1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitCodes.h"
29 #include "llvm/Bitcode/BitstreamWriter.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 static cl::opt<unsigned>
86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                    cl::desc("Number of metadatas above which we emit an index "
88                             "to enable lazy-loading"));
89 
90 cl::opt<bool> WriteRelBFToSummary(
91     "write-relbf-to-summary", cl::Hidden, cl::init(false),
92     cl::desc("Write relative block frequency to function summary "));
93 
94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95 
96 namespace {
97 
98 /// These are manifest constants used by the bitcode writer. They do not need to
99 /// be kept in sync with the reader, but need to be consistent within this file.
100 enum {
101   // VALUE_SYMTAB_BLOCK abbrev id's.
102   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
103   VST_ENTRY_7_ABBREV,
104   VST_ENTRY_6_ABBREV,
105   VST_BBENTRY_6_ABBREV,
106 
107   // CONSTANTS_BLOCK abbrev id's.
108   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109   CONSTANTS_INTEGER_ABBREV,
110   CONSTANTS_CE_CAST_Abbrev,
111   CONSTANTS_NULL_Abbrev,
112 
113   // FUNCTION_BLOCK abbrev id's.
114   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115   FUNCTION_INST_UNOP_ABBREV,
116   FUNCTION_INST_UNOP_FLAGS_ABBREV,
117   FUNCTION_INST_BINOP_ABBREV,
118   FUNCTION_INST_BINOP_FLAGS_ABBREV,
119   FUNCTION_INST_CAST_ABBREV,
120   FUNCTION_INST_RET_VOID_ABBREV,
121   FUNCTION_INST_RET_VAL_ABBREV,
122   FUNCTION_INST_UNREACHABLE_ABBREV,
123   FUNCTION_INST_GEP_ABBREV,
124 };
125 
126 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
127 /// file type.
128 class BitcodeWriterBase {
129 protected:
130   /// The stream created and owned by the client.
131   BitstreamWriter &Stream;
132 
133   StringTableBuilder &StrtabBuilder;
134 
135 public:
136   /// Constructs a BitcodeWriterBase object that writes to the provided
137   /// \p Stream.
BitcodeWriterBase(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder)138   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
139       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
140 
141 protected:
142   void writeBitcodeHeader();
143   void writeModuleVersion();
144 };
145 
writeModuleVersion()146 void BitcodeWriterBase::writeModuleVersion() {
147   // VERSION: [version#]
148   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
149 }
150 
151 /// Base class to manage the module bitcode writing, currently subclassed for
152 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
153 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
154 protected:
155   /// The Module to write to bitcode.
156   const Module &M;
157 
158   /// Enumerates ids for all values in the module.
159   ValueEnumerator VE;
160 
161   /// Optional per-module index to write for ThinLTO.
162   const ModuleSummaryIndex *Index;
163 
164   /// Map that holds the correspondence between GUIDs in the summary index,
165   /// that came from indirect call profiles, and a value id generated by this
166   /// class to use in the VST and summary block records.
167   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
168 
169   /// Tracks the last value id recorded in the GUIDToValueMap.
170   unsigned GlobalValueId;
171 
172   /// Saves the offset of the VSTOffset record that must eventually be
173   /// backpatched with the offset of the actual VST.
174   uint64_t VSTOffsetPlaceholder = 0;
175 
176 public:
177   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
178   /// writing to the provided \p Buffer.
ModuleBitcodeWriterBase(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index)179   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
180                           BitstreamWriter &Stream,
181                           bool ShouldPreserveUseListOrder,
182                           const ModuleSummaryIndex *Index)
183       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
184         VE(M, ShouldPreserveUseListOrder), Index(Index) {
185     // Assign ValueIds to any callee values in the index that came from
186     // indirect call profiles and were recorded as a GUID not a Value*
187     // (which would have been assigned an ID by the ValueEnumerator).
188     // The starting ValueId is just after the number of values in the
189     // ValueEnumerator, so that they can be emitted in the VST.
190     GlobalValueId = VE.getValues().size();
191     if (!Index)
192       return;
193     for (const auto &GUIDSummaryLists : *Index)
194       // Examine all summaries for this GUID.
195       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
196         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
197           // For each call in the function summary, see if the call
198           // is to a GUID (which means it is for an indirect call,
199           // otherwise we would have a Value for it). If so, synthesize
200           // a value id.
201           for (auto &CallEdge : FS->calls())
202             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
203               assignValueId(CallEdge.first.getGUID());
204   }
205 
206 protected:
207   void writePerModuleGlobalValueSummary();
208 
209 private:
210   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
211                                            GlobalValueSummary *Summary,
212                                            unsigned ValueID,
213                                            unsigned FSCallsAbbrev,
214                                            unsigned FSCallsProfileAbbrev,
215                                            const Function &F);
216   void writeModuleLevelReferences(const GlobalVariable &V,
217                                   SmallVector<uint64_t, 64> &NameVals,
218                                   unsigned FSModRefsAbbrev);
219 
assignValueId(GlobalValue::GUID ValGUID)220   void assignValueId(GlobalValue::GUID ValGUID) {
221     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
222   }
223 
getValueId(GlobalValue::GUID ValGUID)224   unsigned getValueId(GlobalValue::GUID ValGUID) {
225     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
226     // Expect that any GUID value had a value Id assigned by an
227     // earlier call to assignValueId.
228     assert(VMI != GUIDToValueIdMap.end() &&
229            "GUID does not have assigned value Id");
230     return VMI->second;
231   }
232 
233   // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)234   unsigned getValueId(ValueInfo VI) {
235     if (!VI.haveGVs() || !VI.getValue())
236       return getValueId(VI.getGUID());
237     return VE.getValueID(VI.getValue());
238   }
239 
valueIds()240   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
241 };
242 
243 /// Class to manage the bitcode writing for a module.
244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
245   /// Pointer to the buffer allocated by caller for bitcode writing.
246   const SmallVectorImpl<char> &Buffer;
247 
248   /// True if a module hash record should be written.
249   bool GenerateHash;
250 
251   /// If non-null, when GenerateHash is true, the resulting hash is written
252   /// into ModHash.
253   ModuleHash *ModHash;
254 
255   SHA1 Hasher;
256 
257   /// The start bit of the identification block.
258   uint64_t BitcodeStartBit;
259 
260 public:
261   /// Constructs a ModuleBitcodeWriter object for the given Module,
262   /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module & M,SmallVectorImpl<char> & Buffer,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash=nullptr)263   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
264                       StringTableBuilder &StrtabBuilder,
265                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
266                       const ModuleSummaryIndex *Index, bool GenerateHash,
267                       ModuleHash *ModHash = nullptr)
268       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
269                                 ShouldPreserveUseListOrder, Index),
270         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
271         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
272 
273   /// Emit the current module to the bitstream.
274   void write();
275 
276 private:
bitcodeStartBit()277   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
278 
279   size_t addToStrtab(StringRef Str);
280 
281   void writeAttributeGroupTable();
282   void writeAttributeTable();
283   void writeTypeTable();
284   void writeComdats();
285   void writeValueSymbolTableForwardDecl();
286   void writeModuleInfo();
287   void writeValueAsMetadata(const ValueAsMetadata *MD,
288                             SmallVectorImpl<uint64_t> &Record);
289   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
290                     unsigned Abbrev);
291   unsigned createDILocationAbbrev();
292   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
293                        unsigned &Abbrev);
294   unsigned createGenericDINodeAbbrev();
295   void writeGenericDINode(const GenericDINode *N,
296                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
297   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
298                        unsigned Abbrev);
299   void writeDIEnumerator(const DIEnumerator *N,
300                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
302                         unsigned Abbrev);
303   void writeDIDerivedType(const DIDerivedType *N,
304                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305   void writeDICompositeType(const DICompositeType *N,
306                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
307   void writeDISubroutineType(const DISubroutineType *N,
308                              SmallVectorImpl<uint64_t> &Record,
309                              unsigned Abbrev);
310   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
311                    unsigned Abbrev);
312   void writeDICompileUnit(const DICompileUnit *N,
313                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314   void writeDISubprogram(const DISubprogram *N,
315                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316   void writeDILexicalBlock(const DILexicalBlock *N,
317                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
318   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
319                                SmallVectorImpl<uint64_t> &Record,
320                                unsigned Abbrev);
321   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
322                         unsigned Abbrev);
323   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
324                     unsigned Abbrev);
325   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
326                         unsigned Abbrev);
327   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
328                      unsigned Abbrev);
329   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
330                                     SmallVectorImpl<uint64_t> &Record,
331                                     unsigned Abbrev);
332   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
333                                      SmallVectorImpl<uint64_t> &Record,
334                                      unsigned Abbrev);
335   void writeDIGlobalVariable(const DIGlobalVariable *N,
336                              SmallVectorImpl<uint64_t> &Record,
337                              unsigned Abbrev);
338   void writeDILocalVariable(const DILocalVariable *N,
339                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
340   void writeDILabel(const DILabel *N,
341                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342   void writeDIExpression(const DIExpression *N,
343                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
344   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
345                                        SmallVectorImpl<uint64_t> &Record,
346                                        unsigned Abbrev);
347   void writeDIObjCProperty(const DIObjCProperty *N,
348                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
349   void writeDIImportedEntity(const DIImportedEntity *N,
350                              SmallVectorImpl<uint64_t> &Record,
351                              unsigned Abbrev);
352   unsigned createNamedMetadataAbbrev();
353   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
354   unsigned createMetadataStringsAbbrev();
355   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
356                             SmallVectorImpl<uint64_t> &Record);
357   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
358                             SmallVectorImpl<uint64_t> &Record,
359                             std::vector<unsigned> *MDAbbrevs = nullptr,
360                             std::vector<uint64_t> *IndexPos = nullptr);
361   void writeModuleMetadata();
362   void writeFunctionMetadata(const Function &F);
363   void writeFunctionMetadataAttachment(const Function &F);
364   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
365   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
366                                     const GlobalObject &GO);
367   void writeModuleMetadataKinds();
368   void writeOperandBundleTags();
369   void writeSyncScopeNames();
370   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
371   void writeModuleConstants();
372   bool pushValueAndType(const Value *V, unsigned InstID,
373                         SmallVectorImpl<unsigned> &Vals);
374   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
375   void pushValue(const Value *V, unsigned InstID,
376                  SmallVectorImpl<unsigned> &Vals);
377   void pushValueSigned(const Value *V, unsigned InstID,
378                        SmallVectorImpl<uint64_t> &Vals);
379   void writeInstruction(const Instruction &I, unsigned InstID,
380                         SmallVectorImpl<unsigned> &Vals);
381   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
382   void writeGlobalValueSymbolTable(
383       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
384   void writeUseList(UseListOrder &&Order);
385   void writeUseListBlock(const Function *F);
386   void
387   writeFunction(const Function &F,
388                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
389   void writeBlockInfo();
390   void writeModuleHash(size_t BlockStartPos);
391 
getEncodedSyncScopeID(SyncScope::ID SSID)392   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
393     return unsigned(SSID);
394   }
395 };
396 
397 /// Class to manage the bitcode writing for a combined index.
398 class IndexBitcodeWriter : public BitcodeWriterBase {
399   /// The combined index to write to bitcode.
400   const ModuleSummaryIndex &Index;
401 
402   /// When writing a subset of the index for distributed backends, client
403   /// provides a map of modules to the corresponding GUIDs/summaries to write.
404   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
405 
406   /// Map that holds the correspondence between the GUID used in the combined
407   /// index and a value id generated by this class to use in references.
408   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
409 
410   /// Tracks the last value id recorded in the GUIDToValueMap.
411   unsigned GlobalValueId = 0;
412 
413 public:
414   /// Constructs a IndexBitcodeWriter object for the given combined index,
415   /// writing to the provided \p Buffer. When writing a subset of the index
416   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder,const ModuleSummaryIndex & Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)417   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
418                      const ModuleSummaryIndex &Index,
419                      const std::map<std::string, GVSummaryMapTy>
420                          *ModuleToSummariesForIndex = nullptr)
421       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
422         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
423     // Assign unique value ids to all summaries to be written, for use
424     // in writing out the call graph edges. Save the mapping from GUID
425     // to the new global value id to use when writing those edges, which
426     // are currently saved in the index in terms of GUID.
427     forEachSummary([&](GVInfo I, bool) {
428       GUIDToValueIdMap[I.first] = ++GlobalValueId;
429     });
430   }
431 
432   /// The below iterator returns the GUID and associated summary.
433   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
434 
435   /// Calls the callback for each value GUID and summary to be written to
436   /// bitcode. This hides the details of whether they are being pulled from the
437   /// entire index or just those in a provided ModuleToSummariesForIndex map.
438   template<typename Functor>
forEachSummary(Functor Callback)439   void forEachSummary(Functor Callback) {
440     if (ModuleToSummariesForIndex) {
441       for (auto &M : *ModuleToSummariesForIndex)
442         for (auto &Summary : M.second) {
443           Callback(Summary, false);
444           // Ensure aliasee is handled, e.g. for assigning a valueId,
445           // even if we are not importing the aliasee directly (the
446           // imported alias will contain a copy of aliasee).
447           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
448             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
449         }
450     } else {
451       for (auto &Summaries : Index)
452         for (auto &Summary : Summaries.second.SummaryList)
453           Callback({Summaries.first, Summary.get()}, false);
454     }
455   }
456 
457   /// Calls the callback for each entry in the modulePaths StringMap that
458   /// should be written to the module path string table. This hides the details
459   /// of whether they are being pulled from the entire index or just those in a
460   /// provided ModuleToSummariesForIndex map.
forEachModule(Functor Callback)461   template <typename Functor> void forEachModule(Functor Callback) {
462     if (ModuleToSummariesForIndex) {
463       for (const auto &M : *ModuleToSummariesForIndex) {
464         const auto &MPI = Index.modulePaths().find(M.first);
465         if (MPI == Index.modulePaths().end()) {
466           // This should only happen if the bitcode file was empty, in which
467           // case we shouldn't be importing (the ModuleToSummariesForIndex
468           // would only include the module we are writing and index for).
469           assert(ModuleToSummariesForIndex->size() == 1);
470           continue;
471         }
472         Callback(*MPI);
473       }
474     } else {
475       for (const auto &MPSE : Index.modulePaths())
476         Callback(MPSE);
477     }
478   }
479 
480   /// Main entry point for writing a combined index to bitcode.
481   void write();
482 
483 private:
484   void writeModStrings();
485   void writeCombinedGlobalValueSummary();
486 
getValueId(GlobalValue::GUID ValGUID)487   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
488     auto VMI = GUIDToValueIdMap.find(ValGUID);
489     if (VMI == GUIDToValueIdMap.end())
490       return None;
491     return VMI->second;
492   }
493 
valueIds()494   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
495 };
496 
497 } // end anonymous namespace
498 
getEncodedCastOpcode(unsigned Opcode)499 static unsigned getEncodedCastOpcode(unsigned Opcode) {
500   switch (Opcode) {
501   default: llvm_unreachable("Unknown cast instruction!");
502   case Instruction::Trunc   : return bitc::CAST_TRUNC;
503   case Instruction::ZExt    : return bitc::CAST_ZEXT;
504   case Instruction::SExt    : return bitc::CAST_SEXT;
505   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
506   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
507   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
508   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
509   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
510   case Instruction::FPExt   : return bitc::CAST_FPEXT;
511   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
512   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
513   case Instruction::BitCast : return bitc::CAST_BITCAST;
514   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
515   }
516 }
517 
getEncodedUnaryOpcode(unsigned Opcode)518 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
519   switch (Opcode) {
520   default: llvm_unreachable("Unknown binary instruction!");
521   case Instruction::FNeg: return bitc::UNOP_NEG;
522   }
523 }
524 
getEncodedBinaryOpcode(unsigned Opcode)525 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
526   switch (Opcode) {
527   default: llvm_unreachable("Unknown binary instruction!");
528   case Instruction::Add:
529   case Instruction::FAdd: return bitc::BINOP_ADD;
530   case Instruction::Sub:
531   case Instruction::FSub: return bitc::BINOP_SUB;
532   case Instruction::Mul:
533   case Instruction::FMul: return bitc::BINOP_MUL;
534   case Instruction::UDiv: return bitc::BINOP_UDIV;
535   case Instruction::FDiv:
536   case Instruction::SDiv: return bitc::BINOP_SDIV;
537   case Instruction::URem: return bitc::BINOP_UREM;
538   case Instruction::FRem:
539   case Instruction::SRem: return bitc::BINOP_SREM;
540   case Instruction::Shl:  return bitc::BINOP_SHL;
541   case Instruction::LShr: return bitc::BINOP_LSHR;
542   case Instruction::AShr: return bitc::BINOP_ASHR;
543   case Instruction::And:  return bitc::BINOP_AND;
544   case Instruction::Or:   return bitc::BINOP_OR;
545   case Instruction::Xor:  return bitc::BINOP_XOR;
546   }
547 }
548 
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)549 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
550   switch (Op) {
551   default: llvm_unreachable("Unknown RMW operation!");
552   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
553   case AtomicRMWInst::Add: return bitc::RMW_ADD;
554   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
555   case AtomicRMWInst::And: return bitc::RMW_AND;
556   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
557   case AtomicRMWInst::Or: return bitc::RMW_OR;
558   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
559   case AtomicRMWInst::Max: return bitc::RMW_MAX;
560   case AtomicRMWInst::Min: return bitc::RMW_MIN;
561   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
562   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
563   }
564 }
565 
getEncodedOrdering(AtomicOrdering Ordering)566 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
567   switch (Ordering) {
568   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
569   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
570   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
571   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
572   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
573   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
574   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
575   }
576   llvm_unreachable("Invalid ordering");
577 }
578 
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)579 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
580                               StringRef Str, unsigned AbbrevToUse) {
581   SmallVector<unsigned, 64> Vals;
582 
583   // Code: [strchar x N]
584   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
585     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
586       AbbrevToUse = 0;
587     Vals.push_back(Str[i]);
588   }
589 
590   // Emit the finished record.
591   Stream.EmitRecord(Code, Vals, AbbrevToUse);
592 }
593 
getAttrKindEncoding(Attribute::AttrKind Kind)594 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
595   switch (Kind) {
596   case Attribute::Alignment:
597     return bitc::ATTR_KIND_ALIGNMENT;
598   case Attribute::AllocSize:
599     return bitc::ATTR_KIND_ALLOC_SIZE;
600   case Attribute::AlwaysInline:
601     return bitc::ATTR_KIND_ALWAYS_INLINE;
602   case Attribute::ArgMemOnly:
603     return bitc::ATTR_KIND_ARGMEMONLY;
604   case Attribute::Builtin:
605     return bitc::ATTR_KIND_BUILTIN;
606   case Attribute::ByVal:
607     return bitc::ATTR_KIND_BY_VAL;
608   case Attribute::Convergent:
609     return bitc::ATTR_KIND_CONVERGENT;
610   case Attribute::InAlloca:
611     return bitc::ATTR_KIND_IN_ALLOCA;
612   case Attribute::Cold:
613     return bitc::ATTR_KIND_COLD;
614   case Attribute::InaccessibleMemOnly:
615     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
616   case Attribute::InaccessibleMemOrArgMemOnly:
617     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
618   case Attribute::InlineHint:
619     return bitc::ATTR_KIND_INLINE_HINT;
620   case Attribute::InReg:
621     return bitc::ATTR_KIND_IN_REG;
622   case Attribute::JumpTable:
623     return bitc::ATTR_KIND_JUMP_TABLE;
624   case Attribute::MinSize:
625     return bitc::ATTR_KIND_MIN_SIZE;
626   case Attribute::Naked:
627     return bitc::ATTR_KIND_NAKED;
628   case Attribute::Nest:
629     return bitc::ATTR_KIND_NEST;
630   case Attribute::NoAlias:
631     return bitc::ATTR_KIND_NO_ALIAS;
632   case Attribute::NoBuiltin:
633     return bitc::ATTR_KIND_NO_BUILTIN;
634   case Attribute::NoCapture:
635     return bitc::ATTR_KIND_NO_CAPTURE;
636   case Attribute::NoDuplicate:
637     return bitc::ATTR_KIND_NO_DUPLICATE;
638   case Attribute::NoImplicitFloat:
639     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
640   case Attribute::NoInline:
641     return bitc::ATTR_KIND_NO_INLINE;
642   case Attribute::NoRecurse:
643     return bitc::ATTR_KIND_NO_RECURSE;
644   case Attribute::NonLazyBind:
645     return bitc::ATTR_KIND_NON_LAZY_BIND;
646   case Attribute::NonNull:
647     return bitc::ATTR_KIND_NON_NULL;
648   case Attribute::Dereferenceable:
649     return bitc::ATTR_KIND_DEREFERENCEABLE;
650   case Attribute::DereferenceableOrNull:
651     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
652   case Attribute::NoRedZone:
653     return bitc::ATTR_KIND_NO_RED_ZONE;
654   case Attribute::NoReturn:
655     return bitc::ATTR_KIND_NO_RETURN;
656   case Attribute::NoCfCheck:
657     return bitc::ATTR_KIND_NOCF_CHECK;
658   case Attribute::NoUnwind:
659     return bitc::ATTR_KIND_NO_UNWIND;
660   case Attribute::OptForFuzzing:
661     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
662   case Attribute::OptimizeForSize:
663     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
664   case Attribute::OptimizeNone:
665     return bitc::ATTR_KIND_OPTIMIZE_NONE;
666   case Attribute::ReadNone:
667     return bitc::ATTR_KIND_READ_NONE;
668   case Attribute::ReadOnly:
669     return bitc::ATTR_KIND_READ_ONLY;
670   case Attribute::Returned:
671     return bitc::ATTR_KIND_RETURNED;
672   case Attribute::ReturnsTwice:
673     return bitc::ATTR_KIND_RETURNS_TWICE;
674   case Attribute::SExt:
675     return bitc::ATTR_KIND_S_EXT;
676   case Attribute::Speculatable:
677     return bitc::ATTR_KIND_SPECULATABLE;
678   case Attribute::StackAlignment:
679     return bitc::ATTR_KIND_STACK_ALIGNMENT;
680   case Attribute::StackProtect:
681     return bitc::ATTR_KIND_STACK_PROTECT;
682   case Attribute::StackProtectReq:
683     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
684   case Attribute::StackProtectStrong:
685     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
686   case Attribute::SafeStack:
687     return bitc::ATTR_KIND_SAFESTACK;
688   case Attribute::ShadowCallStack:
689     return bitc::ATTR_KIND_SHADOWCALLSTACK;
690   case Attribute::StrictFP:
691     return bitc::ATTR_KIND_STRICT_FP;
692   case Attribute::StructRet:
693     return bitc::ATTR_KIND_STRUCT_RET;
694   case Attribute::SanitizeAddress:
695     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
696   case Attribute::SanitizeHWAddress:
697     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
698   case Attribute::SanitizeThread:
699     return bitc::ATTR_KIND_SANITIZE_THREAD;
700   case Attribute::SanitizeMemory:
701     return bitc::ATTR_KIND_SANITIZE_MEMORY;
702   case Attribute::SpeculativeLoadHardening:
703     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
704   case Attribute::SwiftError:
705     return bitc::ATTR_KIND_SWIFT_ERROR;
706   case Attribute::SwiftSelf:
707     return bitc::ATTR_KIND_SWIFT_SELF;
708   case Attribute::UWTable:
709     return bitc::ATTR_KIND_UW_TABLE;
710   case Attribute::WriteOnly:
711     return bitc::ATTR_KIND_WRITEONLY;
712   case Attribute::ZExt:
713     return bitc::ATTR_KIND_Z_EXT;
714   case Attribute::EndAttrKinds:
715     llvm_unreachable("Can not encode end-attribute kinds marker.");
716   case Attribute::None:
717     llvm_unreachable("Can not encode none-attribute.");
718   }
719 
720   llvm_unreachable("Trying to encode unknown attribute");
721 }
722 
writeAttributeGroupTable()723 void ModuleBitcodeWriter::writeAttributeGroupTable() {
724   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
725       VE.getAttributeGroups();
726   if (AttrGrps.empty()) return;
727 
728   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
729 
730   SmallVector<uint64_t, 64> Record;
731   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
732     unsigned AttrListIndex = Pair.first;
733     AttributeSet AS = Pair.second;
734     Record.push_back(VE.getAttributeGroupID(Pair));
735     Record.push_back(AttrListIndex);
736 
737     for (Attribute Attr : AS) {
738       if (Attr.isEnumAttribute()) {
739         Record.push_back(0);
740         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
741       } else if (Attr.isIntAttribute()) {
742         Record.push_back(1);
743         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
744         Record.push_back(Attr.getValueAsInt());
745       } else {
746         StringRef Kind = Attr.getKindAsString();
747         StringRef Val = Attr.getValueAsString();
748 
749         Record.push_back(Val.empty() ? 3 : 4);
750         Record.append(Kind.begin(), Kind.end());
751         Record.push_back(0);
752         if (!Val.empty()) {
753           Record.append(Val.begin(), Val.end());
754           Record.push_back(0);
755         }
756       }
757     }
758 
759     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
760     Record.clear();
761   }
762 
763   Stream.ExitBlock();
764 }
765 
writeAttributeTable()766 void ModuleBitcodeWriter::writeAttributeTable() {
767   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
768   if (Attrs.empty()) return;
769 
770   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
771 
772   SmallVector<uint64_t, 64> Record;
773   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
774     AttributeList AL = Attrs[i];
775     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
776       AttributeSet AS = AL.getAttributes(i);
777       if (AS.hasAttributes())
778         Record.push_back(VE.getAttributeGroupID({i, AS}));
779     }
780 
781     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
782     Record.clear();
783   }
784 
785   Stream.ExitBlock();
786 }
787 
788 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()789 void ModuleBitcodeWriter::writeTypeTable() {
790   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
791 
792   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
793   SmallVector<uint64_t, 64> TypeVals;
794 
795   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
796 
797   // Abbrev for TYPE_CODE_POINTER.
798   auto Abbv = std::make_shared<BitCodeAbbrev>();
799   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
801   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
802   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
803 
804   // Abbrev for TYPE_CODE_FUNCTION.
805   Abbv = std::make_shared<BitCodeAbbrev>();
806   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
807   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
808   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
809   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
810   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
811 
812   // Abbrev for TYPE_CODE_STRUCT_ANON.
813   Abbv = std::make_shared<BitCodeAbbrev>();
814   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
815   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
816   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
817   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
818   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
819 
820   // Abbrev for TYPE_CODE_STRUCT_NAME.
821   Abbv = std::make_shared<BitCodeAbbrev>();
822   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
823   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
824   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
825   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
826 
827   // Abbrev for TYPE_CODE_STRUCT_NAMED.
828   Abbv = std::make_shared<BitCodeAbbrev>();
829   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
832   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
833   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
834 
835   // Abbrev for TYPE_CODE_ARRAY.
836   Abbv = std::make_shared<BitCodeAbbrev>();
837   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
838   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
840   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
841 
842   // Emit an entry count so the reader can reserve space.
843   TypeVals.push_back(TypeList.size());
844   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
845   TypeVals.clear();
846 
847   // Loop over all of the types, emitting each in turn.
848   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
849     Type *T = TypeList[i];
850     int AbbrevToUse = 0;
851     unsigned Code = 0;
852 
853     switch (T->getTypeID()) {
854     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
855     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
856     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
857     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
858     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
859     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
860     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
861     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
862     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
863     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
864     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
865     case Type::IntegerTyID:
866       // INTEGER: [width]
867       Code = bitc::TYPE_CODE_INTEGER;
868       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
869       break;
870     case Type::PointerTyID: {
871       PointerType *PTy = cast<PointerType>(T);
872       // POINTER: [pointee type, address space]
873       Code = bitc::TYPE_CODE_POINTER;
874       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
875       unsigned AddressSpace = PTy->getAddressSpace();
876       TypeVals.push_back(AddressSpace);
877       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
878       break;
879     }
880     case Type::FunctionTyID: {
881       FunctionType *FT = cast<FunctionType>(T);
882       // FUNCTION: [isvararg, retty, paramty x N]
883       Code = bitc::TYPE_CODE_FUNCTION;
884       TypeVals.push_back(FT->isVarArg());
885       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
886       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
887         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
888       AbbrevToUse = FunctionAbbrev;
889       break;
890     }
891     case Type::StructTyID: {
892       StructType *ST = cast<StructType>(T);
893       // STRUCT: [ispacked, eltty x N]
894       TypeVals.push_back(ST->isPacked());
895       // Output all of the element types.
896       for (StructType::element_iterator I = ST->element_begin(),
897            E = ST->element_end(); I != E; ++I)
898         TypeVals.push_back(VE.getTypeID(*I));
899 
900       if (ST->isLiteral()) {
901         Code = bitc::TYPE_CODE_STRUCT_ANON;
902         AbbrevToUse = StructAnonAbbrev;
903       } else {
904         if (ST->isOpaque()) {
905           Code = bitc::TYPE_CODE_OPAQUE;
906         } else {
907           Code = bitc::TYPE_CODE_STRUCT_NAMED;
908           AbbrevToUse = StructNamedAbbrev;
909         }
910 
911         // Emit the name if it is present.
912         if (!ST->getName().empty())
913           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
914                             StructNameAbbrev);
915       }
916       break;
917     }
918     case Type::ArrayTyID: {
919       ArrayType *AT = cast<ArrayType>(T);
920       // ARRAY: [numelts, eltty]
921       Code = bitc::TYPE_CODE_ARRAY;
922       TypeVals.push_back(AT->getNumElements());
923       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
924       AbbrevToUse = ArrayAbbrev;
925       break;
926     }
927     case Type::VectorTyID: {
928       VectorType *VT = cast<VectorType>(T);
929       // VECTOR [numelts, eltty]
930       Code = bitc::TYPE_CODE_VECTOR;
931       TypeVals.push_back(VT->getNumElements());
932       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
933       break;
934     }
935     }
936 
937     // Emit the finished record.
938     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
939     TypeVals.clear();
940   }
941 
942   Stream.ExitBlock();
943 }
944 
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)945 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
946   switch (Linkage) {
947   case GlobalValue::ExternalLinkage:
948     return 0;
949   case GlobalValue::WeakAnyLinkage:
950     return 16;
951   case GlobalValue::AppendingLinkage:
952     return 2;
953   case GlobalValue::InternalLinkage:
954     return 3;
955   case GlobalValue::LinkOnceAnyLinkage:
956     return 18;
957   case GlobalValue::ExternalWeakLinkage:
958     return 7;
959   case GlobalValue::CommonLinkage:
960     return 8;
961   case GlobalValue::PrivateLinkage:
962     return 9;
963   case GlobalValue::WeakODRLinkage:
964     return 17;
965   case GlobalValue::LinkOnceODRLinkage:
966     return 19;
967   case GlobalValue::AvailableExternallyLinkage:
968     return 12;
969   }
970   llvm_unreachable("Invalid linkage");
971 }
972 
getEncodedLinkage(const GlobalValue & GV)973 static unsigned getEncodedLinkage(const GlobalValue &GV) {
974   return getEncodedLinkage(GV.getLinkage());
975 }
976 
getEncodedFFlags(FunctionSummary::FFlags Flags)977 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
978   uint64_t RawFlags = 0;
979   RawFlags |= Flags.ReadNone;
980   RawFlags |= (Flags.ReadOnly << 1);
981   RawFlags |= (Flags.NoRecurse << 2);
982   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
983   RawFlags |= (Flags.NoInline << 4);
984   return RawFlags;
985 }
986 
987 // Decode the flags for GlobalValue in the summary
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags)988 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
989   uint64_t RawFlags = 0;
990 
991   RawFlags |= Flags.NotEligibleToImport; // bool
992   RawFlags |= (Flags.Live << 1);
993   RawFlags |= (Flags.DSOLocal << 2);
994 
995   // Linkage don't need to be remapped at that time for the summary. Any future
996   // change to the getEncodedLinkage() function will need to be taken into
997   // account here as well.
998   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
999 
1000   return RawFlags;
1001 }
1002 
getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags)1003 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1004   uint64_t RawFlags = Flags.ReadOnly;
1005   return RawFlags;
1006 }
1007 
getEncodedVisibility(const GlobalValue & GV)1008 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1009   switch (GV.getVisibility()) {
1010   case GlobalValue::DefaultVisibility:   return 0;
1011   case GlobalValue::HiddenVisibility:    return 1;
1012   case GlobalValue::ProtectedVisibility: return 2;
1013   }
1014   llvm_unreachable("Invalid visibility");
1015 }
1016 
getEncodedDLLStorageClass(const GlobalValue & GV)1017 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1018   switch (GV.getDLLStorageClass()) {
1019   case GlobalValue::DefaultStorageClass:   return 0;
1020   case GlobalValue::DLLImportStorageClass: return 1;
1021   case GlobalValue::DLLExportStorageClass: return 2;
1022   }
1023   llvm_unreachable("Invalid DLL storage class");
1024 }
1025 
getEncodedThreadLocalMode(const GlobalValue & GV)1026 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1027   switch (GV.getThreadLocalMode()) {
1028     case GlobalVariable::NotThreadLocal:         return 0;
1029     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1030     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1031     case GlobalVariable::InitialExecTLSModel:    return 3;
1032     case GlobalVariable::LocalExecTLSModel:      return 4;
1033   }
1034   llvm_unreachable("Invalid TLS model");
1035 }
1036 
getEncodedComdatSelectionKind(const Comdat & C)1037 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1038   switch (C.getSelectionKind()) {
1039   case Comdat::Any:
1040     return bitc::COMDAT_SELECTION_KIND_ANY;
1041   case Comdat::ExactMatch:
1042     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1043   case Comdat::Largest:
1044     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1045   case Comdat::NoDuplicates:
1046     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1047   case Comdat::SameSize:
1048     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1049   }
1050   llvm_unreachable("Invalid selection kind");
1051 }
1052 
getEncodedUnnamedAddr(const GlobalValue & GV)1053 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1054   switch (GV.getUnnamedAddr()) {
1055   case GlobalValue::UnnamedAddr::None:   return 0;
1056   case GlobalValue::UnnamedAddr::Local:  return 2;
1057   case GlobalValue::UnnamedAddr::Global: return 1;
1058   }
1059   llvm_unreachable("Invalid unnamed_addr");
1060 }
1061 
addToStrtab(StringRef Str)1062 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1063   if (GenerateHash)
1064     Hasher.update(Str);
1065   return StrtabBuilder.add(Str);
1066 }
1067 
writeComdats()1068 void ModuleBitcodeWriter::writeComdats() {
1069   SmallVector<unsigned, 64> Vals;
1070   for (const Comdat *C : VE.getComdats()) {
1071     // COMDAT: [strtab offset, strtab size, selection_kind]
1072     Vals.push_back(addToStrtab(C->getName()));
1073     Vals.push_back(C->getName().size());
1074     Vals.push_back(getEncodedComdatSelectionKind(*C));
1075     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1076     Vals.clear();
1077   }
1078 }
1079 
1080 /// Write a record that will eventually hold the word offset of the
1081 /// module-level VST. For now the offset is 0, which will be backpatched
1082 /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1083 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1084   // Write a placeholder value in for the offset of the real VST,
1085   // which is written after the function blocks so that it can include
1086   // the offset of each function. The placeholder offset will be
1087   // updated when the real VST is written.
1088   auto Abbv = std::make_shared<BitCodeAbbrev>();
1089   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1090   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1091   // hold the real VST offset. Must use fixed instead of VBR as we don't
1092   // know how many VBR chunks to reserve ahead of time.
1093   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1094   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1095 
1096   // Emit the placeholder
1097   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1098   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1099 
1100   // Compute and save the bit offset to the placeholder, which will be
1101   // patched when the real VST is written. We can simply subtract the 32-bit
1102   // fixed size from the current bit number to get the location to backpatch.
1103   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1104 }
1105 
1106 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1107 
1108 /// Determine the encoding to use for the given string name and length.
getStringEncoding(StringRef Str)1109 static StringEncoding getStringEncoding(StringRef Str) {
1110   bool isChar6 = true;
1111   for (char C : Str) {
1112     if (isChar6)
1113       isChar6 = BitCodeAbbrevOp::isChar6(C);
1114     if ((unsigned char)C & 128)
1115       // don't bother scanning the rest.
1116       return SE_Fixed8;
1117   }
1118   if (isChar6)
1119     return SE_Char6;
1120   return SE_Fixed7;
1121 }
1122 
1123 /// Emit top-level description of module, including target triple, inline asm,
1124 /// descriptors for global variables, and function prototype info.
1125 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1126 void ModuleBitcodeWriter::writeModuleInfo() {
1127   // Emit various pieces of data attached to a module.
1128   if (!M.getTargetTriple().empty())
1129     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1130                       0 /*TODO*/);
1131   const std::string &DL = M.getDataLayoutStr();
1132   if (!DL.empty())
1133     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1134   if (!M.getModuleInlineAsm().empty())
1135     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1136                       0 /*TODO*/);
1137 
1138   // Emit information about sections and GC, computing how many there are. Also
1139   // compute the maximum alignment value.
1140   std::map<std::string, unsigned> SectionMap;
1141   std::map<std::string, unsigned> GCMap;
1142   unsigned MaxAlignment = 0;
1143   unsigned MaxGlobalType = 0;
1144   for (const GlobalValue &GV : M.globals()) {
1145     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1146     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1147     if (GV.hasSection()) {
1148       // Give section names unique ID's.
1149       unsigned &Entry = SectionMap[GV.getSection()];
1150       if (!Entry) {
1151         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1152                           0 /*TODO*/);
1153         Entry = SectionMap.size();
1154       }
1155     }
1156   }
1157   for (const Function &F : M) {
1158     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1159     if (F.hasSection()) {
1160       // Give section names unique ID's.
1161       unsigned &Entry = SectionMap[F.getSection()];
1162       if (!Entry) {
1163         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1164                           0 /*TODO*/);
1165         Entry = SectionMap.size();
1166       }
1167     }
1168     if (F.hasGC()) {
1169       // Same for GC names.
1170       unsigned &Entry = GCMap[F.getGC()];
1171       if (!Entry) {
1172         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1173                           0 /*TODO*/);
1174         Entry = GCMap.size();
1175       }
1176     }
1177   }
1178 
1179   // Emit abbrev for globals, now that we know # sections and max alignment.
1180   unsigned SimpleGVarAbbrev = 0;
1181   if (!M.global_empty()) {
1182     // Add an abbrev for common globals with no visibility or thread localness.
1183     auto Abbv = std::make_shared<BitCodeAbbrev>();
1184     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1188                               Log2_32_Ceil(MaxGlobalType+1)));
1189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1190                                                            //| explicitType << 1
1191                                                            //| constant
1192     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1194     if (MaxAlignment == 0)                                 // Alignment.
1195       Abbv->Add(BitCodeAbbrevOp(0));
1196     else {
1197       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1198       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1199                                Log2_32_Ceil(MaxEncAlignment+1)));
1200     }
1201     if (SectionMap.empty())                                    // Section.
1202       Abbv->Add(BitCodeAbbrevOp(0));
1203     else
1204       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1205                                Log2_32_Ceil(SectionMap.size()+1)));
1206     // Don't bother emitting vis + thread local.
1207     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1208   }
1209 
1210   SmallVector<unsigned, 64> Vals;
1211   // Emit the module's source file name.
1212   {
1213     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1214     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1215     if (Bits == SE_Char6)
1216       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1217     else if (Bits == SE_Fixed7)
1218       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1219 
1220     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1221     auto Abbv = std::make_shared<BitCodeAbbrev>();
1222     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1224     Abbv->Add(AbbrevOpToUse);
1225     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1226 
1227     for (const auto P : M.getSourceFileName())
1228       Vals.push_back((unsigned char)P);
1229 
1230     // Emit the finished record.
1231     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1232     Vals.clear();
1233   }
1234 
1235   // Emit the global variable information.
1236   for (const GlobalVariable &GV : M.globals()) {
1237     unsigned AbbrevToUse = 0;
1238 
1239     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1240     //             linkage, alignment, section, visibility, threadlocal,
1241     //             unnamed_addr, externally_initialized, dllstorageclass,
1242     //             comdat, attributes, DSO_Local]
1243     Vals.push_back(addToStrtab(GV.getName()));
1244     Vals.push_back(GV.getName().size());
1245     Vals.push_back(VE.getTypeID(GV.getValueType()));
1246     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1247     Vals.push_back(GV.isDeclaration() ? 0 :
1248                    (VE.getValueID(GV.getInitializer()) + 1));
1249     Vals.push_back(getEncodedLinkage(GV));
1250     Vals.push_back(Log2_32(GV.getAlignment())+1);
1251     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1252     if (GV.isThreadLocal() ||
1253         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1254         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1255         GV.isExternallyInitialized() ||
1256         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1257         GV.hasComdat() ||
1258         GV.hasAttributes() ||
1259         GV.isDSOLocal()) {
1260       Vals.push_back(getEncodedVisibility(GV));
1261       Vals.push_back(getEncodedThreadLocalMode(GV));
1262       Vals.push_back(getEncodedUnnamedAddr(GV));
1263       Vals.push_back(GV.isExternallyInitialized());
1264       Vals.push_back(getEncodedDLLStorageClass(GV));
1265       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1266 
1267       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1268       Vals.push_back(VE.getAttributeListID(AL));
1269 
1270       Vals.push_back(GV.isDSOLocal());
1271     } else {
1272       AbbrevToUse = SimpleGVarAbbrev;
1273     }
1274 
1275     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1276     Vals.clear();
1277   }
1278 
1279   // Emit the function proto information.
1280   for (const Function &F : M) {
1281     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1282     //             linkage, paramattrs, alignment, section, visibility, gc,
1283     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1284     //             prefixdata, personalityfn, DSO_Local, addrspace]
1285     Vals.push_back(addToStrtab(F.getName()));
1286     Vals.push_back(F.getName().size());
1287     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1288     Vals.push_back(F.getCallingConv());
1289     Vals.push_back(F.isDeclaration());
1290     Vals.push_back(getEncodedLinkage(F));
1291     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1292     Vals.push_back(Log2_32(F.getAlignment())+1);
1293     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1294     Vals.push_back(getEncodedVisibility(F));
1295     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1296     Vals.push_back(getEncodedUnnamedAddr(F));
1297     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1298                                        : 0);
1299     Vals.push_back(getEncodedDLLStorageClass(F));
1300     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1301     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1302                                      : 0);
1303     Vals.push_back(
1304         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1305 
1306     Vals.push_back(F.isDSOLocal());
1307     Vals.push_back(F.getAddressSpace());
1308 
1309     unsigned AbbrevToUse = 0;
1310     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1311     Vals.clear();
1312   }
1313 
1314   // Emit the alias information.
1315   for (const GlobalAlias &A : M.aliases()) {
1316     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1317     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1318     //         DSO_Local]
1319     Vals.push_back(addToStrtab(A.getName()));
1320     Vals.push_back(A.getName().size());
1321     Vals.push_back(VE.getTypeID(A.getValueType()));
1322     Vals.push_back(A.getType()->getAddressSpace());
1323     Vals.push_back(VE.getValueID(A.getAliasee()));
1324     Vals.push_back(getEncodedLinkage(A));
1325     Vals.push_back(getEncodedVisibility(A));
1326     Vals.push_back(getEncodedDLLStorageClass(A));
1327     Vals.push_back(getEncodedThreadLocalMode(A));
1328     Vals.push_back(getEncodedUnnamedAddr(A));
1329     Vals.push_back(A.isDSOLocal());
1330 
1331     unsigned AbbrevToUse = 0;
1332     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1333     Vals.clear();
1334   }
1335 
1336   // Emit the ifunc information.
1337   for (const GlobalIFunc &I : M.ifuncs()) {
1338     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1339     //         val#, linkage, visibility, DSO_Local]
1340     Vals.push_back(addToStrtab(I.getName()));
1341     Vals.push_back(I.getName().size());
1342     Vals.push_back(VE.getTypeID(I.getValueType()));
1343     Vals.push_back(I.getType()->getAddressSpace());
1344     Vals.push_back(VE.getValueID(I.getResolver()));
1345     Vals.push_back(getEncodedLinkage(I));
1346     Vals.push_back(getEncodedVisibility(I));
1347     Vals.push_back(I.isDSOLocal());
1348     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1349     Vals.clear();
1350   }
1351 
1352   writeValueSymbolTableForwardDecl();
1353 }
1354 
getOptimizationFlags(const Value * V)1355 static uint64_t getOptimizationFlags(const Value *V) {
1356   uint64_t Flags = 0;
1357 
1358   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1359     if (OBO->hasNoSignedWrap())
1360       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1361     if (OBO->hasNoUnsignedWrap())
1362       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1363   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1364     if (PEO->isExact())
1365       Flags |= 1 << bitc::PEO_EXACT;
1366   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1367     if (FPMO->hasAllowReassoc())
1368       Flags |= bitc::AllowReassoc;
1369     if (FPMO->hasNoNaNs())
1370       Flags |= bitc::NoNaNs;
1371     if (FPMO->hasNoInfs())
1372       Flags |= bitc::NoInfs;
1373     if (FPMO->hasNoSignedZeros())
1374       Flags |= bitc::NoSignedZeros;
1375     if (FPMO->hasAllowReciprocal())
1376       Flags |= bitc::AllowReciprocal;
1377     if (FPMO->hasAllowContract())
1378       Flags |= bitc::AllowContract;
1379     if (FPMO->hasApproxFunc())
1380       Flags |= bitc::ApproxFunc;
1381   }
1382 
1383   return Flags;
1384 }
1385 
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1386 void ModuleBitcodeWriter::writeValueAsMetadata(
1387     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1388   // Mimic an MDNode with a value as one operand.
1389   Value *V = MD->getValue();
1390   Record.push_back(VE.getTypeID(V->getType()));
1391   Record.push_back(VE.getValueID(V));
1392   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1393   Record.clear();
1394 }
1395 
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1396 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1397                                        SmallVectorImpl<uint64_t> &Record,
1398                                        unsigned Abbrev) {
1399   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1400     Metadata *MD = N->getOperand(i);
1401     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1402            "Unexpected function-local metadata");
1403     Record.push_back(VE.getMetadataOrNullID(MD));
1404   }
1405   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1406                                     : bitc::METADATA_NODE,
1407                     Record, Abbrev);
1408   Record.clear();
1409 }
1410 
createDILocationAbbrev()1411 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1412   // Assume the column is usually under 128, and always output the inlined-at
1413   // location (it's never more expensive than building an array size 1).
1414   auto Abbv = std::make_shared<BitCodeAbbrev>();
1415   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1416   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1417   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1418   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1419   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1420   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1421   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1422   return Stream.EmitAbbrev(std::move(Abbv));
1423 }
1424 
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1425 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1426                                           SmallVectorImpl<uint64_t> &Record,
1427                                           unsigned &Abbrev) {
1428   if (!Abbrev)
1429     Abbrev = createDILocationAbbrev();
1430 
1431   Record.push_back(N->isDistinct());
1432   Record.push_back(N->getLine());
1433   Record.push_back(N->getColumn());
1434   Record.push_back(VE.getMetadataID(N->getScope()));
1435   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1436   Record.push_back(N->isImplicitCode());
1437 
1438   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1439   Record.clear();
1440 }
1441 
createGenericDINodeAbbrev()1442 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1443   // Assume the column is usually under 128, and always output the inlined-at
1444   // location (it's never more expensive than building an array size 1).
1445   auto Abbv = std::make_shared<BitCodeAbbrev>();
1446   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1447   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1448   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1449   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1450   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1451   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1452   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1453   return Stream.EmitAbbrev(std::move(Abbv));
1454 }
1455 
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1456 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1457                                              SmallVectorImpl<uint64_t> &Record,
1458                                              unsigned &Abbrev) {
1459   if (!Abbrev)
1460     Abbrev = createGenericDINodeAbbrev();
1461 
1462   Record.push_back(N->isDistinct());
1463   Record.push_back(N->getTag());
1464   Record.push_back(0); // Per-tag version field; unused for now.
1465 
1466   for (auto &I : N->operands())
1467     Record.push_back(VE.getMetadataOrNullID(I));
1468 
1469   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1470   Record.clear();
1471 }
1472 
rotateSign(int64_t I)1473 static uint64_t rotateSign(int64_t I) {
1474   uint64_t U = I;
1475   return I < 0 ? ~(U << 1) : U << 1;
1476 }
1477 
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1478 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1479                                           SmallVectorImpl<uint64_t> &Record,
1480                                           unsigned Abbrev) {
1481   const uint64_t Version = 1 << 1;
1482   Record.push_back((uint64_t)N->isDistinct() | Version);
1483   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1484   Record.push_back(rotateSign(N->getLowerBound()));
1485 
1486   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1487   Record.clear();
1488 }
1489 
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1490 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1491                                             SmallVectorImpl<uint64_t> &Record,
1492                                             unsigned Abbrev) {
1493   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1494   Record.push_back(rotateSign(N->getValue()));
1495   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1496 
1497   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1498   Record.clear();
1499 }
1500 
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1501 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1502                                            SmallVectorImpl<uint64_t> &Record,
1503                                            unsigned Abbrev) {
1504   Record.push_back(N->isDistinct());
1505   Record.push_back(N->getTag());
1506   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1507   Record.push_back(N->getSizeInBits());
1508   Record.push_back(N->getAlignInBits());
1509   Record.push_back(N->getEncoding());
1510   Record.push_back(N->getFlags());
1511 
1512   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1513   Record.clear();
1514 }
1515 
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1516 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1517                                              SmallVectorImpl<uint64_t> &Record,
1518                                              unsigned Abbrev) {
1519   Record.push_back(N->isDistinct());
1520   Record.push_back(N->getTag());
1521   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1522   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1523   Record.push_back(N->getLine());
1524   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1525   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1526   Record.push_back(N->getSizeInBits());
1527   Record.push_back(N->getAlignInBits());
1528   Record.push_back(N->getOffsetInBits());
1529   Record.push_back(N->getFlags());
1530   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1531 
1532   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1533   // that there is no DWARF address space associated with DIDerivedType.
1534   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1535     Record.push_back(*DWARFAddressSpace + 1);
1536   else
1537     Record.push_back(0);
1538 
1539   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1540   Record.clear();
1541 }
1542 
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1543 void ModuleBitcodeWriter::writeDICompositeType(
1544     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1545     unsigned Abbrev) {
1546   const unsigned IsNotUsedInOldTypeRef = 0x2;
1547   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1548   Record.push_back(N->getTag());
1549   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1550   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1551   Record.push_back(N->getLine());
1552   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1553   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1554   Record.push_back(N->getSizeInBits());
1555   Record.push_back(N->getAlignInBits());
1556   Record.push_back(N->getOffsetInBits());
1557   Record.push_back(N->getFlags());
1558   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1559   Record.push_back(N->getRuntimeLang());
1560   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1561   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1562   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1563   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1564 
1565   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1566   Record.clear();
1567 }
1568 
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1569 void ModuleBitcodeWriter::writeDISubroutineType(
1570     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1571     unsigned Abbrev) {
1572   const unsigned HasNoOldTypeRefs = 0x2;
1573   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1574   Record.push_back(N->getFlags());
1575   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1576   Record.push_back(N->getCC());
1577 
1578   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1579   Record.clear();
1580 }
1581 
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1582 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1583                                       SmallVectorImpl<uint64_t> &Record,
1584                                       unsigned Abbrev) {
1585   Record.push_back(N->isDistinct());
1586   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1587   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1588   if (N->getRawChecksum()) {
1589     Record.push_back(N->getRawChecksum()->Kind);
1590     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1591   } else {
1592     // Maintain backwards compatibility with the old internal representation of
1593     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1594     Record.push_back(0);
1595     Record.push_back(VE.getMetadataOrNullID(nullptr));
1596   }
1597   auto Source = N->getRawSource();
1598   if (Source)
1599     Record.push_back(VE.getMetadataOrNullID(*Source));
1600 
1601   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1602   Record.clear();
1603 }
1604 
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1605 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1606                                              SmallVectorImpl<uint64_t> &Record,
1607                                              unsigned Abbrev) {
1608   assert(N->isDistinct() && "Expected distinct compile units");
1609   Record.push_back(/* IsDistinct */ true);
1610   Record.push_back(N->getSourceLanguage());
1611   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1612   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1613   Record.push_back(N->isOptimized());
1614   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1615   Record.push_back(N->getRuntimeVersion());
1616   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1617   Record.push_back(N->getEmissionKind());
1618   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1619   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1620   Record.push_back(/* subprograms */ 0);
1621   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1622   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1623   Record.push_back(N->getDWOId());
1624   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1625   Record.push_back(N->getSplitDebugInlining());
1626   Record.push_back(N->getDebugInfoForProfiling());
1627   Record.push_back((unsigned)N->getNameTableKind());
1628 
1629   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1630   Record.clear();
1631 }
1632 
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1633 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1634                                             SmallVectorImpl<uint64_t> &Record,
1635                                             unsigned Abbrev) {
1636   const uint64_t HasUnitFlag = 1 << 1;
1637   const uint64_t HasSPFlagsFlag = 1 << 2;
1638   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1639   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1640   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1641   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1642   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1643   Record.push_back(N->getLine());
1644   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1645   Record.push_back(N->getScopeLine());
1646   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1647   Record.push_back(N->getSPFlags());
1648   Record.push_back(N->getVirtualIndex());
1649   Record.push_back(N->getFlags());
1650   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1651   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1652   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1653   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1654   Record.push_back(N->getThisAdjustment());
1655   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1656 
1657   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1658   Record.clear();
1659 }
1660 
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1661 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1662                                               SmallVectorImpl<uint64_t> &Record,
1663                                               unsigned Abbrev) {
1664   Record.push_back(N->isDistinct());
1665   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1666   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1667   Record.push_back(N->getLine());
1668   Record.push_back(N->getColumn());
1669 
1670   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1671   Record.clear();
1672 }
1673 
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1674 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1675     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1676     unsigned Abbrev) {
1677   Record.push_back(N->isDistinct());
1678   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1679   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1680   Record.push_back(N->getDiscriminator());
1681 
1682   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1683   Record.clear();
1684 }
1685 
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1686 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1687                                            SmallVectorImpl<uint64_t> &Record,
1688                                            unsigned Abbrev) {
1689   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1690   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1691   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1692 
1693   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1694   Record.clear();
1695 }
1696 
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1697 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1698                                        SmallVectorImpl<uint64_t> &Record,
1699                                        unsigned Abbrev) {
1700   Record.push_back(N->isDistinct());
1701   Record.push_back(N->getMacinfoType());
1702   Record.push_back(N->getLine());
1703   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1704   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1705 
1706   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1707   Record.clear();
1708 }
1709 
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1710 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1711                                            SmallVectorImpl<uint64_t> &Record,
1712                                            unsigned Abbrev) {
1713   Record.push_back(N->isDistinct());
1714   Record.push_back(N->getMacinfoType());
1715   Record.push_back(N->getLine());
1716   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1717   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1718 
1719   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1720   Record.clear();
1721 }
1722 
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1723 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1724                                         SmallVectorImpl<uint64_t> &Record,
1725                                         unsigned Abbrev) {
1726   Record.push_back(N->isDistinct());
1727   for (auto &I : N->operands())
1728     Record.push_back(VE.getMetadataOrNullID(I));
1729 
1730   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1731   Record.clear();
1732 }
1733 
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1734 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1735     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1736     unsigned Abbrev) {
1737   Record.push_back(N->isDistinct());
1738   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1739   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1740 
1741   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1742   Record.clear();
1743 }
1744 
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1745 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1746     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1747     unsigned Abbrev) {
1748   Record.push_back(N->isDistinct());
1749   Record.push_back(N->getTag());
1750   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1751   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1752   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1753 
1754   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1755   Record.clear();
1756 }
1757 
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1758 void ModuleBitcodeWriter::writeDIGlobalVariable(
1759     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1760     unsigned Abbrev) {
1761   const uint64_t Version = 2 << 1;
1762   Record.push_back((uint64_t)N->isDistinct() | Version);
1763   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1764   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1765   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1766   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1767   Record.push_back(N->getLine());
1768   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1769   Record.push_back(N->isLocalToUnit());
1770   Record.push_back(N->isDefinition());
1771   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1772   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1773   Record.push_back(N->getAlignInBits());
1774 
1775   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1776   Record.clear();
1777 }
1778 
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1779 void ModuleBitcodeWriter::writeDILocalVariable(
1780     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1781     unsigned Abbrev) {
1782   // In order to support all possible bitcode formats in BitcodeReader we need
1783   // to distinguish the following cases:
1784   // 1) Record has no artificial tag (Record[1]),
1785   //   has no obsolete inlinedAt field (Record[9]).
1786   //   In this case Record size will be 8, HasAlignment flag is false.
1787   // 2) Record has artificial tag (Record[1]),
1788   //   has no obsolete inlignedAt field (Record[9]).
1789   //   In this case Record size will be 9, HasAlignment flag is false.
1790   // 3) Record has both artificial tag (Record[1]) and
1791   //   obsolete inlignedAt field (Record[9]).
1792   //   In this case Record size will be 10, HasAlignment flag is false.
1793   // 4) Record has neither artificial tag, nor inlignedAt field, but
1794   //   HasAlignment flag is true and Record[8] contains alignment value.
1795   const uint64_t HasAlignmentFlag = 1 << 1;
1796   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1797   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1798   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1799   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1800   Record.push_back(N->getLine());
1801   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1802   Record.push_back(N->getArg());
1803   Record.push_back(N->getFlags());
1804   Record.push_back(N->getAlignInBits());
1805 
1806   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1807   Record.clear();
1808 }
1809 
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1810 void ModuleBitcodeWriter::writeDILabel(
1811     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1812     unsigned Abbrev) {
1813   Record.push_back((uint64_t)N->isDistinct());
1814   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1815   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1816   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1817   Record.push_back(N->getLine());
1818 
1819   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1820   Record.clear();
1821 }
1822 
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1823 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1824                                             SmallVectorImpl<uint64_t> &Record,
1825                                             unsigned Abbrev) {
1826   Record.reserve(N->getElements().size() + 1);
1827   const uint64_t Version = 3 << 1;
1828   Record.push_back((uint64_t)N->isDistinct() | Version);
1829   Record.append(N->elements_begin(), N->elements_end());
1830 
1831   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1832   Record.clear();
1833 }
1834 
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1835 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1836     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1837     unsigned Abbrev) {
1838   Record.push_back(N->isDistinct());
1839   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1840   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1841 
1842   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1843   Record.clear();
1844 }
1845 
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1846 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1847                                               SmallVectorImpl<uint64_t> &Record,
1848                                               unsigned Abbrev) {
1849   Record.push_back(N->isDistinct());
1850   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1851   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1852   Record.push_back(N->getLine());
1853   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1854   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1855   Record.push_back(N->getAttributes());
1856   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1857 
1858   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1859   Record.clear();
1860 }
1861 
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1862 void ModuleBitcodeWriter::writeDIImportedEntity(
1863     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1864     unsigned Abbrev) {
1865   Record.push_back(N->isDistinct());
1866   Record.push_back(N->getTag());
1867   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1868   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1869   Record.push_back(N->getLine());
1870   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1871   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1872 
1873   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1874   Record.clear();
1875 }
1876 
createNamedMetadataAbbrev()1877 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1878   auto Abbv = std::make_shared<BitCodeAbbrev>();
1879   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1880   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1881   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1882   return Stream.EmitAbbrev(std::move(Abbv));
1883 }
1884 
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)1885 void ModuleBitcodeWriter::writeNamedMetadata(
1886     SmallVectorImpl<uint64_t> &Record) {
1887   if (M.named_metadata_empty())
1888     return;
1889 
1890   unsigned Abbrev = createNamedMetadataAbbrev();
1891   for (const NamedMDNode &NMD : M.named_metadata()) {
1892     // Write name.
1893     StringRef Str = NMD.getName();
1894     Record.append(Str.bytes_begin(), Str.bytes_end());
1895     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1896     Record.clear();
1897 
1898     // Write named metadata operands.
1899     for (const MDNode *N : NMD.operands())
1900       Record.push_back(VE.getMetadataID(N));
1901     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1902     Record.clear();
1903   }
1904 }
1905 
createMetadataStringsAbbrev()1906 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1907   auto Abbv = std::make_shared<BitCodeAbbrev>();
1908   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1909   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1910   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1911   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1912   return Stream.EmitAbbrev(std::move(Abbv));
1913 }
1914 
1915 /// Write out a record for MDString.
1916 ///
1917 /// All the metadata strings in a metadata block are emitted in a single
1918 /// record.  The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)1919 void ModuleBitcodeWriter::writeMetadataStrings(
1920     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1921   if (Strings.empty())
1922     return;
1923 
1924   // Start the record with the number of strings.
1925   Record.push_back(bitc::METADATA_STRINGS);
1926   Record.push_back(Strings.size());
1927 
1928   // Emit the sizes of the strings in the blob.
1929   SmallString<256> Blob;
1930   {
1931     BitstreamWriter W(Blob);
1932     for (const Metadata *MD : Strings)
1933       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1934     W.FlushToWord();
1935   }
1936 
1937   // Add the offset to the strings to the record.
1938   Record.push_back(Blob.size());
1939 
1940   // Add the strings to the blob.
1941   for (const Metadata *MD : Strings)
1942     Blob.append(cast<MDString>(MD)->getString());
1943 
1944   // Emit the final record.
1945   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1946   Record.clear();
1947 }
1948 
1949 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1950 enum MetadataAbbrev : unsigned {
1951 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1952 #include "llvm/IR/Metadata.def"
1953   LastPlusOne
1954 };
1955 
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)1956 void ModuleBitcodeWriter::writeMetadataRecords(
1957     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1958     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1959   if (MDs.empty())
1960     return;
1961 
1962   // Initialize MDNode abbreviations.
1963 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1964 #include "llvm/IR/Metadata.def"
1965 
1966   for (const Metadata *MD : MDs) {
1967     if (IndexPos)
1968       IndexPos->push_back(Stream.GetCurrentBitNo());
1969     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1970       assert(N->isResolved() && "Expected forward references to be resolved");
1971 
1972       switch (N->getMetadataID()) {
1973       default:
1974         llvm_unreachable("Invalid MDNode subclass");
1975 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1976   case Metadata::CLASS##Kind:                                                  \
1977     if (MDAbbrevs)                                                             \
1978       write##CLASS(cast<CLASS>(N), Record,                                     \
1979                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1980     else                                                                       \
1981       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1982     continue;
1983 #include "llvm/IR/Metadata.def"
1984       }
1985     }
1986     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1987   }
1988 }
1989 
writeModuleMetadata()1990 void ModuleBitcodeWriter::writeModuleMetadata() {
1991   if (!VE.hasMDs() && M.named_metadata_empty())
1992     return;
1993 
1994   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1995   SmallVector<uint64_t, 64> Record;
1996 
1997   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1998   // block and load any metadata.
1999   std::vector<unsigned> MDAbbrevs;
2000 
2001   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2002   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2003   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2004       createGenericDINodeAbbrev();
2005 
2006   auto Abbv = std::make_shared<BitCodeAbbrev>();
2007   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2008   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2009   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2010   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2011 
2012   Abbv = std::make_shared<BitCodeAbbrev>();
2013   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2014   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2015   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2016   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2017 
2018   // Emit MDStrings together upfront.
2019   writeMetadataStrings(VE.getMDStrings(), Record);
2020 
2021   // We only emit an index for the metadata record if we have more than a given
2022   // (naive) threshold of metadatas, otherwise it is not worth it.
2023   if (VE.getNonMDStrings().size() > IndexThreshold) {
2024     // Write a placeholder value in for the offset of the metadata index,
2025     // which is written after the records, so that it can include
2026     // the offset of each entry. The placeholder offset will be
2027     // updated after all records are emitted.
2028     uint64_t Vals[] = {0, 0};
2029     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2030   }
2031 
2032   // Compute and save the bit offset to the current position, which will be
2033   // patched when we emit the index later. We can simply subtract the 64-bit
2034   // fixed size from the current bit number to get the location to backpatch.
2035   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2036 
2037   // This index will contain the bitpos for each individual record.
2038   std::vector<uint64_t> IndexPos;
2039   IndexPos.reserve(VE.getNonMDStrings().size());
2040 
2041   // Write all the records
2042   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2043 
2044   if (VE.getNonMDStrings().size() > IndexThreshold) {
2045     // Now that we have emitted all the records we will emit the index. But
2046     // first
2047     // backpatch the forward reference so that the reader can skip the records
2048     // efficiently.
2049     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2050                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2051 
2052     // Delta encode the index.
2053     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2054     for (auto &Elt : IndexPos) {
2055       auto EltDelta = Elt - PreviousValue;
2056       PreviousValue = Elt;
2057       Elt = EltDelta;
2058     }
2059     // Emit the index record.
2060     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2061     IndexPos.clear();
2062   }
2063 
2064   // Write the named metadata now.
2065   writeNamedMetadata(Record);
2066 
2067   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2068     SmallVector<uint64_t, 4> Record;
2069     Record.push_back(VE.getValueID(&GO));
2070     pushGlobalMetadataAttachment(Record, GO);
2071     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2072   };
2073   for (const Function &F : M)
2074     if (F.isDeclaration() && F.hasMetadata())
2075       AddDeclAttachedMetadata(F);
2076   // FIXME: Only store metadata for declarations here, and move data for global
2077   // variable definitions to a separate block (PR28134).
2078   for (const GlobalVariable &GV : M.globals())
2079     if (GV.hasMetadata())
2080       AddDeclAttachedMetadata(GV);
2081 
2082   Stream.ExitBlock();
2083 }
2084 
writeFunctionMetadata(const Function & F)2085 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2086   if (!VE.hasMDs())
2087     return;
2088 
2089   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2090   SmallVector<uint64_t, 64> Record;
2091   writeMetadataStrings(VE.getMDStrings(), Record);
2092   writeMetadataRecords(VE.getNonMDStrings(), Record);
2093   Stream.ExitBlock();
2094 }
2095 
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)2096 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2097     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2098   // [n x [id, mdnode]]
2099   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2100   GO.getAllMetadata(MDs);
2101   for (const auto &I : MDs) {
2102     Record.push_back(I.first);
2103     Record.push_back(VE.getMetadataID(I.second));
2104   }
2105 }
2106 
writeFunctionMetadataAttachment(const Function & F)2107 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2108   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2109 
2110   SmallVector<uint64_t, 64> Record;
2111 
2112   if (F.hasMetadata()) {
2113     pushGlobalMetadataAttachment(Record, F);
2114     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2115     Record.clear();
2116   }
2117 
2118   // Write metadata attachments
2119   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2120   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2121   for (const BasicBlock &BB : F)
2122     for (const Instruction &I : BB) {
2123       MDs.clear();
2124       I.getAllMetadataOtherThanDebugLoc(MDs);
2125 
2126       // If no metadata, ignore instruction.
2127       if (MDs.empty()) continue;
2128 
2129       Record.push_back(VE.getInstructionID(&I));
2130 
2131       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2132         Record.push_back(MDs[i].first);
2133         Record.push_back(VE.getMetadataID(MDs[i].second));
2134       }
2135       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2136       Record.clear();
2137     }
2138 
2139   Stream.ExitBlock();
2140 }
2141 
writeModuleMetadataKinds()2142 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2143   SmallVector<uint64_t, 64> Record;
2144 
2145   // Write metadata kinds
2146   // METADATA_KIND - [n x [id, name]]
2147   SmallVector<StringRef, 8> Names;
2148   M.getMDKindNames(Names);
2149 
2150   if (Names.empty()) return;
2151 
2152   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2153 
2154   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2155     Record.push_back(MDKindID);
2156     StringRef KName = Names[MDKindID];
2157     Record.append(KName.begin(), KName.end());
2158 
2159     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2160     Record.clear();
2161   }
2162 
2163   Stream.ExitBlock();
2164 }
2165 
writeOperandBundleTags()2166 void ModuleBitcodeWriter::writeOperandBundleTags() {
2167   // Write metadata kinds
2168   //
2169   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2170   //
2171   // OPERAND_BUNDLE_TAG - [strchr x N]
2172 
2173   SmallVector<StringRef, 8> Tags;
2174   M.getOperandBundleTags(Tags);
2175 
2176   if (Tags.empty())
2177     return;
2178 
2179   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2180 
2181   SmallVector<uint64_t, 64> Record;
2182 
2183   for (auto Tag : Tags) {
2184     Record.append(Tag.begin(), Tag.end());
2185 
2186     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2187     Record.clear();
2188   }
2189 
2190   Stream.ExitBlock();
2191 }
2192 
writeSyncScopeNames()2193 void ModuleBitcodeWriter::writeSyncScopeNames() {
2194   SmallVector<StringRef, 8> SSNs;
2195   M.getContext().getSyncScopeNames(SSNs);
2196   if (SSNs.empty())
2197     return;
2198 
2199   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2200 
2201   SmallVector<uint64_t, 64> Record;
2202   for (auto SSN : SSNs) {
2203     Record.append(SSN.begin(), SSN.end());
2204     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2205     Record.clear();
2206   }
2207 
2208   Stream.ExitBlock();
2209 }
2210 
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)2211 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2212   if ((int64_t)V >= 0)
2213     Vals.push_back(V << 1);
2214   else
2215     Vals.push_back((-V << 1) | 1);
2216 }
2217 
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)2218 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2219                                          bool isGlobal) {
2220   if (FirstVal == LastVal) return;
2221 
2222   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2223 
2224   unsigned AggregateAbbrev = 0;
2225   unsigned String8Abbrev = 0;
2226   unsigned CString7Abbrev = 0;
2227   unsigned CString6Abbrev = 0;
2228   // If this is a constant pool for the module, emit module-specific abbrevs.
2229   if (isGlobal) {
2230     // Abbrev for CST_CODE_AGGREGATE.
2231     auto Abbv = std::make_shared<BitCodeAbbrev>();
2232     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2234     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2235     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2236 
2237     // Abbrev for CST_CODE_STRING.
2238     Abbv = std::make_shared<BitCodeAbbrev>();
2239     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2240     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2241     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2242     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2243     // Abbrev for CST_CODE_CSTRING.
2244     Abbv = std::make_shared<BitCodeAbbrev>();
2245     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2248     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2249     // Abbrev for CST_CODE_CSTRING.
2250     Abbv = std::make_shared<BitCodeAbbrev>();
2251     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2253     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2254     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2255   }
2256 
2257   SmallVector<uint64_t, 64> Record;
2258 
2259   const ValueEnumerator::ValueList &Vals = VE.getValues();
2260   Type *LastTy = nullptr;
2261   for (unsigned i = FirstVal; i != LastVal; ++i) {
2262     const Value *V = Vals[i].first;
2263     // If we need to switch types, do so now.
2264     if (V->getType() != LastTy) {
2265       LastTy = V->getType();
2266       Record.push_back(VE.getTypeID(LastTy));
2267       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2268                         CONSTANTS_SETTYPE_ABBREV);
2269       Record.clear();
2270     }
2271 
2272     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2273       Record.push_back(unsigned(IA->hasSideEffects()) |
2274                        unsigned(IA->isAlignStack()) << 1 |
2275                        unsigned(IA->getDialect()&1) << 2);
2276 
2277       // Add the asm string.
2278       const std::string &AsmStr = IA->getAsmString();
2279       Record.push_back(AsmStr.size());
2280       Record.append(AsmStr.begin(), AsmStr.end());
2281 
2282       // Add the constraint string.
2283       const std::string &ConstraintStr = IA->getConstraintString();
2284       Record.push_back(ConstraintStr.size());
2285       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2286       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2287       Record.clear();
2288       continue;
2289     }
2290     const Constant *C = cast<Constant>(V);
2291     unsigned Code = -1U;
2292     unsigned AbbrevToUse = 0;
2293     if (C->isNullValue()) {
2294       Code = bitc::CST_CODE_NULL;
2295     } else if (isa<UndefValue>(C)) {
2296       Code = bitc::CST_CODE_UNDEF;
2297     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2298       if (IV->getBitWidth() <= 64) {
2299         uint64_t V = IV->getSExtValue();
2300         emitSignedInt64(Record, V);
2301         Code = bitc::CST_CODE_INTEGER;
2302         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2303       } else {                             // Wide integers, > 64 bits in size.
2304         // We have an arbitrary precision integer value to write whose
2305         // bit width is > 64. However, in canonical unsigned integer
2306         // format it is likely that the high bits are going to be zero.
2307         // So, we only write the number of active words.
2308         unsigned NWords = IV->getValue().getActiveWords();
2309         const uint64_t *RawWords = IV->getValue().getRawData();
2310         for (unsigned i = 0; i != NWords; ++i) {
2311           emitSignedInt64(Record, RawWords[i]);
2312         }
2313         Code = bitc::CST_CODE_WIDE_INTEGER;
2314       }
2315     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2316       Code = bitc::CST_CODE_FLOAT;
2317       Type *Ty = CFP->getType();
2318       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2319         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2320       } else if (Ty->isX86_FP80Ty()) {
2321         // api needed to prevent premature destruction
2322         // bits are not in the same order as a normal i80 APInt, compensate.
2323         APInt api = CFP->getValueAPF().bitcastToAPInt();
2324         const uint64_t *p = api.getRawData();
2325         Record.push_back((p[1] << 48) | (p[0] >> 16));
2326         Record.push_back(p[0] & 0xffffLL);
2327       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2328         APInt api = CFP->getValueAPF().bitcastToAPInt();
2329         const uint64_t *p = api.getRawData();
2330         Record.push_back(p[0]);
2331         Record.push_back(p[1]);
2332       } else {
2333         assert(0 && "Unknown FP type!");
2334       }
2335     } else if (isa<ConstantDataSequential>(C) &&
2336                cast<ConstantDataSequential>(C)->isString()) {
2337       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2338       // Emit constant strings specially.
2339       unsigned NumElts = Str->getNumElements();
2340       // If this is a null-terminated string, use the denser CSTRING encoding.
2341       if (Str->isCString()) {
2342         Code = bitc::CST_CODE_CSTRING;
2343         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2344       } else {
2345         Code = bitc::CST_CODE_STRING;
2346         AbbrevToUse = String8Abbrev;
2347       }
2348       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2349       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2350       for (unsigned i = 0; i != NumElts; ++i) {
2351         unsigned char V = Str->getElementAsInteger(i);
2352         Record.push_back(V);
2353         isCStr7 &= (V & 128) == 0;
2354         if (isCStrChar6)
2355           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2356       }
2357 
2358       if (isCStrChar6)
2359         AbbrevToUse = CString6Abbrev;
2360       else if (isCStr7)
2361         AbbrevToUse = CString7Abbrev;
2362     } else if (const ConstantDataSequential *CDS =
2363                   dyn_cast<ConstantDataSequential>(C)) {
2364       Code = bitc::CST_CODE_DATA;
2365       Type *EltTy = CDS->getType()->getElementType();
2366       if (isa<IntegerType>(EltTy)) {
2367         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2368           Record.push_back(CDS->getElementAsInteger(i));
2369       } else {
2370         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2371           Record.push_back(
2372               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2373       }
2374     } else if (isa<ConstantAggregate>(C)) {
2375       Code = bitc::CST_CODE_AGGREGATE;
2376       for (const Value *Op : C->operands())
2377         Record.push_back(VE.getValueID(Op));
2378       AbbrevToUse = AggregateAbbrev;
2379     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2380       switch (CE->getOpcode()) {
2381       default:
2382         if (Instruction::isCast(CE->getOpcode())) {
2383           Code = bitc::CST_CODE_CE_CAST;
2384           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2385           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2386           Record.push_back(VE.getValueID(C->getOperand(0)));
2387           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2388         } else {
2389           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2390           Code = bitc::CST_CODE_CE_BINOP;
2391           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2392           Record.push_back(VE.getValueID(C->getOperand(0)));
2393           Record.push_back(VE.getValueID(C->getOperand(1)));
2394           uint64_t Flags = getOptimizationFlags(CE);
2395           if (Flags != 0)
2396             Record.push_back(Flags);
2397         }
2398         break;
2399       case Instruction::FNeg: {
2400         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2401         Code = bitc::CST_CODE_CE_UNOP;
2402         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2403         Record.push_back(VE.getValueID(C->getOperand(0)));
2404         uint64_t Flags = getOptimizationFlags(CE);
2405         if (Flags != 0)
2406           Record.push_back(Flags);
2407         break;
2408       }
2409       case Instruction::GetElementPtr: {
2410         Code = bitc::CST_CODE_CE_GEP;
2411         const auto *GO = cast<GEPOperator>(C);
2412         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2413         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2414           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2415           Record.push_back((*Idx << 1) | GO->isInBounds());
2416         } else if (GO->isInBounds())
2417           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2418         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2419           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2420           Record.push_back(VE.getValueID(C->getOperand(i)));
2421         }
2422         break;
2423       }
2424       case Instruction::Select:
2425         Code = bitc::CST_CODE_CE_SELECT;
2426         Record.push_back(VE.getValueID(C->getOperand(0)));
2427         Record.push_back(VE.getValueID(C->getOperand(1)));
2428         Record.push_back(VE.getValueID(C->getOperand(2)));
2429         break;
2430       case Instruction::ExtractElement:
2431         Code = bitc::CST_CODE_CE_EXTRACTELT;
2432         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2433         Record.push_back(VE.getValueID(C->getOperand(0)));
2434         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2435         Record.push_back(VE.getValueID(C->getOperand(1)));
2436         break;
2437       case Instruction::InsertElement:
2438         Code = bitc::CST_CODE_CE_INSERTELT;
2439         Record.push_back(VE.getValueID(C->getOperand(0)));
2440         Record.push_back(VE.getValueID(C->getOperand(1)));
2441         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2442         Record.push_back(VE.getValueID(C->getOperand(2)));
2443         break;
2444       case Instruction::ShuffleVector:
2445         // If the return type and argument types are the same, this is a
2446         // standard shufflevector instruction.  If the types are different,
2447         // then the shuffle is widening or truncating the input vectors, and
2448         // the argument type must also be encoded.
2449         if (C->getType() == C->getOperand(0)->getType()) {
2450           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2451         } else {
2452           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2453           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2454         }
2455         Record.push_back(VE.getValueID(C->getOperand(0)));
2456         Record.push_back(VE.getValueID(C->getOperand(1)));
2457         Record.push_back(VE.getValueID(C->getOperand(2)));
2458         break;
2459       case Instruction::ICmp:
2460       case Instruction::FCmp:
2461         Code = bitc::CST_CODE_CE_CMP;
2462         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2463         Record.push_back(VE.getValueID(C->getOperand(0)));
2464         Record.push_back(VE.getValueID(C->getOperand(1)));
2465         Record.push_back(CE->getPredicate());
2466         break;
2467       }
2468     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2469       Code = bitc::CST_CODE_BLOCKADDRESS;
2470       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2471       Record.push_back(VE.getValueID(BA->getFunction()));
2472       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2473     } else {
2474 #ifndef NDEBUG
2475       C->dump();
2476 #endif
2477       llvm_unreachable("Unknown constant!");
2478     }
2479     Stream.EmitRecord(Code, Record, AbbrevToUse);
2480     Record.clear();
2481   }
2482 
2483   Stream.ExitBlock();
2484 }
2485 
writeModuleConstants()2486 void ModuleBitcodeWriter::writeModuleConstants() {
2487   const ValueEnumerator::ValueList &Vals = VE.getValues();
2488 
2489   // Find the first constant to emit, which is the first non-globalvalue value.
2490   // We know globalvalues have been emitted by WriteModuleInfo.
2491   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2492     if (!isa<GlobalValue>(Vals[i].first)) {
2493       writeConstants(i, Vals.size(), true);
2494       return;
2495     }
2496   }
2497 }
2498 
2499 /// pushValueAndType - The file has to encode both the value and type id for
2500 /// many values, because we need to know what type to create for forward
2501 /// references.  However, most operands are not forward references, so this type
2502 /// field is not needed.
2503 ///
2504 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2505 /// instruction ID, then it is a forward reference, and it also includes the
2506 /// type ID.  The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2507 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2508                                            SmallVectorImpl<unsigned> &Vals) {
2509   unsigned ValID = VE.getValueID(V);
2510   // Make encoding relative to the InstID.
2511   Vals.push_back(InstID - ValID);
2512   if (ValID >= InstID) {
2513     Vals.push_back(VE.getTypeID(V->getType()));
2514     return true;
2515   }
2516   return false;
2517 }
2518 
writeOperandBundles(ImmutableCallSite CS,unsigned InstID)2519 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2520                                               unsigned InstID) {
2521   SmallVector<unsigned, 64> Record;
2522   LLVMContext &C = CS.getInstruction()->getContext();
2523 
2524   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2525     const auto &Bundle = CS.getOperandBundleAt(i);
2526     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2527 
2528     for (auto &Input : Bundle.Inputs)
2529       pushValueAndType(Input, InstID, Record);
2530 
2531     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2532     Record.clear();
2533   }
2534 }
2535 
2536 /// pushValue - Like pushValueAndType, but where the type of the value is
2537 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2538 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2539                                     SmallVectorImpl<unsigned> &Vals) {
2540   unsigned ValID = VE.getValueID(V);
2541   Vals.push_back(InstID - ValID);
2542 }
2543 
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2544 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2545                                           SmallVectorImpl<uint64_t> &Vals) {
2546   unsigned ValID = VE.getValueID(V);
2547   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2548   emitSignedInt64(Vals, diff);
2549 }
2550 
2551 /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2552 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2553                                            unsigned InstID,
2554                                            SmallVectorImpl<unsigned> &Vals) {
2555   unsigned Code = 0;
2556   unsigned AbbrevToUse = 0;
2557   VE.setInstructionID(&I);
2558   switch (I.getOpcode()) {
2559   default:
2560     if (Instruction::isCast(I.getOpcode())) {
2561       Code = bitc::FUNC_CODE_INST_CAST;
2562       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2563         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2564       Vals.push_back(VE.getTypeID(I.getType()));
2565       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2566     } else {
2567       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2568       Code = bitc::FUNC_CODE_INST_BINOP;
2569       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2570         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2571       pushValue(I.getOperand(1), InstID, Vals);
2572       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2573       uint64_t Flags = getOptimizationFlags(&I);
2574       if (Flags != 0) {
2575         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2576           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2577         Vals.push_back(Flags);
2578       }
2579     }
2580     break;
2581   case Instruction::FNeg: {
2582     Code = bitc::FUNC_CODE_INST_UNOP;
2583     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2584       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2585     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2586     uint64_t Flags = getOptimizationFlags(&I);
2587     if (Flags != 0) {
2588       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2589         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2590       Vals.push_back(Flags);
2591     }
2592     break;
2593   }
2594   case Instruction::GetElementPtr: {
2595     Code = bitc::FUNC_CODE_INST_GEP;
2596     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2597     auto &GEPInst = cast<GetElementPtrInst>(I);
2598     Vals.push_back(GEPInst.isInBounds());
2599     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2600     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2601       pushValueAndType(I.getOperand(i), InstID, Vals);
2602     break;
2603   }
2604   case Instruction::ExtractValue: {
2605     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2606     pushValueAndType(I.getOperand(0), InstID, Vals);
2607     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2608     Vals.append(EVI->idx_begin(), EVI->idx_end());
2609     break;
2610   }
2611   case Instruction::InsertValue: {
2612     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2613     pushValueAndType(I.getOperand(0), InstID, Vals);
2614     pushValueAndType(I.getOperand(1), InstID, Vals);
2615     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2616     Vals.append(IVI->idx_begin(), IVI->idx_end());
2617     break;
2618   }
2619   case Instruction::Select:
2620     Code = bitc::FUNC_CODE_INST_VSELECT;
2621     pushValueAndType(I.getOperand(1), InstID, Vals);
2622     pushValue(I.getOperand(2), InstID, Vals);
2623     pushValueAndType(I.getOperand(0), InstID, Vals);
2624     break;
2625   case Instruction::ExtractElement:
2626     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2627     pushValueAndType(I.getOperand(0), InstID, Vals);
2628     pushValueAndType(I.getOperand(1), InstID, Vals);
2629     break;
2630   case Instruction::InsertElement:
2631     Code = bitc::FUNC_CODE_INST_INSERTELT;
2632     pushValueAndType(I.getOperand(0), InstID, Vals);
2633     pushValue(I.getOperand(1), InstID, Vals);
2634     pushValueAndType(I.getOperand(2), InstID, Vals);
2635     break;
2636   case Instruction::ShuffleVector:
2637     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2638     pushValueAndType(I.getOperand(0), InstID, Vals);
2639     pushValue(I.getOperand(1), InstID, Vals);
2640     pushValue(I.getOperand(2), InstID, Vals);
2641     break;
2642   case Instruction::ICmp:
2643   case Instruction::FCmp: {
2644     // compare returning Int1Ty or vector of Int1Ty
2645     Code = bitc::FUNC_CODE_INST_CMP2;
2646     pushValueAndType(I.getOperand(0), InstID, Vals);
2647     pushValue(I.getOperand(1), InstID, Vals);
2648     Vals.push_back(cast<CmpInst>(I).getPredicate());
2649     uint64_t Flags = getOptimizationFlags(&I);
2650     if (Flags != 0)
2651       Vals.push_back(Flags);
2652     break;
2653   }
2654 
2655   case Instruction::Ret:
2656     {
2657       Code = bitc::FUNC_CODE_INST_RET;
2658       unsigned NumOperands = I.getNumOperands();
2659       if (NumOperands == 0)
2660         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2661       else if (NumOperands == 1) {
2662         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2663           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2664       } else {
2665         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2666           pushValueAndType(I.getOperand(i), InstID, Vals);
2667       }
2668     }
2669     break;
2670   case Instruction::Br:
2671     {
2672       Code = bitc::FUNC_CODE_INST_BR;
2673       const BranchInst &II = cast<BranchInst>(I);
2674       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2675       if (II.isConditional()) {
2676         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2677         pushValue(II.getCondition(), InstID, Vals);
2678       }
2679     }
2680     break;
2681   case Instruction::Switch:
2682     {
2683       Code = bitc::FUNC_CODE_INST_SWITCH;
2684       const SwitchInst &SI = cast<SwitchInst>(I);
2685       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2686       pushValue(SI.getCondition(), InstID, Vals);
2687       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2688       for (auto Case : SI.cases()) {
2689         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2690         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2691       }
2692     }
2693     break;
2694   case Instruction::IndirectBr:
2695     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2696     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2697     // Encode the address operand as relative, but not the basic blocks.
2698     pushValue(I.getOperand(0), InstID, Vals);
2699     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2700       Vals.push_back(VE.getValueID(I.getOperand(i)));
2701     break;
2702 
2703   case Instruction::Invoke: {
2704     const InvokeInst *II = cast<InvokeInst>(&I);
2705     const Value *Callee = II->getCalledValue();
2706     FunctionType *FTy = II->getFunctionType();
2707 
2708     if (II->hasOperandBundles())
2709       writeOperandBundles(II, InstID);
2710 
2711     Code = bitc::FUNC_CODE_INST_INVOKE;
2712 
2713     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2714     Vals.push_back(II->getCallingConv() | 1 << 13);
2715     Vals.push_back(VE.getValueID(II->getNormalDest()));
2716     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2717     Vals.push_back(VE.getTypeID(FTy));
2718     pushValueAndType(Callee, InstID, Vals);
2719 
2720     // Emit value #'s for the fixed parameters.
2721     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2722       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2723 
2724     // Emit type/value pairs for varargs params.
2725     if (FTy->isVarArg()) {
2726       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2727            i != e; ++i)
2728         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2729     }
2730     break;
2731   }
2732   case Instruction::Resume:
2733     Code = bitc::FUNC_CODE_INST_RESUME;
2734     pushValueAndType(I.getOperand(0), InstID, Vals);
2735     break;
2736   case Instruction::CleanupRet: {
2737     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2738     const auto &CRI = cast<CleanupReturnInst>(I);
2739     pushValue(CRI.getCleanupPad(), InstID, Vals);
2740     if (CRI.hasUnwindDest())
2741       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2742     break;
2743   }
2744   case Instruction::CatchRet: {
2745     Code = bitc::FUNC_CODE_INST_CATCHRET;
2746     const auto &CRI = cast<CatchReturnInst>(I);
2747     pushValue(CRI.getCatchPad(), InstID, Vals);
2748     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2749     break;
2750   }
2751   case Instruction::CleanupPad:
2752   case Instruction::CatchPad: {
2753     const auto &FuncletPad = cast<FuncletPadInst>(I);
2754     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2755                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2756     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2757 
2758     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2759     Vals.push_back(NumArgOperands);
2760     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2761       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2762     break;
2763   }
2764   case Instruction::CatchSwitch: {
2765     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2766     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2767 
2768     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2769 
2770     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2771     Vals.push_back(NumHandlers);
2772     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2773       Vals.push_back(VE.getValueID(CatchPadBB));
2774 
2775     if (CatchSwitch.hasUnwindDest())
2776       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2777     break;
2778   }
2779   case Instruction::Unreachable:
2780     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2781     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2782     break;
2783 
2784   case Instruction::PHI: {
2785     const PHINode &PN = cast<PHINode>(I);
2786     Code = bitc::FUNC_CODE_INST_PHI;
2787     // With the newer instruction encoding, forward references could give
2788     // negative valued IDs.  This is most common for PHIs, so we use
2789     // signed VBRs.
2790     SmallVector<uint64_t, 128> Vals64;
2791     Vals64.push_back(VE.getTypeID(PN.getType()));
2792     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2793       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2794       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2795     }
2796     // Emit a Vals64 vector and exit.
2797     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2798     Vals64.clear();
2799     return;
2800   }
2801 
2802   case Instruction::LandingPad: {
2803     const LandingPadInst &LP = cast<LandingPadInst>(I);
2804     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2805     Vals.push_back(VE.getTypeID(LP.getType()));
2806     Vals.push_back(LP.isCleanup());
2807     Vals.push_back(LP.getNumClauses());
2808     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2809       if (LP.isCatch(I))
2810         Vals.push_back(LandingPadInst::Catch);
2811       else
2812         Vals.push_back(LandingPadInst::Filter);
2813       pushValueAndType(LP.getClause(I), InstID, Vals);
2814     }
2815     break;
2816   }
2817 
2818   case Instruction::Alloca: {
2819     Code = bitc::FUNC_CODE_INST_ALLOCA;
2820     const AllocaInst &AI = cast<AllocaInst>(I);
2821     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2822     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2823     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2824     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2825     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2826            "not enough bits for maximum alignment");
2827     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2828     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2829     AlignRecord |= 1 << 6;
2830     AlignRecord |= AI.isSwiftError() << 7;
2831     Vals.push_back(AlignRecord);
2832     break;
2833   }
2834 
2835   case Instruction::Load:
2836     if (cast<LoadInst>(I).isAtomic()) {
2837       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2838       pushValueAndType(I.getOperand(0), InstID, Vals);
2839     } else {
2840       Code = bitc::FUNC_CODE_INST_LOAD;
2841       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2842         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2843     }
2844     Vals.push_back(VE.getTypeID(I.getType()));
2845     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2846     Vals.push_back(cast<LoadInst>(I).isVolatile());
2847     if (cast<LoadInst>(I).isAtomic()) {
2848       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2849       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2850     }
2851     break;
2852   case Instruction::Store:
2853     if (cast<StoreInst>(I).isAtomic())
2854       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2855     else
2856       Code = bitc::FUNC_CODE_INST_STORE;
2857     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2858     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2859     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2860     Vals.push_back(cast<StoreInst>(I).isVolatile());
2861     if (cast<StoreInst>(I).isAtomic()) {
2862       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2863       Vals.push_back(
2864           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2865     }
2866     break;
2867   case Instruction::AtomicCmpXchg:
2868     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2869     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2870     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2871     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2872     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2873     Vals.push_back(
2874         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2875     Vals.push_back(
2876         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2877     Vals.push_back(
2878         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2879     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2880     break;
2881   case Instruction::AtomicRMW:
2882     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2883     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2884     pushValue(I.getOperand(1), InstID, Vals);        // val.
2885     Vals.push_back(
2886         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2887     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2888     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2889     Vals.push_back(
2890         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2891     break;
2892   case Instruction::Fence:
2893     Code = bitc::FUNC_CODE_INST_FENCE;
2894     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2895     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2896     break;
2897   case Instruction::Call: {
2898     const CallInst &CI = cast<CallInst>(I);
2899     FunctionType *FTy = CI.getFunctionType();
2900 
2901     if (CI.hasOperandBundles())
2902       writeOperandBundles(&CI, InstID);
2903 
2904     Code = bitc::FUNC_CODE_INST_CALL;
2905 
2906     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2907 
2908     unsigned Flags = getOptimizationFlags(&I);
2909     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2910                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2911                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2912                    1 << bitc::CALL_EXPLICIT_TYPE |
2913                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2914                    unsigned(Flags != 0) << bitc::CALL_FMF);
2915     if (Flags != 0)
2916       Vals.push_back(Flags);
2917 
2918     Vals.push_back(VE.getTypeID(FTy));
2919     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2920 
2921     // Emit value #'s for the fixed parameters.
2922     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2923       // Check for labels (can happen with asm labels).
2924       if (FTy->getParamType(i)->isLabelTy())
2925         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2926       else
2927         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2928     }
2929 
2930     // Emit type/value pairs for varargs params.
2931     if (FTy->isVarArg()) {
2932       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2933            i != e; ++i)
2934         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2935     }
2936     break;
2937   }
2938   case Instruction::VAArg:
2939     Code = bitc::FUNC_CODE_INST_VAARG;
2940     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2941     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2942     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2943     break;
2944   }
2945 
2946   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2947   Vals.clear();
2948 }
2949 
2950 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2951 /// to allow clients to efficiently find the function body.
writeGlobalValueSymbolTable(DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)2952 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2953   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2954   // Get the offset of the VST we are writing, and backpatch it into
2955   // the VST forward declaration record.
2956   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2957   // The BitcodeStartBit was the stream offset of the identification block.
2958   VSTOffset -= bitcodeStartBit();
2959   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2960   // Note that we add 1 here because the offset is relative to one word
2961   // before the start of the identification block, which was historically
2962   // always the start of the regular bitcode header.
2963   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2964 
2965   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2966 
2967   auto Abbv = std::make_shared<BitCodeAbbrev>();
2968   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2969   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2971   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2972 
2973   for (const Function &F : M) {
2974     uint64_t Record[2];
2975 
2976     if (F.isDeclaration())
2977       continue;
2978 
2979     Record[0] = VE.getValueID(&F);
2980 
2981     // Save the word offset of the function (from the start of the
2982     // actual bitcode written to the stream).
2983     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2984     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2985     // Note that we add 1 here because the offset is relative to one word
2986     // before the start of the identification block, which was historically
2987     // always the start of the regular bitcode header.
2988     Record[1] = BitcodeIndex / 32 + 1;
2989 
2990     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2991   }
2992 
2993   Stream.ExitBlock();
2994 }
2995 
2996 /// Emit names for arguments, instructions and basic blocks in a function.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)2997 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2998     const ValueSymbolTable &VST) {
2999   if (VST.empty())
3000     return;
3001 
3002   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3003 
3004   // FIXME: Set up the abbrev, we know how many values there are!
3005   // FIXME: We know if the type names can use 7-bit ascii.
3006   SmallVector<uint64_t, 64> NameVals;
3007 
3008   for (const ValueName &Name : VST) {
3009     // Figure out the encoding to use for the name.
3010     StringEncoding Bits = getStringEncoding(Name.getKey());
3011 
3012     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3013     NameVals.push_back(VE.getValueID(Name.getValue()));
3014 
3015     // VST_CODE_ENTRY:   [valueid, namechar x N]
3016     // VST_CODE_BBENTRY: [bbid, namechar x N]
3017     unsigned Code;
3018     if (isa<BasicBlock>(Name.getValue())) {
3019       Code = bitc::VST_CODE_BBENTRY;
3020       if (Bits == SE_Char6)
3021         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3022     } else {
3023       Code = bitc::VST_CODE_ENTRY;
3024       if (Bits == SE_Char6)
3025         AbbrevToUse = VST_ENTRY_6_ABBREV;
3026       else if (Bits == SE_Fixed7)
3027         AbbrevToUse = VST_ENTRY_7_ABBREV;
3028     }
3029 
3030     for (const auto P : Name.getKey())
3031       NameVals.push_back((unsigned char)P);
3032 
3033     // Emit the finished record.
3034     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3035     NameVals.clear();
3036   }
3037 
3038   Stream.ExitBlock();
3039 }
3040 
writeUseList(UseListOrder && Order)3041 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3042   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3043   unsigned Code;
3044   if (isa<BasicBlock>(Order.V))
3045     Code = bitc::USELIST_CODE_BB;
3046   else
3047     Code = bitc::USELIST_CODE_DEFAULT;
3048 
3049   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3050   Record.push_back(VE.getValueID(Order.V));
3051   Stream.EmitRecord(Code, Record);
3052 }
3053 
writeUseListBlock(const Function * F)3054 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3055   assert(VE.shouldPreserveUseListOrder() &&
3056          "Expected to be preserving use-list order");
3057 
3058   auto hasMore = [&]() {
3059     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3060   };
3061   if (!hasMore())
3062     // Nothing to do.
3063     return;
3064 
3065   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3066   while (hasMore()) {
3067     writeUseList(std::move(VE.UseListOrders.back()));
3068     VE.UseListOrders.pop_back();
3069   }
3070   Stream.ExitBlock();
3071 }
3072 
3073 /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3074 void ModuleBitcodeWriter::writeFunction(
3075     const Function &F,
3076     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3077   // Save the bitcode index of the start of this function block for recording
3078   // in the VST.
3079   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3080 
3081   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3082   VE.incorporateFunction(F);
3083 
3084   SmallVector<unsigned, 64> Vals;
3085 
3086   // Emit the number of basic blocks, so the reader can create them ahead of
3087   // time.
3088   Vals.push_back(VE.getBasicBlocks().size());
3089   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3090   Vals.clear();
3091 
3092   // If there are function-local constants, emit them now.
3093   unsigned CstStart, CstEnd;
3094   VE.getFunctionConstantRange(CstStart, CstEnd);
3095   writeConstants(CstStart, CstEnd, false);
3096 
3097   // If there is function-local metadata, emit it now.
3098   writeFunctionMetadata(F);
3099 
3100   // Keep a running idea of what the instruction ID is.
3101   unsigned InstID = CstEnd;
3102 
3103   bool NeedsMetadataAttachment = F.hasMetadata();
3104 
3105   DILocation *LastDL = nullptr;
3106   // Finally, emit all the instructions, in order.
3107   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3108     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3109          I != E; ++I) {
3110       writeInstruction(*I, InstID, Vals);
3111 
3112       if (!I->getType()->isVoidTy())
3113         ++InstID;
3114 
3115       // If the instruction has metadata, write a metadata attachment later.
3116       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3117 
3118       // If the instruction has a debug location, emit it.
3119       DILocation *DL = I->getDebugLoc();
3120       if (!DL)
3121         continue;
3122 
3123       if (DL == LastDL) {
3124         // Just repeat the same debug loc as last time.
3125         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3126         continue;
3127       }
3128 
3129       Vals.push_back(DL->getLine());
3130       Vals.push_back(DL->getColumn());
3131       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3132       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3133       Vals.push_back(DL->isImplicitCode());
3134       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3135       Vals.clear();
3136 
3137       LastDL = DL;
3138     }
3139 
3140   // Emit names for all the instructions etc.
3141   if (auto *Symtab = F.getValueSymbolTable())
3142     writeFunctionLevelValueSymbolTable(*Symtab);
3143 
3144   if (NeedsMetadataAttachment)
3145     writeFunctionMetadataAttachment(F);
3146   if (VE.shouldPreserveUseListOrder())
3147     writeUseListBlock(&F);
3148   VE.purgeFunction();
3149   Stream.ExitBlock();
3150 }
3151 
3152 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()3153 void ModuleBitcodeWriter::writeBlockInfo() {
3154   // We only want to emit block info records for blocks that have multiple
3155   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3156   // Other blocks can define their abbrevs inline.
3157   Stream.EnterBlockInfoBlock();
3158 
3159   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3160     auto Abbv = std::make_shared<BitCodeAbbrev>();
3161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3163     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3165     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3166         VST_ENTRY_8_ABBREV)
3167       llvm_unreachable("Unexpected abbrev ordering!");
3168   }
3169 
3170   { // 7-bit fixed width VST_CODE_ENTRY strings.
3171     auto Abbv = std::make_shared<BitCodeAbbrev>();
3172     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3176     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3177         VST_ENTRY_7_ABBREV)
3178       llvm_unreachable("Unexpected abbrev ordering!");
3179   }
3180   { // 6-bit char6 VST_CODE_ENTRY strings.
3181     auto Abbv = std::make_shared<BitCodeAbbrev>();
3182     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3183     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3186     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3187         VST_ENTRY_6_ABBREV)
3188       llvm_unreachable("Unexpected abbrev ordering!");
3189   }
3190   { // 6-bit char6 VST_CODE_BBENTRY strings.
3191     auto Abbv = std::make_shared<BitCodeAbbrev>();
3192     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3196     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3197         VST_BBENTRY_6_ABBREV)
3198       llvm_unreachable("Unexpected abbrev ordering!");
3199   }
3200 
3201   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3202     auto Abbv = std::make_shared<BitCodeAbbrev>();
3203     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3205                               VE.computeBitsRequiredForTypeIndicies()));
3206     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3207         CONSTANTS_SETTYPE_ABBREV)
3208       llvm_unreachable("Unexpected abbrev ordering!");
3209   }
3210 
3211   { // INTEGER abbrev for CONSTANTS_BLOCK.
3212     auto Abbv = std::make_shared<BitCodeAbbrev>();
3213     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3215     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3216         CONSTANTS_INTEGER_ABBREV)
3217       llvm_unreachable("Unexpected abbrev ordering!");
3218   }
3219 
3220   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3221     auto Abbv = std::make_shared<BitCodeAbbrev>();
3222     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3225                               VE.computeBitsRequiredForTypeIndicies()));
3226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3227 
3228     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3229         CONSTANTS_CE_CAST_Abbrev)
3230       llvm_unreachable("Unexpected abbrev ordering!");
3231   }
3232   { // NULL abbrev for CONSTANTS_BLOCK.
3233     auto Abbv = std::make_shared<BitCodeAbbrev>();
3234     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3235     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3236         CONSTANTS_NULL_Abbrev)
3237       llvm_unreachable("Unexpected abbrev ordering!");
3238   }
3239 
3240   // FIXME: This should only use space for first class types!
3241 
3242   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3243     auto Abbv = std::make_shared<BitCodeAbbrev>();
3244     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3247                               VE.computeBitsRequiredForTypeIndicies()));
3248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3250     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3251         FUNCTION_INST_LOAD_ABBREV)
3252       llvm_unreachable("Unexpected abbrev ordering!");
3253   }
3254   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3255     auto Abbv = std::make_shared<BitCodeAbbrev>();
3256     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3257     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3259     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3260         FUNCTION_INST_UNOP_ABBREV)
3261       llvm_unreachable("Unexpected abbrev ordering!");
3262   }
3263   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3264     auto Abbv = std::make_shared<BitCodeAbbrev>();
3265     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3266     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3269     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3270         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3271       llvm_unreachable("Unexpected abbrev ordering!");
3272   }
3273   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3274     auto Abbv = std::make_shared<BitCodeAbbrev>();
3275     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3276     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3279     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3280         FUNCTION_INST_BINOP_ABBREV)
3281       llvm_unreachable("Unexpected abbrev ordering!");
3282   }
3283   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3284     auto Abbv = std::make_shared<BitCodeAbbrev>();
3285     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3290     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3291         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3292       llvm_unreachable("Unexpected abbrev ordering!");
3293   }
3294   { // INST_CAST abbrev for FUNCTION_BLOCK.
3295     auto Abbv = std::make_shared<BitCodeAbbrev>();
3296     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3297     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3298     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3299                               VE.computeBitsRequiredForTypeIndicies()));
3300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3301     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3302         FUNCTION_INST_CAST_ABBREV)
3303       llvm_unreachable("Unexpected abbrev ordering!");
3304   }
3305 
3306   { // INST_RET abbrev for FUNCTION_BLOCK.
3307     auto Abbv = std::make_shared<BitCodeAbbrev>();
3308     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3309     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3310         FUNCTION_INST_RET_VOID_ABBREV)
3311       llvm_unreachable("Unexpected abbrev ordering!");
3312   }
3313   { // INST_RET abbrev for FUNCTION_BLOCK.
3314     auto Abbv = std::make_shared<BitCodeAbbrev>();
3315     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3316     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3317     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3318         FUNCTION_INST_RET_VAL_ABBREV)
3319       llvm_unreachable("Unexpected abbrev ordering!");
3320   }
3321   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3322     auto Abbv = std::make_shared<BitCodeAbbrev>();
3323     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3324     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3325         FUNCTION_INST_UNREACHABLE_ABBREV)
3326       llvm_unreachable("Unexpected abbrev ordering!");
3327   }
3328   {
3329     auto Abbv = std::make_shared<BitCodeAbbrev>();
3330     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3333                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3334     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3336     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3337         FUNCTION_INST_GEP_ABBREV)
3338       llvm_unreachable("Unexpected abbrev ordering!");
3339   }
3340 
3341   Stream.ExitBlock();
3342 }
3343 
3344 /// Write the module path strings, currently only used when generating
3345 /// a combined index file.
writeModStrings()3346 void IndexBitcodeWriter::writeModStrings() {
3347   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3348 
3349   // TODO: See which abbrev sizes we actually need to emit
3350 
3351   // 8-bit fixed-width MST_ENTRY strings.
3352   auto Abbv = std::make_shared<BitCodeAbbrev>();
3353   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3354   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3357   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3358 
3359   // 7-bit fixed width MST_ENTRY strings.
3360   Abbv = std::make_shared<BitCodeAbbrev>();
3361   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3365   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3366 
3367   // 6-bit char6 MST_ENTRY strings.
3368   Abbv = std::make_shared<BitCodeAbbrev>();
3369   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3370   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3373   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3374 
3375   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3376   Abbv = std::make_shared<BitCodeAbbrev>();
3377   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3378   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3379   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3380   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3383   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3384 
3385   SmallVector<unsigned, 64> Vals;
3386   forEachModule(
3387       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3388         StringRef Key = MPSE.getKey();
3389         const auto &Value = MPSE.getValue();
3390         StringEncoding Bits = getStringEncoding(Key);
3391         unsigned AbbrevToUse = Abbrev8Bit;
3392         if (Bits == SE_Char6)
3393           AbbrevToUse = Abbrev6Bit;
3394         else if (Bits == SE_Fixed7)
3395           AbbrevToUse = Abbrev7Bit;
3396 
3397         Vals.push_back(Value.first);
3398         Vals.append(Key.begin(), Key.end());
3399 
3400         // Emit the finished record.
3401         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3402 
3403         // Emit an optional hash for the module now
3404         const auto &Hash = Value.second;
3405         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3406           Vals.assign(Hash.begin(), Hash.end());
3407           // Emit the hash record.
3408           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3409         }
3410 
3411         Vals.clear();
3412       });
3413   Stream.ExitBlock();
3414 }
3415 
3416 /// Write the function type metadata related records that need to appear before
3417 /// a function summary entry (whether per-module or combined).
writeFunctionTypeMetadataRecords(BitstreamWriter & Stream,FunctionSummary * FS)3418 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3419                                              FunctionSummary *FS) {
3420   if (!FS->type_tests().empty())
3421     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3422 
3423   SmallVector<uint64_t, 64> Record;
3424 
3425   auto WriteVFuncIdVec = [&](uint64_t Ty,
3426                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3427     if (VFs.empty())
3428       return;
3429     Record.clear();
3430     for (auto &VF : VFs) {
3431       Record.push_back(VF.GUID);
3432       Record.push_back(VF.Offset);
3433     }
3434     Stream.EmitRecord(Ty, Record);
3435   };
3436 
3437   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3438                   FS->type_test_assume_vcalls());
3439   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3440                   FS->type_checked_load_vcalls());
3441 
3442   auto WriteConstVCallVec = [&](uint64_t Ty,
3443                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3444     for (auto &VC : VCs) {
3445       Record.clear();
3446       Record.push_back(VC.VFunc.GUID);
3447       Record.push_back(VC.VFunc.Offset);
3448       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3449       Stream.EmitRecord(Ty, Record);
3450     }
3451   };
3452 
3453   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3454                      FS->type_test_assume_const_vcalls());
3455   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3456                      FS->type_checked_load_const_vcalls());
3457 }
3458 
3459 /// Collect type IDs from type tests used by function.
3460 static void
getReferencedTypeIds(FunctionSummary * FS,std::set<GlobalValue::GUID> & ReferencedTypeIds)3461 getReferencedTypeIds(FunctionSummary *FS,
3462                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3463   if (!FS->type_tests().empty())
3464     for (auto &TT : FS->type_tests())
3465       ReferencedTypeIds.insert(TT);
3466 
3467   auto GetReferencedTypesFromVFuncIdVec =
3468       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3469         for (auto &VF : VFs)
3470           ReferencedTypeIds.insert(VF.GUID);
3471       };
3472 
3473   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3474   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3475 
3476   auto GetReferencedTypesFromConstVCallVec =
3477       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3478         for (auto &VC : VCs)
3479           ReferencedTypeIds.insert(VC.VFunc.GUID);
3480       };
3481 
3482   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3483   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3484 }
3485 
writeWholeProgramDevirtResolutionByArg(SmallVector<uint64_t,64> & NameVals,const std::vector<uint64_t> & args,const WholeProgramDevirtResolution::ByArg & ByArg)3486 static void writeWholeProgramDevirtResolutionByArg(
3487     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3488     const WholeProgramDevirtResolution::ByArg &ByArg) {
3489   NameVals.push_back(args.size());
3490   NameVals.insert(NameVals.end(), args.begin(), args.end());
3491 
3492   NameVals.push_back(ByArg.TheKind);
3493   NameVals.push_back(ByArg.Info);
3494   NameVals.push_back(ByArg.Byte);
3495   NameVals.push_back(ByArg.Bit);
3496 }
3497 
writeWholeProgramDevirtResolution(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,uint64_t Id,const WholeProgramDevirtResolution & Wpd)3498 static void writeWholeProgramDevirtResolution(
3499     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3500     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3501   NameVals.push_back(Id);
3502 
3503   NameVals.push_back(Wpd.TheKind);
3504   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3505   NameVals.push_back(Wpd.SingleImplName.size());
3506 
3507   NameVals.push_back(Wpd.ResByArg.size());
3508   for (auto &A : Wpd.ResByArg)
3509     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3510 }
3511 
writeTypeIdSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdSummary & Summary)3512 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3513                                      StringTableBuilder &StrtabBuilder,
3514                                      const std::string &Id,
3515                                      const TypeIdSummary &Summary) {
3516   NameVals.push_back(StrtabBuilder.add(Id));
3517   NameVals.push_back(Id.size());
3518 
3519   NameVals.push_back(Summary.TTRes.TheKind);
3520   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3521   NameVals.push_back(Summary.TTRes.AlignLog2);
3522   NameVals.push_back(Summary.TTRes.SizeM1);
3523   NameVals.push_back(Summary.TTRes.BitMask);
3524   NameVals.push_back(Summary.TTRes.InlineBits);
3525 
3526   for (auto &W : Summary.WPDRes)
3527     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3528                                       W.second);
3529 }
3530 
3531 // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsAbbrev,unsigned FSCallsProfileAbbrev,const Function & F)3532 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3533     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3534     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3535     const Function &F) {
3536   NameVals.push_back(ValueID);
3537 
3538   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3539   writeFunctionTypeMetadataRecords(Stream, FS);
3540 
3541   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3542   NameVals.push_back(FS->instCount());
3543   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3544   NameVals.push_back(FS->refs().size());
3545   NameVals.push_back(FS->immutableRefCount());
3546 
3547   for (auto &RI : FS->refs())
3548     NameVals.push_back(VE.getValueID(RI.getValue()));
3549 
3550   bool HasProfileData =
3551       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3552   for (auto &ECI : FS->calls()) {
3553     NameVals.push_back(getValueId(ECI.first));
3554     if (HasProfileData)
3555       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3556     else if (WriteRelBFToSummary)
3557       NameVals.push_back(ECI.second.RelBlockFreq);
3558   }
3559 
3560   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3561   unsigned Code =
3562       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3563                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3564                                              : bitc::FS_PERMODULE));
3565 
3566   // Emit the finished record.
3567   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3568   NameVals.clear();
3569 }
3570 
3571 // Collect the global value references in the given variable's initializer,
3572 // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev)3573 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3574     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3575     unsigned FSModRefsAbbrev) {
3576   auto VI = Index->getValueInfo(V.getGUID());
3577   if (!VI || VI.getSummaryList().empty()) {
3578     // Only declarations should not have a summary (a declaration might however
3579     // have a summary if the def was in module level asm).
3580     assert(V.isDeclaration());
3581     return;
3582   }
3583   auto *Summary = VI.getSummaryList()[0].get();
3584   NameVals.push_back(VE.getValueID(&V));
3585   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3586   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3587   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3588 
3589   unsigned SizeBeforeRefs = NameVals.size();
3590   for (auto &RI : VS->refs())
3591     NameVals.push_back(VE.getValueID(RI.getValue()));
3592   // Sort the refs for determinism output, the vector returned by FS->refs() has
3593   // been initialized from a DenseSet.
3594   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3595 
3596   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3597                     FSModRefsAbbrev);
3598   NameVals.clear();
3599 }
3600 
3601 // Current version for the summary.
3602 // This is bumped whenever we introduce changes in the way some record are
3603 // interpreted, like flags for instance.
3604 static const uint64_t INDEX_VERSION = 6;
3605 
3606 /// Emit the per-module summary section alongside the rest of
3607 /// the module's bitcode.
writePerModuleGlobalValueSummary()3608 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3609   // By default we compile with ThinLTO if the module has a summary, but the
3610   // client can request full LTO with a module flag.
3611   bool IsThinLTO = true;
3612   if (auto *MD =
3613           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3614     IsThinLTO = MD->getZExtValue();
3615   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3616                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3617                        4);
3618 
3619   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3620 
3621   // Write the index flags.
3622   uint64_t Flags = 0;
3623   // Bits 1-3 are set only in the combined index, skip them.
3624   if (Index->enableSplitLTOUnit())
3625     Flags |= 0x8;
3626   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3627 
3628   if (Index->begin() == Index->end()) {
3629     Stream.ExitBlock();
3630     return;
3631   }
3632 
3633   for (const auto &GVI : valueIds()) {
3634     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3635                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3636   }
3637 
3638   // Abbrev for FS_PERMODULE_PROFILE.
3639   auto Abbv = std::make_shared<BitCodeAbbrev>();
3640   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3641   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3642   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3643   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3644   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3645   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3646   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3647   // numrefs x valueid, n x (valueid, hotness)
3648   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3649   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3650   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3651 
3652   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3653   Abbv = std::make_shared<BitCodeAbbrev>();
3654   if (WriteRelBFToSummary)
3655     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3656   else
3657     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3658   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3659   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3660   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3661   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3662   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3663   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3664   // numrefs x valueid, n x (valueid [, rel_block_freq])
3665   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3666   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3667   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3668 
3669   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3670   Abbv = std::make_shared<BitCodeAbbrev>();
3671   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3672   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3673   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3674   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3675   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3676   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3677 
3678   // Abbrev for FS_ALIAS.
3679   Abbv = std::make_shared<BitCodeAbbrev>();
3680   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3681   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3682   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3683   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3684   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3685 
3686   SmallVector<uint64_t, 64> NameVals;
3687   // Iterate over the list of functions instead of the Index to
3688   // ensure the ordering is stable.
3689   for (const Function &F : M) {
3690     // Summary emission does not support anonymous functions, they have to
3691     // renamed using the anonymous function renaming pass.
3692     if (!F.hasName())
3693       report_fatal_error("Unexpected anonymous function when writing summary");
3694 
3695     ValueInfo VI = Index->getValueInfo(F.getGUID());
3696     if (!VI || VI.getSummaryList().empty()) {
3697       // Only declarations should not have a summary (a declaration might
3698       // however have a summary if the def was in module level asm).
3699       assert(F.isDeclaration());
3700       continue;
3701     }
3702     auto *Summary = VI.getSummaryList()[0].get();
3703     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3704                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3705   }
3706 
3707   // Capture references from GlobalVariable initializers, which are outside
3708   // of a function scope.
3709   for (const GlobalVariable &G : M.globals())
3710     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3711 
3712   for (const GlobalAlias &A : M.aliases()) {
3713     auto *Aliasee = A.getBaseObject();
3714     if (!Aliasee->hasName())
3715       // Nameless function don't have an entry in the summary, skip it.
3716       continue;
3717     auto AliasId = VE.getValueID(&A);
3718     auto AliaseeId = VE.getValueID(Aliasee);
3719     NameVals.push_back(AliasId);
3720     auto *Summary = Index->getGlobalValueSummary(A);
3721     AliasSummary *AS = cast<AliasSummary>(Summary);
3722     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3723     NameVals.push_back(AliaseeId);
3724     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3725     NameVals.clear();
3726   }
3727 
3728   Stream.ExitBlock();
3729 }
3730 
3731 /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()3732 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3733   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3734   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3735 
3736   // Write the index flags.
3737   uint64_t Flags = 0;
3738   if (Index.withGlobalValueDeadStripping())
3739     Flags |= 0x1;
3740   if (Index.skipModuleByDistributedBackend())
3741     Flags |= 0x2;
3742   if (Index.hasSyntheticEntryCounts())
3743     Flags |= 0x4;
3744   if (Index.enableSplitLTOUnit())
3745     Flags |= 0x8;
3746   if (Index.partiallySplitLTOUnits())
3747     Flags |= 0x10;
3748   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3749 
3750   for (const auto &GVI : valueIds()) {
3751     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3752                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3753   }
3754 
3755   // Abbrev for FS_COMBINED.
3756   auto Abbv = std::make_shared<BitCodeAbbrev>();
3757   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3758   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3759   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3760   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3761   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3762   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3763   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3764   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3765   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3766   // numrefs x valueid, n x (valueid)
3767   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3768   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3769   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3770 
3771   // Abbrev for FS_COMBINED_PROFILE.
3772   Abbv = std::make_shared<BitCodeAbbrev>();
3773   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3774   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3776   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3780   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3781   // numrefs x valueid, n x (valueid, hotness)
3782   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3783   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3784   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3785 
3786   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3787   Abbv = std::make_shared<BitCodeAbbrev>();
3788   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3789   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3790   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3791   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3792   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3794   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3795 
3796   // Abbrev for FS_COMBINED_ALIAS.
3797   Abbv = std::make_shared<BitCodeAbbrev>();
3798   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3799   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3801   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3802   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3803   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3804 
3805   // The aliases are emitted as a post-pass, and will point to the value
3806   // id of the aliasee. Save them in a vector for post-processing.
3807   SmallVector<AliasSummary *, 64> Aliases;
3808 
3809   // Save the value id for each summary for alias emission.
3810   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3811 
3812   SmallVector<uint64_t, 64> NameVals;
3813 
3814   // Set that will be populated during call to writeFunctionTypeMetadataRecords
3815   // with the type ids referenced by this index file.
3816   std::set<GlobalValue::GUID> ReferencedTypeIds;
3817 
3818   // For local linkage, we also emit the original name separately
3819   // immediately after the record.
3820   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3821     if (!GlobalValue::isLocalLinkage(S.linkage()))
3822       return;
3823     NameVals.push_back(S.getOriginalName());
3824     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3825     NameVals.clear();
3826   };
3827 
3828   forEachSummary([&](GVInfo I, bool IsAliasee) {
3829     GlobalValueSummary *S = I.second;
3830     assert(S);
3831 
3832     auto ValueId = getValueId(I.first);
3833     assert(ValueId);
3834     SummaryToValueIdMap[S] = *ValueId;
3835 
3836     // If this is invoked for an aliasee, we want to record the above
3837     // mapping, but then not emit a summary entry (if the aliasee is
3838     // to be imported, we will invoke this separately with IsAliasee=false).
3839     if (IsAliasee)
3840       return;
3841 
3842     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3843       // Will process aliases as a post-pass because the reader wants all
3844       // global to be loaded first.
3845       Aliases.push_back(AS);
3846       return;
3847     }
3848 
3849     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3850       NameVals.push_back(*ValueId);
3851       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3852       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3853       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3854       for (auto &RI : VS->refs()) {
3855         auto RefValueId = getValueId(RI.getGUID());
3856         if (!RefValueId)
3857           continue;
3858         NameVals.push_back(*RefValueId);
3859       }
3860 
3861       // Emit the finished record.
3862       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3863                         FSModRefsAbbrev);
3864       NameVals.clear();
3865       MaybeEmitOriginalName(*S);
3866       return;
3867     }
3868 
3869     auto *FS = cast<FunctionSummary>(S);
3870     writeFunctionTypeMetadataRecords(Stream, FS);
3871     getReferencedTypeIds(FS, ReferencedTypeIds);
3872 
3873     NameVals.push_back(*ValueId);
3874     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3875     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3876     NameVals.push_back(FS->instCount());
3877     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3878     NameVals.push_back(FS->entryCount());
3879 
3880     // Fill in below
3881     NameVals.push_back(0); // numrefs
3882     NameVals.push_back(0); // immutablerefcnt
3883 
3884     unsigned Count = 0, ImmutableRefCnt = 0;
3885     for (auto &RI : FS->refs()) {
3886       auto RefValueId = getValueId(RI.getGUID());
3887       if (!RefValueId)
3888         continue;
3889       NameVals.push_back(*RefValueId);
3890       if (RI.isReadOnly())
3891         ImmutableRefCnt++;
3892       Count++;
3893     }
3894     NameVals[6] = Count;
3895     NameVals[7] = ImmutableRefCnt;
3896 
3897     bool HasProfileData = false;
3898     for (auto &EI : FS->calls()) {
3899       HasProfileData |=
3900           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3901       if (HasProfileData)
3902         break;
3903     }
3904 
3905     for (auto &EI : FS->calls()) {
3906       // If this GUID doesn't have a value id, it doesn't have a function
3907       // summary and we don't need to record any calls to it.
3908       GlobalValue::GUID GUID = EI.first.getGUID();
3909       auto CallValueId = getValueId(GUID);
3910       if (!CallValueId) {
3911         // For SamplePGO, the indirect call targets for local functions will
3912         // have its original name annotated in profile. We try to find the
3913         // corresponding PGOFuncName as the GUID.
3914         GUID = Index.getGUIDFromOriginalID(GUID);
3915         if (GUID == 0)
3916           continue;
3917         CallValueId = getValueId(GUID);
3918         if (!CallValueId)
3919           continue;
3920         // The mapping from OriginalId to GUID may return a GUID
3921         // that corresponds to a static variable. Filter it out here.
3922         // This can happen when
3923         // 1) There is a call to a library function which does not have
3924         // a CallValidId;
3925         // 2) There is a static variable with the  OriginalGUID identical
3926         // to the GUID of the library function in 1);
3927         // When this happens, the logic for SamplePGO kicks in and
3928         // the static variable in 2) will be found, which needs to be
3929         // filtered out.
3930         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3931         if (GVSum &&
3932             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3933           continue;
3934       }
3935       NameVals.push_back(*CallValueId);
3936       if (HasProfileData)
3937         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3938     }
3939 
3940     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3941     unsigned Code =
3942         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3943 
3944     // Emit the finished record.
3945     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3946     NameVals.clear();
3947     MaybeEmitOriginalName(*S);
3948   });
3949 
3950   for (auto *AS : Aliases) {
3951     auto AliasValueId = SummaryToValueIdMap[AS];
3952     assert(AliasValueId);
3953     NameVals.push_back(AliasValueId);
3954     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3955     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3956     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3957     assert(AliaseeValueId);
3958     NameVals.push_back(AliaseeValueId);
3959 
3960     // Emit the finished record.
3961     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3962     NameVals.clear();
3963     MaybeEmitOriginalName(*AS);
3964 
3965     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
3966       getReferencedTypeIds(FS, ReferencedTypeIds);
3967   }
3968 
3969   if (!Index.cfiFunctionDefs().empty()) {
3970     for (auto &S : Index.cfiFunctionDefs()) {
3971       NameVals.push_back(StrtabBuilder.add(S));
3972       NameVals.push_back(S.size());
3973     }
3974     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3975     NameVals.clear();
3976   }
3977 
3978   if (!Index.cfiFunctionDecls().empty()) {
3979     for (auto &S : Index.cfiFunctionDecls()) {
3980       NameVals.push_back(StrtabBuilder.add(S));
3981       NameVals.push_back(S.size());
3982     }
3983     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3984     NameVals.clear();
3985   }
3986 
3987   // Walk the GUIDs that were referenced, and write the
3988   // corresponding type id records.
3989   for (auto &T : ReferencedTypeIds) {
3990     auto TidIter = Index.typeIds().equal_range(T);
3991     for (auto It = TidIter.first; It != TidIter.second; ++It) {
3992       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
3993                                It->second.second);
3994       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3995       NameVals.clear();
3996     }
3997   }
3998 
3999   Stream.ExitBlock();
4000 }
4001 
4002 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4003 /// current llvm version, and a record for the epoch number.
writeIdentificationBlock(BitstreamWriter & Stream)4004 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4005   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4006 
4007   // Write the "user readable" string identifying the bitcode producer
4008   auto Abbv = std::make_shared<BitCodeAbbrev>();
4009   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4010   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4011   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4012   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4013   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4014                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4015 
4016   // Write the epoch version
4017   Abbv = std::make_shared<BitCodeAbbrev>();
4018   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4019   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4020   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4021   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
4022   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4023   Stream.ExitBlock();
4024 }
4025 
writeModuleHash(size_t BlockStartPos)4026 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4027   // Emit the module's hash.
4028   // MODULE_CODE_HASH: [5*i32]
4029   if (GenerateHash) {
4030     uint32_t Vals[5];
4031     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4032                                     Buffer.size() - BlockStartPos));
4033     StringRef Hash = Hasher.result();
4034     for (int Pos = 0; Pos < 20; Pos += 4) {
4035       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4036     }
4037 
4038     // Emit the finished record.
4039     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4040 
4041     if (ModHash)
4042       // Save the written hash value.
4043       llvm::copy(Vals, std::begin(*ModHash));
4044   }
4045 }
4046 
write()4047 void ModuleBitcodeWriter::write() {
4048   writeIdentificationBlock(Stream);
4049 
4050   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4051   size_t BlockStartPos = Buffer.size();
4052 
4053   writeModuleVersion();
4054 
4055   // Emit blockinfo, which defines the standard abbreviations etc.
4056   writeBlockInfo();
4057 
4058   // Emit information about attribute groups.
4059   writeAttributeGroupTable();
4060 
4061   // Emit information about parameter attributes.
4062   writeAttributeTable();
4063 
4064   // Emit information describing all of the types in the module.
4065   writeTypeTable();
4066 
4067   writeComdats();
4068 
4069   // Emit top-level description of module, including target triple, inline asm,
4070   // descriptors for global variables, and function prototype info.
4071   writeModuleInfo();
4072 
4073   // Emit constants.
4074   writeModuleConstants();
4075 
4076   // Emit metadata kind names.
4077   writeModuleMetadataKinds();
4078 
4079   // Emit metadata.
4080   writeModuleMetadata();
4081 
4082   // Emit module-level use-lists.
4083   if (VE.shouldPreserveUseListOrder())
4084     writeUseListBlock(nullptr);
4085 
4086   writeOperandBundleTags();
4087   writeSyncScopeNames();
4088 
4089   // Emit function bodies.
4090   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4091   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4092     if (!F->isDeclaration())
4093       writeFunction(*F, FunctionToBitcodeIndex);
4094 
4095   // Need to write after the above call to WriteFunction which populates
4096   // the summary information in the index.
4097   if (Index)
4098     writePerModuleGlobalValueSummary();
4099 
4100   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4101 
4102   writeModuleHash(BlockStartPos);
4103 
4104   Stream.ExitBlock();
4105 }
4106 
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)4107 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4108                                uint32_t &Position) {
4109   support::endian::write32le(&Buffer[Position], Value);
4110   Position += 4;
4111 }
4112 
4113 /// If generating a bc file on darwin, we have to emit a
4114 /// header and trailer to make it compatible with the system archiver.  To do
4115 /// this we emit the following header, and then emit a trailer that pads the
4116 /// file out to be a multiple of 16 bytes.
4117 ///
4118 /// struct bc_header {
4119 ///   uint32_t Magic;         // 0x0B17C0DE
4120 ///   uint32_t Version;       // Version, currently always 0.
4121 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4122 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4123 ///   uint32_t CPUType;       // CPU specifier.
4124 ///   ... potentially more later ...
4125 /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)4126 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4127                                          const Triple &TT) {
4128   unsigned CPUType = ~0U;
4129 
4130   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4131   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4132   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4133   // specific constants here because they are implicitly part of the Darwin ABI.
4134   enum {
4135     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4136     DARWIN_CPU_TYPE_X86        = 7,
4137     DARWIN_CPU_TYPE_ARM        = 12,
4138     DARWIN_CPU_TYPE_POWERPC    = 18
4139   };
4140 
4141   Triple::ArchType Arch = TT.getArch();
4142   if (Arch == Triple::x86_64)
4143     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4144   else if (Arch == Triple::x86)
4145     CPUType = DARWIN_CPU_TYPE_X86;
4146   else if (Arch == Triple::ppc)
4147     CPUType = DARWIN_CPU_TYPE_POWERPC;
4148   else if (Arch == Triple::ppc64)
4149     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4150   else if (Arch == Triple::arm || Arch == Triple::thumb)
4151     CPUType = DARWIN_CPU_TYPE_ARM;
4152 
4153   // Traditional Bitcode starts after header.
4154   assert(Buffer.size() >= BWH_HeaderSize &&
4155          "Expected header size to be reserved");
4156   unsigned BCOffset = BWH_HeaderSize;
4157   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4158 
4159   // Write the magic and version.
4160   unsigned Position = 0;
4161   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4162   writeInt32ToBuffer(0, Buffer, Position); // Version.
4163   writeInt32ToBuffer(BCOffset, Buffer, Position);
4164   writeInt32ToBuffer(BCSize, Buffer, Position);
4165   writeInt32ToBuffer(CPUType, Buffer, Position);
4166 
4167   // If the file is not a multiple of 16 bytes, insert dummy padding.
4168   while (Buffer.size() & 15)
4169     Buffer.push_back(0);
4170 }
4171 
4172 /// Helper to write the header common to all bitcode files.
writeBitcodeHeader(BitstreamWriter & Stream)4173 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4174   // Emit the file header.
4175   Stream.Emit((unsigned)'B', 8);
4176   Stream.Emit((unsigned)'C', 8);
4177   Stream.Emit(0x0, 4);
4178   Stream.Emit(0xC, 4);
4179   Stream.Emit(0xE, 4);
4180   Stream.Emit(0xD, 4);
4181 }
4182 
BitcodeWriter(SmallVectorImpl<char> & Buffer)4183 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4184     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4185   writeBitcodeHeader(*Stream);
4186 }
4187 
~BitcodeWriter()4188 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4189 
writeBlob(unsigned Block,unsigned Record,StringRef Blob)4190 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4191   Stream->EnterSubblock(Block, 3);
4192 
4193   auto Abbv = std::make_shared<BitCodeAbbrev>();
4194   Abbv->Add(BitCodeAbbrevOp(Record));
4195   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4196   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4197 
4198   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4199 
4200   Stream->ExitBlock();
4201 }
4202 
writeSymtab()4203 void BitcodeWriter::writeSymtab() {
4204   assert(!WroteStrtab && !WroteSymtab);
4205 
4206   // If any module has module-level inline asm, we will require a registered asm
4207   // parser for the target so that we can create an accurate symbol table for
4208   // the module.
4209   for (Module *M : Mods) {
4210     if (M->getModuleInlineAsm().empty())
4211       continue;
4212 
4213     std::string Err;
4214     const Triple TT(M->getTargetTriple());
4215     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4216     if (!T || !T->hasMCAsmParser())
4217       return;
4218   }
4219 
4220   WroteSymtab = true;
4221   SmallVector<char, 0> Symtab;
4222   // The irsymtab::build function may be unable to create a symbol table if the
4223   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4224   // table is not required for correctness, but we still want to be able to
4225   // write malformed modules to bitcode files, so swallow the error.
4226   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4227     consumeError(std::move(E));
4228     return;
4229   }
4230 
4231   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4232             {Symtab.data(), Symtab.size()});
4233 }
4234 
writeStrtab()4235 void BitcodeWriter::writeStrtab() {
4236   assert(!WroteStrtab);
4237 
4238   std::vector<char> Strtab;
4239   StrtabBuilder.finalizeInOrder();
4240   Strtab.resize(StrtabBuilder.getSize());
4241   StrtabBuilder.write((uint8_t *)Strtab.data());
4242 
4243   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4244             {Strtab.data(), Strtab.size()});
4245 
4246   WroteStrtab = true;
4247 }
4248 
copyStrtab(StringRef Strtab)4249 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4250   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4251   WroteStrtab = true;
4252 }
4253 
writeModule(const Module & M,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4254 void BitcodeWriter::writeModule(const Module &M,
4255                                 bool ShouldPreserveUseListOrder,
4256                                 const ModuleSummaryIndex *Index,
4257                                 bool GenerateHash, ModuleHash *ModHash) {
4258   assert(!WroteStrtab);
4259 
4260   // The Mods vector is used by irsymtab::build, which requires non-const
4261   // Modules in case it needs to materialize metadata. But the bitcode writer
4262   // requires that the module is materialized, so we can cast to non-const here,
4263   // after checking that it is in fact materialized.
4264   assert(M.isMaterialized());
4265   Mods.push_back(const_cast<Module *>(&M));
4266 
4267   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4268                                    ShouldPreserveUseListOrder, Index,
4269                                    GenerateHash, ModHash);
4270   ModuleWriter.write();
4271 }
4272 
writeIndex(const ModuleSummaryIndex * Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4273 void BitcodeWriter::writeIndex(
4274     const ModuleSummaryIndex *Index,
4275     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4276   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4277                                  ModuleToSummariesForIndex);
4278   IndexWriter.write();
4279 }
4280 
4281 /// Write the specified module to the specified output stream.
WriteBitcodeToFile(const Module & M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4282 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4283                               bool ShouldPreserveUseListOrder,
4284                               const ModuleSummaryIndex *Index,
4285                               bool GenerateHash, ModuleHash *ModHash) {
4286   SmallVector<char, 0> Buffer;
4287   Buffer.reserve(256*1024);
4288 
4289   // If this is darwin or another generic macho target, reserve space for the
4290   // header.
4291   Triple TT(M.getTargetTriple());
4292   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4293     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4294 
4295   BitcodeWriter Writer(Buffer);
4296   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4297                      ModHash);
4298   Writer.writeSymtab();
4299   Writer.writeStrtab();
4300 
4301   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4302     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4303 
4304   // Write the generated bitstream to "Out".
4305   Out.write((char*)&Buffer.front(), Buffer.size());
4306 }
4307 
write()4308 void IndexBitcodeWriter::write() {
4309   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4310 
4311   writeModuleVersion();
4312 
4313   // Write the module paths in the combined index.
4314   writeModStrings();
4315 
4316   // Write the summary combined index records.
4317   writeCombinedGlobalValueSummary();
4318 
4319   Stream.ExitBlock();
4320 }
4321 
4322 // Write the specified module summary index to the given raw output stream,
4323 // where it will be written in a new bitcode block. This is used when
4324 // writing the combined index file for ThinLTO. When writing a subset of the
4325 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
WriteIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4326 void llvm::WriteIndexToFile(
4327     const ModuleSummaryIndex &Index, raw_ostream &Out,
4328     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4329   SmallVector<char, 0> Buffer;
4330   Buffer.reserve(256 * 1024);
4331 
4332   BitcodeWriter Writer(Buffer);
4333   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4334   Writer.writeStrtab();
4335 
4336   Out.write((char *)&Buffer.front(), Buffer.size());
4337 }
4338 
4339 namespace {
4340 
4341 /// Class to manage the bitcode writing for a thin link bitcode file.
4342 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4343   /// ModHash is for use in ThinLTO incremental build, generated while writing
4344   /// the module bitcode file.
4345   const ModuleHash *ModHash;
4346 
4347 public:
ThinLinkBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4348   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4349                         BitstreamWriter &Stream,
4350                         const ModuleSummaryIndex &Index,
4351                         const ModuleHash &ModHash)
4352       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4353                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4354         ModHash(&ModHash) {}
4355 
4356   void write();
4357 
4358 private:
4359   void writeSimplifiedModuleInfo();
4360 };
4361 
4362 } // end anonymous namespace
4363 
4364 // This function writes a simpilified module info for thin link bitcode file.
4365 // It only contains the source file name along with the name(the offset and
4366 // size in strtab) and linkage for global values. For the global value info
4367 // entry, in order to keep linkage at offset 5, there are three zeros used
4368 // as padding.
writeSimplifiedModuleInfo()4369 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4370   SmallVector<unsigned, 64> Vals;
4371   // Emit the module's source file name.
4372   {
4373     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4374     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4375     if (Bits == SE_Char6)
4376       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4377     else if (Bits == SE_Fixed7)
4378       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4379 
4380     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4381     auto Abbv = std::make_shared<BitCodeAbbrev>();
4382     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4384     Abbv->Add(AbbrevOpToUse);
4385     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4386 
4387     for (const auto P : M.getSourceFileName())
4388       Vals.push_back((unsigned char)P);
4389 
4390     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4391     Vals.clear();
4392   }
4393 
4394   // Emit the global variable information.
4395   for (const GlobalVariable &GV : M.globals()) {
4396     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4397     Vals.push_back(StrtabBuilder.add(GV.getName()));
4398     Vals.push_back(GV.getName().size());
4399     Vals.push_back(0);
4400     Vals.push_back(0);
4401     Vals.push_back(0);
4402     Vals.push_back(getEncodedLinkage(GV));
4403 
4404     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4405     Vals.clear();
4406   }
4407 
4408   // Emit the function proto information.
4409   for (const Function &F : M) {
4410     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4411     Vals.push_back(StrtabBuilder.add(F.getName()));
4412     Vals.push_back(F.getName().size());
4413     Vals.push_back(0);
4414     Vals.push_back(0);
4415     Vals.push_back(0);
4416     Vals.push_back(getEncodedLinkage(F));
4417 
4418     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4419     Vals.clear();
4420   }
4421 
4422   // Emit the alias information.
4423   for (const GlobalAlias &A : M.aliases()) {
4424     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4425     Vals.push_back(StrtabBuilder.add(A.getName()));
4426     Vals.push_back(A.getName().size());
4427     Vals.push_back(0);
4428     Vals.push_back(0);
4429     Vals.push_back(0);
4430     Vals.push_back(getEncodedLinkage(A));
4431 
4432     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4433     Vals.clear();
4434   }
4435 
4436   // Emit the ifunc information.
4437   for (const GlobalIFunc &I : M.ifuncs()) {
4438     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4439     Vals.push_back(StrtabBuilder.add(I.getName()));
4440     Vals.push_back(I.getName().size());
4441     Vals.push_back(0);
4442     Vals.push_back(0);
4443     Vals.push_back(0);
4444     Vals.push_back(getEncodedLinkage(I));
4445 
4446     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4447     Vals.clear();
4448   }
4449 }
4450 
write()4451 void ThinLinkBitcodeWriter::write() {
4452   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4453 
4454   writeModuleVersion();
4455 
4456   writeSimplifiedModuleInfo();
4457 
4458   writePerModuleGlobalValueSummary();
4459 
4460   // Write module hash.
4461   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4462 
4463   Stream.ExitBlock();
4464 }
4465 
writeThinLinkBitcode(const Module & M,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4466 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4467                                          const ModuleSummaryIndex &Index,
4468                                          const ModuleHash &ModHash) {
4469   assert(!WroteStrtab);
4470 
4471   // The Mods vector is used by irsymtab::build, which requires non-const
4472   // Modules in case it needs to materialize metadata. But the bitcode writer
4473   // requires that the module is materialized, so we can cast to non-const here,
4474   // after checking that it is in fact materialized.
4475   assert(M.isMaterialized());
4476   Mods.push_back(const_cast<Module *>(&M));
4477 
4478   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4479                                        ModHash);
4480   ThinLinkWriter.write();
4481 }
4482 
4483 // Write the specified thin link bitcode file to the given raw output stream,
4484 // where it will be written in a new bitcode block. This is used when
4485 // writing the per-module index file for ThinLTO.
WriteThinLinkBitcodeToFile(const Module & M,raw_ostream & Out,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4486 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4487                                       const ModuleSummaryIndex &Index,
4488                                       const ModuleHash &ModHash) {
4489   SmallVector<char, 0> Buffer;
4490   Buffer.reserve(256 * 1024);
4491 
4492   BitcodeWriter Writer(Buffer);
4493   Writer.writeThinLinkBitcode(M, Index, ModHash);
4494   Writer.writeSymtab();
4495   Writer.writeStrtab();
4496 
4497   Out.write((char *)&Buffer.front(), Buffer.size());
4498 }
4499