1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates allocas by either converting them into vectors or
11 // by migrating them to local address space.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <map>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
61 
62 #define DEBUG_TYPE "amdgpu-promote-alloca"
63 
64 using namespace llvm;
65 
66 namespace {
67 
68 static cl::opt<bool> DisablePromoteAllocaToVector(
69   "disable-promote-alloca-to-vector",
70   cl::desc("Disable promote alloca to vector"),
71   cl::init(false));
72 
73 static cl::opt<bool> DisablePromoteAllocaToLDS(
74   "disable-promote-alloca-to-lds",
75   cl::desc("Disable promote alloca to LDS"),
76   cl::init(false));
77 
78 // FIXME: This can create globals so should be a module pass.
79 class AMDGPUPromoteAlloca : public FunctionPass {
80 private:
81   const TargetMachine *TM;
82   Module *Mod = nullptr;
83   const DataLayout *DL = nullptr;
84 
85   // FIXME: This should be per-kernel.
86   uint32_t LocalMemLimit = 0;
87   uint32_t CurrentLocalMemUsage = 0;
88 
89   bool IsAMDGCN = false;
90   bool IsAMDHSA = false;
91 
92   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
93   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
94 
95   /// BaseAlloca is the alloca root the search started from.
96   /// Val may be that alloca or a recursive user of it.
97   bool collectUsesWithPtrTypes(Value *BaseAlloca,
98                                Value *Val,
99                                std::vector<Value*> &WorkList) const;
100 
101   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
102   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
103   /// Returns true if both operands are derived from the same alloca. Val should
104   /// be the same value as one of the input operands of UseInst.
105   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
106                                        Instruction *UseInst,
107                                        int OpIdx0, int OpIdx1) const;
108 
109   /// Check whether we have enough local memory for promotion.
110   bool hasSufficientLocalMem(const Function &F);
111 
112 public:
113   static char ID;
114 
115   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
116 
117   bool doInitialization(Module &M) override;
118   bool runOnFunction(Function &F) override;
119 
120   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
121 
122   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
123 
124   void getAnalysisUsage(AnalysisUsage &AU) const override {
125     AU.setPreservesCFG();
126     FunctionPass::getAnalysisUsage(AU);
127   }
128 };
129 
130 } // end anonymous namespace
131 
132 char AMDGPUPromoteAlloca::ID = 0;
133 
134 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
135                 "AMDGPU promote alloca to vector or LDS", false, false)
136 
137 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
138 
139 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
140   Mod = &M;
141   DL = &Mod->getDataLayout();
142 
143   return false;
144 }
145 
146 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
147   if (skipFunction(F))
148     return false;
149 
150   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
151     TM = &TPC->getTM<TargetMachine>();
152   else
153     return false;
154 
155   const Triple &TT = TM->getTargetTriple();
156   IsAMDGCN = TT.getArch() == Triple::amdgcn;
157   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
158 
159   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
160   if (!ST.isPromoteAllocaEnabled())
161     return false;
162 
163   bool SufficientLDS = hasSufficientLocalMem(F);
164   bool Changed = false;
165   BasicBlock &EntryBB = *F.begin();
166   for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) {
167     AllocaInst *AI = dyn_cast<AllocaInst>(I);
168 
169     ++I;
170     if (AI)
171       Changed |= handleAlloca(*AI, SufficientLDS);
172   }
173 
174   return Changed;
175 }
176 
177 std::pair<Value *, Value *>
178 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
179   const Function &F = *Builder.GetInsertBlock()->getParent();
180   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
181 
182   if (!IsAMDHSA) {
183     Function *LocalSizeYFn
184       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
185     Function *LocalSizeZFn
186       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
187 
188     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
189     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
190 
191     ST.makeLIDRangeMetadata(LocalSizeY);
192     ST.makeLIDRangeMetadata(LocalSizeZ);
193 
194     return std::make_pair(LocalSizeY, LocalSizeZ);
195   }
196 
197   // We must read the size out of the dispatch pointer.
198   assert(IsAMDGCN);
199 
200   // We are indexing into this struct, and want to extract the workgroup_size_*
201   // fields.
202   //
203   //   typedef struct hsa_kernel_dispatch_packet_s {
204   //     uint16_t header;
205   //     uint16_t setup;
206   //     uint16_t workgroup_size_x ;
207   //     uint16_t workgroup_size_y;
208   //     uint16_t workgroup_size_z;
209   //     uint16_t reserved0;
210   //     uint32_t grid_size_x ;
211   //     uint32_t grid_size_y ;
212   //     uint32_t grid_size_z;
213   //
214   //     uint32_t private_segment_size;
215   //     uint32_t group_segment_size;
216   //     uint64_t kernel_object;
217   //
218   // #ifdef HSA_LARGE_MODEL
219   //     void *kernarg_address;
220   // #elif defined HSA_LITTLE_ENDIAN
221   //     void *kernarg_address;
222   //     uint32_t reserved1;
223   // #else
224   //     uint32_t reserved1;
225   //     void *kernarg_address;
226   // #endif
227   //     uint64_t reserved2;
228   //     hsa_signal_t completion_signal; // uint64_t wrapper
229   //   } hsa_kernel_dispatch_packet_t
230   //
231   Function *DispatchPtrFn
232     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
233 
234   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
235   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
236   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
237 
238   // Size of the dispatch packet struct.
239   DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
240 
241   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
242   Value *CastDispatchPtr = Builder.CreateBitCast(
243     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
244 
245   // We could do a single 64-bit load here, but it's likely that the basic
246   // 32-bit and extract sequence is already present, and it is probably easier
247   // to CSE this. The loads should be mergable later anyway.
248   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1);
249   LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4);
250 
251   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2);
252   LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4);
253 
254   MDNode *MD = MDNode::get(Mod->getContext(), None);
255   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
256   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
257   ST.makeLIDRangeMetadata(LoadZU);
258 
259   // Extract y component. Upper half of LoadZU should be zero already.
260   Value *Y = Builder.CreateLShr(LoadXY, 16);
261 
262   return std::make_pair(Y, LoadZU);
263 }
264 
265 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
266   const AMDGPUSubtarget &ST =
267       AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent());
268   Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
269 
270   switch (N) {
271   case 0:
272     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
273       : Intrinsic::r600_read_tidig_x;
274     break;
275   case 1:
276     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
277       : Intrinsic::r600_read_tidig_y;
278     break;
279 
280   case 2:
281     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
282       : Intrinsic::r600_read_tidig_z;
283     break;
284   default:
285     llvm_unreachable("invalid dimension");
286   }
287 
288   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
289   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
290   ST.makeLIDRangeMetadata(CI);
291 
292   return CI;
293 }
294 
295 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
296   return VectorType::get(ArrayTy->getElementType(),
297                          ArrayTy->getNumElements());
298 }
299 
300 static Value *
301 calculateVectorIndex(Value *Ptr,
302                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
303   GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
304 
305   auto I = GEPIdx.find(GEP);
306   return I == GEPIdx.end() ? nullptr : I->second;
307 }
308 
309 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
310   // FIXME we only support simple cases
311   if (GEP->getNumOperands() != 3)
312     return nullptr;
313 
314   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
315   if (!I0 || !I0->isZero())
316     return nullptr;
317 
318   return GEP->getOperand(2);
319 }
320 
321 // Not an instruction handled below to turn into a vector.
322 //
323 // TODO: Check isTriviallyVectorizable for calls and handle other
324 // instructions.
325 static bool canVectorizeInst(Instruction *Inst, User *User) {
326   switch (Inst->getOpcode()) {
327   case Instruction::Load: {
328     // Currently only handle the case where the Pointer Operand is a GEP.
329     // Also we could not vectorize volatile or atomic loads.
330     LoadInst *LI = cast<LoadInst>(Inst);
331     if (isa<AllocaInst>(User) &&
332         LI->getPointerOperandType() == User->getType() &&
333         isa<VectorType>(LI->getType()))
334       return true;
335     return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple();
336   }
337   case Instruction::BitCast:
338     return true;
339   case Instruction::Store: {
340     // Must be the stored pointer operand, not a stored value, plus
341     // since it should be canonical form, the User should be a GEP.
342     // Also we could not vectorize volatile or atomic stores.
343     StoreInst *SI = cast<StoreInst>(Inst);
344     if (isa<AllocaInst>(User) &&
345         SI->getPointerOperandType() == User->getType() &&
346         isa<VectorType>(SI->getValueOperand()->getType()))
347       return true;
348     return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple();
349   }
350   default:
351     return false;
352   }
353 }
354 
355 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
356 
357   if (DisablePromoteAllocaToVector) {
358     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
359     return false;
360   }
361 
362   Type *AT = Alloca->getAllocatedType();
363   SequentialType *AllocaTy = dyn_cast<SequentialType>(AT);
364 
365   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
366 
367   // FIXME: There is no reason why we can't support larger arrays, we
368   // are just being conservative for now.
369   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
370   // could also be promoted but we don't currently handle this case
371   if (!AllocaTy ||
372       AllocaTy->getNumElements() > 16 ||
373       AllocaTy->getNumElements() < 2 ||
374       !VectorType::isValidElementType(AllocaTy->getElementType())) {
375     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
376     return false;
377   }
378 
379   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
380   std::vector<Value*> WorkList;
381   for (User *AllocaUser : Alloca->users()) {
382     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
383     if (!GEP) {
384       if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
385         return false;
386 
387       WorkList.push_back(AllocaUser);
388       continue;
389     }
390 
391     Value *Index = GEPToVectorIndex(GEP);
392 
393     // If we can't compute a vector index from this GEP, then we can't
394     // promote this alloca to vector.
395     if (!Index) {
396       LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
397                         << '\n');
398       return false;
399     }
400 
401     GEPVectorIdx[GEP] = Index;
402     for (User *GEPUser : AllocaUser->users()) {
403       if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
404         return false;
405 
406       WorkList.push_back(GEPUser);
407     }
408   }
409 
410   VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy);
411   if (!VectorTy)
412     VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy));
413 
414   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
415                     << *VectorTy << '\n');
416 
417   for (Value *V : WorkList) {
418     Instruction *Inst = cast<Instruction>(V);
419     IRBuilder<> Builder(Inst);
420     switch (Inst->getOpcode()) {
421     case Instruction::Load: {
422       if (Inst->getType() == AT)
423         break;
424 
425       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
426       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
427       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
428 
429       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
430       Value *VecValue = Builder.CreateLoad(BitCast);
431       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
432       Inst->replaceAllUsesWith(ExtractElement);
433       Inst->eraseFromParent();
434       break;
435     }
436     case Instruction::Store: {
437       StoreInst *SI = cast<StoreInst>(Inst);
438       if (SI->getValueOperand()->getType() == AT)
439         break;
440 
441       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
442       Value *Ptr = SI->getPointerOperand();
443       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
444       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
445       Value *VecValue = Builder.CreateLoad(BitCast);
446       Value *NewVecValue = Builder.CreateInsertElement(VecValue,
447                                                        SI->getValueOperand(),
448                                                        Index);
449       Builder.CreateStore(NewVecValue, BitCast);
450       Inst->eraseFromParent();
451       break;
452     }
453     case Instruction::BitCast:
454     case Instruction::AddrSpaceCast:
455       break;
456 
457     default:
458       llvm_unreachable("Inconsistency in instructions promotable to vector");
459     }
460   }
461   return true;
462 }
463 
464 static bool isCallPromotable(CallInst *CI) {
465   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
466   if (!II)
467     return false;
468 
469   switch (II->getIntrinsicID()) {
470   case Intrinsic::memcpy:
471   case Intrinsic::memmove:
472   case Intrinsic::memset:
473   case Intrinsic::lifetime_start:
474   case Intrinsic::lifetime_end:
475   case Intrinsic::invariant_start:
476   case Intrinsic::invariant_end:
477   case Intrinsic::launder_invariant_group:
478   case Intrinsic::strip_invariant_group:
479   case Intrinsic::objectsize:
480     return true;
481   default:
482     return false;
483   }
484 }
485 
486 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
487                                                           Value *Val,
488                                                           Instruction *Inst,
489                                                           int OpIdx0,
490                                                           int OpIdx1) const {
491   // Figure out which operand is the one we might not be promoting.
492   Value *OtherOp = Inst->getOperand(OpIdx0);
493   if (Val == OtherOp)
494     OtherOp = Inst->getOperand(OpIdx1);
495 
496   if (isa<ConstantPointerNull>(OtherOp))
497     return true;
498 
499   Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
500   if (!isa<AllocaInst>(OtherObj))
501     return false;
502 
503   // TODO: We should be able to replace undefs with the right pointer type.
504 
505   // TODO: If we know the other base object is another promotable
506   // alloca, not necessarily this alloca, we can do this. The
507   // important part is both must have the same address space at
508   // the end.
509   if (OtherObj != BaseAlloca) {
510     LLVM_DEBUG(
511         dbgs() << "Found a binary instruction with another alloca object\n");
512     return false;
513   }
514 
515   return true;
516 }
517 
518 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
519   Value *BaseAlloca,
520   Value *Val,
521   std::vector<Value*> &WorkList) const {
522 
523   for (User *User : Val->users()) {
524     if (is_contained(WorkList, User))
525       continue;
526 
527     if (CallInst *CI = dyn_cast<CallInst>(User)) {
528       if (!isCallPromotable(CI))
529         return false;
530 
531       WorkList.push_back(User);
532       continue;
533     }
534 
535     Instruction *UseInst = cast<Instruction>(User);
536     if (UseInst->getOpcode() == Instruction::PtrToInt)
537       return false;
538 
539     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
540       if (LI->isVolatile())
541         return false;
542 
543       continue;
544     }
545 
546     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
547       if (SI->isVolatile())
548         return false;
549 
550       // Reject if the stored value is not the pointer operand.
551       if (SI->getPointerOperand() != Val)
552         return false;
553     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
554       if (RMW->isVolatile())
555         return false;
556     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
557       if (CAS->isVolatile())
558         return false;
559     }
560 
561     // Only promote a select if we know that the other select operand
562     // is from another pointer that will also be promoted.
563     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
564       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
565         return false;
566 
567       // May need to rewrite constant operands.
568       WorkList.push_back(ICmp);
569     }
570 
571     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
572       // Give up if the pointer may be captured.
573       if (PointerMayBeCaptured(UseInst, true, true))
574         return false;
575       // Don't collect the users of this.
576       WorkList.push_back(User);
577       continue;
578     }
579 
580     if (!User->getType()->isPointerTy())
581       continue;
582 
583     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
584       // Be conservative if an address could be computed outside the bounds of
585       // the alloca.
586       if (!GEP->isInBounds())
587         return false;
588     }
589 
590     // Only promote a select if we know that the other select operand is from
591     // another pointer that will also be promoted.
592     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
593       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
594         return false;
595     }
596 
597     // Repeat for phis.
598     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
599       // TODO: Handle more complex cases. We should be able to replace loops
600       // over arrays.
601       switch (Phi->getNumIncomingValues()) {
602       case 1:
603         break;
604       case 2:
605         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
606           return false;
607         break;
608       default:
609         return false;
610       }
611     }
612 
613     WorkList.push_back(User);
614     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
615       return false;
616   }
617 
618   return true;
619 }
620 
621 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {
622 
623   FunctionType *FTy = F.getFunctionType();
624   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
625 
626   // If the function has any arguments in the local address space, then it's
627   // possible these arguments require the entire local memory space, so
628   // we cannot use local memory in the pass.
629   for (Type *ParamTy : FTy->params()) {
630     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
631     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
632       LocalMemLimit = 0;
633       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
634                            "local memory disabled.\n");
635       return false;
636     }
637   }
638 
639   LocalMemLimit = ST.getLocalMemorySize();
640   if (LocalMemLimit == 0)
641     return false;
642 
643   const DataLayout &DL = Mod->getDataLayout();
644 
645   // Check how much local memory is being used by global objects
646   CurrentLocalMemUsage = 0;
647   for (GlobalVariable &GV : Mod->globals()) {
648     if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
649       continue;
650 
651     for (const User *U : GV.users()) {
652       const Instruction *Use = dyn_cast<Instruction>(U);
653       if (!Use)
654         continue;
655 
656       if (Use->getParent()->getParent() == &F) {
657         unsigned Align = GV.getAlignment();
658         if (Align == 0)
659           Align = DL.getABITypeAlignment(GV.getValueType());
660 
661         // FIXME: Try to account for padding here. The padding is currently
662         // determined from the inverse order of uses in the function. I'm not
663         // sure if the use list order is in any way connected to this, so the
664         // total reported size is likely incorrect.
665         uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
666         CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
667         CurrentLocalMemUsage += AllocSize;
668         break;
669       }
670     }
671   }
672 
673   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
674                                                           F);
675 
676   // Restrict local memory usage so that we don't drastically reduce occupancy,
677   // unless it is already significantly reduced.
678 
679   // TODO: Have some sort of hint or other heuristics to guess occupancy based
680   // on other factors..
681   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
682   if (OccupancyHint == 0)
683     OccupancyHint = 7;
684 
685   // Clamp to max value.
686   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
687 
688   // Check the hint but ignore it if it's obviously wrong from the existing LDS
689   // usage.
690   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
691 
692 
693   // Round up to the next tier of usage.
694   unsigned MaxSizeWithWaveCount
695     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
696 
697   // Program is possibly broken by using more local mem than available.
698   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
699     return false;
700 
701   LocalMemLimit = MaxSizeWithWaveCount;
702 
703   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
704                     << " bytes of LDS\n"
705                     << "  Rounding size to " << MaxSizeWithWaveCount
706                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
707                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
708                     << " available for promotion\n");
709 
710   return true;
711 }
712 
713 // FIXME: Should try to pick the most likely to be profitable allocas first.
714 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
715   // Array allocations are probably not worth handling, since an allocation of
716   // the array type is the canonical form.
717   if (!I.isStaticAlloca() || I.isArrayAllocation())
718     return false;
719 
720   IRBuilder<> Builder(&I);
721 
722   // First try to replace the alloca with a vector
723   Type *AllocaTy = I.getAllocatedType();
724 
725   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
726 
727   if (tryPromoteAllocaToVector(&I))
728     return true; // Promoted to vector.
729 
730   if (DisablePromoteAllocaToLDS)
731     return false;
732 
733   const Function &ContainingFunction = *I.getParent()->getParent();
734   CallingConv::ID CC = ContainingFunction.getCallingConv();
735 
736   // Don't promote the alloca to LDS for shader calling conventions as the work
737   // item ID intrinsics are not supported for these calling conventions.
738   // Furthermore not all LDS is available for some of the stages.
739   switch (CC) {
740   case CallingConv::AMDGPU_KERNEL:
741   case CallingConv::SPIR_KERNEL:
742     break;
743   default:
744     LLVM_DEBUG(
745         dbgs()
746         << " promote alloca to LDS not supported with calling convention.\n");
747     return false;
748   }
749 
750   // Not likely to have sufficient local memory for promotion.
751   if (!SufficientLDS)
752     return false;
753 
754   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction);
755   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
756 
757   const DataLayout &DL = Mod->getDataLayout();
758 
759   unsigned Align = I.getAlignment();
760   if (Align == 0)
761     Align = DL.getABITypeAlignment(I.getAllocatedType());
762 
763   // FIXME: This computed padding is likely wrong since it depends on inverse
764   // usage order.
765   //
766   // FIXME: It is also possible that if we're allowed to use all of the memory
767   // could could end up using more than the maximum due to alignment padding.
768 
769   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
770   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
771   NewSize += AllocSize;
772 
773   if (NewSize > LocalMemLimit) {
774     LLVM_DEBUG(dbgs() << "  " << AllocSize
775                       << " bytes of local memory not available to promote\n");
776     return false;
777   }
778 
779   CurrentLocalMemUsage = NewSize;
780 
781   std::vector<Value*> WorkList;
782 
783   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
784     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
785     return false;
786   }
787 
788   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
789 
790   Function *F = I.getParent()->getParent();
791 
792   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
793   GlobalVariable *GV = new GlobalVariable(
794       *Mod, GVTy, false, GlobalValue::InternalLinkage,
795       UndefValue::get(GVTy),
796       Twine(F->getName()) + Twine('.') + I.getName(),
797       nullptr,
798       GlobalVariable::NotThreadLocal,
799       AMDGPUAS::LOCAL_ADDRESS);
800   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
801   GV->setAlignment(I.getAlignment());
802 
803   Value *TCntY, *TCntZ;
804 
805   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
806   Value *TIdX = getWorkitemID(Builder, 0);
807   Value *TIdY = getWorkitemID(Builder, 1);
808   Value *TIdZ = getWorkitemID(Builder, 2);
809 
810   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
811   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
812   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
813   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
814   TID = Builder.CreateAdd(TID, TIdZ);
815 
816   Value *Indices[] = {
817     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
818     TID
819   };
820 
821   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
822   I.mutateType(Offset->getType());
823   I.replaceAllUsesWith(Offset);
824   I.eraseFromParent();
825 
826   for (Value *V : WorkList) {
827     CallInst *Call = dyn_cast<CallInst>(V);
828     if (!Call) {
829       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
830         Value *Src0 = CI->getOperand(0);
831         Type *EltTy = Src0->getType()->getPointerElementType();
832         PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
833 
834         if (isa<ConstantPointerNull>(CI->getOperand(0)))
835           CI->setOperand(0, ConstantPointerNull::get(NewTy));
836 
837         if (isa<ConstantPointerNull>(CI->getOperand(1)))
838           CI->setOperand(1, ConstantPointerNull::get(NewTy));
839 
840         continue;
841       }
842 
843       // The operand's value should be corrected on its own and we don't want to
844       // touch the users.
845       if (isa<AddrSpaceCastInst>(V))
846         continue;
847 
848       Type *EltTy = V->getType()->getPointerElementType();
849       PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
850 
851       // FIXME: It doesn't really make sense to try to do this for all
852       // instructions.
853       V->mutateType(NewTy);
854 
855       // Adjust the types of any constant operands.
856       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
857         if (isa<ConstantPointerNull>(SI->getOperand(1)))
858           SI->setOperand(1, ConstantPointerNull::get(NewTy));
859 
860         if (isa<ConstantPointerNull>(SI->getOperand(2)))
861           SI->setOperand(2, ConstantPointerNull::get(NewTy));
862       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
863         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
864           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
865             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
866         }
867       }
868 
869       continue;
870     }
871 
872     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
873     Builder.SetInsertPoint(Intr);
874     switch (Intr->getIntrinsicID()) {
875     case Intrinsic::lifetime_start:
876     case Intrinsic::lifetime_end:
877       // These intrinsics are for address space 0 only
878       Intr->eraseFromParent();
879       continue;
880     case Intrinsic::memcpy: {
881       MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
882       Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(),
883                            MemCpy->getRawSource(), MemCpy->getSourceAlignment(),
884                            MemCpy->getLength(), MemCpy->isVolatile());
885       Intr->eraseFromParent();
886       continue;
887     }
888     case Intrinsic::memmove: {
889       MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
890       Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(),
891                             MemMove->getRawSource(), MemMove->getSourceAlignment(),
892                             MemMove->getLength(), MemMove->isVolatile());
893       Intr->eraseFromParent();
894       continue;
895     }
896     case Intrinsic::memset: {
897       MemSetInst *MemSet = cast<MemSetInst>(Intr);
898       Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
899                            MemSet->getLength(), MemSet->getDestAlignment(),
900                            MemSet->isVolatile());
901       Intr->eraseFromParent();
902       continue;
903     }
904     case Intrinsic::invariant_start:
905     case Intrinsic::invariant_end:
906     case Intrinsic::launder_invariant_group:
907     case Intrinsic::strip_invariant_group:
908       Intr->eraseFromParent();
909       // FIXME: I think the invariant marker should still theoretically apply,
910       // but the intrinsics need to be changed to accept pointers with any
911       // address space.
912       continue;
913     case Intrinsic::objectsize: {
914       Value *Src = Intr->getOperand(0);
915       Type *SrcTy = Src->getType()->getPointerElementType();
916       Function *ObjectSize = Intrinsic::getDeclaration(Mod,
917         Intrinsic::objectsize,
918         { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
919       );
920 
921       CallInst *NewCall = Builder.CreateCall(
922           ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)});
923       Intr->replaceAllUsesWith(NewCall);
924       Intr->eraseFromParent();
925       continue;
926     }
927     default:
928       Intr->print(errs());
929       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
930     }
931   }
932   return true;
933 }
934 
935 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
936   return new AMDGPUPromoteAlloca();
937 }
938