty)
1377       return Val;
1378     return llvm::ConstantExpr::getBitCast(Val, Ty);
1379   }
GetTypedSelector(CodeGenFunction & CGF,Selector Sel,const std::string & TypeEncoding)1380   llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1381                                 const std::string &TypeEncoding) override {
1382     return GetConstantSelector(Sel, TypeEncoding);
1383   }
GetTypeString(llvm::StringRef TypeEncoding)1384   llvm::Constant  *GetTypeString(llvm::StringRef TypeEncoding) {
1385     if (TypeEncoding.empty())
1386       return NULLPtr;
1387     std::string MangledTypes = TypeEncoding;
1388     std::replace(MangledTypes.begin(), MangledTypes.end(),
1389       '@', '\1');
1390     std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1391     auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1392     if (!TypesGlobal) {
1393       llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1394           TypeEncoding);
1395       auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1396           true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1397       GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1398       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1399       TypesGlobal = GV;
1400     }
1401     return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(),
1402         TypesGlobal, Zeros);
1403   }
GetConstantSelector(Selector Sel,const std::string & TypeEncoding)1404   llvm::Constant *GetConstantSelector(Selector Sel,
1405                                       const std::string &TypeEncoding) override {
1406     // @ is used as a special character in symbol names (used for symbol
1407     // versioning), so mangle the name to not include it.  Replace it with a
1408     // character that is not a valid type encoding character (and, being
1409     // non-printable, never will be!)
1410     std::string MangledTypes = TypeEncoding;
1411     std::replace(MangledTypes.begin(), MangledTypes.end(),
1412       '@', '\1');
1413     auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1414       MangledTypes).str();
1415     if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1416       return EnforceType(GV, SelectorTy);
1417     ConstantInitBuilder builder(CGM);
1418     auto SelBuilder = builder.beginStruct();
1419     SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1420           true));
1421     SelBuilder.add(GetTypeString(TypeEncoding));
1422     auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1423         CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1424     GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1425     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1426     GV->setSection(sectionName<SelectorSection>());
1427     auto *SelVal = EnforceType(GV, SelectorTy);
1428     return SelVal;
1429   }
1430   llvm::StructType *emptyStruct = nullptr;
1431 
1432   /// Return pointers to the start and end of a section.  On ELF platforms, we
1433   /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1434   /// to the start and end of section names, as long as those section names are
1435   /// valid identifiers and the symbols are referenced but not defined.  On
1436   /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1437   /// by subsections and place everything that we want to reference in a middle
1438   /// subsection and then insert zero-sized symbols in subsections a and z.
1439   std::pair<llvm::Constant*,llvm::Constant*>
GetSectionBounds(StringRef Section)1440   GetSectionBounds(StringRef Section) {
1441     if (CGM.getTriple().isOSBinFormatCOFF()) {
1442       if (emptyStruct == nullptr) {
1443         emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1444         emptyStruct->setBody({}, /*isPacked*/true);
1445       }
1446       auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1447       auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1448         auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1449             /*isConstant*/false,
1450             llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1451             Section);
1452         Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1453         Sym->setSection((Section + SecSuffix).str());
1454         Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1455             Section).str()));
1456         Sym->setAlignment(1);
1457         return Sym;
1458       };
1459       return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1460     }
1461     auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1462         /*isConstant*/false,
1463         llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1464         Section);
1465     Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1466     auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1467         /*isConstant*/false,
1468         llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1469         Section);
1470     Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1471     return { Start, Stop };
1472   }
getCatchAllTypeInfo()1473   CatchTypeInfo getCatchAllTypeInfo() override {
1474     return CGM.getCXXABI().getCatchAllTypeInfo();
1475   }
ModuleInitFunction()1476   llvm::Function *ModuleInitFunction() override {
1477     llvm::Function *LoadFunction = llvm::Function::Create(
1478       llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1479       llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1480       &TheModule);
1481     LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1482     LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1483 
1484     llvm::BasicBlock *EntryBB =
1485         llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1486     CGBuilderTy B(CGM, VMContext);
1487     B.SetInsertPoint(EntryBB);
1488     ConstantInitBuilder builder(CGM);
1489     auto InitStructBuilder = builder.beginStruct();
1490     InitStructBuilder.addInt(Int64Ty, 0);
1491     for (auto *s : SectionsBaseNames) {
1492       auto bounds = GetSectionBounds(s);
1493       InitStructBuilder.add(bounds.first);
1494       InitStructBuilder.add(bounds.second);
1495     };
1496     auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1497         CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1498     InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1499     InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1500 
1501     CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1502     B.CreateRetVoid();
1503     // Make sure that the optimisers don't delete this function.
1504     CGM.addCompilerUsedGlobal(LoadFunction);
1505     // FIXME: Currently ELF only!
1506     // We have to do this by hand, rather than with @llvm.ctors, so that the
1507     // linker can remove the duplicate invocations.
1508     auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1509         /*isConstant*/true, llvm::GlobalValue::LinkOnceAnyLinkage,
1510         LoadFunction, ".objc_ctor");
1511     // Check that this hasn't been renamed.  This shouldn't happen, because
1512     // this function should be called precisely once.
1513     assert(InitVar->getName() == ".objc_ctor");
1514     // In Windows, initialisers are sorted by the suffix.  XCL is for library
1515     // initialisers, which run before user initialisers.  We are running
1516     // Objective-C loads at the end of library load.  This means +load methods
1517     // will run before any other static constructors, but that static
1518     // constructors can see a fully initialised Objective-C state.
1519     if (CGM.getTriple().isOSBinFormatCOFF())
1520         InitVar->setSection(".CRT$XCLz");
1521     else
1522       InitVar->setSection(".ctors");
1523     InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1524     InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1525     CGM.addUsedGlobal(InitVar);
1526     for (auto *C : Categories) {
1527       auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1528       Cat->setSection(sectionName<CategorySection>());
1529       CGM.addUsedGlobal(Cat);
1530     }
1531     auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1532         StringRef Section) {
1533       auto nullBuilder = builder.beginStruct();
1534       for (auto *F : Init)
1535         nullBuilder.add(F);
1536       auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1537           false, llvm::GlobalValue::LinkOnceODRLinkage);
1538       GV->setSection(Section);
1539       GV->setComdat(TheModule.getOrInsertComdat(Name));
1540       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1541       CGM.addUsedGlobal(GV);
1542       return GV;
1543     };
1544     for (auto clsAlias : ClassAliases)
1545       createNullGlobal(std::string(".objc_class_alias") +
1546           clsAlias.second, { MakeConstantString(clsAlias.second),
1547           GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1548     // On ELF platforms, add a null value for each special section so that we
1549     // can always guarantee that the _start and _stop symbols will exist and be
1550     // meaningful.  This is not required on COFF platforms, where our start and
1551     // stop symbols will create the section.
1552     if (!CGM.getTriple().isOSBinFormatCOFF()) {
1553       createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1554           sectionName<SelectorSection>());
1555       if (Categories.empty())
1556         createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1557                       NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1558             sectionName<CategorySection>());
1559       if (!EmittedClass) {
1560         createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1561             sectionName<ClassSection>());
1562         createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1563             sectionName<ClassReferenceSection>());
1564       }
1565       if (!EmittedProtocol)
1566         createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1567             NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1568             NULLPtr}, sectionName<ProtocolSection>());
1569       if (!EmittedProtocolRef)
1570         createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1571             sectionName<ProtocolReferenceSection>());
1572       if (ClassAliases.empty())
1573         createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1574             sectionName<ClassAliasSection>());
1575       if (ConstantStrings.empty()) {
1576         auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1577         createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1578             i32Zero, i32Zero, i32Zero, NULLPtr },
1579             sectionName<ConstantStringSection>());
1580       }
1581     }
1582     ConstantStrings.clear();
1583     Categories.clear();
1584     Classes.clear();
1585     return nullptr;
1586   }
1587   /// In the v2 ABI, ivar offset variables use the type encoding in their name
1588   /// to trigger linker failures if the types don't match.
GetIVarOffsetVariableName(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)1589   std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1590                                         const ObjCIvarDecl *Ivar) override {
1591     std::string TypeEncoding;
1592     CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1593     // Prevent the @ from being interpreted as a symbol version.
1594     std::replace(TypeEncoding.begin(), TypeEncoding.end(),
1595       '@', '\1');
1596     const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1597       + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1598     return Name;
1599   }
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)1600   llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1601                               const ObjCInterfaceDecl *Interface,
1602                               const ObjCIvarDecl *Ivar) override {
1603     const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1604     llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1605     if (!IvarOffsetPointer)
1606       IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1607               llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1608     CharUnits Align = CGM.getIntAlign();
1609     llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(IvarOffsetPointer, Align);
1610     if (Offset->getType() != PtrDiffTy)
1611       Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1612     return Offset;
1613   }
GenerateClass(const ObjCImplementationDecl * OID)1614   void GenerateClass(const ObjCImplementationDecl *OID) override {
1615     ASTContext &Context = CGM.getContext();
1616 
1617     // Get the class name
1618     ObjCInterfaceDecl *classDecl =
1619         const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1620     std::string className = classDecl->getNameAsString();
1621     auto *classNameConstant = MakeConstantString(className);
1622 
1623     ConstantInitBuilder builder(CGM);
1624     auto metaclassFields = builder.beginStruct();
1625     // struct objc_class *isa;
1626     metaclassFields.addNullPointer(PtrTy);
1627     // struct objc_class *super_class;
1628     metaclassFields.addNullPointer(PtrTy);
1629     // const char *name;
1630     metaclassFields.add(classNameConstant);
1631     // long version;
1632     metaclassFields.addInt(LongTy, 0);
1633     // unsigned long info;
1634     // objc_class_flag_meta
1635     metaclassFields.addInt(LongTy, 1);
1636     // long instance_size;
1637     // Setting this to zero is consistent with the older ABI, but it might be
1638     // more sensible to set this to sizeof(struct objc_class)
1639     metaclassFields.addInt(LongTy, 0);
1640     // struct objc_ivar_list *ivars;
1641     metaclassFields.addNullPointer(PtrTy);
1642     // struct objc_method_list *methods
1643     // FIXME: Almost identical code is copied and pasted below for the
1644     // class, but refactoring it cleanly requires C++14 generic lambdas.
1645     if (OID->classmeth_begin() == OID->classmeth_end())
1646       metaclassFields.addNullPointer(PtrTy);
1647     else {
1648       SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1649       ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1650           OID->classmeth_end());
1651       metaclassFields.addBitCast(
1652               GenerateMethodList(className, "", ClassMethods, true),
1653               PtrTy);
1654     }
1655     // void *dtable;
1656     metaclassFields.addNullPointer(PtrTy);
1657     // IMP cxx_construct;
1658     metaclassFields.addNullPointer(PtrTy);
1659     // IMP cxx_destruct;
1660     metaclassFields.addNullPointer(PtrTy);
1661     // struct objc_class *subclass_list
1662     metaclassFields.addNullPointer(PtrTy);
1663     // struct objc_class *sibling_class
1664     metaclassFields.addNullPointer(PtrTy);
1665     // struct objc_protocol_list *protocols;
1666     metaclassFields.addNullPointer(PtrTy);
1667     // struct reference_list *extra_data;
1668     metaclassFields.addNullPointer(PtrTy);
1669     // long abi_version;
1670     metaclassFields.addInt(LongTy, 0);
1671     // struct objc_property_list *properties
1672     metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1673 
1674     auto *metaclass = metaclassFields.finishAndCreateGlobal("._OBJC_METACLASS_"
1675         + className, CGM.getPointerAlign());
1676 
1677     auto classFields = builder.beginStruct();
1678     // struct objc_class *isa;
1679     classFields.add(metaclass);
1680     // struct objc_class *super_class;
1681     // Get the superclass name.
1682     const ObjCInterfaceDecl * SuperClassDecl =
1683       OID->getClassInterface()->getSuperClass();
1684     if (SuperClassDecl) {
1685       auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1686       llvm::Constant *SuperClass = TheModule.getNamedGlobal(SuperClassName);
1687       if (!SuperClass)
1688       {
1689         SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1690             llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1691       }
1692       classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy));
1693     } else
1694       classFields.addNullPointer(PtrTy);
1695     // const char *name;
1696     classFields.add(classNameConstant);
1697     // long version;
1698     classFields.addInt(LongTy, 0);
1699     // unsigned long info;
1700     // !objc_class_flag_meta
1701     classFields.addInt(LongTy, 0);
1702     // long instance_size;
1703     int superInstanceSize = !SuperClassDecl ? 0 :
1704       Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1705     // Instance size is negative for classes that have not yet had their ivar
1706     // layout calculated.
1707     classFields.addInt(LongTy,
1708       0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1709       superInstanceSize));
1710 
1711     if (classDecl->all_declared_ivar_begin() == nullptr)
1712       classFields.addNullPointer(PtrTy);
1713     else {
1714       int ivar_count = 0;
1715       for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1716            IVD = IVD->getNextIvar()) ivar_count++;
1717       llvm::DataLayout td(&TheModule);
1718       // struct objc_ivar_list *ivars;
1719       ConstantInitBuilder b(CGM);
1720       auto ivarListBuilder = b.beginStruct();
1721       // int count;
1722       ivarListBuilder.addInt(IntTy, ivar_count);
1723       // size_t size;
1724       llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1725         PtrToInt8Ty,
1726         PtrToInt8Ty,
1727         PtrToInt8Ty,
1728         Int32Ty,
1729         Int32Ty);
1730       ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1731           CGM.getContext().getCharWidth());
1732       // struct objc_ivar ivars[]
1733       auto ivarArrayBuilder = ivarListBuilder.beginArray();
1734       CodeGenTypes &Types = CGM.getTypes();
1735       for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1736            IVD = IVD->getNextIvar()) {
1737         auto ivarTy = IVD->getType();
1738         auto ivarBuilder = ivarArrayBuilder.beginStruct();
1739         // const char *name;
1740         ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1741         // const char *type;
1742         std::string TypeStr;
1743         //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1744         Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1745         ivarBuilder.add(MakeConstantString(TypeStr));
1746         // int *offset;
1747         uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1748         uint64_t Offset = BaseOffset - superInstanceSize;
1749         llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1750         std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1751         llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1752         if (OffsetVar)
1753           OffsetVar->setInitializer(OffsetValue);
1754         else
1755           OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1756             false, llvm::GlobalValue::ExternalLinkage,
1757             OffsetValue, OffsetName);
1758         auto ivarVisibility =
1759             (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1760              IVD->getAccessControl() == ObjCIvarDecl::Package ||
1761              classDecl->getVisibility() == HiddenVisibility) ?
1762                     llvm::GlobalValue::HiddenVisibility :
1763                     llvm::GlobalValue::DefaultVisibility;
1764         OffsetVar->setVisibility(ivarVisibility);
1765         ivarBuilder.add(OffsetVar);
1766         // Ivar size
1767         ivarBuilder.addInt(Int32Ty,
1768             td.getTypeSizeInBits(Types.ConvertType(ivarTy)) /
1769               CGM.getContext().getCharWidth());
1770         // Alignment will be stored as a base-2 log of the alignment.
1771         int align = llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1772         // Objects that require more than 2^64-byte alignment should be impossible!
1773         assert(align < 64);
1774         // uint32_t flags;
1775         // Bits 0-1 are ownership.
1776         // Bit 2 indicates an extended type encoding
1777         // Bits 3-8 contain log2(aligment)
1778         ivarBuilder.addInt(Int32Ty,
1779             (align << 3) | (1<<2) |
1780             FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1781         ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1782       }
1783       ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1784       auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1785           CGM.getPointerAlign(), /*constant*/ false,
1786           llvm::GlobalValue::PrivateLinkage);
1787       classFields.add(ivarList);
1788     }
1789     // struct objc_method_list *methods
1790     SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1791     InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1792         OID->instmeth_end());
1793     for (auto *propImpl : OID->property_impls())
1794       if (propImpl->getPropertyImplementation() ==
1795           ObjCPropertyImplDecl::Synthesize) {
1796         ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1797         auto addIfExists = [&](const ObjCMethodDecl* OMD) {
1798           if (OMD)
1799             InstanceMethods.push_back(OMD);
1800         };
1801         addIfExists(prop->getGetterMethodDecl());
1802         addIfExists(prop->getSetterMethodDecl());
1803       }
1804 
1805     if (InstanceMethods.size() == 0)
1806       classFields.addNullPointer(PtrTy);
1807     else
1808       classFields.addBitCast(
1809               GenerateMethodList(className, "", InstanceMethods, false),
1810               PtrTy);
1811     // void *dtable;
1812     classFields.addNullPointer(PtrTy);
1813     // IMP cxx_construct;
1814     classFields.addNullPointer(PtrTy);
1815     // IMP cxx_destruct;
1816     classFields.addNullPointer(PtrTy);
1817     // struct objc_class *subclass_list
1818     classFields.addNullPointer(PtrTy);
1819     // struct objc_class *sibling_class
1820     classFields.addNullPointer(PtrTy);
1821     // struct objc_protocol_list *protocols;
1822     SmallVector<llvm::Constant*, 16> Protocols;
1823     for (const auto *I : classDecl->protocols())
1824       Protocols.push_back(
1825           llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I),
1826             ProtocolPtrTy));
1827     if (Protocols.empty())
1828       classFields.addNullPointer(PtrTy);
1829     else
1830       classFields.add(GenerateProtocolList(Protocols));
1831     // struct reference_list *extra_data;
1832     classFields.addNullPointer(PtrTy);
1833     // long abi_version;
1834     classFields.addInt(LongTy, 0);
1835     // struct objc_property_list *properties
1836     classFields.add(GeneratePropertyList(OID, classDecl));
1837 
1838     auto *classStruct =
1839       classFields.finishAndCreateGlobal(SymbolForClass(className),
1840         CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1841 
1842     if (CGM.getTriple().isOSBinFormatCOFF()) {
1843       auto Storage = llvm::GlobalValue::DefaultStorageClass;
1844       if (OID->getClassInterface()->hasAttr<DLLImportAttr>())
1845         Storage = llvm::GlobalValue::DLLImportStorageClass;
1846       else if (OID->getClassInterface()->hasAttr<DLLExportAttr>())
1847         Storage = llvm::GlobalValue::DLLExportStorageClass;
1848       cast<llvm::GlobalValue>(classStruct)->setDLLStorageClass(Storage);
1849     }
1850 
1851     auto *classRefSymbol = GetClassVar(className);
1852     classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1853     classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1854 
1855 
1856     // Resolve the class aliases, if they exist.
1857     // FIXME: Class pointer aliases shouldn't exist!
1858     if (ClassPtrAlias) {
1859       ClassPtrAlias->replaceAllUsesWith(
1860           llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1861       ClassPtrAlias->eraseFromParent();
1862       ClassPtrAlias = nullptr;
1863     }
1864     if (auto Placeholder =
1865         TheModule.getNamedGlobal(SymbolForClass(className)))
1866       if (Placeholder != classStruct) {
1867         Placeholder->replaceAllUsesWith(
1868             llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType()));
1869         Placeholder->eraseFromParent();
1870         classStruct->setName(SymbolForClass(className));
1871       }
1872     if (MetaClassPtrAlias) {
1873       MetaClassPtrAlias->replaceAllUsesWith(
1874           llvm::ConstantExpr::getBitCast(metaclass, IdTy));
1875       MetaClassPtrAlias->eraseFromParent();
1876       MetaClassPtrAlias = nullptr;
1877     }
1878     assert(classStruct->getName() == SymbolForClass(className));
1879 
1880     auto classInitRef = new llvm::GlobalVariable(TheModule,
1881         classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
1882         classStruct, "._OBJC_INIT_CLASS_" + className);
1883     classInitRef->setSection(sectionName<ClassSection>());
1884     CGM.addUsedGlobal(classInitRef);
1885 
1886     EmittedClass = true;
1887   }
1888   public:
CGObjCGNUstep2(CodeGenModule & Mod)1889     CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
1890       MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
1891                             PtrToObjCSuperTy, SelectorTy);
1892       // struct objc_property
1893       // {
1894       //   const char *name;
1895       //   const char *attributes;
1896       //   const char *type;
1897       //   SEL getter;
1898       //   SEL setter;
1899       // }
1900       PropertyMetadataTy =
1901         llvm::StructType::get(CGM.getLLVMContext(),
1902             { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
1903     }
1904 
1905 };
1906 
1907 const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
1908 {
1909 "__objc_selectors",
1910 "__objc_classes",
1911 "__objc_class_refs",
1912 "__objc_cats",
1913 "__objc_protocols",
1914 "__objc_protocol_refs",
1915 "__objc_class_aliases",
1916 "__objc_constant_string"
1917 };
1918 
1919 /// Support for the ObjFW runtime.
1920 class CGObjCObjFW: public CGObjCGNU {
1921 protected:
1922   /// The GCC ABI message lookup function.  Returns an IMP pointing to the
1923   /// method implementation for this message.
1924   LazyRuntimeFunction MsgLookupFn;
1925   /// stret lookup function.  While this does not seem to make sense at the
1926   /// first look, this is required to call the correct forwarding function.
1927   LazyRuntimeFunction MsgLookupFnSRet;
1928   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
1929   /// structure describing the receiver and the class, and a selector as
1930   /// arguments.  Returns the IMP for the corresponding method.
1931   LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
1932 
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)1933   llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
1934                          llvm::Value *cmd, llvm::MDNode *node,
1935                          MessageSendInfo &MSI) override {
1936     CGBuilderTy &Builder = CGF.Builder;
1937     llvm::Value *args[] = {
1938             EnforceType(Builder, Receiver, IdTy),
1939             EnforceType(Builder, cmd, SelectorTy) };
1940 
1941     llvm::CallSite imp;
1942     if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
1943       imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
1944     else
1945       imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
1946 
1947     imp->setMetadata(msgSendMDKind, node);
1948     return imp.getInstruction();
1949   }
1950 
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)1951   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1952                               llvm::Value *cmd, MessageSendInfo &MSI) override {
1953     CGBuilderTy &Builder = CGF.Builder;
1954     llvm::Value *lookupArgs[] = {
1955         EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd,
1956     };
1957 
1958     if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
1959       return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
1960     else
1961       return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1962   }
1963 
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)1964   llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
1965                              bool isWeak) override {
1966     if (isWeak)
1967       return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
1968 
1969     EmitClassRef(Name);
1970     std::string SymbolName = "_OBJC_CLASS_" + Name;
1971     llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
1972     if (!ClassSymbol)
1973       ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
1974                                              llvm::GlobalValue::ExternalLinkage,
1975                                              nullptr, SymbolName);
1976     return ClassSymbol;
1977   }
1978 
1979 public:
CGObjCObjFW(CodeGenModule & Mod)1980   CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
1981     // IMP objc_msg_lookup(id, SEL);
1982     MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
1983     MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
1984                          SelectorTy);
1985     // IMP objc_msg_lookup_super(struct objc_super*, SEL);
1986     MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
1987                           PtrToObjCSuperTy, SelectorTy);
1988     MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
1989                               PtrToObjCSuperTy, SelectorTy);
1990   }
1991 };
1992 } // end anonymous namespace
1993 
1994 /// Emits a reference to a dummy variable which is emitted with each class.
1995 /// This ensures that a linker error will be generated when trying to link
1996 /// together modules where a referenced class is not defined.
EmitClassRef(const std::string & className)1997 void CGObjCGNU::EmitClassRef(const std::string &className) {
1998   std::string symbolRef = "__objc_class_ref_" + className;
1999   // Don't emit two copies of the same symbol
2000   if (TheModule.getGlobalVariable(symbolRef))
2001     return;
2002   std::string symbolName = "__objc_class_name_" + className;
2003   llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2004   if (!ClassSymbol) {
2005     ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2006                                            llvm::GlobalValue::ExternalLinkage,
2007                                            nullptr, symbolName);
2008   }
2009   new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2010     llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2011 }
2012 
CGObjCGNU(CodeGenModule & cgm,unsigned runtimeABIVersion,unsigned protocolClassVersion,unsigned classABI)2013 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2014                      unsigned protocolClassVersion, unsigned classABI)
2015   : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2016     VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2017     MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2018     ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2019 
2020   msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2021   usesSEHExceptions =
2022       cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2023 
2024   CodeGenTypes &Types = CGM.getTypes();
2025   IntTy = cast<llvm::IntegerType>(
2026       Types.ConvertType(CGM.getContext().IntTy));
2027   LongTy = cast<llvm::IntegerType>(
2028       Types.ConvertType(CGM.getContext().LongTy));
2029   SizeTy = cast<llvm::IntegerType>(
2030       Types.ConvertType(CGM.getContext().getSizeType()));
2031   PtrDiffTy = cast<llvm::IntegerType>(
2032       Types.ConvertType(CGM.getContext().getPointerDiffType()));
2033   BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2034 
2035   Int8Ty = llvm::Type::getInt8Ty(VMContext);
2036   // C string type.  Used in lots of places.
2037   PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2038   ProtocolPtrTy = llvm::PointerType::getUnqual(
2039       Types.ConvertType(CGM.getContext().getObjCProtoType()));
2040 
2041   Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2042   Zeros[1] = Zeros[0];
2043   NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2044   // Get the selector Type.
2045   QualType selTy = CGM.getContext().getObjCSelType();
2046   if (QualType() == selTy) {
2047     SelectorTy = PtrToInt8Ty;
2048   } else {
2049     SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2050   }
2051 
2052   PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2053   PtrTy = PtrToInt8Ty;
2054 
2055   Int32Ty = llvm::Type::getInt32Ty(VMContext);
2056   Int64Ty = llvm::Type::getInt64Ty(VMContext);
2057 
2058   IntPtrTy =
2059       CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2060 
2061   // Object type
2062   QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2063   ASTIdTy = CanQualType();
2064   if (UnqualIdTy != QualType()) {
2065     ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2066     IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2067   } else {
2068     IdTy = PtrToInt8Ty;
2069   }
2070   PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2071   ProtocolTy = llvm::StructType::get(IdTy,
2072       PtrToInt8Ty, // name
2073       PtrToInt8Ty, // protocols
2074       PtrToInt8Ty, // instance methods
2075       PtrToInt8Ty, // class methods
2076       PtrToInt8Ty, // optional instance methods
2077       PtrToInt8Ty, // optional class methods
2078       PtrToInt8Ty, // properties
2079       PtrToInt8Ty);// optional properties
2080 
2081   // struct objc_property_gsv1
2082   // {
2083   //   const char *name;
2084   //   char attributes;
2085   //   char attributes2;
2086   //   char unused1;
2087   //   char unused2;
2088   //   const char *getter_name;
2089   //   const char *getter_types;
2090   //   const char *setter_name;
2091   //   const char *setter_types;
2092   // }
2093   PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2094       PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2095       PtrToInt8Ty, PtrToInt8Ty });
2096 
2097   ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2098   PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2099 
2100   llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2101 
2102   // void objc_exception_throw(id);
2103   ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2104   ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2105   // int objc_sync_enter(id);
2106   SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2107   // int objc_sync_exit(id);
2108   SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2109 
2110   // void objc_enumerationMutation (id)
2111   EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2112 
2113   // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2114   GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2115                      PtrDiffTy, BoolTy);
2116   // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2117   SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2118                      PtrDiffTy, IdTy, BoolTy, BoolTy);
2119   // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2120   GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2121                            PtrDiffTy, BoolTy, BoolTy);
2122   // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2123   SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2124                            PtrDiffTy, BoolTy, BoolTy);
2125 
2126   // IMP type
2127   llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2128   IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2129               true));
2130 
2131   const LangOptions &Opts = CGM.getLangOpts();
2132   if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2133     RuntimeVersion = 10;
2134 
2135   // Don't bother initialising the GC stuff unless we're compiling in GC mode
2136   if (Opts.getGC() != LangOptions::NonGC) {
2137     // This is a bit of an hack.  We should sort this out by having a proper
2138     // CGObjCGNUstep subclass for GC, but we may want to really support the old
2139     // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2140     // Get selectors needed in GC mode
2141     RetainSel = GetNullarySelector("retain", CGM.getContext());
2142     ReleaseSel = GetNullarySelector("release", CGM.getContext());
2143     AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2144 
2145     // Get functions needed in GC mode
2146 
2147     // id objc_assign_ivar(id, id, ptrdiff_t);
2148     IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2149     // id objc_assign_strongCast (id, id*)
2150     StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2151                             PtrToIdTy);
2152     // id objc_assign_global(id, id*);
2153     GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2154     // id objc_assign_weak(id, id*);
2155     WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2156     // id objc_read_weak(id*);
2157     WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2158     // void *objc_memmove_collectable(void*, void *, size_t);
2159     MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2160                    SizeTy);
2161   }
2162 }
2163 
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)2164 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2165                                       const std::string &Name, bool isWeak) {
2166   llvm::Constant *ClassName = MakeConstantString(Name);
2167   // With the incompatible ABI, this will need to be replaced with a direct
2168   // reference to the class symbol.  For the compatible nonfragile ABI we are
2169   // still performing this lookup at run time but emitting the symbol for the
2170   // class externally so that we can make the switch later.
2171   //
2172   // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2173   // with memoized versions or with static references if it's safe to do so.
2174   if (!isWeak)
2175     EmitClassRef(Name);
2176 
2177   llvm::Constant *ClassLookupFn =
2178     CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
2179                               "objc_lookup_class");
2180   return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2181 }
2182 
2183 // This has to perform the lookup every time, since posing and related
2184 // techniques can modify the name -> class mapping.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * OID)2185 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2186                                  const ObjCInterfaceDecl *OID) {
2187   auto *Value =
2188       GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2189   if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2190     CGM.setGVProperties(ClassSymbol, OID);
2191   return Value;
2192 }
2193 
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)2194 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2195   auto *Value  = GetClassNamed(CGF, "NSAutoreleasePool", false);
2196   if (CGM.getTriple().isOSBinFormatCOFF()) {
2197     if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2198       IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2199       TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2200       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2201 
2202       const VarDecl *VD = nullptr;
2203       for (const auto &Result : DC->lookup(&II))
2204         if ((VD = dyn_cast<VarDecl>(Result)))
2205           break;
2206 
2207       CGM.setGVProperties(ClassSymbol, VD);
2208     }
2209   }
2210   return Value;
2211 }
2212 
GetTypedSelector(CodeGenFunction & CGF,Selector Sel,const std::string & TypeEncoding)2213 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2214                                          const std::string &TypeEncoding) {
2215   SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2216   llvm::GlobalAlias *SelValue = nullptr;
2217 
2218   for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2219       e = Types.end() ; i!=e ; i++) {
2220     if (i->first == TypeEncoding) {
2221       SelValue = i->second;
2222       break;
2223     }
2224   }
2225   if (!SelValue) {
2226     SelValue = llvm::GlobalAlias::create(
2227         SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
2228         ".objc_selector_" + Sel.getAsString(), &TheModule);
2229     Types.emplace_back(TypeEncoding, SelValue);
2230   }
2231 
2232   return SelValue;
2233 }
2234 
GetAddrOfSelector(CodeGenFunction & CGF,Selector Sel)2235 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2236   llvm::Value *SelValue = GetSelector(CGF, Sel);
2237 
2238   // Store it to a temporary.  Does this satisfy the semantics of
2239   // GetAddrOfSelector?  Hopefully.
2240   Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2241                                      CGF.getPointerAlign());
2242   CGF.Builder.CreateStore(SelValue, tmp);
2243   return tmp;
2244 }
2245 
GetSelector(CodeGenFunction & CGF,Selector Sel)2246 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2247   return GetTypedSelector(CGF, Sel, std::string());
2248 }
2249 
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)2250 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2251                                     const ObjCMethodDecl *Method) {
2252   std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2253   return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2254 }
2255 
GetEHType(QualType T)2256 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2257   if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2258     // With the old ABI, there was only one kind of catchall, which broke
2259     // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
2260     // a pointer indicating object catchalls, and NULL to indicate real
2261     // catchalls
2262     if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2263       return MakeConstantString("@id");
2264     } else {
2265       return nullptr;
2266     }
2267   }
2268 
2269   // All other types should be Objective-C interface pointer types.
2270   const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2271   assert(OPT && "Invalid @catch type.");
2272   const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2273   assert(IDecl && "Invalid @catch type.");
2274   return MakeConstantString(IDecl->getIdentifier()->getName());
2275 }
2276 
GetEHType(QualType T)2277 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2278   if (usesSEHExceptions)
2279     return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2280 
2281   if (!CGM.getLangOpts().CPlusPlus)
2282     return CGObjCGNU::GetEHType(T);
2283 
2284   // For Objective-C++, we want to provide the ability to catch both C++ and
2285   // Objective-C objects in the same function.
2286 
2287   // There's a particular fixed type info for 'id'.
2288   if (T->isObjCIdType() ||
2289       T->isObjCQualifiedIdType()) {
2290     llvm::Constant *IDEHType =
2291       CGM.getModule().getGlobalVariable("__objc_id_type_info");
2292     if (!IDEHType)
2293       IDEHType =
2294         new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2295                                  false,
2296                                  llvm::GlobalValue::ExternalLinkage,
2297                                  nullptr, "__objc_id_type_info");
2298     return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
2299   }
2300 
2301   const ObjCObjectPointerType *PT =
2302     T->getAs<ObjCObjectPointerType>();
2303   assert(PT && "Invalid @catch type.");
2304   const ObjCInterfaceType *IT = PT->getInterfaceType();
2305   assert(IT && "Invalid @catch type.");
2306   std::string className = IT->getDecl()->getIdentifier()->getName();
2307 
2308   std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2309 
2310   // Return the existing typeinfo if it exists
2311   llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
2312   if (typeinfo)
2313     return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
2314 
2315   // Otherwise create it.
2316 
2317   // vtable for gnustep::libobjc::__objc_class_type_info
2318   // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
2319   // platform's name mangling.
2320   const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2321   auto *Vtable = TheModule.getGlobalVariable(vtableName);
2322   if (!Vtable) {
2323     Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2324                                       llvm::GlobalValue::ExternalLinkage,
2325                                       nullptr, vtableName);
2326   }
2327   llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2328   auto *BVtable = llvm::ConstantExpr::getBitCast(
2329       llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
2330       PtrToInt8Ty);
2331 
2332   llvm::Constant *typeName =
2333     ExportUniqueString(className, "__objc_eh_typename_");
2334 
2335   ConstantInitBuilder builder(CGM);
2336   auto fields = builder.beginStruct();
2337   fields.add(BVtable);
2338   fields.add(typeName);
2339   llvm::Constant *TI =
2340     fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2341                                  CGM.getPointerAlign(),
2342                                  /*constant*/ false,
2343                                  llvm::GlobalValue::LinkOnceODRLinkage);
2344   return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
2345 }
2346 
2347 /// Generate an NSConstantString object.
GenerateConstantString(const StringLiteral * SL)2348 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2349 
2350   std::string Str = SL->getString().str();
2351   CharUnits Align = CGM.getPointerAlign();
2352 
2353   // Look for an existing one
2354   llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2355   if (old != ObjCStrings.end())
2356     return ConstantAddress(old->getValue(), Align);
2357 
2358   StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2359 
2360   if (StringClass.empty()) StringClass = "NSConstantString";
2361 
2362   std::string Sym = "_OBJC_CLASS_";
2363   Sym += StringClass;
2364 
2365   llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2366 
2367   if (!isa)
2368     isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
2369             llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
2370   else if (isa->getType() != PtrToIdTy)
2371     isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
2372 
2373   ConstantInitBuilder Builder(CGM);
2374   auto Fields = Builder.beginStruct();
2375   Fields.add(isa);
2376   Fields.add(MakeConstantString(Str));
2377   Fields.addInt(IntTy, Str.size());
2378   llvm::Constant *ObjCStr =
2379     Fields.finishAndCreateGlobal(".objc_str", Align);
2380   ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
2381   ObjCStrings[Str] = ObjCStr;
2382   ConstantStrings.push_back(ObjCStr);
2383   return ConstantAddress(ObjCStr, Align);
2384 }
2385 
2386 ///Generates a message send where the super is the receiver.  This is a message
2387 ///send to self with special delivery semantics indicating which class's method
2388 ///should be called.
2389 RValue
GenerateMessageSendSuper(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CallArgList & CallArgs,const ObjCMethodDecl * Method)2390 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2391                                     ReturnValueSlot Return,
2392                                     QualType ResultType,
2393                                     Selector Sel,
2394                                     const ObjCInterfaceDecl *Class,
2395                                     bool isCategoryImpl,
2396                                     llvm::Value *Receiver,
2397                                     bool IsClassMessage,
2398                                     const CallArgList &CallArgs,
2399                                     const ObjCMethodDecl *Method) {
2400   CGBuilderTy &Builder = CGF.Builder;
2401   if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2402     if (Sel == RetainSel || Sel == AutoreleaseSel) {
2403       return RValue::get(EnforceType(Builder, Receiver,
2404                   CGM.getTypes().ConvertType(ResultType)));
2405     }
2406     if (Sel == ReleaseSel) {
2407       return RValue::get(nullptr);
2408     }
2409   }
2410 
2411   llvm::Value *cmd = GetSelector(CGF, Sel);
2412   CallArgList ActualArgs;
2413 
2414   ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2415   ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2416   ActualArgs.addFrom(CallArgs);
2417 
2418   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2419 
2420   llvm::Value *ReceiverClass = nullptr;
2421   bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2422   if (isV2ABI) {
2423     ReceiverClass = GetClassNamed(CGF,
2424         Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2425     if (IsClassMessage)  {
2426       // Load the isa pointer of the superclass is this is a class method.
2427       ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2428                                             llvm::PointerType::getUnqual(IdTy));
2429       ReceiverClass =
2430         Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
2431     }
2432     ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2433   } else {
2434     if (isCategoryImpl) {
2435       llvm::Constant *classLookupFunction = nullptr;
2436       if (IsClassMessage)  {
2437         classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2438               IdTy, PtrTy, true), "objc_get_meta_class");
2439       } else {
2440         classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2441               IdTy, PtrTy, true), "objc_get_class");
2442       }
2443       ReceiverClass = Builder.CreateCall(classLookupFunction,
2444           MakeConstantString(Class->getNameAsString()));
2445     } else {
2446       // Set up global aliases for the metaclass or class pointer if they do not
2447       // already exist.  These will are forward-references which will be set to
2448       // pointers to the class and metaclass structure created for the runtime
2449       // load function.  To send a message to super, we look up the value of the
2450       // super_class pointer from either the class or metaclass structure.
2451       if (IsClassMessage)  {
2452         if (!MetaClassPtrAlias) {
2453           MetaClassPtrAlias = llvm::GlobalAlias::create(
2454               IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2455               ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2456         }
2457         ReceiverClass = MetaClassPtrAlias;
2458       } else {
2459         if (!ClassPtrAlias) {
2460           ClassPtrAlias = llvm::GlobalAlias::create(
2461               IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2462               ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2463         }
2464         ReceiverClass = ClassPtrAlias;
2465       }
2466     }
2467     // Cast the pointer to a simplified version of the class structure
2468     llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2469     ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2470                                           llvm::PointerType::getUnqual(CastTy));
2471     // Get the superclass pointer
2472     ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2473     // Load the superclass pointer
2474     ReceiverClass =
2475       Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
2476   }
2477   // Construct the structure used to look up the IMP
2478   llvm::StructType *ObjCSuperTy =
2479       llvm::StructType::get(Receiver->getType(), IdTy);
2480 
2481   Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2482                               CGF.getPointerAlign());
2483 
2484   Builder.CreateStore(Receiver,
2485                    Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
2486   Builder.CreateStore(ReceiverClass,
2487                    Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
2488 
2489   ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
2490 
2491   // Get the IMP
2492   llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2493   imp = EnforceType(Builder, imp, MSI.MessengerType);
2494 
2495   llvm::Metadata *impMD[] = {
2496       llvm::MDString::get(VMContext, Sel.getAsString()),
2497       llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2498       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2499           llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2500   llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2501 
2502   CGCallee callee(CGCalleeInfo(), imp);
2503 
2504   llvm::Instruction *call;
2505   RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2506   call->setMetadata(msgSendMDKind, node);
2507   return msgRet;
2508 }
2509 
2510 /// Generate code for a message send expression.
2511 RValue
GenerateMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)2512 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2513                                ReturnValueSlot Return,
2514                                QualType ResultType,
2515                                Selector Sel,
2516                                llvm::Value *Receiver,
2517                                const CallArgList &CallArgs,
2518                                const ObjCInterfaceDecl *Class,
2519                                const ObjCMethodDecl *Method) {
2520   CGBuilderTy &Builder = CGF.Builder;
2521 
2522   // Strip out message sends to retain / release in GC mode
2523   if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2524     if (Sel == RetainSel || Sel == AutoreleaseSel) {
2525       return RValue::get(EnforceType(Builder, Receiver,
2526                   CGM.getTypes().ConvertType(ResultType)));
2527     }
2528     if (Sel == ReleaseSel) {
2529       return RValue::get(nullptr);
2530     }
2531   }
2532 
2533   // If the return type is something that goes in an integer register, the
2534   // runtime will handle 0 returns.  For other cases, we fill in the 0 value
2535   // ourselves.
2536   //
2537   // The language spec says the result of this kind of message send is
2538   // undefined, but lots of people seem to have forgotten to read that
2539   // paragraph and insist on sending messages to nil that have structure
2540   // returns.  With GCC, this generates a random return value (whatever happens
2541   // to be on the stack / in those registers at the time) on most platforms,
2542   // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
2543   // the stack.
2544   bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
2545       ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
2546 
2547   llvm::BasicBlock *startBB = nullptr;
2548   llvm::BasicBlock *messageBB = nullptr;
2549   llvm::BasicBlock *continueBB = nullptr;
2550 
2551   if (!isPointerSizedReturn) {
2552     startBB = Builder.GetInsertBlock();
2553     messageBB = CGF.createBasicBlock("msgSend");
2554     continueBB = CGF.createBasicBlock("continue");
2555 
2556     llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2557             llvm::Constant::getNullValue(Receiver->getType()));
2558     Builder.CreateCondBr(isNil, continueBB, messageBB);
2559     CGF.EmitBlock(messageBB);
2560   }
2561 
2562   IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2563   llvm::Value *cmd;
2564   if (Method)
2565     cmd = GetSelector(CGF, Method);
2566   else
2567     cmd = GetSelector(CGF, Sel);
2568   cmd = EnforceType(Builder, cmd, SelectorTy);
2569   Receiver = EnforceType(Builder, Receiver, IdTy);
2570 
2571   llvm::Metadata *impMD[] = {
2572       llvm::MDString::get(VMContext, Sel.getAsString()),
2573       llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2574       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2575           llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2576   llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2577 
2578   CallArgList ActualArgs;
2579   ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2580   ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2581   ActualArgs.addFrom(CallArgs);
2582 
2583   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2584 
2585   // Get the IMP to call
2586   llvm::Value *imp;
2587 
2588   // If we have non-legacy dispatch specified, we try using the objc_msgSend()
2589   // functions.  These are not supported on all platforms (or all runtimes on a
2590   // given platform), so we
2591   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2592     case CodeGenOptions::Legacy:
2593       imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2594       break;
2595     case CodeGenOptions::Mixed:
2596     case CodeGenOptions::NonLegacy:
2597       if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2598         imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2599                                   "objc_msgSend_fpret");
2600       } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2601         // The actual types here don't matter - we're going to bitcast the
2602         // function anyway
2603         imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2604                                   "objc_msgSend_stret");
2605       } else {
2606         imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2607                                   "objc_msgSend");
2608       }
2609   }
2610 
2611   // Reset the receiver in case the lookup modified it
2612   ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2613 
2614   imp = EnforceType(Builder, imp, MSI.MessengerType);
2615 
2616   llvm::Instruction *call;
2617   CGCallee callee(CGCalleeInfo(), imp);
2618   RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2619   call->setMetadata(msgSendMDKind, node);
2620 
2621 
2622   if (!isPointerSizedReturn) {
2623     messageBB = CGF.Builder.GetInsertBlock();
2624     CGF.Builder.CreateBr(continueBB);
2625     CGF.EmitBlock(continueBB);
2626     if (msgRet.isScalar()) {
2627       llvm::Value *v = msgRet.getScalarVal();
2628       llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2629       phi->addIncoming(v, messageBB);
2630       phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
2631       msgRet = RValue::get(phi);
2632     } else if (msgRet.isAggregate()) {
2633       Address v = msgRet.getAggregateAddress();
2634       llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
2635       llvm::Type *RetTy = v.getElementType();
2636       Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
2637       CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
2638       phi->addIncoming(v.getPointer(), messageBB);
2639       phi->addIncoming(NullVal.getPointer(), startBB);
2640       msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
2641     } else /* isComplex() */ {
2642       std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2643       llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2644       phi->addIncoming(v.first, messageBB);
2645       phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2646           startBB);
2647       llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2648       phi2->addIncoming(v.second, messageBB);
2649       phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2650           startBB);
2651       msgRet = RValue::getComplex(phi, phi2);
2652     }
2653   }
2654   return msgRet;
2655 }
2656 
2657 /// Generates a MethodList.  Used in construction of a objc_class and
2658 /// objc_category structures.
2659 llvm::Constant *CGObjCGNU::
GenerateMethodList(StringRef ClassName,StringRef CategoryName,ArrayRef<const ObjCMethodDecl * > Methods,bool isClassMethodList)2660 GenerateMethodList(StringRef ClassName,
2661                    StringRef CategoryName,
2662                    ArrayRef<const ObjCMethodDecl*> Methods,
2663                    bool isClassMethodList) {
2664   if (Methods.empty())
2665     return NULLPtr;
2666 
2667   ConstantInitBuilder Builder(CGM);
2668 
2669   auto MethodList = Builder.beginStruct();
2670   MethodList.addNullPointer(CGM.Int8PtrTy);
2671   MethodList.addInt(Int32Ty, Methods.size());
2672 
2673   // Get the method structure type.
2674   llvm::StructType *ObjCMethodTy =
2675     llvm::StructType::get(CGM.getLLVMContext(), {
2676       PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2677       PtrToInt8Ty, // Method types
2678       IMPTy        // Method pointer
2679     });
2680   bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2681   if (isV2ABI) {
2682     // size_t size;
2683     llvm::DataLayout td(&TheModule);
2684     MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
2685         CGM.getContext().getCharWidth());
2686     ObjCMethodTy =
2687       llvm::StructType::get(CGM.getLLVMContext(), {
2688         IMPTy,       // Method pointer
2689         PtrToInt8Ty, // Selector
2690         PtrToInt8Ty  // Extended type encoding
2691       });
2692   } else {
2693     ObjCMethodTy =
2694       llvm::StructType::get(CGM.getLLVMContext(), {
2695         PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2696         PtrToInt8Ty, // Method types
2697         IMPTy        // Method pointer
2698       });
2699   }
2700   auto MethodArray = MethodList.beginArray();
2701   ASTContext &Context = CGM.getContext();
2702   for (const auto *OMD : Methods) {
2703     llvm::Constant *FnPtr =
2704       TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
2705                                                 OMD->getSelector(),
2706                                                 isClassMethodList));
2707     assert(FnPtr && "Can't generate metadata for method that doesn't exist");
2708     auto Method = MethodArray.beginStruct(ObjCMethodTy);
2709     if (isV2ABI) {
2710       Method.addBitCast(FnPtr, IMPTy);
2711       Method.add(GetConstantSelector(OMD->getSelector(),
2712           Context.getObjCEncodingForMethodDecl(OMD)));
2713       Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
2714     } else {
2715       Method.add(MakeConstantString(OMD->getSelector().getAsString()));
2716       Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
2717       Method.addBitCast(FnPtr, IMPTy);
2718     }
2719     Method.finishAndAddTo(MethodArray);
2720   }
2721   MethodArray.finishAndAddTo(MethodList);
2722 
2723   // Create an instance of the structure
2724   return MethodList.finishAndCreateGlobal(".objc_method_list",
2725                                           CGM.getPointerAlign());
2726 }
2727 
2728 /// Generates an IvarList.  Used in construction of a objc_class.
2729 llvm::Constant *CGObjCGNU::
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets,ArrayRef<llvm::Constant * > IvarAlign,ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership)2730 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
2731                  ArrayRef<llvm::Constant *> IvarTypes,
2732                  ArrayRef<llvm::Constant *> IvarOffsets,
2733                  ArrayRef<llvm::Constant *> IvarAlign,
2734                  ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
2735   if (IvarNames.empty())
2736     return NULLPtr;
2737 
2738   ConstantInitBuilder Builder(CGM);
2739 
2740   // Structure containing array count followed by array.
2741   auto IvarList = Builder.beginStruct();
2742   IvarList.addInt(IntTy, (int)IvarNames.size());
2743 
2744   // Get the ivar structure type.
2745   llvm::StructType *ObjCIvarTy =
2746       llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
2747 
2748   // Array of ivar structures.
2749   auto Ivars = IvarList.beginArray(ObjCIvarTy);
2750   for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
2751     auto Ivar = Ivars.beginStruct(ObjCIvarTy);
2752     Ivar.add(IvarNames[i]);
2753     Ivar.add(IvarTypes[i]);
2754     Ivar.add(IvarOffsets[i]);
2755     Ivar.finishAndAddTo(Ivars);
2756   }
2757   Ivars.finishAndAddTo(IvarList);
2758 
2759   // Create an instance of the structure
2760   return IvarList.finishAndCreateGlobal(".objc_ivar_list",
2761                                         CGM.getPointerAlign());
2762 }
2763 
2764 /// Generate a class structure
GenerateClassStructure(llvm::Constant * MetaClass,llvm::Constant * SuperClass,unsigned info,const char * Name,llvm::Constant * Version,llvm::Constant * InstanceSize,llvm::Constant * IVars,llvm::Constant * Methods,llvm::Constant * Protocols,llvm::Constant * IvarOffsets,llvm::Constant * Properties,llvm::Constant * StrongIvarBitmap,llvm::Constant * WeakIvarBitmap,bool isMeta)2765 llvm::Constant *CGObjCGNU::GenerateClassStructure(
2766     llvm::Constant *MetaClass,
2767     llvm::Constant *SuperClass,
2768     unsigned info,
2769     const char *Name,
2770     llvm::Constant *Version,
2771     llvm::Constant *InstanceSize,
2772     llvm::Constant *IVars,
2773     llvm::Constant *Methods,
2774     llvm::Constant *Protocols,
2775     llvm::Constant *IvarOffsets,
2776     llvm::Constant *Properties,
2777     llvm::Constant *StrongIvarBitmap,
2778     llvm::Constant *WeakIvarBitmap,
2779     bool isMeta) {
2780   // Set up the class structure
2781   // Note:  Several of these are char*s when they should be ids.  This is
2782   // because the runtime performs this translation on load.
2783   //
2784   // Fields marked New ABI are part of the GNUstep runtime.  We emit them
2785   // anyway; the classes will still work with the GNU runtime, they will just
2786   // be ignored.
2787   llvm::StructType *ClassTy = llvm::StructType::get(
2788       PtrToInt8Ty,        // isa
2789       PtrToInt8Ty,        // super_class
2790       PtrToInt8Ty,        // name
2791       LongTy,             // version
2792       LongTy,             // info
2793       LongTy,             // instance_size
2794       IVars->getType(),   // ivars
2795       Methods->getType(), // methods
2796       // These are all filled in by the runtime, so we pretend
2797       PtrTy, // dtable
2798       PtrTy, // subclass_list
2799       PtrTy, // sibling_class
2800       PtrTy, // protocols
2801       PtrTy, // gc_object_type
2802       // New ABI:
2803       LongTy,                 // abi_version
2804       IvarOffsets->getType(), // ivar_offsets
2805       Properties->getType(),  // properties
2806       IntPtrTy,               // strong_pointers
2807       IntPtrTy                // weak_pointers
2808       );
2809 
2810   ConstantInitBuilder Builder(CGM);
2811   auto Elements = Builder.beginStruct(ClassTy);
2812 
2813   // Fill in the structure
2814 
2815   // isa
2816   Elements.addBitCast(MetaClass, PtrToInt8Ty);
2817   // super_class
2818   Elements.add(SuperClass);
2819   // name
2820   Elements.add(MakeConstantString(Name, ".class_name"));
2821   // version
2822   Elements.addInt(LongTy, 0);
2823   // info
2824   Elements.addInt(LongTy, info);
2825   // instance_size
2826   if (isMeta) {
2827     llvm::DataLayout td(&TheModule);
2828     Elements.addInt(LongTy,
2829                     td.getTypeSizeInBits(ClassTy) /
2830                       CGM.getContext().getCharWidth());
2831   } else
2832     Elements.add(InstanceSize);
2833   // ivars
2834   Elements.add(IVars);
2835   // methods
2836   Elements.add(Methods);
2837   // These are all filled in by the runtime, so we pretend
2838   // dtable
2839   Elements.add(NULLPtr);
2840   // subclass_list
2841   Elements.add(NULLPtr);
2842   // sibling_class
2843   Elements.add(NULLPtr);
2844   // protocols
2845   Elements.addBitCast(Protocols, PtrTy);
2846   // gc_object_type
2847   Elements.add(NULLPtr);
2848   // abi_version
2849   Elements.addInt(LongTy, ClassABIVersion);
2850   // ivar_offsets
2851   Elements.add(IvarOffsets);
2852   // properties
2853   Elements.add(Properties);
2854   // strong_pointers
2855   Elements.add(StrongIvarBitmap);
2856   // weak_pointers
2857   Elements.add(WeakIvarBitmap);
2858   // Create an instance of the structure
2859   // This is now an externally visible symbol, so that we can speed up class
2860   // messages in the next ABI.  We may already have some weak references to
2861   // this, so check and fix them properly.
2862   std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
2863           std::string(Name));
2864   llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
2865   llvm::Constant *Class =
2866     Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
2867                                    llvm::GlobalValue::ExternalLinkage);
2868   if (ClassRef) {
2869     ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
2870                   ClassRef->getType()));
2871     ClassRef->removeFromParent();
2872     Class->setName(ClassSym);
2873   }
2874   return Class;
2875 }
2876 
2877 llvm::Constant *CGObjCGNU::
GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl * > Methods)2878 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
2879   // Get the method structure type.
2880   llvm::StructType *ObjCMethodDescTy =
2881     llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
2882   ASTContext &Context = CGM.getContext();
2883   ConstantInitBuilder Builder(CGM);
2884   auto MethodList = Builder.beginStruct();
2885   MethodList.addInt(IntTy, Methods.size());
2886   auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
2887   for (auto *M : Methods) {
2888     auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
2889     Method.add(MakeConstantString(M->getSelector().getAsString()));
2890     Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
2891     Method.finishAndAddTo(MethodArray);
2892   }
2893   MethodArray.finishAndAddTo(MethodList);
2894   return MethodList.finishAndCreateGlobal(".objc_method_list",
2895                                           CGM.getPointerAlign());
2896 }
2897 
2898 // Create the protocol list structure used in classes, categories and so on
2899 llvm::Constant *
GenerateProtocolList(ArrayRef<std::string> Protocols)2900 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
2901 
2902   ConstantInitBuilder Builder(CGM);
2903   auto ProtocolList = Builder.beginStruct();
2904   ProtocolList.add(NULLPtr);
2905   ProtocolList.addInt(LongTy, Protocols.size());
2906 
2907   auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
2908   for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
2909       iter != endIter ; iter++) {
2910     llvm::Constant *protocol = nullptr;
2911     llvm::StringMap<llvm::Constant*>::iterator value =
2912       ExistingProtocols.find(*iter);
2913     if (value == ExistingProtocols.end()) {
2914       protocol = GenerateEmptyProtocol(*iter);
2915     } else {
2916       protocol = value->getValue();
2917     }
2918     Elements.addBitCast(protocol, PtrToInt8Ty);
2919   }
2920   Elements.finishAndAddTo(ProtocolList);
2921   return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
2922                                             CGM.getPointerAlign());
2923 }
2924 
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)2925 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
2926                                             const ObjCProtocolDecl *PD) {
2927   llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
2928   if (!protocol)
2929     GenerateProtocol(PD);
2930   llvm::Type *T =
2931     CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
2932   return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
2933 }
2934 
2935 llvm::Constant *
GenerateEmptyProtocol(StringRef ProtocolName)2936 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
2937   llvm::Constant *ProtocolList = GenerateProtocolList({});
2938   llvm::Constant *MethodList = GenerateProtocolMethodList({});
2939   MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty);
2940   // Protocols are objects containing lists of the methods implemented and
2941   // protocols adopted.
2942   ConstantInitBuilder Builder(CGM);
2943   auto Elements = Builder.beginStruct();
2944 
2945   // The isa pointer must be set to a magic number so the runtime knows it's
2946   // the correct layout.
2947   Elements.add(llvm::ConstantExpr::getIntToPtr(
2948           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
2949 
2950   Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
2951   Elements.add(ProtocolList); /* .protocol_list */
2952   Elements.add(MethodList);   /* .instance_methods */
2953   Elements.add(MethodList);   /* .class_methods */
2954   Elements.add(MethodList);   /* .optional_instance_methods */
2955   Elements.add(MethodList);   /* .optional_class_methods */
2956   Elements.add(NULLPtr);      /* .properties */
2957   Elements.add(NULLPtr);      /* .optional_properties */
2958   return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
2959                                         CGM.getPointerAlign());
2960 }
2961 
GenerateProtocol(const ObjCProtocolDecl * PD)2962 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
2963   std::string ProtocolName = PD->getNameAsString();
2964 
2965   // Use the protocol definition, if there is one.
2966   if (const ObjCProtocolDecl *Def = PD->getDefinition())
2967     PD = Def;
2968 
2969   SmallVector<std::string, 16> Protocols;
2970   for (const auto *PI : PD->protocols())
2971     Protocols.push_back(PI->getNameAsString());
2972   SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
2973   SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
2974   for (const auto *I : PD->instance_methods())
2975     if (I->isOptional())
2976       OptionalInstanceMethods.push_back(I);
2977     else
2978       InstanceMethods.push_back(I);
2979   // Collect information about class methods:
2980   SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
2981   SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
2982   for (const auto *I : PD->class_methods())
2983     if (I->isOptional())
2984       OptionalClassMethods.push_back(I);
2985     else
2986       ClassMethods.push_back(I);
2987 
2988   llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
2989   llvm::Constant *InstanceMethodList =
2990     GenerateProtocolMethodList(InstanceMethods);
2991   llvm::Constant *ClassMethodList =
2992     GenerateProtocolMethodList(ClassMethods);
2993   llvm::Constant *OptionalInstanceMethodList =
2994     GenerateProtocolMethodList(OptionalInstanceMethods);
2995   llvm::Constant *OptionalClassMethodList =
2996     GenerateProtocolMethodList(OptionalClassMethods);
2997 
2998   // Property metadata: name, attributes, isSynthesized, setter name, setter
2999   // types, getter name, getter types.
3000   // The isSynthesized value is always set to 0 in a protocol.  It exists to
3001   // simplify the runtime library by allowing it to use the same data
3002   // structures for protocol metadata everywhere.
3003 
3004   llvm::Constant *PropertyList =
3005     GeneratePropertyList(nullptr, PD, false, false);
3006   llvm::Constant *OptionalPropertyList =
3007     GeneratePropertyList(nullptr, PD, false, true);
3008 
3009   // Protocols are objects containing lists of the methods implemented and
3010   // protocols adopted.
3011   // The isa pointer must be set to a magic number so the runtime knows it's
3012   // the correct layout.
3013   ConstantInitBuilder Builder(CGM);
3014   auto Elements = Builder.beginStruct();
3015   Elements.add(
3016       llvm::ConstantExpr::getIntToPtr(
3017           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3018   Elements.add(MakeConstantString(ProtocolName));
3019   Elements.add(ProtocolList);
3020   Elements.add(InstanceMethodList);
3021   Elements.add(ClassMethodList);
3022   Elements.add(OptionalInstanceMethodList);
3023   Elements.add(OptionalClassMethodList);
3024   Elements.add(PropertyList);
3025   Elements.add(OptionalPropertyList);
3026   ExistingProtocols[ProtocolName] =
3027     llvm::ConstantExpr::getBitCast(
3028       Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()),
3029       IdTy);
3030 }
GenerateProtocolHolderCategory()3031 void CGObjCGNU::GenerateProtocolHolderCategory() {
3032   // Collect information about instance methods
3033 
3034   ConstantInitBuilder Builder(CGM);
3035   auto Elements = Builder.beginStruct();
3036 
3037   const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3038   const std::string CategoryName = "AnotherHack";
3039   Elements.add(MakeConstantString(CategoryName));
3040   Elements.add(MakeConstantString(ClassName));
3041   // Instance method list
3042   Elements.addBitCast(GenerateMethodList(
3043           ClassName, CategoryName, {}, false), PtrTy);
3044   // Class method list
3045   Elements.addBitCast(GenerateMethodList(
3046           ClassName, CategoryName, {}, true), PtrTy);
3047 
3048   // Protocol list
3049   ConstantInitBuilder ProtocolListBuilder(CGM);
3050   auto ProtocolList = ProtocolListBuilder.beginStruct();
3051   ProtocolList.add(NULLPtr);
3052   ProtocolList.addInt(LongTy, ExistingProtocols.size());
3053   auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3054   for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3055        iter != endIter ; iter++) {
3056     ProtocolElements.addBitCast(iter->getValue(), PtrTy);
3057   }
3058   ProtocolElements.finishAndAddTo(ProtocolList);
3059   Elements.addBitCast(
3060                    ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3061                                                       CGM.getPointerAlign()),
3062                    PtrTy);
3063   Categories.push_back(llvm::ConstantExpr::getBitCast(
3064         Elements.finishAndCreateGlobal("", CGM.getPointerAlign()),
3065         PtrTy));
3066 }
3067 
3068 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3069 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3070 /// bits set to their values, LSB first, while larger ones are stored in a
3071 /// structure of this / form:
3072 ///
3073 /// struct { int32_t length; int32_t values[length]; };
3074 ///
3075 /// The values in the array are stored in host-endian format, with the least
3076 /// significant bit being assumed to come first in the bitfield.  Therefore, a
3077 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3078 /// bitfield / with the 63rd bit set will be 1<<64.
MakeBitField(ArrayRef<bool> bits)3079 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3080   int bitCount = bits.size();
3081   int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3082   if (bitCount < ptrBits) {
3083     uint64_t val = 1;
3084     for (int i=0 ; i<bitCount ; ++i) {
3085       if (bits[i]) val |= 1ULL<<(i+1);
3086     }
3087     return llvm::ConstantInt::get(IntPtrTy, val);
3088   }
3089   SmallVector<llvm::Constant *, 8> values;
3090   int v=0;
3091   while (v < bitCount) {
3092     int32_t word = 0;
3093     for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
3094       if (bits[v]) word |= 1<<i;
3095       v++;
3096     }
3097     values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3098   }
3099 
3100   ConstantInitBuilder builder(CGM);
3101   auto fields = builder.beginStruct();
3102   fields.addInt(Int32Ty, values.size());
3103   auto array = fields.beginArray();
3104   for (auto v : values) array.add(v);
3105   array.finishAndAddTo(fields);
3106 
3107   llvm::Constant *GS =
3108     fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3109   llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3110   return ptr;
3111 }
3112 
GenerateCategoryProtocolList(const ObjCCategoryDecl * OCD)3113 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3114     ObjCCategoryDecl *OCD) {
3115   SmallVector<std::string, 16> Protocols;
3116   for (const auto *PD : OCD->getReferencedProtocols())
3117     Protocols.push_back(PD->getNameAsString());
3118   return GenerateProtocolList(Protocols);
3119 }
3120 
GenerateCategory(const ObjCCategoryImplDecl * OCD)3121 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3122   const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3123   std::string ClassName = Class->getNameAsString();
3124   std::string CategoryName = OCD->getNameAsString();
3125 
3126   // Collect the names of referenced protocols
3127   const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3128 
3129   ConstantInitBuilder Builder(CGM);
3130   auto Elements = Builder.beginStruct();
3131   Elements.add(MakeConstantString(CategoryName));
3132   Elements.add(MakeConstantString(ClassName));
3133   // Instance method list
3134   SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3135   InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3136       OCD->instmeth_end());
3137   Elements.addBitCast(
3138           GenerateMethodList(ClassName, CategoryName, InstanceMethods, false),
3139           PtrTy);
3140   // Class method list
3141 
3142   SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3143   ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3144       OCD->classmeth_end());
3145   Elements.addBitCast(
3146           GenerateMethodList(ClassName, CategoryName, ClassMethods, true),
3147           PtrTy);
3148   // Protocol list
3149   Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy);
3150   if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3151     const ObjCCategoryDecl *Category =
3152       Class->FindCategoryDeclaration(OCD->getIdentifier());
3153     if (Category) {
3154       // Instance properties
3155       Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy);
3156       // Class properties
3157       Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy);
3158     } else {
3159       Elements.addNullPointer(PtrTy);
3160       Elements.addNullPointer(PtrTy);
3161     }
3162   }
3163 
3164   Categories.push_back(llvm::ConstantExpr::getBitCast(
3165         Elements.finishAndCreateGlobal(
3166           std::string(".objc_category_")+ClassName+CategoryName,
3167           CGM.getPointerAlign()),
3168         PtrTy));
3169 }
3170 
GeneratePropertyList(const Decl * Container,const ObjCContainerDecl * OCD,bool isClassProperty,bool protocolOptionalProperties)3171 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3172     const ObjCContainerDecl *OCD,
3173     bool isClassProperty,
3174     bool protocolOptionalProperties) {
3175 
3176   SmallVector<const ObjCPropertyDecl *, 16> Properties;
3177   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3178   bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3179   ASTContext &Context = CGM.getContext();
3180 
3181   std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3182     = [&](const ObjCProtocolDecl *Proto) {
3183       for (const auto *P : Proto->protocols())
3184         collectProtocolProperties(P);
3185       for (const auto *PD : Proto->properties()) {
3186         if (isClassProperty != PD->isClassProperty())
3187           continue;
3188         // Skip any properties that are declared in protocols that this class
3189         // conforms to but are not actually implemented by this class.
3190         if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3191           continue;
3192         if (!PropertySet.insert(PD->getIdentifier()).second)
3193           continue;
3194         Properties.push_back(PD);
3195       }
3196     };
3197 
3198   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3199     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3200       for (auto *PD : ClassExt->properties()) {
3201         if (isClassProperty != PD->isClassProperty())
3202           continue;
3203         PropertySet.insert(PD->getIdentifier());
3204         Properties.push_back(PD);
3205       }
3206 
3207   for (const auto *PD : OCD->properties()) {
3208     if (isClassProperty != PD->isClassProperty())
3209       continue;
3210     // If we're generating a list for a protocol, skip optional / required ones
3211     // when generating the other list.
3212     if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3213       continue;
3214     // Don't emit duplicate metadata for properties that were already in a
3215     // class extension.
3216     if (!PropertySet.insert(PD->getIdentifier()).second)
3217       continue;
3218 
3219     Properties.push_back(PD);
3220   }
3221 
3222   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3223     for (const auto *P : OID->all_referenced_protocols())
3224       collectProtocolProperties(P);
3225   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3226     for (const auto *P : CD->protocols())
3227       collectProtocolProperties(P);
3228 
3229   auto numProperties = Properties.size();
3230 
3231   if (numProperties == 0)
3232     return NULLPtr;
3233 
3234   ConstantInitBuilder builder(CGM);
3235   auto propertyList = builder.beginStruct();
3236   auto properties = PushPropertyListHeader(propertyList, numProperties);
3237 
3238   // Add all of the property methods need adding to the method list and to the
3239   // property metadata list.
3240   for (auto *property : Properties) {
3241     bool isSynthesized = false;
3242     bool isDynamic = false;
3243     if (!isProtocol) {
3244       auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3245       if (propertyImpl) {
3246         isSynthesized = (propertyImpl->getPropertyImplementation() ==
3247             ObjCPropertyImplDecl::Synthesize);
3248         isDynamic = (propertyImpl->getPropertyImplementation() ==
3249             ObjCPropertyImplDecl::Dynamic);
3250       }
3251     }
3252     PushProperty(properties, property, Container, isSynthesized, isDynamic);
3253   }
3254   properties.finishAndAddTo(propertyList);
3255 
3256   return propertyList.finishAndCreateGlobal(".objc_property_list",
3257                                             CGM.getPointerAlign());
3258 }
3259 
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)3260 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3261   // Get the class declaration for which the alias is specified.
3262   ObjCInterfaceDecl *ClassDecl =
3263     const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3264   ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3265                             OAD->getNameAsString());
3266 }
3267 
GenerateClass(const ObjCImplementationDecl * OID)3268 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3269   ASTContext &Context = CGM.getContext();
3270 
3271   // Get the superclass name.
3272   const ObjCInterfaceDecl * SuperClassDecl =
3273     OID->getClassInterface()->getSuperClass();
3274   std::string SuperClassName;
3275   if (SuperClassDecl) {
3276     SuperClassName = SuperClassDecl->getNameAsString();
3277     EmitClassRef(SuperClassName);
3278   }
3279 
3280   // Get the class name
3281   ObjCInterfaceDecl *ClassDecl =
3282       const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3283   std::string ClassName = ClassDecl->getNameAsString();
3284 
3285   // Emit the symbol that is used to generate linker errors if this class is
3286   // referenced in other modules but not declared.
3287   std::string classSymbolName = "__objc_class_name_" + ClassName;
3288   if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3289     symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3290   } else {
3291     new llvm::GlobalVariable(TheModule, LongTy, false,
3292                              llvm::GlobalValue::ExternalLinkage,
3293                              llvm::ConstantInt::get(LongTy, 0),
3294                              classSymbolName);
3295   }
3296 
3297   // Get the size of instances.
3298   int instanceSize =
3299     Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3300 
3301   // Collect information about instance variables.
3302   SmallVector<llvm::Constant*, 16> IvarNames;
3303   SmallVector<llvm::Constant*, 16> IvarTypes;
3304   SmallVector<llvm::Constant*, 16> IvarOffsets;
3305   SmallVector<llvm::Constant*, 16> IvarAligns;
3306   SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3307 
3308   ConstantInitBuilder IvarOffsetBuilder(CGM);
3309   auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3310   SmallVector<bool, 16> WeakIvars;
3311   SmallVector<bool, 16> StrongIvars;
3312 
3313   int superInstanceSize = !SuperClassDecl ? 0 :
3314     Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3315   // For non-fragile ivars, set the instance size to 0 - {the size of just this
3316   // class}.  The runtime will then set this to the correct value on load.
3317   if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3318     instanceSize = 0 - (instanceSize - superInstanceSize);
3319   }
3320 
3321   for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3322        IVD = IVD->getNextIvar()) {
3323       // Store the name
3324       IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3325       // Get the type encoding for this ivar
3326       std::string TypeStr;
3327       Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3328       IvarTypes.push_back(MakeConstantString(TypeStr));
3329       IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3330             Context.getTypeSize(IVD->getType())));
3331       // Get the offset
3332       uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3333       uint64_t Offset = BaseOffset;
3334       if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3335         Offset = BaseOffset - superInstanceSize;
3336       }
3337       llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3338       // Create the direct offset value
3339       std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3340           IVD->getNameAsString();
3341 
3342       llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3343       if (OffsetVar) {
3344         OffsetVar->setInitializer(OffsetValue);
3345         // If this is the real definition, change its linkage type so that
3346         // different modules will use this one, rather than their private
3347         // copy.
3348         OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3349       } else
3350         OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3351           false, llvm::GlobalValue::ExternalLinkage,
3352           OffsetValue, OffsetName);
3353       IvarOffsets.push_back(OffsetValue);
3354       IvarOffsetValues.add(OffsetVar);
3355       Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3356       IvarOwnership.push_back(lt);
3357       switch (lt) {
3358         case Qualifiers::OCL_Strong:
3359           StrongIvars.push_back(true);
3360           WeakIvars.push_back(false);
3361           break;
3362         case Qualifiers::OCL_Weak:
3363           StrongIvars.push_back(false);
3364           WeakIvars.push_back(true);
3365           break;
3366         default:
3367           StrongIvars.push_back(false);
3368           WeakIvars.push_back(false);
3369       }
3370   }
3371   llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3372   llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3373   llvm::GlobalVariable *IvarOffsetArray =
3374     IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3375                                            CGM.getPointerAlign());
3376 
3377   // Collect information about instance methods
3378   SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3379   InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3380       OID->instmeth_end());
3381 
3382   SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3383   ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3384       OID->classmeth_end());
3385 
3386   // Collect the same information about synthesized properties, which don't
3387   // show up in the instance method lists.
3388   for (auto *propertyImpl : OID->property_impls())
3389     if (propertyImpl->getPropertyImplementation() ==
3390         ObjCPropertyImplDecl::Synthesize) {
3391       ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
3392       auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
3393         if (accessor)
3394           InstanceMethods.push_back(accessor);
3395       };
3396       addPropertyMethod(property->getGetterMethodDecl());
3397       addPropertyMethod(property->getSetterMethodDecl());
3398     }
3399 
3400   llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3401 
3402   // Collect the names of referenced protocols
3403   SmallVector<std::string, 16> Protocols;
3404   for (const auto *I : ClassDecl->protocols())
3405     Protocols.push_back(I->getNameAsString());
3406 
3407   // Get the superclass pointer.
3408   llvm::Constant *SuperClass;
3409   if (!SuperClassName.empty()) {
3410     SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3411   } else {
3412     SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3413   }
3414   // Empty vector used to construct empty method lists
3415   SmallVector<llvm::Constant*, 1>  empty;
3416   // Generate the method and instance variable lists
3417   llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3418       InstanceMethods, false);
3419   llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3420       ClassMethods, true);
3421   llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3422       IvarOffsets, IvarAligns, IvarOwnership);
3423   // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3424   // we emit a symbol containing the offset for each ivar in the class.  This
3425   // allows code compiled for the non-Fragile ABI to inherit from code compiled
3426   // for the legacy ABI, without causing problems.  The converse is also
3427   // possible, but causes all ivar accesses to be fragile.
3428 
3429   // Offset pointer for getting at the correct field in the ivar list when
3430   // setting up the alias.  These are: The base address for the global, the
3431   // ivar array (second field), the ivar in this list (set for each ivar), and
3432   // the offset (third field in ivar structure)
3433   llvm::Type *IndexTy = Int32Ty;
3434   llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3435       llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3436       llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3437 
3438   unsigned ivarIndex = 0;
3439   for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3440        IVD = IVD->getNextIvar()) {
3441       const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3442       offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3443       // Get the correct ivar field
3444       llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3445           cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3446           offsetPointerIndexes);
3447       // Get the existing variable, if one exists.
3448       llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3449       if (offset) {
3450         offset->setInitializer(offsetValue);
3451         // If this is the real definition, change its linkage type so that
3452         // different modules will use this one, rather than their private
3453         // copy.
3454         offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3455       } else
3456         // Add a new alias if there isn't one already.
3457         new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3458                 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3459       ++ivarIndex;
3460   }
3461   llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3462 
3463   //Generate metaclass for class methods
3464   llvm::Constant *MetaClassStruct = GenerateClassStructure(
3465       NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3466       NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3467       GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3468   CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3469                       OID->getClassInterface());
3470 
3471   // Generate the class structure
3472   llvm::Constant *ClassStruct = GenerateClassStructure(
3473       MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3474       llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3475       GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3476       StrongIvarBitmap, WeakIvarBitmap);
3477   CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3478                       OID->getClassInterface());
3479 
3480   // Resolve the class aliases, if they exist.
3481   if (ClassPtrAlias) {
3482     ClassPtrAlias->replaceAllUsesWith(
3483         llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
3484     ClassPtrAlias->eraseFromParent();
3485     ClassPtrAlias = nullptr;
3486   }
3487   if (MetaClassPtrAlias) {
3488     MetaClassPtrAlias->replaceAllUsesWith(
3489         llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
3490     MetaClassPtrAlias->eraseFromParent();
3491     MetaClassPtrAlias = nullptr;
3492   }
3493 
3494   // Add class structure to list to be added to the symtab later
3495   ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
3496   Classes.push_back(ClassStruct);
3497 }
3498 
ModuleInitFunction()3499 llvm::Function *CGObjCGNU::ModuleInitFunction() {
3500   // Only emit an ObjC load function if no Objective-C stuff has been called
3501   if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3502       ExistingProtocols.empty() && SelectorTable.empty())
3503     return nullptr;
3504 
3505   // Add all referenced protocols to a category.
3506   GenerateProtocolHolderCategory();
3507 
3508   llvm::StructType *selStructTy =
3509     dyn_cast<llvm::StructType>(SelectorTy->getElementType());
3510   llvm::Type *selStructPtrTy = SelectorTy;
3511   if (!selStructTy) {
3512     selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3513                                         { PtrToInt8Ty, PtrToInt8Ty });
3514     selStructPtrTy = llvm::PointerType::getUnqual(selStructTy);
3515   }
3516 
3517   // Generate statics list:
3518   llvm::Constant *statics = NULLPtr;
3519   if (!ConstantStrings.empty()) {
3520     llvm::GlobalVariable *fileStatics = [&] {
3521       ConstantInitBuilder builder(CGM);
3522       auto staticsStruct = builder.beginStruct();
3523 
3524       StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3525       if (stringClass.empty()) stringClass = "NXConstantString";
3526       staticsStruct.add(MakeConstantString(stringClass,
3527                                            ".objc_static_class_name"));
3528 
3529       auto array = staticsStruct.beginArray();
3530       array.addAll(ConstantStrings);
3531       array.add(NULLPtr);
3532       array.finishAndAddTo(staticsStruct);
3533 
3534       return staticsStruct.finishAndCreateGlobal(".objc_statics",
3535                                                  CGM.getPointerAlign());
3536     }();
3537 
3538     ConstantInitBuilder builder(CGM);
3539     auto allStaticsArray = builder.beginArray(fileStatics->getType());
3540     allStaticsArray.add(fileStatics);
3541     allStaticsArray.addNullPointer(fileStatics->getType());
3542 
3543     statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3544                                                     CGM.getPointerAlign());
3545     statics = llvm::ConstantExpr::getBitCast(statics, PtrTy);
3546   }
3547 
3548   // Array of classes, categories, and constant objects.
3549 
3550   SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3551   unsigned selectorCount;
3552 
3553   // Pointer to an array of selectors used in this module.
3554   llvm::GlobalVariable *selectorList = [&] {
3555     ConstantInitBuilder builder(CGM);
3556     auto selectors = builder.beginArray(selStructTy);
3557     auto &table = SelectorTable; // MSVC workaround
3558     for (auto &entry : table) {
3559 
3560       std::string selNameStr = entry.first.getAsString();
3561       llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3562 
3563       for (TypedSelector &sel : entry.second) {
3564         llvm::Constant *selectorTypeEncoding = NULLPtr;
3565         if (!sel.first.empty())
3566           selectorTypeEncoding =
3567             MakeConstantString(sel.first, ".objc_sel_types");
3568 
3569         auto selStruct = selectors.beginStruct(selStructTy);
3570         selStruct.add(selName);
3571         selStruct.add(selectorTypeEncoding);
3572         selStruct.finishAndAddTo(selectors);
3573 
3574         // Store the selector alias for later replacement
3575         selectorAliases.push_back(sel.second);
3576       }
3577     }
3578 
3579     // Remember the number of entries in the selector table.
3580     selectorCount = selectors.size();
3581 
3582     // NULL-terminate the selector list.  This should not actually be required,
3583     // because the selector list has a length field.  Unfortunately, the GCC
3584     // runtime decides to ignore the length field and expects a NULL terminator,
3585     // and GCC cooperates with this by always setting the length to 0.
3586     auto selStruct = selectors.beginStruct(selStructTy);
3587     selStruct.add(NULLPtr);
3588     selStruct.add(NULLPtr);
3589     selStruct.finishAndAddTo(selectors);
3590 
3591     return selectors.finishAndCreateGlobal(".objc_selector_list",
3592                                            CGM.getPointerAlign());
3593   }();
3594 
3595   // Now that all of the static selectors exist, create pointers to them.
3596   for (unsigned i = 0; i < selectorCount; ++i) {
3597     llvm::Constant *idxs[] = {
3598       Zeros[0],
3599       llvm::ConstantInt::get(Int32Ty, i)
3600     };
3601     // FIXME: We're generating redundant loads and stores here!
3602     llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3603         selectorList->getValueType(), selectorList, idxs);
3604     // If selectors are defined as an opaque type, cast the pointer to this
3605     // type.
3606     selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy);
3607     selectorAliases[i]->replaceAllUsesWith(selPtr);
3608     selectorAliases[i]->eraseFromParent();
3609   }
3610 
3611   llvm::GlobalVariable *symtab = [&] {
3612     ConstantInitBuilder builder(CGM);
3613     auto symtab = builder.beginStruct();
3614 
3615     // Number of static selectors
3616     symtab.addInt(LongTy, selectorCount);
3617 
3618     symtab.addBitCast(selectorList, selStructPtrTy);
3619 
3620     // Number of classes defined.
3621     symtab.addInt(CGM.Int16Ty, Classes.size());
3622     // Number of categories defined
3623     symtab.addInt(CGM.Int16Ty, Categories.size());
3624 
3625     // Create an array of classes, then categories, then static object instances
3626     auto classList = symtab.beginArray(PtrToInt8Ty);
3627     classList.addAll(Classes);
3628     classList.addAll(Categories);
3629     //  NULL-terminated list of static object instances (mainly constant strings)
3630     classList.add(statics);
3631     classList.add(NULLPtr);
3632     classList.finishAndAddTo(symtab);
3633 
3634     // Construct the symbol table.
3635     return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3636   }();
3637 
3638   // The symbol table is contained in a module which has some version-checking
3639   // constants
3640   llvm::Constant *module = [&] {
3641     llvm::Type *moduleEltTys[] = {
3642       LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3643     };
3644     llvm::StructType *moduleTy =
3645       llvm::StructType::get(CGM.getLLVMContext(),
3646          makeArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3647 
3648     ConstantInitBuilder builder(CGM);
3649     auto module = builder.beginStruct(moduleTy);
3650     // Runtime version, used for ABI compatibility checking.
3651     module.addInt(LongTy, RuntimeVersion);
3652     // sizeof(ModuleTy)
3653     module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3654 
3655     // The path to the source file where this module was declared
3656     SourceManager &SM = CGM.getContext().getSourceManager();
3657     const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
3658     std::string path =
3659       (Twine(mainFile->getDir()->getName()) + "/" + mainFile->getName()).str();
3660     module.add(MakeConstantString(path, ".objc_source_file_name"));
3661     module.add(symtab);
3662 
3663     if (RuntimeVersion >= 10) {
3664       switch (CGM.getLangOpts().getGC()) {
3665       case LangOptions::GCOnly:
3666         module.addInt(IntTy, 2);
3667         break;
3668       case LangOptions::NonGC:
3669         if (CGM.getLangOpts().ObjCAutoRefCount)
3670           module.addInt(IntTy, 1);
3671         else
3672           module.addInt(IntTy, 0);
3673         break;
3674       case LangOptions::HybridGC:
3675         module.addInt(IntTy, 1);
3676         break;
3677       }
3678     }
3679 
3680     return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3681   }();
3682 
3683   // Create the load function calling the runtime entry point with the module
3684   // structure
3685   llvm::Function * LoadFunction = llvm::Function::Create(
3686       llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
3687       llvm::GlobalValue::InternalLinkage, ".objc_load_function",
3688       &TheModule);
3689   llvm::BasicBlock *EntryBB =
3690       llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
3691   CGBuilderTy Builder(CGM, VMContext);
3692   Builder.SetInsertPoint(EntryBB);
3693 
3694   llvm::FunctionType *FT =
3695     llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
3696   llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
3697   Builder.CreateCall(Register, module);
3698 
3699   if (!ClassAliases.empty()) {
3700     llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
3701     llvm::FunctionType *RegisterAliasTy =
3702       llvm::FunctionType::get(Builder.getVoidTy(),
3703                               ArgTypes, false);
3704     llvm::Function *RegisterAlias = llvm::Function::Create(
3705       RegisterAliasTy,
3706       llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
3707       &TheModule);
3708     llvm::BasicBlock *AliasBB =
3709       llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
3710     llvm::BasicBlock *NoAliasBB =
3711       llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
3712 
3713     // Branch based on whether the runtime provided class_registerAlias_np()
3714     llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
3715             llvm::Constant::getNullValue(RegisterAlias->getType()));
3716     Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
3717 
3718     // The true branch (has alias registration function):
3719     Builder.SetInsertPoint(AliasBB);
3720     // Emit alias registration calls:
3721     for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
3722        iter != ClassAliases.end(); ++iter) {
3723        llvm::Constant *TheClass =
3724           TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
3725        if (TheClass) {
3726          TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
3727          Builder.CreateCall(RegisterAlias,
3728                             {TheClass, MakeConstantString(iter->second)});
3729        }
3730     }
3731     // Jump to end:
3732     Builder.CreateBr(NoAliasBB);
3733 
3734     // Missing alias registration function, just return from the function:
3735     Builder.SetInsertPoint(NoAliasBB);
3736   }
3737   Builder.CreateRetVoid();
3738 
3739   return LoadFunction;
3740 }
3741 
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)3742 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
3743                                           const ObjCContainerDecl *CD) {
3744   const ObjCCategoryImplDecl *OCD =
3745     dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
3746   StringRef CategoryName = OCD ? OCD->getName() : "";
3747   StringRef ClassName = CD->getName();
3748   Selector MethodName = OMD->getSelector();
3749   bool isClassMethod = !OMD->isInstanceMethod();
3750 
3751   CodeGenTypes &Types = CGM.getTypes();
3752   llvm::FunctionType *MethodTy =
3753     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3754   std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
3755       MethodName, isClassMethod);
3756 
3757   llvm::Function *Method
3758     = llvm::Function::Create(MethodTy,
3759                              llvm::GlobalValue::InternalLinkage,
3760                              FunctionName,
3761                              &TheModule);
3762   return Method;
3763 }
3764 
GetPropertyGetFunction()3765 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
3766   return GetPropertyFn;
3767 }
3768 
GetPropertySetFunction()3769 llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
3770   return SetPropertyFn;
3771 }
3772 
GetOptimizedPropertySetFunction(bool atomic,bool copy)3773 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
3774                                                            bool copy) {
3775   return nullptr;
3776 }
3777 
GetGetStructFunction()3778 llvm::Constant *CGObjCGNU::GetGetStructFunction() {
3779   return GetStructPropertyFn;
3780 }
3781 
GetSetStructFunction()3782 llvm::Constant *CGObjCGNU::GetSetStructFunction() {
3783   return SetStructPropertyFn;
3784 }
3785 
GetCppAtomicObjectGetFunction()3786 llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
3787   return nullptr;
3788 }
3789 
GetCppAtomicObjectSetFunction()3790 llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
3791   return nullptr;
3792 }
3793 
EnumerationMutationFunction()3794 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
3795   return EnumerationMutationFn;
3796 }
3797 
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)3798 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
3799                                      const ObjCAtSynchronizedStmt &S) {
3800   EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
3801 }
3802 
3803 
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)3804 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
3805                             const ObjCAtTryStmt &S) {
3806   // Unlike the Apple non-fragile runtimes, which also uses
3807   // unwind-based zero cost exceptions, the GNU Objective C runtime's
3808   // EH support isn't a veneer over C++ EH.  Instead, exception
3809   // objects are created by objc_exception_throw and destroyed by
3810   // the personality function; this avoids the need for bracketing
3811   // catch handlers with calls to __blah_begin_catch/__blah_end_catch
3812   // (or even _Unwind_DeleteException), but probably doesn't
3813   // interoperate very well with foreign exceptions.
3814   //
3815   // In Objective-C++ mode, we actually emit something equivalent to the C++
3816   // exception handler.
3817   EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
3818 }
3819 
EmitThrowStmt(CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)3820 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
3821                               const ObjCAtThrowStmt &S,
3822                               bool ClearInsertionPoint) {
3823   llvm::Value *ExceptionAsObject;
3824   bool isRethrow = false;
3825 
3826   if (const Expr *ThrowExpr = S.getThrowExpr()) {
3827     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
3828     ExceptionAsObject = Exception;
3829   } else {
3830     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
3831            "Unexpected rethrow outside @catch block.");
3832     ExceptionAsObject = CGF.ObjCEHValueStack.back();
3833     isRethrow = true;
3834   }
3835   if (isRethrow && usesSEHExceptions) {
3836     // For SEH, ExceptionAsObject may be undef, because the catch handler is
3837     // not passed it for catchalls and so it is not visible to the catch
3838     // funclet.  The real thrown object will still be live on the stack at this
3839     // point and will be rethrown.  If we are explicitly rethrowing the object
3840     // that was passed into the `@catch` block, then this code path is not
3841     // reached and we will instead call `objc_exception_throw` with an explicit
3842     // argument.
3843     CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn).setDoesNotReturn();
3844   }
3845   else {
3846     ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
3847     llvm::CallSite Throw =
3848         CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
3849     Throw.setDoesNotReturn();
3850   }
3851   CGF.Builder.CreateUnreachable();
3852   if (ClearInsertionPoint)
3853     CGF.Builder.ClearInsertionPoint();
3854 }
3855 
EmitObjCWeakRead(CodeGenFunction & CGF,Address AddrWeakObj)3856 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
3857                                           Address AddrWeakObj) {
3858   CGBuilderTy &B = CGF.Builder;
3859   AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
3860   return B.CreateCall(WeakReadFn.getType(), WeakReadFn,
3861                       AddrWeakObj.getPointer());
3862 }
3863 
EmitObjCWeakAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst)3864 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
3865                                    llvm::Value *src, Address dst) {
3866   CGBuilderTy &B = CGF.Builder;
3867   src = EnforceType(B, src, IdTy);
3868   dst = EnforceType(B, dst, PtrToIdTy);
3869   B.CreateCall(WeakAssignFn.getType(), WeakAssignFn,
3870                {src, dst.getPointer()});
3871 }
3872 
EmitObjCGlobalAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst,bool threadlocal)3873 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
3874                                      llvm::Value *src, Address dst,
3875                                      bool threadlocal) {
3876   CGBuilderTy &B = CGF.Builder;
3877   src = EnforceType(B, src, IdTy);
3878   dst = EnforceType(B, dst, PtrToIdTy);
3879   // FIXME. Add threadloca assign API
3880   assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
3881   B.CreateCall(GlobalAssignFn.getType(), GlobalAssignFn,
3882                {src, dst.getPointer()});
3883 }
3884 
EmitObjCIvarAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst,llvm::Value * ivarOffset)3885 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
3886                                    llvm::Value *src, Address dst,
3887                                    llvm::Value *ivarOffset) {
3888   CGBuilderTy &B = CGF.Builder;
3889   src = EnforceType(B, src, IdTy);
3890   dst = EnforceType(B, dst, IdTy);
3891   B.CreateCall(IvarAssignFn.getType(), IvarAssignFn,
3892                {src, dst.getPointer(), ivarOffset});
3893 }
3894 
EmitObjCStrongCastAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst)3895 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
3896                                          llvm::Value *src, Address dst) {
3897   CGBuilderTy &B = CGF.Builder;
3898   src = EnforceType(B, src, IdTy);
3899   dst = EnforceType(B, dst, PtrToIdTy);
3900   B.CreateCall(StrongCastAssignFn.getType(), StrongCastAssignFn,
3901                {src, dst.getPointer()});
3902 }
3903 
EmitGCMemmoveCollectable(CodeGenFunction & CGF,Address DestPtr,Address SrcPtr,llvm::Value * Size)3904 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
3905                                          Address DestPtr,
3906                                          Address SrcPtr,
3907                                          llvm::Value *Size) {
3908   CGBuilderTy &B = CGF.Builder;
3909   DestPtr = EnforceType(B, DestPtr, PtrTy);
3910   SrcPtr = EnforceType(B, SrcPtr, PtrTy);
3911 
3912   B.CreateCall(MemMoveFn.getType(), MemMoveFn,
3913                {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
3914 }
3915 
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)3916 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
3917                               const ObjCInterfaceDecl *ID,
3918                               const ObjCIvarDecl *Ivar) {
3919   const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
3920   // Emit the variable and initialize it with what we think the correct value
3921   // is.  This allows code compiled with non-fragile ivars to work correctly
3922   // when linked against code which isn't (most of the time).
3923   llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
3924   if (!IvarOffsetPointer)
3925     IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
3926             llvm::Type::getInt32PtrTy(VMContext), false,
3927             llvm::GlobalValue::ExternalLinkage, nullptr, Name);
3928   return IvarOffsetPointer;
3929 }
3930 
EmitObjCValueForIvar(CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)3931 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
3932                                        QualType ObjectTy,
3933                                        llvm::Value *BaseValue,
3934                                        const ObjCIvarDecl *Ivar,
3935                                        unsigned CVRQualifiers) {
3936   const ObjCInterfaceDecl *ID =
3937     ObjectTy->getAs<ObjCObjectType>()->getInterface();
3938   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
3939                                   EmitIvarOffset(CGF, ID, Ivar));
3940 }
3941 
FindIvarInterface(ASTContext & Context,const ObjCInterfaceDecl * OID,const ObjCIvarDecl * OIVD)3942 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
3943                                                   const ObjCInterfaceDecl *OID,
3944                                                   const ObjCIvarDecl *OIVD) {
3945   for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
3946        next = next->getNextIvar()) {
3947     if (OIVD == next)
3948       return OID;
3949   }
3950 
3951   // Otherwise check in the super class.
3952   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
3953     return FindIvarInterface(Context, Super, OIVD);
3954 
3955   return nullptr;
3956 }
3957 
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)3958 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
3959                          const ObjCInterfaceDecl *Interface,
3960                          const ObjCIvarDecl *Ivar) {
3961   if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3962     Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
3963 
3964     // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
3965     // and ExternalLinkage, so create a reference to the ivar global and rely on
3966     // the definition being created as part of GenerateClass.
3967     if (RuntimeVersion < 10 ||
3968         CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
3969       return CGF.Builder.CreateZExtOrBitCast(
3970           CGF.Builder.CreateAlignedLoad(
3971               Int32Ty, CGF.Builder.CreateAlignedLoad(
3972                            ObjCIvarOffsetVariable(Interface, Ivar),
3973                            CGF.getPointerAlign(), "ivar"),
3974               CharUnits::fromQuantity(4)),
3975           PtrDiffTy);
3976     std::string name = "__objc_ivar_offset_value_" +
3977       Interface->getNameAsString() +"." + Ivar->getNameAsString();
3978     CharUnits Align = CGM.getIntAlign();
3979     llvm::Value *Offset = TheModule.getGlobalVariable(name);
3980     if (!Offset) {
3981       auto GV = new llvm::GlobalVariable(TheModule, IntTy,
3982           false, llvm::GlobalValue::LinkOnceAnyLinkage,
3983           llvm::Constant::getNullValue(IntTy), name);
3984       GV->setAlignment(Align.getQuantity());
3985       Offset = GV;
3986     }
3987     Offset = CGF.Builder.CreateAlignedLoad(Offset, Align);
3988     if (Offset->getType() != PtrDiffTy)
3989       Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
3990     return Offset;
3991   }
3992   uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
3993   return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
3994 }
3995 
3996 CGObjCRuntime *
CreateGNUObjCRuntime(CodeGenModule & CGM)3997 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
3998   auto Runtime = CGM.getLangOpts().ObjCRuntime;
3999   switch (Runtime.getKind()) {
4000   case ObjCRuntime::GNUstep:
4001     if (Runtime.getVersion() >= VersionTuple(2, 0))
4002       return new CGObjCGNUstep2(CGM);
4003     return new CGObjCGNUstep(CGM);
4004 
4005   case ObjCRuntime::GCC:
4006     return new CGObjCGCC(CGM);
4007 
4008   case ObjCRuntime::ObjFW:
4009     return new CGObjCObjFW(CGM);
4010 
4011   case ObjCRuntime::FragileMacOSX:
4012   case ObjCRuntime::MacOSX:
4013   case ObjCRuntime::iOS:
4014   case ObjCRuntime::WatchOS:
4015     llvm_unreachable("these runtimes are not GNU runtimes");
4016   }
4017   llvm_unreachable("bad runtime");
4018 }
4019