1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMFrameLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RegisterScavenging.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCDwarf.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "arm-frame-lowering"
67 
68 using namespace llvm;
69 
70 static cl::opt<bool>
71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
72                      cl::desc("Align ARM NEON spills in prolog and epilog"));
73 
74 static MachineBasicBlock::iterator
75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
76                         unsigned NumAlignedDPRCS2Regs);
77 
ARMFrameLowering(const ARMSubtarget & sti)78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
79     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4),
80       STI(sti) {}
81 
keepFramePointer(const MachineFunction & MF) const82 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
83   // iOS always has a FP for backtracking, force other targets to keep their FP
84   // when doing FastISel. The emitted code is currently superior, and in cases
85   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
86   return MF.getSubtarget<ARMSubtarget>().useFastISel();
87 }
88 
89 /// Returns true if the target can safely skip saving callee-saved registers
90 /// for noreturn nounwind functions.
enableCalleeSaveSkip(const MachineFunction & MF) const91 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
92   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
93          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
94          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
95 
96   // Frame pointer and link register are not treated as normal CSR, thus we
97   // can always skip CSR saves for nonreturning functions.
98   return true;
99 }
100 
101 /// hasFP - Return true if the specified function should have a dedicated frame
102 /// pointer register.  This is true if the function has variable sized allocas
103 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
105   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
106   const MachineFrameInfo &MFI = MF.getFrameInfo();
107 
108   // ABI-required frame pointer.
109   if (MF.getTarget().Options.DisableFramePointerElim(MF))
110     return true;
111 
112   // Frame pointer required for use within this function.
113   return (RegInfo->needsStackRealignment(MF) ||
114           MFI.hasVarSizedObjects() ||
115           MFI.isFrameAddressTaken());
116 }
117 
118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
119 /// not required, we reserve argument space for call sites in the function
120 /// immediately on entry to the current function.  This eliminates the need for
121 /// add/sub sp brackets around call sites.  Returns true if the call frame is
122 /// included as part of the stack frame.
hasReservedCallFrame(const MachineFunction & MF) const123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
124   const MachineFrameInfo &MFI = MF.getFrameInfo();
125   unsigned CFSize = MFI.getMaxCallFrameSize();
126   // It's not always a good idea to include the call frame as part of the
127   // stack frame. ARM (especially Thumb) has small immediate offset to
128   // address the stack frame. So a large call frame can cause poor codegen
129   // and may even makes it impossible to scavenge a register.
130   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
131     return false;
132 
133   return !MFI.hasVarSizedObjects();
134 }
135 
136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
137 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
138 /// is not sufficient here since we still may reference some objects via SP
139 /// even when FP is available in Thumb2 mode.
140 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
142   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
143 }
144 
isCSRestore(MachineInstr & MI,const ARMBaseInstrInfo & TII,const MCPhysReg * CSRegs)145 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII,
146                         const MCPhysReg *CSRegs) {
147   // Integer spill area is handled with "pop".
148   if (isPopOpcode(MI.getOpcode())) {
149     // The first two operands are predicates. The last two are
150     // imp-def and imp-use of SP. Check everything in between.
151     for (int i = 5, e = MI.getNumOperands(); i != e; ++i)
152       if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs))
153         return false;
154     return true;
155   }
156   if ((MI.getOpcode() == ARM::LDR_POST_IMM ||
157        MI.getOpcode() == ARM::LDR_POST_REG ||
158        MI.getOpcode() == ARM::t2LDR_POST) &&
159       isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) &&
160       MI.getOperand(1).getReg() == ARM::SP)
161     return true;
162 
163   return false;
164 }
165 
emitRegPlusImmediate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,unsigned DestReg,unsigned SrcReg,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)166 static void emitRegPlusImmediate(
167     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
168     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
169     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
170     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
171   if (isARM)
172     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
173                             Pred, PredReg, TII, MIFlags);
174   else
175     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
176                            Pred, PredReg, TII, MIFlags);
177 }
178 
emitSPUpdate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)179 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
180                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
181                          const ARMBaseInstrInfo &TII, int NumBytes,
182                          unsigned MIFlags = MachineInstr::NoFlags,
183                          ARMCC::CondCodes Pred = ARMCC::AL,
184                          unsigned PredReg = 0) {
185   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
186                        MIFlags, Pred, PredReg);
187 }
188 
sizeOfSPAdjustment(const MachineInstr & MI)189 static int sizeOfSPAdjustment(const MachineInstr &MI) {
190   int RegSize;
191   switch (MI.getOpcode()) {
192   case ARM::VSTMDDB_UPD:
193     RegSize = 8;
194     break;
195   case ARM::STMDB_UPD:
196   case ARM::t2STMDB_UPD:
197     RegSize = 4;
198     break;
199   case ARM::t2STR_PRE:
200   case ARM::STR_PRE_IMM:
201     return 4;
202   default:
203     llvm_unreachable("Unknown push or pop like instruction");
204   }
205 
206   int count = 0;
207   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
208   // pred) so the list starts at 4.
209   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
210     count += RegSize;
211   return count;
212 }
213 
WindowsRequiresStackProbe(const MachineFunction & MF,size_t StackSizeInBytes)214 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
215                                       size_t StackSizeInBytes) {
216   const MachineFrameInfo &MFI = MF.getFrameInfo();
217   const Function &F = MF.getFunction();
218   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
219   if (F.hasFnAttribute("stack-probe-size"))
220     F.getFnAttribute("stack-probe-size")
221         .getValueAsString()
222         .getAsInteger(0, StackProbeSize);
223   return (StackSizeInBytes >= StackProbeSize) &&
224          !F.hasFnAttribute("no-stack-arg-probe");
225 }
226 
227 namespace {
228 
229 struct StackAdjustingInsts {
230   struct InstInfo {
231     MachineBasicBlock::iterator I;
232     unsigned SPAdjust;
233     bool BeforeFPSet;
234   };
235 
236   SmallVector<InstInfo, 4> Insts;
237 
addInst__anon9e3eff2b0111::StackAdjustingInsts238   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
239                bool BeforeFPSet = false) {
240     InstInfo Info = {I, SPAdjust, BeforeFPSet};
241     Insts.push_back(Info);
242   }
243 
addExtraBytes__anon9e3eff2b0111::StackAdjustingInsts244   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
245     auto Info =
246         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
247     assert(Info != Insts.end() && "invalid sp adjusting instruction");
248     Info->SPAdjust += ExtraBytes;
249   }
250 
emitDefCFAOffsets__anon9e3eff2b0111::StackAdjustingInsts251   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
252                          const ARMBaseInstrInfo &TII, bool HasFP) {
253     MachineFunction &MF = *MBB.getParent();
254     unsigned CFAOffset = 0;
255     for (auto &Info : Insts) {
256       if (HasFP && !Info.BeforeFPSet)
257         return;
258 
259       CFAOffset -= Info.SPAdjust;
260       unsigned CFIIndex = MF.addFrameInst(
261           MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
262       BuildMI(MBB, std::next(Info.I), dl,
263               TII.get(TargetOpcode::CFI_INSTRUCTION))
264               .addCFIIndex(CFIIndex)
265               .setMIFlags(MachineInstr::FrameSetup);
266     }
267   }
268 };
269 
270 } // end anonymous namespace
271 
272 /// Emit an instruction sequence that will align the address in
273 /// register Reg by zero-ing out the lower bits.  For versions of the
274 /// architecture that support Neon, this must be done in a single
275 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
276 /// single instruction. That function only gets called when optimizing
277 /// spilling of D registers on a core with the Neon instruction set
278 /// present.
emitAligningInstructions(MachineFunction & MF,ARMFunctionInfo * AFI,const TargetInstrInfo & TII,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const unsigned Reg,const unsigned Alignment,const bool MustBeSingleInstruction)279 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
280                                      const TargetInstrInfo &TII,
281                                      MachineBasicBlock &MBB,
282                                      MachineBasicBlock::iterator MBBI,
283                                      const DebugLoc &DL, const unsigned Reg,
284                                      const unsigned Alignment,
285                                      const bool MustBeSingleInstruction) {
286   const ARMSubtarget &AST =
287       static_cast<const ARMSubtarget &>(MF.getSubtarget());
288   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
289   const unsigned AlignMask = Alignment - 1;
290   const unsigned NrBitsToZero = countTrailingZeros(Alignment);
291   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
292   if (!AFI->isThumbFunction()) {
293     // if the BFC instruction is available, use that to zero the lower
294     // bits:
295     //   bfc Reg, #0, log2(Alignment)
296     // otherwise use BIC, if the mask to zero the required number of bits
297     // can be encoded in the bic immediate field
298     //   bic Reg, Reg, Alignment-1
299     // otherwise, emit
300     //   lsr Reg, Reg, log2(Alignment)
301     //   lsl Reg, Reg, log2(Alignment)
302     if (CanUseBFC) {
303       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
304           .addReg(Reg, RegState::Kill)
305           .addImm(~AlignMask)
306           .add(predOps(ARMCC::AL));
307     } else if (AlignMask <= 255) {
308       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
309           .addReg(Reg, RegState::Kill)
310           .addImm(AlignMask)
311           .add(predOps(ARMCC::AL))
312           .add(condCodeOp());
313     } else {
314       assert(!MustBeSingleInstruction &&
315              "Shouldn't call emitAligningInstructions demanding a single "
316              "instruction to be emitted for large stack alignment for a target "
317              "without BFC.");
318       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
319           .addReg(Reg, RegState::Kill)
320           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
321           .add(predOps(ARMCC::AL))
322           .add(condCodeOp());
323       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
324           .addReg(Reg, RegState::Kill)
325           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
326           .add(predOps(ARMCC::AL))
327           .add(condCodeOp());
328     }
329   } else {
330     // Since this is only reached for Thumb-2 targets, the BFC instruction
331     // should always be available.
332     assert(CanUseBFC);
333     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
334         .addReg(Reg, RegState::Kill)
335         .addImm(~AlignMask)
336         .add(predOps(ARMCC::AL));
337   }
338 }
339 
340 /// We need the offset of the frame pointer relative to other MachineFrameInfo
341 /// offsets which are encoded relative to SP at function begin.
342 /// See also emitPrologue() for how the FP is set up.
343 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
344 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
345 /// this to produce a conservative estimate that we check in an assert() later.
getMaxFPOffset(const Function & F,const ARMFunctionInfo & AFI)346 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) {
347   // This is a conservative estimation: Assume the frame pointer being r7 and
348   // pc("r15") up to r8 getting spilled before (= 8 registers).
349   return -AFI.getArgRegsSaveSize() - (8 * 4);
350 }
351 
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const352 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
353                                     MachineBasicBlock &MBB) const {
354   MachineBasicBlock::iterator MBBI = MBB.begin();
355   MachineFrameInfo  &MFI = MF.getFrameInfo();
356   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
357   MachineModuleInfo &MMI = MF.getMMI();
358   MCContext &Context = MMI.getContext();
359   const TargetMachine &TM = MF.getTarget();
360   const MCRegisterInfo *MRI = Context.getRegisterInfo();
361   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
362   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
363   assert(!AFI->isThumb1OnlyFunction() &&
364          "This emitPrologue does not support Thumb1!");
365   bool isARM = !AFI->isThumbFunction();
366   unsigned Align = STI.getFrameLowering()->getStackAlignment();
367   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
368   unsigned NumBytes = MFI.getStackSize();
369   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
370 
371   // Debug location must be unknown since the first debug location is used
372   // to determine the end of the prologue.
373   DebugLoc dl;
374 
375   unsigned FramePtr = RegInfo->getFrameRegister(MF);
376 
377   // Determine the sizes of each callee-save spill areas and record which frame
378   // belongs to which callee-save spill areas.
379   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
380   int FramePtrSpillFI = 0;
381   int D8SpillFI = 0;
382 
383   // All calls are tail calls in GHC calling conv, and functions have no
384   // prologue/epilogue.
385   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
386     return;
387 
388   StackAdjustingInsts DefCFAOffsetCandidates;
389   bool HasFP = hasFP(MF);
390 
391   // Allocate the vararg register save area.
392   if (ArgRegsSaveSize) {
393     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
394                  MachineInstr::FrameSetup);
395     DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
396   }
397 
398   if (!AFI->hasStackFrame() &&
399       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
400     if (NumBytes - ArgRegsSaveSize != 0) {
401       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
402                    MachineInstr::FrameSetup);
403       DefCFAOffsetCandidates.addInst(std::prev(MBBI),
404                                      NumBytes - ArgRegsSaveSize, true);
405     }
406     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
407     return;
408   }
409 
410   // Determine spill area sizes.
411   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
412     unsigned Reg = CSI[i].getReg();
413     int FI = CSI[i].getFrameIdx();
414     switch (Reg) {
415     case ARM::R8:
416     case ARM::R9:
417     case ARM::R10:
418     case ARM::R11:
419     case ARM::R12:
420       if (STI.splitFramePushPop(MF)) {
421         GPRCS2Size += 4;
422         break;
423       }
424       LLVM_FALLTHROUGH;
425     case ARM::R0:
426     case ARM::R1:
427     case ARM::R2:
428     case ARM::R3:
429     case ARM::R4:
430     case ARM::R5:
431     case ARM::R6:
432     case ARM::R7:
433     case ARM::LR:
434       if (Reg == FramePtr)
435         FramePtrSpillFI = FI;
436       GPRCS1Size += 4;
437       break;
438     default:
439       // This is a DPR. Exclude the aligned DPRCS2 spills.
440       if (Reg == ARM::D8)
441         D8SpillFI = FI;
442       if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
443         DPRCSSize += 8;
444     }
445   }
446 
447   // Move past area 1.
448   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
449   if (GPRCS1Size > 0) {
450     GPRCS1Push = LastPush = MBBI++;
451     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
452   }
453 
454   // Determine starting offsets of spill areas.
455   unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size;
456   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
457   unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U;
458   unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign;
459   unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
460   int FramePtrOffsetInPush = 0;
461   if (HasFP) {
462     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
463     assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset &&
464            "Max FP estimation is wrong");
465     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize;
466     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
467                                 NumBytes);
468   }
469   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
470   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
471   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
472 
473   // Move past area 2.
474   if (GPRCS2Size > 0) {
475     GPRCS2Push = LastPush = MBBI++;
476     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
477   }
478 
479   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
480   // .cfi_offset operations will reflect that.
481   if (DPRGapSize) {
482     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
483     if (LastPush != MBB.end() &&
484         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
485       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
486     else {
487       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
488                    MachineInstr::FrameSetup);
489       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
490     }
491   }
492 
493   // Move past area 3.
494   if (DPRCSSize > 0) {
495     // Since vpush register list cannot have gaps, there may be multiple vpush
496     // instructions in the prologue.
497     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
498       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
499       LastPush = MBBI++;
500     }
501   }
502 
503   // Move past the aligned DPRCS2 area.
504   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
505     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
506     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
507     // leaves the stack pointer pointing to the DPRCS2 area.
508     //
509     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
510     NumBytes += MFI.getObjectOffset(D8SpillFI);
511   } else
512     NumBytes = DPRCSOffset;
513 
514   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
515     uint32_t NumWords = NumBytes >> 2;
516 
517     if (NumWords < 65536)
518       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
519           .addImm(NumWords)
520           .setMIFlags(MachineInstr::FrameSetup)
521           .add(predOps(ARMCC::AL));
522     else
523       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
524         .addImm(NumWords)
525         .setMIFlags(MachineInstr::FrameSetup);
526 
527     switch (TM.getCodeModel()) {
528     case CodeModel::Tiny:
529       llvm_unreachable("Tiny code model not available on ARM.");
530     case CodeModel::Small:
531     case CodeModel::Medium:
532     case CodeModel::Kernel:
533       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
534           .add(predOps(ARMCC::AL))
535           .addExternalSymbol("__chkstk")
536           .addReg(ARM::R4, RegState::Implicit)
537           .setMIFlags(MachineInstr::FrameSetup);
538       break;
539     case CodeModel::Large:
540       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
541         .addExternalSymbol("__chkstk")
542         .setMIFlags(MachineInstr::FrameSetup);
543 
544       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
545           .add(predOps(ARMCC::AL))
546           .addReg(ARM::R12, RegState::Kill)
547           .addReg(ARM::R4, RegState::Implicit)
548           .setMIFlags(MachineInstr::FrameSetup);
549       break;
550     }
551 
552     BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
553         .addReg(ARM::SP, RegState::Kill)
554         .addReg(ARM::R4, RegState::Kill)
555         .setMIFlags(MachineInstr::FrameSetup)
556         .add(predOps(ARMCC::AL))
557         .add(condCodeOp());
558     NumBytes = 0;
559   }
560 
561   if (NumBytes) {
562     // Adjust SP after all the callee-save spills.
563     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
564         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
565       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
566     else {
567       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
568                    MachineInstr::FrameSetup);
569       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
570     }
571 
572     if (HasFP && isARM)
573       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
574       // Note it's not safe to do this in Thumb2 mode because it would have
575       // taken two instructions:
576       // mov sp, r7
577       // sub sp, #24
578       // If an interrupt is taken between the two instructions, then sp is in
579       // an inconsistent state (pointing to the middle of callee-saved area).
580       // The interrupt handler can end up clobbering the registers.
581       AFI->setShouldRestoreSPFromFP(true);
582   }
583 
584   // Set FP to point to the stack slot that contains the previous FP.
585   // For iOS, FP is R7, which has now been stored in spill area 1.
586   // Otherwise, if this is not iOS, all the callee-saved registers go
587   // into spill area 1, including the FP in R11.  In either case, it
588   // is in area one and the adjustment needs to take place just after
589   // that push.
590   if (HasFP) {
591     MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
592     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
593     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
594                          dl, TII, FramePtr, ARM::SP,
595                          PushSize + FramePtrOffsetInPush,
596                          MachineInstr::FrameSetup);
597     if (FramePtrOffsetInPush + PushSize != 0) {
598       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
599           nullptr, MRI->getDwarfRegNum(FramePtr, true),
600           -(ArgRegsSaveSize - FramePtrOffsetInPush)));
601       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
602           .addCFIIndex(CFIIndex)
603           .setMIFlags(MachineInstr::FrameSetup);
604     } else {
605       unsigned CFIIndex =
606           MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
607               nullptr, MRI->getDwarfRegNum(FramePtr, true)));
608       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
609           .addCFIIndex(CFIIndex)
610           .setMIFlags(MachineInstr::FrameSetup);
611     }
612   }
613 
614   // Now that the prologue's actual instructions are finalised, we can insert
615   // the necessary DWARF cf instructions to describe the situation. Start by
616   // recording where each register ended up:
617   if (GPRCS1Size > 0) {
618     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
619     int CFIIndex;
620     for (const auto &Entry : CSI) {
621       unsigned Reg = Entry.getReg();
622       int FI = Entry.getFrameIdx();
623       switch (Reg) {
624       case ARM::R8:
625       case ARM::R9:
626       case ARM::R10:
627       case ARM::R11:
628       case ARM::R12:
629         if (STI.splitFramePushPop(MF))
630           break;
631         LLVM_FALLTHROUGH;
632       case ARM::R0:
633       case ARM::R1:
634       case ARM::R2:
635       case ARM::R3:
636       case ARM::R4:
637       case ARM::R5:
638       case ARM::R6:
639       case ARM::R7:
640       case ARM::LR:
641         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
642             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
643         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
644             .addCFIIndex(CFIIndex)
645             .setMIFlags(MachineInstr::FrameSetup);
646         break;
647       }
648     }
649   }
650 
651   if (GPRCS2Size > 0) {
652     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
653     for (const auto &Entry : CSI) {
654       unsigned Reg = Entry.getReg();
655       int FI = Entry.getFrameIdx();
656       switch (Reg) {
657       case ARM::R8:
658       case ARM::R9:
659       case ARM::R10:
660       case ARM::R11:
661       case ARM::R12:
662         if (STI.splitFramePushPop(MF)) {
663           unsigned DwarfReg =  MRI->getDwarfRegNum(Reg, true);
664           unsigned Offset = MFI.getObjectOffset(FI);
665           unsigned CFIIndex = MF.addFrameInst(
666               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
667           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
668               .addCFIIndex(CFIIndex)
669               .setMIFlags(MachineInstr::FrameSetup);
670         }
671         break;
672       }
673     }
674   }
675 
676   if (DPRCSSize > 0) {
677     // Since vpush register list cannot have gaps, there may be multiple vpush
678     // instructions in the prologue.
679     MachineBasicBlock::iterator Pos = std::next(LastPush);
680     for (const auto &Entry : CSI) {
681       unsigned Reg = Entry.getReg();
682       int FI = Entry.getFrameIdx();
683       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
684           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
685         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
686         unsigned Offset = MFI.getObjectOffset(FI);
687         unsigned CFIIndex = MF.addFrameInst(
688             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
689         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
690             .addCFIIndex(CFIIndex)
691             .setMIFlags(MachineInstr::FrameSetup);
692       }
693     }
694   }
695 
696   // Now we can emit descriptions of where the canonical frame address was
697   // throughout the process. If we have a frame pointer, it takes over the job
698   // half-way through, so only the first few .cfi_def_cfa_offset instructions
699   // actually get emitted.
700   DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
701 
702   if (STI.isTargetELF() && hasFP(MF))
703     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
704                             AFI->getFramePtrSpillOffset());
705 
706   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
707   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
708   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
709   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
710 
711   // If we need dynamic stack realignment, do it here. Be paranoid and make
712   // sure if we also have VLAs, we have a base pointer for frame access.
713   // If aligned NEON registers were spilled, the stack has already been
714   // realigned.
715   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
716     unsigned MaxAlign = MFI.getMaxAlignment();
717     assert(!AFI->isThumb1OnlyFunction());
718     if (!AFI->isThumbFunction()) {
719       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
720                                false);
721     } else {
722       // We cannot use sp as source/dest register here, thus we're using r4 to
723       // perform the calculations. We're emitting the following sequence:
724       // mov r4, sp
725       // -- use emitAligningInstructions to produce best sequence to zero
726       // -- out lower bits in r4
727       // mov sp, r4
728       // FIXME: It will be better just to find spare register here.
729       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
730           .addReg(ARM::SP, RegState::Kill)
731           .add(predOps(ARMCC::AL));
732       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
733                                false);
734       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
735           .addReg(ARM::R4, RegState::Kill)
736           .add(predOps(ARMCC::AL));
737     }
738 
739     AFI->setShouldRestoreSPFromFP(true);
740   }
741 
742   // If we need a base pointer, set it up here. It's whatever the value
743   // of the stack pointer is at this point. Any variable size objects
744   // will be allocated after this, so we can still use the base pointer
745   // to reference locals.
746   // FIXME: Clarify FrameSetup flags here.
747   if (RegInfo->hasBasePointer(MF)) {
748     if (isARM)
749       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
750           .addReg(ARM::SP)
751           .add(predOps(ARMCC::AL))
752           .add(condCodeOp());
753     else
754       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
755           .addReg(ARM::SP)
756           .add(predOps(ARMCC::AL));
757   }
758 
759   // If the frame has variable sized objects then the epilogue must restore
760   // the sp from fp. We can assume there's an FP here since hasFP already
761   // checks for hasVarSizedObjects.
762   if (MFI.hasVarSizedObjects())
763     AFI->setShouldRestoreSPFromFP(true);
764 }
765 
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const766 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
767                                     MachineBasicBlock &MBB) const {
768   MachineFrameInfo &MFI = MF.getFrameInfo();
769   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
770   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
771   const ARMBaseInstrInfo &TII =
772       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
773   assert(!AFI->isThumb1OnlyFunction() &&
774          "This emitEpilogue does not support Thumb1!");
775   bool isARM = !AFI->isThumbFunction();
776 
777   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
778   int NumBytes = (int)MFI.getStackSize();
779   unsigned FramePtr = RegInfo->getFrameRegister(MF);
780 
781   // All calls are tail calls in GHC calling conv, and functions have no
782   // prologue/epilogue.
783   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
784     return;
785 
786   // First put ourselves on the first (from top) terminator instructions.
787   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
788   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
789 
790   if (!AFI->hasStackFrame()) {
791     if (NumBytes - ArgRegsSaveSize != 0)
792       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize);
793   } else {
794     // Unwind MBBI to point to first LDR / VLDRD.
795     const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
796     if (MBBI != MBB.begin()) {
797       do {
798         --MBBI;
799       } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs));
800       if (!isCSRestore(*MBBI, TII, CSRegs))
801         ++MBBI;
802     }
803 
804     // Move SP to start of FP callee save spill area.
805     NumBytes -= (ArgRegsSaveSize +
806                  AFI->getGPRCalleeSavedArea1Size() +
807                  AFI->getGPRCalleeSavedArea2Size() +
808                  AFI->getDPRCalleeSavedGapSize() +
809                  AFI->getDPRCalleeSavedAreaSize());
810 
811     // Reset SP based on frame pointer only if the stack frame extends beyond
812     // frame pointer stack slot or target is ELF and the function has FP.
813     if (AFI->shouldRestoreSPFromFP()) {
814       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
815       if (NumBytes) {
816         if (isARM)
817           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
818                                   ARMCC::AL, 0, TII);
819         else {
820           // It's not possible to restore SP from FP in a single instruction.
821           // For iOS, this looks like:
822           // mov sp, r7
823           // sub sp, #24
824           // This is bad, if an interrupt is taken after the mov, sp is in an
825           // inconsistent state.
826           // Use the first callee-saved register as a scratch register.
827           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
828                  "No scratch register to restore SP from FP!");
829           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
830                                  ARMCC::AL, 0, TII);
831           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
832               .addReg(ARM::R4)
833               .add(predOps(ARMCC::AL));
834         }
835       } else {
836         // Thumb2 or ARM.
837         if (isARM)
838           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
839               .addReg(FramePtr)
840               .add(predOps(ARMCC::AL))
841               .add(condCodeOp());
842         else
843           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
844               .addReg(FramePtr)
845               .add(predOps(ARMCC::AL));
846       }
847     } else if (NumBytes &&
848                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
849       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
850 
851     // Increment past our save areas.
852     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
853       MBBI++;
854       // Since vpop register list cannot have gaps, there may be multiple vpop
855       // instructions in the epilogue.
856       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
857         MBBI++;
858     }
859     if (AFI->getDPRCalleeSavedGapSize()) {
860       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
861              "unexpected DPR alignment gap");
862       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize());
863     }
864 
865     if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
866     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
867   }
868 
869   if (ArgRegsSaveSize)
870     emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize);
871 }
872 
873 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
874 /// debug info.  It's the same as what we use for resolving the code-gen
875 /// references for now.  FIXME: This can go wrong when references are
876 /// SP-relative and simple call frames aren't used.
877 int
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const878 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
879                                          unsigned &FrameReg) const {
880   return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
881 }
882 
883 int
ResolveFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg,int SPAdj) const884 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
885                                              int FI, unsigned &FrameReg,
886                                              int SPAdj) const {
887   const MachineFrameInfo &MFI = MF.getFrameInfo();
888   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
889       MF.getSubtarget().getRegisterInfo());
890   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
891   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
892   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
893   bool isFixed = MFI.isFixedObjectIndex(FI);
894 
895   FrameReg = ARM::SP;
896   Offset += SPAdj;
897 
898   // SP can move around if there are allocas.  We may also lose track of SP
899   // when emergency spilling inside a non-reserved call frame setup.
900   bool hasMovingSP = !hasReservedCallFrame(MF);
901 
902   // When dynamically realigning the stack, use the frame pointer for
903   // parameters, and the stack/base pointer for locals.
904   if (RegInfo->needsStackRealignment(MF)) {
905     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
906     if (isFixed) {
907       FrameReg = RegInfo->getFrameRegister(MF);
908       Offset = FPOffset;
909     } else if (hasMovingSP) {
910       assert(RegInfo->hasBasePointer(MF) &&
911              "VLAs and dynamic stack alignment, but missing base pointer!");
912       FrameReg = RegInfo->getBaseRegister();
913       Offset -= SPAdj;
914     }
915     return Offset;
916   }
917 
918   // If there is a frame pointer, use it when we can.
919   if (hasFP(MF) && AFI->hasStackFrame()) {
920     // Use frame pointer to reference fixed objects. Use it for locals if
921     // there are VLAs (and thus the SP isn't reliable as a base).
922     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
923       FrameReg = RegInfo->getFrameRegister(MF);
924       return FPOffset;
925     } else if (hasMovingSP) {
926       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
927       if (AFI->isThumb2Function()) {
928         // Try to use the frame pointer if we can, else use the base pointer
929         // since it's available. This is handy for the emergency spill slot, in
930         // particular.
931         if (FPOffset >= -255 && FPOffset < 0) {
932           FrameReg = RegInfo->getFrameRegister(MF);
933           return FPOffset;
934         }
935       }
936     } else if (AFI->isThumbFunction()) {
937       // Prefer SP to base pointer, if the offset is suitably aligned and in
938       // range as the effective range of the immediate offset is bigger when
939       // basing off SP.
940       // Use  add <rd>, sp, #<imm8>
941       //      ldr <rd>, [sp, #<imm8>]
942       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
943         return Offset;
944       // In Thumb2 mode, the negative offset is very limited. Try to avoid
945       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
946       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
947         FrameReg = RegInfo->getFrameRegister(MF);
948         return FPOffset;
949       }
950     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
951       // Otherwise, use SP or FP, whichever is closer to the stack slot.
952       FrameReg = RegInfo->getFrameRegister(MF);
953       return FPOffset;
954     }
955   }
956   // Use the base pointer if we have one.
957   if (RegInfo->hasBasePointer(MF))
958     FrameReg = RegInfo->getBaseRegister();
959   return Offset;
960 }
961 
emitPushInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,unsigned StmOpc,unsigned StrOpc,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs,unsigned MIFlags) const962 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
963                                     MachineBasicBlock::iterator MI,
964                                     const std::vector<CalleeSavedInfo> &CSI,
965                                     unsigned StmOpc, unsigned StrOpc,
966                                     bool NoGap,
967                                     bool(*Func)(unsigned, bool),
968                                     unsigned NumAlignedDPRCS2Regs,
969                                     unsigned MIFlags) const {
970   MachineFunction &MF = *MBB.getParent();
971   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
972   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
973 
974   DebugLoc DL;
975 
976   using RegAndKill = std::pair<unsigned, bool>;
977 
978   SmallVector<RegAndKill, 4> Regs;
979   unsigned i = CSI.size();
980   while (i != 0) {
981     unsigned LastReg = 0;
982     for (; i != 0; --i) {
983       unsigned Reg = CSI[i-1].getReg();
984       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
985 
986       // D-registers in the aligned area DPRCS2 are NOT spilled here.
987       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
988         continue;
989 
990       const MachineRegisterInfo &MRI = MF.getRegInfo();
991       bool isLiveIn = MRI.isLiveIn(Reg);
992       if (!isLiveIn && !MRI.isReserved(Reg))
993         MBB.addLiveIn(Reg);
994       // If NoGap is true, push consecutive registers and then leave the rest
995       // for other instructions. e.g.
996       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
997       if (NoGap && LastReg && LastReg != Reg-1)
998         break;
999       LastReg = Reg;
1000       // Do not set a kill flag on values that are also marked as live-in. This
1001       // happens with the @llvm-returnaddress intrinsic and with arguments
1002       // passed in callee saved registers.
1003       // Omitting the kill flags is conservatively correct even if the live-in
1004       // is not used after all.
1005       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1006     }
1007 
1008     if (Regs.empty())
1009       continue;
1010 
1011     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1012       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1013     });
1014 
1015     if (Regs.size() > 1 || StrOpc== 0) {
1016       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1017                                     .addReg(ARM::SP)
1018                                     .setMIFlags(MIFlags)
1019                                     .add(predOps(ARMCC::AL));
1020       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1021         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1022     } else if (Regs.size() == 1) {
1023       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1024           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1025           .addReg(ARM::SP)
1026           .setMIFlags(MIFlags)
1027           .addImm(-4)
1028           .add(predOps(ARMCC::AL));
1029     }
1030     Regs.clear();
1031 
1032     // Put any subsequent vpush instructions before this one: they will refer to
1033     // higher register numbers so need to be pushed first in order to preserve
1034     // monotonicity.
1035     if (MI != MBB.begin())
1036       --MI;
1037   }
1038 }
1039 
emitPopInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,std::vector<CalleeSavedInfo> & CSI,unsigned LdmOpc,unsigned LdrOpc,bool isVarArg,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs) const1040 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1041                                    MachineBasicBlock::iterator MI,
1042                                    std::vector<CalleeSavedInfo> &CSI,
1043                                    unsigned LdmOpc, unsigned LdrOpc,
1044                                    bool isVarArg, bool NoGap,
1045                                    bool(*Func)(unsigned, bool),
1046                                    unsigned NumAlignedDPRCS2Regs) const {
1047   MachineFunction &MF = *MBB.getParent();
1048   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1049   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1050   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1051   DebugLoc DL;
1052   bool isTailCall = false;
1053   bool isInterrupt = false;
1054   bool isTrap = false;
1055   if (MBB.end() != MI) {
1056     DL = MI->getDebugLoc();
1057     unsigned RetOpcode = MI->getOpcode();
1058     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1059     isInterrupt =
1060         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1061     isTrap =
1062         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1063         RetOpcode == ARM::tTRAP;
1064   }
1065 
1066   SmallVector<unsigned, 4> Regs;
1067   unsigned i = CSI.size();
1068   while (i != 0) {
1069     unsigned LastReg = 0;
1070     bool DeleteRet = false;
1071     for (; i != 0; --i) {
1072       CalleeSavedInfo &Info = CSI[i-1];
1073       unsigned Reg = Info.getReg();
1074       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1075 
1076       // The aligned reloads from area DPRCS2 are not inserted here.
1077       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1078         continue;
1079 
1080       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1081           !isTrap && STI.hasV5TOps()) {
1082         if (MBB.succ_empty()) {
1083           Reg = ARM::PC;
1084           // Fold the return instruction into the LDM.
1085           DeleteRet = true;
1086           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1087           // We 'restore' LR into PC so it is not live out of the return block:
1088           // Clear Restored bit.
1089           Info.setRestored(false);
1090         } else
1091           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1092       }
1093 
1094       // If NoGap is true, pop consecutive registers and then leave the rest
1095       // for other instructions. e.g.
1096       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1097       if (NoGap && LastReg && LastReg != Reg-1)
1098         break;
1099 
1100       LastReg = Reg;
1101       Regs.push_back(Reg);
1102     }
1103 
1104     if (Regs.empty())
1105       continue;
1106 
1107     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1108       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1109     });
1110 
1111     if (Regs.size() > 1 || LdrOpc == 0) {
1112       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1113                                     .addReg(ARM::SP)
1114                                     .add(predOps(ARMCC::AL));
1115       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1116         MIB.addReg(Regs[i], getDefRegState(true));
1117       if (DeleteRet) {
1118         if (MI != MBB.end()) {
1119           MIB.copyImplicitOps(*MI);
1120           MI->eraseFromParent();
1121         }
1122       }
1123       MI = MIB;
1124     } else if (Regs.size() == 1) {
1125       // If we adjusted the reg to PC from LR above, switch it back here. We
1126       // only do that for LDM.
1127       if (Regs[0] == ARM::PC)
1128         Regs[0] = ARM::LR;
1129       MachineInstrBuilder MIB =
1130         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1131           .addReg(ARM::SP, RegState::Define)
1132           .addReg(ARM::SP);
1133       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1134       // that refactoring is complete (eventually).
1135       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1136         MIB.addReg(0);
1137         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1138       } else
1139         MIB.addImm(4);
1140       MIB.add(predOps(ARMCC::AL));
1141     }
1142     Regs.clear();
1143 
1144     // Put any subsequent vpop instructions after this one: they will refer to
1145     // higher register numbers so need to be popped afterwards.
1146     if (MI != MBB.end())
1147       ++MI;
1148   }
1149 }
1150 
1151 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1152 /// starting from d8.  Also insert stack realignment code and leave the stack
1153 /// pointer pointing to the d8 spill slot.
emitAlignedDPRCS2Spills(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI)1154 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1155                                     MachineBasicBlock::iterator MI,
1156                                     unsigned NumAlignedDPRCS2Regs,
1157                                     const std::vector<CalleeSavedInfo> &CSI,
1158                                     const TargetRegisterInfo *TRI) {
1159   MachineFunction &MF = *MBB.getParent();
1160   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1161   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1162   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1163   MachineFrameInfo &MFI = MF.getFrameInfo();
1164 
1165   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1166   // stack slot layout backwards, this can actually mean that the d-reg stack
1167   // slot offsets can be wrong. The offset for d8 will always be correct.
1168   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1169     unsigned DNum = CSI[i].getReg() - ARM::D8;
1170     if (DNum > NumAlignedDPRCS2Regs - 1)
1171       continue;
1172     int FI = CSI[i].getFrameIdx();
1173     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1174     // registers will be 8-byte aligned.
1175     MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16);
1176 
1177     // The stack slot for D8 needs to be maximally aligned because this is
1178     // actually the point where we align the stack pointer.  MachineFrameInfo
1179     // computes all offsets relative to the incoming stack pointer which is a
1180     // bit weird when realigning the stack.  Any extra padding for this
1181     // over-alignment is not realized because the code inserted below adjusts
1182     // the stack pointer by numregs * 8 before aligning the stack pointer.
1183     if (DNum == 0)
1184       MFI.setObjectAlignment(FI, MFI.getMaxAlignment());
1185   }
1186 
1187   // Move the stack pointer to the d8 spill slot, and align it at the same
1188   // time. Leave the stack slot address in the scratch register r4.
1189   //
1190   //   sub r4, sp, #numregs * 8
1191   //   bic r4, r4, #align - 1
1192   //   mov sp, r4
1193   //
1194   bool isThumb = AFI->isThumbFunction();
1195   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1196   AFI->setShouldRestoreSPFromFP(true);
1197 
1198   // sub r4, sp, #numregs * 8
1199   // The immediate is <= 64, so it doesn't need any special encoding.
1200   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1201   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1202       .addReg(ARM::SP)
1203       .addImm(8 * NumAlignedDPRCS2Regs)
1204       .add(predOps(ARMCC::AL))
1205       .add(condCodeOp());
1206 
1207   unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment();
1208   // We must set parameter MustBeSingleInstruction to true, since
1209   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1210   // stack alignment.  Luckily, this can always be done since all ARM
1211   // architecture versions that support Neon also support the BFC
1212   // instruction.
1213   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1214 
1215   // mov sp, r4
1216   // The stack pointer must be adjusted before spilling anything, otherwise
1217   // the stack slots could be clobbered by an interrupt handler.
1218   // Leave r4 live, it is used below.
1219   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1220   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1221                                 .addReg(ARM::R4)
1222                                 .add(predOps(ARMCC::AL));
1223   if (!isThumb)
1224     MIB.add(condCodeOp());
1225 
1226   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1227   // r4 holds the stack slot address.
1228   unsigned NextReg = ARM::D8;
1229 
1230   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1231   // The writeback is only needed when emitting two vst1.64 instructions.
1232   if (NumAlignedDPRCS2Regs >= 6) {
1233     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1234                                                &ARM::QQPRRegClass);
1235     MBB.addLiveIn(SupReg);
1236     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1237         .addReg(ARM::R4, RegState::Kill)
1238         .addImm(16)
1239         .addReg(NextReg)
1240         .addReg(SupReg, RegState::ImplicitKill)
1241         .add(predOps(ARMCC::AL));
1242     NextReg += 4;
1243     NumAlignedDPRCS2Regs -= 4;
1244   }
1245 
1246   // We won't modify r4 beyond this point.  It currently points to the next
1247   // register to be spilled.
1248   unsigned R4BaseReg = NextReg;
1249 
1250   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1251   if (NumAlignedDPRCS2Regs >= 4) {
1252     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1253                                                &ARM::QQPRRegClass);
1254     MBB.addLiveIn(SupReg);
1255     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1256         .addReg(ARM::R4)
1257         .addImm(16)
1258         .addReg(NextReg)
1259         .addReg(SupReg, RegState::ImplicitKill)
1260         .add(predOps(ARMCC::AL));
1261     NextReg += 4;
1262     NumAlignedDPRCS2Regs -= 4;
1263   }
1264 
1265   // 16-byte aligned vst1.64 with 2 d-regs.
1266   if (NumAlignedDPRCS2Regs >= 2) {
1267     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1268                                                &ARM::QPRRegClass);
1269     MBB.addLiveIn(SupReg);
1270     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1271         .addReg(ARM::R4)
1272         .addImm(16)
1273         .addReg(SupReg)
1274         .add(predOps(ARMCC::AL));
1275     NextReg += 2;
1276     NumAlignedDPRCS2Regs -= 2;
1277   }
1278 
1279   // Finally, use a vanilla vstr.64 for the odd last register.
1280   if (NumAlignedDPRCS2Regs) {
1281     MBB.addLiveIn(NextReg);
1282     // vstr.64 uses addrmode5 which has an offset scale of 4.
1283     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1284         .addReg(NextReg)
1285         .addReg(ARM::R4)
1286         .addImm((NextReg - R4BaseReg) * 2)
1287         .add(predOps(ARMCC::AL));
1288   }
1289 
1290   // The last spill instruction inserted should kill the scratch register r4.
1291   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1292 }
1293 
1294 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1295 /// iterator to the following instruction.
1296 static MachineBasicBlock::iterator
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs)1297 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1298                         unsigned NumAlignedDPRCS2Regs) {
1299   //   sub r4, sp, #numregs * 8
1300   //   bic r4, r4, #align - 1
1301   //   mov sp, r4
1302   ++MI; ++MI; ++MI;
1303   assert(MI->mayStore() && "Expecting spill instruction");
1304 
1305   // These switches all fall through.
1306   switch(NumAlignedDPRCS2Regs) {
1307   case 7:
1308     ++MI;
1309     assert(MI->mayStore() && "Expecting spill instruction");
1310     LLVM_FALLTHROUGH;
1311   default:
1312     ++MI;
1313     assert(MI->mayStore() && "Expecting spill instruction");
1314     LLVM_FALLTHROUGH;
1315   case 1:
1316   case 2:
1317   case 4:
1318     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1319     ++MI;
1320   }
1321   return MI;
1322 }
1323 
1324 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1325 /// starting from d8.  These instructions are assumed to execute while the
1326 /// stack is still aligned, unlike the code inserted by emitPopInst.
emitAlignedDPRCS2Restores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI)1327 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1328                                       MachineBasicBlock::iterator MI,
1329                                       unsigned NumAlignedDPRCS2Regs,
1330                                       const std::vector<CalleeSavedInfo> &CSI,
1331                                       const TargetRegisterInfo *TRI) {
1332   MachineFunction &MF = *MBB.getParent();
1333   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1334   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1335   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1336 
1337   // Find the frame index assigned to d8.
1338   int D8SpillFI = 0;
1339   for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1340     if (CSI[i].getReg() == ARM::D8) {
1341       D8SpillFI = CSI[i].getFrameIdx();
1342       break;
1343     }
1344 
1345   // Materialize the address of the d8 spill slot into the scratch register r4.
1346   // This can be fairly complicated if the stack frame is large, so just use
1347   // the normal frame index elimination mechanism to do it.  This code runs as
1348   // the initial part of the epilog where the stack and base pointers haven't
1349   // been changed yet.
1350   bool isThumb = AFI->isThumbFunction();
1351   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1352 
1353   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1354   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1355       .addFrameIndex(D8SpillFI)
1356       .addImm(0)
1357       .add(predOps(ARMCC::AL))
1358       .add(condCodeOp());
1359 
1360   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1361   unsigned NextReg = ARM::D8;
1362 
1363   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1364   if (NumAlignedDPRCS2Regs >= 6) {
1365     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1366                                                &ARM::QQPRRegClass);
1367     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1368         .addReg(ARM::R4, RegState::Define)
1369         .addReg(ARM::R4, RegState::Kill)
1370         .addImm(16)
1371         .addReg(SupReg, RegState::ImplicitDefine)
1372         .add(predOps(ARMCC::AL));
1373     NextReg += 4;
1374     NumAlignedDPRCS2Regs -= 4;
1375   }
1376 
1377   // We won't modify r4 beyond this point.  It currently points to the next
1378   // register to be spilled.
1379   unsigned R4BaseReg = NextReg;
1380 
1381   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1382   if (NumAlignedDPRCS2Regs >= 4) {
1383     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1384                                                &ARM::QQPRRegClass);
1385     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1386         .addReg(ARM::R4)
1387         .addImm(16)
1388         .addReg(SupReg, RegState::ImplicitDefine)
1389         .add(predOps(ARMCC::AL));
1390     NextReg += 4;
1391     NumAlignedDPRCS2Regs -= 4;
1392   }
1393 
1394   // 16-byte aligned vld1.64 with 2 d-regs.
1395   if (NumAlignedDPRCS2Regs >= 2) {
1396     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1397                                                &ARM::QPRRegClass);
1398     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1399         .addReg(ARM::R4)
1400         .addImm(16)
1401         .add(predOps(ARMCC::AL));
1402     NextReg += 2;
1403     NumAlignedDPRCS2Regs -= 2;
1404   }
1405 
1406   // Finally, use a vanilla vldr.64 for the remaining odd register.
1407   if (NumAlignedDPRCS2Regs)
1408     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1409         .addReg(ARM::R4)
1410         .addImm(2 * (NextReg - R4BaseReg))
1411         .add(predOps(ARMCC::AL));
1412 
1413   // Last store kills r4.
1414   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1415 }
1416 
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1417 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1418                                         MachineBasicBlock::iterator MI,
1419                                         const std::vector<CalleeSavedInfo> &CSI,
1420                                         const TargetRegisterInfo *TRI) const {
1421   if (CSI.empty())
1422     return false;
1423 
1424   MachineFunction &MF = *MBB.getParent();
1425   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1426 
1427   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1428   unsigned PushOneOpc = AFI->isThumbFunction() ?
1429     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1430   unsigned FltOpc = ARM::VSTMDDB_UPD;
1431   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1432   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1433                MachineInstr::FrameSetup);
1434   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1435                MachineInstr::FrameSetup);
1436   emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1437                NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1438 
1439   // The code above does not insert spill code for the aligned DPRCS2 registers.
1440   // The stack realignment code will be inserted between the push instructions
1441   // and these spills.
1442   if (NumAlignedDPRCS2Regs)
1443     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1444 
1445   return true;
1446 }
1447 
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1448 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1449                                         MachineBasicBlock::iterator MI,
1450                                         std::vector<CalleeSavedInfo> &CSI,
1451                                         const TargetRegisterInfo *TRI) const {
1452   if (CSI.empty())
1453     return false;
1454 
1455   MachineFunction &MF = *MBB.getParent();
1456   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1457   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1458   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1459 
1460   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1461   // registers. Do that here instead.
1462   if (NumAlignedDPRCS2Regs)
1463     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1464 
1465   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1466   unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1467   unsigned FltOpc = ARM::VLDMDIA_UPD;
1468   emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1469               NumAlignedDPRCS2Regs);
1470   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1471               &isARMArea2Register, 0);
1472   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1473               &isARMArea1Register, 0);
1474 
1475   return true;
1476 }
1477 
1478 // FIXME: Make generic?
GetFunctionSizeInBytes(const MachineFunction & MF,const ARMBaseInstrInfo & TII)1479 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF,
1480                                        const ARMBaseInstrInfo &TII) {
1481   unsigned FnSize = 0;
1482   for (auto &MBB : MF) {
1483     for (auto &MI : MBB)
1484       FnSize += TII.getInstSizeInBytes(MI);
1485   }
1486   return FnSize;
1487 }
1488 
1489 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1490 /// frames and return the stack size limit beyond which some of these
1491 /// instructions will require a scratch register during their expansion later.
1492 // FIXME: Move to TII?
estimateRSStackSizeLimit(MachineFunction & MF,const TargetFrameLowering * TFI)1493 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1494                                          const TargetFrameLowering *TFI) {
1495   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1496   unsigned Limit = (1 << 12) - 1;
1497   for (auto &MBB : MF) {
1498     for (auto &MI : MBB) {
1499       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1500         if (!MI.getOperand(i).isFI())
1501           continue;
1502 
1503         // When using ADDri to get the address of a stack object, 255 is the
1504         // largest offset guaranteed to fit in the immediate offset.
1505         if (MI.getOpcode() == ARM::ADDri) {
1506           Limit = std::min(Limit, (1U << 8) - 1);
1507           break;
1508         }
1509 
1510         // Otherwise check the addressing mode.
1511         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1512         case ARMII::AddrMode3:
1513         case ARMII::AddrModeT2_i8:
1514           Limit = std::min(Limit, (1U << 8) - 1);
1515           break;
1516         case ARMII::AddrMode5:
1517         case ARMII::AddrModeT2_i8s4:
1518         case ARMII::AddrModeT2_ldrex:
1519           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1520           break;
1521         case ARMII::AddrModeT2_i12:
1522           // i12 supports only positive offset so these will be converted to
1523           // i8 opcodes. See llvm::rewriteT2FrameIndex.
1524           if (TFI->hasFP(MF) && AFI->hasStackFrame())
1525             Limit = std::min(Limit, (1U << 8) - 1);
1526           break;
1527         case ARMII::AddrMode4:
1528         case ARMII::AddrMode6:
1529           // Addressing modes 4 & 6 (load/store) instructions can't encode an
1530           // immediate offset for stack references.
1531           return 0;
1532         default:
1533           break;
1534         }
1535         break; // At most one FI per instruction
1536       }
1537     }
1538   }
1539 
1540   return Limit;
1541 }
1542 
1543 // In functions that realign the stack, it can be an advantage to spill the
1544 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1545 // instructions take alignment hints that can improve performance.
1546 static void
checkNumAlignedDPRCS2Regs(MachineFunction & MF,BitVector & SavedRegs)1547 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1548   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1549   if (!SpillAlignedNEONRegs)
1550     return;
1551 
1552   // Naked functions don't spill callee-saved registers.
1553   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1554     return;
1555 
1556   // We are planning to use NEON instructions vst1 / vld1.
1557   if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1558     return;
1559 
1560   // Don't bother if the default stack alignment is sufficiently high.
1561   if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8)
1562     return;
1563 
1564   // Aligned spills require stack realignment.
1565   if (!static_cast<const ARMBaseRegisterInfo *>(
1566            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1567     return;
1568 
1569   // We always spill contiguous d-registers starting from d8. Count how many
1570   // needs spilling.  The register allocator will almost always use the
1571   // callee-saved registers in order, but it can happen that there are holes in
1572   // the range.  Registers above the hole will be spilled to the standard DPRCS
1573   // area.
1574   unsigned NumSpills = 0;
1575   for (; NumSpills < 8; ++NumSpills)
1576     if (!SavedRegs.test(ARM::D8 + NumSpills))
1577       break;
1578 
1579   // Don't do this for just one d-register. It's not worth it.
1580   if (NumSpills < 2)
1581     return;
1582 
1583   // Spill the first NumSpills D-registers after realigning the stack.
1584   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1585 
1586   // A scratch register is required for the vst1 / vld1 instructions.
1587   SavedRegs.set(ARM::R4);
1588 }
1589 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const1590 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1591                                             BitVector &SavedRegs,
1592                                             RegScavenger *RS) const {
1593   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1594   // This tells PEI to spill the FP as if it is any other callee-save register
1595   // to take advantage the eliminateFrameIndex machinery. This also ensures it
1596   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1597   // to combine multiple loads / stores.
1598   bool CanEliminateFrame = true;
1599   bool CS1Spilled = false;
1600   bool LRSpilled = false;
1601   unsigned NumGPRSpills = 0;
1602   unsigned NumFPRSpills = 0;
1603   SmallVector<unsigned, 4> UnspilledCS1GPRs;
1604   SmallVector<unsigned, 4> UnspilledCS2GPRs;
1605   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1606       MF.getSubtarget().getRegisterInfo());
1607   const ARMBaseInstrInfo &TII =
1608       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1609   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1610   MachineFrameInfo &MFI = MF.getFrameInfo();
1611   MachineRegisterInfo &MRI = MF.getRegInfo();
1612   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1613   (void)TRI;  // Silence unused warning in non-assert builds.
1614   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1615 
1616   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1617   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1618   // since it's not always possible to restore sp from fp in a single
1619   // instruction.
1620   // FIXME: It will be better just to find spare register here.
1621   if (AFI->isThumb2Function() &&
1622       (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
1623     SavedRegs.set(ARM::R4);
1624 
1625   // If a stack probe will be emitted, spill R4 and LR, since they are
1626   // clobbered by the stack probe call.
1627   // This estimate should be a safe, conservative estimate. The actual
1628   // stack probe is enabled based on the size of the local objects;
1629   // this estimate also includes the varargs store size.
1630   if (STI.isTargetWindows() &&
1631       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1632     SavedRegs.set(ARM::R4);
1633     SavedRegs.set(ARM::LR);
1634   }
1635 
1636   if (AFI->isThumb1OnlyFunction()) {
1637     // Spill LR if Thumb1 function uses variable length argument lists.
1638     if (AFI->getArgRegsSaveSize() > 0)
1639       SavedRegs.set(ARM::LR);
1640 
1641     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1642     // requires stack alignment.  We don't know for sure what the stack size
1643     // will be, but for this, an estimate is good enough. If there anything
1644     // changes it, it'll be a spill, which implies we've used all the registers
1645     // and so R4 is already used, so not marking it here will be OK.
1646     // FIXME: It will be better just to find spare register here.
1647     if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
1648         MFI.estimateStackSize(MF) > 508)
1649       SavedRegs.set(ARM::R4);
1650   }
1651 
1652   // See if we can spill vector registers to aligned stack.
1653   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1654 
1655   // Spill the BasePtr if it's used.
1656   if (RegInfo->hasBasePointer(MF))
1657     SavedRegs.set(RegInfo->getBaseRegister());
1658 
1659   // Don't spill FP if the frame can be eliminated. This is determined
1660   // by scanning the callee-save registers to see if any is modified.
1661   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1662   for (unsigned i = 0; CSRegs[i]; ++i) {
1663     unsigned Reg = CSRegs[i];
1664     bool Spilled = false;
1665     if (SavedRegs.test(Reg)) {
1666       Spilled = true;
1667       CanEliminateFrame = false;
1668     }
1669 
1670     if (!ARM::GPRRegClass.contains(Reg)) {
1671       if (Spilled) {
1672         if (ARM::SPRRegClass.contains(Reg))
1673           NumFPRSpills++;
1674         else if (ARM::DPRRegClass.contains(Reg))
1675           NumFPRSpills += 2;
1676         else if (ARM::QPRRegClass.contains(Reg))
1677           NumFPRSpills += 4;
1678       }
1679       continue;
1680     }
1681 
1682     if (Spilled) {
1683       NumGPRSpills++;
1684 
1685       if (!STI.splitFramePushPop(MF)) {
1686         if (Reg == ARM::LR)
1687           LRSpilled = true;
1688         CS1Spilled = true;
1689         continue;
1690       }
1691 
1692       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1693       switch (Reg) {
1694       case ARM::LR:
1695         LRSpilled = true;
1696         LLVM_FALLTHROUGH;
1697       case ARM::R0: case ARM::R1:
1698       case ARM::R2: case ARM::R3:
1699       case ARM::R4: case ARM::R5:
1700       case ARM::R6: case ARM::R7:
1701         CS1Spilled = true;
1702         break;
1703       default:
1704         break;
1705       }
1706     } else {
1707       if (!STI.splitFramePushPop(MF)) {
1708         UnspilledCS1GPRs.push_back(Reg);
1709         continue;
1710       }
1711 
1712       switch (Reg) {
1713       case ARM::R0: case ARM::R1:
1714       case ARM::R2: case ARM::R3:
1715       case ARM::R4: case ARM::R5:
1716       case ARM::R6: case ARM::R7:
1717       case ARM::LR:
1718         UnspilledCS1GPRs.push_back(Reg);
1719         break;
1720       default:
1721         UnspilledCS2GPRs.push_back(Reg);
1722         break;
1723       }
1724     }
1725   }
1726 
1727   bool ForceLRSpill = false;
1728   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1729     unsigned FnSize = GetFunctionSizeInBytes(MF, TII);
1730     // Force LR to be spilled if the Thumb function size is > 2048. This enables
1731     // use of BL to implement far jump. If it turns out that it's not needed
1732     // then the branch fix up path will undo it.
1733     if (FnSize >= (1 << 11)) {
1734       CanEliminateFrame = false;
1735       ForceLRSpill = true;
1736     }
1737   }
1738 
1739   // If any of the stack slot references may be out of range of an immediate
1740   // offset, make sure a register (or a spill slot) is available for the
1741   // register scavenger. Note that if we're indexing off the frame pointer, the
1742   // effective stack size is 4 bytes larger since the FP points to the stack
1743   // slot of the previous FP. Also, if we have variable sized objects in the
1744   // function, stack slot references will often be negative, and some of
1745   // our instructions are positive-offset only, so conservatively consider
1746   // that case to want a spill slot (or register) as well. Similarly, if
1747   // the function adjusts the stack pointer during execution and the
1748   // adjustments aren't already part of our stack size estimate, our offset
1749   // calculations may be off, so be conservative.
1750   // FIXME: We could add logic to be more precise about negative offsets
1751   //        and which instructions will need a scratch register for them. Is it
1752   //        worth the effort and added fragility?
1753   unsigned EstimatedStackSize =
1754       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1755 
1756   // Determine biggest (positive) SP offset in MachineFrameInfo.
1757   int MaxFixedOffset = 0;
1758   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1759     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1760     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1761   }
1762 
1763   bool HasFP = hasFP(MF);
1764   if (HasFP) {
1765     if (AFI->hasStackFrame())
1766       EstimatedStackSize += 4;
1767   } else {
1768     // If FP is not used, SP will be used to access arguments, so count the
1769     // size of arguments into the estimation.
1770     EstimatedStackSize += MaxFixedOffset;
1771   }
1772   EstimatedStackSize += 16; // For possible paddings.
1773 
1774   unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this);
1775   int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI);
1776   bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit ||
1777     MFI.hasVarSizedObjects() ||
1778     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) ||
1779     // For large argument stacks fp relative addressed may overflow.
1780     (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit);
1781   if (BigFrameOffsets ||
1782       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1783     AFI->setHasStackFrame(true);
1784 
1785     if (HasFP) {
1786       SavedRegs.set(FramePtr);
1787       // If the frame pointer is required by the ABI, also spill LR so that we
1788       // emit a complete frame record.
1789       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
1790         SavedRegs.set(ARM::LR);
1791         LRSpilled = true;
1792         NumGPRSpills++;
1793         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
1794         if (LRPos != UnspilledCS1GPRs.end())
1795           UnspilledCS1GPRs.erase(LRPos);
1796       }
1797       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
1798       if (FPPos != UnspilledCS1GPRs.end())
1799         UnspilledCS1GPRs.erase(FPPos);
1800       NumGPRSpills++;
1801       if (FramePtr == ARM::R7)
1802         CS1Spilled = true;
1803     }
1804 
1805     // This is true when we inserted a spill for an unused register that can now
1806     // be used for register scavenging.
1807     bool ExtraCSSpill = false;
1808 
1809     if (AFI->isThumb1OnlyFunction()) {
1810       // For Thumb1-only targets, we need some low registers when we save and
1811       // restore the high registers (which aren't allocatable, but could be
1812       // used by inline assembly) because the push/pop instructions can not
1813       // access high registers. If necessary, we might need to push more low
1814       // registers to ensure that there is at least one free that can be used
1815       // for the saving & restoring, and preferably we should ensure that as
1816       // many as are needed are available so that fewer push/pop instructions
1817       // are required.
1818 
1819       // Low registers which are not currently pushed, but could be (r4-r7).
1820       SmallVector<unsigned, 4> AvailableRegs;
1821 
1822       // Unused argument registers (r0-r3) can be clobbered in the prologue for
1823       // free.
1824       int EntryRegDeficit = 0;
1825       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
1826         if (!MF.getRegInfo().isLiveIn(Reg)) {
1827           --EntryRegDeficit;
1828           LLVM_DEBUG(dbgs()
1829                      << printReg(Reg, TRI)
1830                      << " is unused argument register, EntryRegDeficit = "
1831                      << EntryRegDeficit << "\n");
1832         }
1833       }
1834 
1835       // Unused return registers can be clobbered in the epilogue for free.
1836       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
1837       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
1838                         << " return regs used, ExitRegDeficit = "
1839                         << ExitRegDeficit << "\n");
1840 
1841       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
1842       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
1843 
1844       // r4-r6 can be used in the prologue if they are pushed by the first push
1845       // instruction.
1846       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
1847         if (SavedRegs.test(Reg)) {
1848           --RegDeficit;
1849           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1850                             << " is saved low register, RegDeficit = "
1851                             << RegDeficit << "\n");
1852         } else {
1853           AvailableRegs.push_back(Reg);
1854           LLVM_DEBUG(
1855               dbgs()
1856               << printReg(Reg, TRI)
1857               << " is non-saved low register, adding to AvailableRegs\n");
1858         }
1859       }
1860 
1861       // r7 can be used if it is not being used as the frame pointer.
1862       if (!HasFP) {
1863         if (SavedRegs.test(ARM::R7)) {
1864           --RegDeficit;
1865           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
1866                             << RegDeficit << "\n");
1867         } else {
1868           AvailableRegs.push_back(ARM::R7);
1869           LLVM_DEBUG(
1870               dbgs()
1871               << "%r7 is non-saved low register, adding to AvailableRegs\n");
1872         }
1873       }
1874 
1875       // Each of r8-r11 needs to be copied to a low register, then pushed.
1876       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
1877         if (SavedRegs.test(Reg)) {
1878           ++RegDeficit;
1879           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1880                             << " is saved high register, RegDeficit = "
1881                             << RegDeficit << "\n");
1882         }
1883       }
1884 
1885       // LR can only be used by PUSH, not POP, and can't be used at all if the
1886       // llvm.returnaddress intrinsic is used. This is only worth doing if we
1887       // are more limited at function entry than exit.
1888       if ((EntryRegDeficit > ExitRegDeficit) &&
1889           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
1890             MF.getFrameInfo().isReturnAddressTaken())) {
1891         if (SavedRegs.test(ARM::LR)) {
1892           --RegDeficit;
1893           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
1894                             << RegDeficit << "\n");
1895         } else {
1896           AvailableRegs.push_back(ARM::LR);
1897           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
1898         }
1899       }
1900 
1901       // If there are more high registers that need pushing than low registers
1902       // available, push some more low registers so that we can use fewer push
1903       // instructions. This might not reduce RegDeficit all the way to zero,
1904       // because we can only guarantee that r4-r6 are available, but r8-r11 may
1905       // need saving.
1906       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
1907       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
1908         unsigned Reg = AvailableRegs.pop_back_val();
1909         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1910                           << " to make up reg deficit\n");
1911         SavedRegs.set(Reg);
1912         NumGPRSpills++;
1913         CS1Spilled = true;
1914         assert(!MRI.isReserved(Reg) && "Should not be reserved");
1915         if (!MRI.isPhysRegUsed(Reg))
1916           ExtraCSSpill = true;
1917         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
1918         if (Reg == ARM::LR)
1919           LRSpilled = true;
1920       }
1921       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
1922                         << "\n");
1923     }
1924 
1925     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
1926     // restore LR in that case.
1927     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
1928 
1929     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
1930     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
1931     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
1932       SavedRegs.set(ARM::LR);
1933       NumGPRSpills++;
1934       SmallVectorImpl<unsigned>::iterator LRPos;
1935       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
1936       if (LRPos != UnspilledCS1GPRs.end())
1937         UnspilledCS1GPRs.erase(LRPos);
1938 
1939       ForceLRSpill = false;
1940       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR))
1941         ExtraCSSpill = true;
1942     }
1943 
1944     // If stack and double are 8-byte aligned and we are spilling an odd number
1945     // of GPRs, spill one extra callee save GPR so we won't have to pad between
1946     // the integer and double callee save areas.
1947     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
1948     unsigned TargetAlign = getStackAlignment();
1949     if (TargetAlign >= 8 && (NumGPRSpills & 1)) {
1950       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
1951         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
1952           unsigned Reg = UnspilledCS1GPRs[i];
1953           // Don't spill high register if the function is thumb.  In the case of
1954           // Windows on ARM, accept R11 (frame pointer)
1955           if (!AFI->isThumbFunction() ||
1956               (STI.isTargetWindows() && Reg == ARM::R11) ||
1957               isARMLowRegister(Reg) ||
1958               (Reg == ARM::LR && !ExpensiveLRRestore)) {
1959             SavedRegs.set(Reg);
1960             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1961                               << " to make up alignment\n");
1962             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
1963               ExtraCSSpill = true;
1964             break;
1965           }
1966         }
1967       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
1968         unsigned Reg = UnspilledCS2GPRs.front();
1969         SavedRegs.set(Reg);
1970         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1971                           << " to make up alignment\n");
1972         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
1973           ExtraCSSpill = true;
1974       }
1975     }
1976 
1977     // Estimate if we might need to scavenge a register at some point in order
1978     // to materialize a stack offset. If so, either spill one additional
1979     // callee-saved register or reserve a special spill slot to facilitate
1980     // register scavenging. Thumb1 needs a spill slot for stack pointer
1981     // adjustments also, even when the frame itself is small.
1982     if (BigFrameOffsets && !ExtraCSSpill) {
1983       // If any non-reserved CS register isn't spilled, just spill one or two
1984       // extra. That should take care of it!
1985       unsigned NumExtras = TargetAlign / 4;
1986       SmallVector<unsigned, 2> Extras;
1987       while (NumExtras && !UnspilledCS1GPRs.empty()) {
1988         unsigned Reg = UnspilledCS1GPRs.back();
1989         UnspilledCS1GPRs.pop_back();
1990         if (!MRI.isReserved(Reg) &&
1991             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) ||
1992              Reg == ARM::LR)) {
1993           Extras.push_back(Reg);
1994           NumExtras--;
1995         }
1996       }
1997       // For non-Thumb1 functions, also check for hi-reg CS registers
1998       if (!AFI->isThumb1OnlyFunction()) {
1999         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2000           unsigned Reg = UnspilledCS2GPRs.back();
2001           UnspilledCS2GPRs.pop_back();
2002           if (!MRI.isReserved(Reg)) {
2003             Extras.push_back(Reg);
2004             NumExtras--;
2005           }
2006         }
2007       }
2008       if (NumExtras == 0) {
2009         for (unsigned Reg : Extras) {
2010           SavedRegs.set(Reg);
2011           if (!MRI.isPhysRegUsed(Reg))
2012             ExtraCSSpill = true;
2013         }
2014       }
2015       if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) {
2016         // note: Thumb1 functions spill to R12, not the stack.  Reserve a slot
2017         // closest to SP or frame pointer.
2018         assert(RS && "Register scavenging not provided");
2019         const TargetRegisterClass &RC = ARM::GPRRegClass;
2020         unsigned Size = TRI->getSpillSize(RC);
2021         unsigned Align = TRI->getSpillAlignment(RC);
2022         RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));
2023       }
2024     }
2025   }
2026 
2027   if (ForceLRSpill) {
2028     SavedRegs.set(ARM::LR);
2029     AFI->setLRIsSpilledForFarJump(true);
2030   }
2031 }
2032 
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2033 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2034     MachineFunction &MF, MachineBasicBlock &MBB,
2035     MachineBasicBlock::iterator I) const {
2036   const ARMBaseInstrInfo &TII =
2037       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2038   if (!hasReservedCallFrame(MF)) {
2039     // If we have alloca, convert as follows:
2040     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2041     // ADJCALLSTACKUP   -> add, sp, sp, amount
2042     MachineInstr &Old = *I;
2043     DebugLoc dl = Old.getDebugLoc();
2044     unsigned Amount = TII.getFrameSize(Old);
2045     if (Amount != 0) {
2046       // We need to keep the stack aligned properly.  To do this, we round the
2047       // amount of space needed for the outgoing arguments up to the next
2048       // alignment boundary.
2049       Amount = alignSPAdjust(Amount);
2050 
2051       ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2052       assert(!AFI->isThumb1OnlyFunction() &&
2053              "This eliminateCallFramePseudoInstr does not support Thumb1!");
2054       bool isARM = !AFI->isThumbFunction();
2055 
2056       // Replace the pseudo instruction with a new instruction...
2057       unsigned Opc = Old.getOpcode();
2058       int PIdx = Old.findFirstPredOperandIdx();
2059       ARMCC::CondCodes Pred =
2060           (PIdx == -1) ? ARMCC::AL
2061                        : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
2062       unsigned PredReg = TII.getFramePred(Old);
2063       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2064         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2065                      Pred, PredReg);
2066       } else {
2067         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2068         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2069                      Pred, PredReg);
2070       }
2071     }
2072   }
2073   return MBB.erase(I);
2074 }
2075 
2076 /// Get the minimum constant for ARM that is greater than or equal to the
2077 /// argument. In ARM, constants can have any value that can be produced by
2078 /// rotating an 8-bit value to the right by an even number of bits within a
2079 /// 32-bit word.
alignToARMConstant(uint32_t Value)2080 static uint32_t alignToARMConstant(uint32_t Value) {
2081   unsigned Shifted = 0;
2082 
2083   if (Value == 0)
2084       return 0;
2085 
2086   while (!(Value & 0xC0000000)) {
2087       Value = Value << 2;
2088       Shifted += 2;
2089   }
2090 
2091   bool Carry = (Value & 0x00FFFFFF);
2092   Value = ((Value & 0xFF000000) >> 24) + Carry;
2093 
2094   if (Value & 0x0000100)
2095       Value = Value & 0x000001FC;
2096 
2097   if (Shifted > 24)
2098       Value = Value >> (Shifted - 24);
2099   else
2100       Value = Value << (24 - Shifted);
2101 
2102   return Value;
2103 }
2104 
2105 // The stack limit in the TCB is set to this many bytes above the actual
2106 // stack limit.
2107 static const uint64_t kSplitStackAvailable = 256;
2108 
2109 // Adjust the function prologue to enable split stacks. This currently only
2110 // supports android and linux.
2111 //
2112 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2113 // must be well defined in order to allow for consistent implementations of the
2114 // __morestack helper function. The ABI is also not a normal ABI in that it
2115 // doesn't follow the normal calling conventions because this allows the
2116 // prologue of each function to be optimized further.
2117 //
2118 // Currently, the ABI looks like (when calling __morestack)
2119 //
2120 //  * r4 holds the minimum stack size requested for this function call
2121 //  * r5 holds the stack size of the arguments to the function
2122 //  * the beginning of the function is 3 instructions after the call to
2123 //    __morestack
2124 //
2125 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2126 // place the arguments on to the new stack, and the 3-instruction knowledge to
2127 // jump directly to the body of the function when working on the new stack.
2128 //
2129 // An old (and possibly no longer compatible) implementation of __morestack for
2130 // ARM can be found at [1].
2131 //
2132 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2133 void ARMFrameLowering::adjustForSegmentedStacks(
2134     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2135   unsigned Opcode;
2136   unsigned CFIIndex;
2137   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2138   bool Thumb = ST->isThumb();
2139 
2140   // Sadly, this currently doesn't support varargs, platforms other than
2141   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2142   if (MF.getFunction().isVarArg())
2143     report_fatal_error("Segmented stacks do not support vararg functions.");
2144   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2145     report_fatal_error("Segmented stacks not supported on this platform.");
2146 
2147   MachineFrameInfo &MFI = MF.getFrameInfo();
2148   MachineModuleInfo &MMI = MF.getMMI();
2149   MCContext &Context = MMI.getContext();
2150   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2151   const ARMBaseInstrInfo &TII =
2152       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2153   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2154   DebugLoc DL;
2155 
2156   uint64_t StackSize = MFI.getStackSize();
2157 
2158   // Do not generate a prologue for leaf functions with a stack of size zero.
2159   // For non-leaf functions we have to allow for the possibility that the
2160   // callis to a non-split function, as in PR37807. This function could also
2161   // take the address of a non-split function. When the linker tries to adjust
2162   // its non-existent prologue, it would fail with an error. Mark the object
2163   // file so that such failures are not errors. See this Go language bug-report
2164   // https://go-review.googlesource.com/c/go/+/148819/
2165   if (StackSize == 0 && !MFI.hasTailCall()) {
2166     MF.getMMI().setHasNosplitStack(true);
2167     return;
2168   }
2169 
2170   // Use R4 and R5 as scratch registers.
2171   // We save R4 and R5 before use and restore them before leaving the function.
2172   unsigned ScratchReg0 = ARM::R4;
2173   unsigned ScratchReg1 = ARM::R5;
2174   uint64_t AlignedStackSize;
2175 
2176   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2177   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2178   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2179   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2180   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2181 
2182   // Grab everything that reaches PrologueMBB to update there liveness as well.
2183   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2184   SmallVector<MachineBasicBlock *, 2> WalkList;
2185   WalkList.push_back(&PrologueMBB);
2186 
2187   do {
2188     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2189     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2190       if (BeforePrologueRegion.insert(PredBB).second)
2191         WalkList.push_back(PredBB);
2192     }
2193   } while (!WalkList.empty());
2194 
2195   // The order in that list is important.
2196   // The blocks will all be inserted before PrologueMBB using that order.
2197   // Therefore the block that should appear first in the CFG should appear
2198   // first in the list.
2199   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2200                                       PostStackMBB};
2201 
2202   for (MachineBasicBlock *B : AddedBlocks)
2203     BeforePrologueRegion.insert(B);
2204 
2205   for (const auto &LI : PrologueMBB.liveins()) {
2206     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2207       PredBB->addLiveIn(LI);
2208   }
2209 
2210   // Remove the newly added blocks from the list, since we know
2211   // we do not have to do the following updates for them.
2212   for (MachineBasicBlock *B : AddedBlocks) {
2213     BeforePrologueRegion.erase(B);
2214     MF.insert(PrologueMBB.getIterator(), B);
2215   }
2216 
2217   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2218     // Make sure the LiveIns are still sorted and unique.
2219     MBB->sortUniqueLiveIns();
2220     // Replace the edges to PrologueMBB by edges to the sequences
2221     // we are about to add.
2222     MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2223   }
2224 
2225   // The required stack size that is aligned to ARM constant criterion.
2226   AlignedStackSize = alignToARMConstant(StackSize);
2227 
2228   // When the frame size is less than 256 we just compare the stack
2229   // boundary directly to the value of the stack pointer, per gcc.
2230   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2231 
2232   // We will use two of the callee save registers as scratch registers so we
2233   // need to save those registers onto the stack.
2234   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2235   // requested and arguments for __morestack().
2236   // SR0: Scratch Register #0
2237   // SR1: Scratch Register #1
2238   // push {SR0, SR1}
2239   if (Thumb) {
2240     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2241         .add(predOps(ARMCC::AL))
2242         .addReg(ScratchReg0)
2243         .addReg(ScratchReg1);
2244   } else {
2245     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2246         .addReg(ARM::SP, RegState::Define)
2247         .addReg(ARM::SP)
2248         .add(predOps(ARMCC::AL))
2249         .addReg(ScratchReg0)
2250         .addReg(ScratchReg1);
2251   }
2252 
2253   // Emit the relevant DWARF information about the change in stack pointer as
2254   // well as where to find both r4 and r5 (the callee-save registers)
2255   CFIIndex =
2256       MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
2257   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2258       .addCFIIndex(CFIIndex);
2259   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2260       nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2261   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2262       .addCFIIndex(CFIIndex);
2263   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2264       nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2265   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2266       .addCFIIndex(CFIIndex);
2267 
2268   // mov SR1, sp
2269   if (Thumb) {
2270     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2271         .addReg(ARM::SP)
2272         .add(predOps(ARMCC::AL));
2273   } else if (CompareStackPointer) {
2274     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2275         .addReg(ARM::SP)
2276         .add(predOps(ARMCC::AL))
2277         .add(condCodeOp());
2278   }
2279 
2280   // sub SR1, sp, #StackSize
2281   if (!CompareStackPointer && Thumb) {
2282     BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2283         .add(condCodeOp())
2284         .addReg(ScratchReg1)
2285         .addImm(AlignedStackSize)
2286         .add(predOps(ARMCC::AL));
2287   } else if (!CompareStackPointer) {
2288     BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2289         .addReg(ARM::SP)
2290         .addImm(AlignedStackSize)
2291         .add(predOps(ARMCC::AL))
2292         .add(condCodeOp());
2293   }
2294 
2295   if (Thumb && ST->isThumb1Only()) {
2296     unsigned PCLabelId = ARMFI->createPICLabelUId();
2297     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2298         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2299     MachineConstantPool *MCP = MF.getConstantPool();
2300     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4);
2301 
2302     // ldr SR0, [pc, offset(STACK_LIMIT)]
2303     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2304         .addConstantPoolIndex(CPI)
2305         .add(predOps(ARMCC::AL));
2306 
2307     // ldr SR0, [SR0]
2308     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2309         .addReg(ScratchReg0)
2310         .addImm(0)
2311         .add(predOps(ARMCC::AL));
2312   } else {
2313     // Get TLS base address from the coprocessor
2314     // mrc p15, #0, SR0, c13, c0, #3
2315     BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0)
2316         .addImm(15)
2317         .addImm(0)
2318         .addImm(13)
2319         .addImm(0)
2320         .addImm(3)
2321         .add(predOps(ARMCC::AL));
2322 
2323     // Use the last tls slot on android and a private field of the TCP on linux.
2324     assert(ST->isTargetAndroid() || ST->isTargetLinux());
2325     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2326 
2327     // Get the stack limit from the right offset
2328     // ldr SR0, [sr0, #4 * TlsOffset]
2329     BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0)
2330         .addReg(ScratchReg0)
2331         .addImm(4 * TlsOffset)
2332         .add(predOps(ARMCC::AL));
2333   }
2334 
2335   // Compare stack limit with stack size requested.
2336   // cmp SR0, SR1
2337   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2338   BuildMI(GetMBB, DL, TII.get(Opcode))
2339       .addReg(ScratchReg0)
2340       .addReg(ScratchReg1)
2341       .add(predOps(ARMCC::AL));
2342 
2343   // This jump is taken if StackLimit < SP - stack required.
2344   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2345   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2346        .addImm(ARMCC::LO)
2347        .addReg(ARM::CPSR);
2348 
2349 
2350   // Calling __morestack(StackSize, Size of stack arguments).
2351   // __morestack knows that the stack size requested is in SR0(r4)
2352   // and amount size of stack arguments is in SR1(r5).
2353 
2354   // Pass first argument for the __morestack by Scratch Register #0.
2355   //   The amount size of stack required
2356   if (Thumb) {
2357     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2358         .add(condCodeOp())
2359         .addImm(AlignedStackSize)
2360         .add(predOps(ARMCC::AL));
2361   } else {
2362     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2363         .addImm(AlignedStackSize)
2364         .add(predOps(ARMCC::AL))
2365         .add(condCodeOp());
2366   }
2367   // Pass second argument for the __morestack by Scratch Register #1.
2368   //   The amount size of stack consumed to save function arguments.
2369   if (Thumb) {
2370     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2371         .add(condCodeOp())
2372         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2373         .add(predOps(ARMCC::AL));
2374   } else {
2375     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2376         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2377         .add(predOps(ARMCC::AL))
2378         .add(condCodeOp());
2379   }
2380 
2381   // push {lr} - Save return address of this function.
2382   if (Thumb) {
2383     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2384         .add(predOps(ARMCC::AL))
2385         .addReg(ARM::LR);
2386   } else {
2387     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2388         .addReg(ARM::SP, RegState::Define)
2389         .addReg(ARM::SP)
2390         .add(predOps(ARMCC::AL))
2391         .addReg(ARM::LR);
2392   }
2393 
2394   // Emit the DWARF info about the change in stack as well as where to find the
2395   // previous link register
2396   CFIIndex =
2397       MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
2398   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2399       .addCFIIndex(CFIIndex);
2400   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2401         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2402   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2403       .addCFIIndex(CFIIndex);
2404 
2405   // Call __morestack().
2406   if (Thumb) {
2407     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2408         .add(predOps(ARMCC::AL))
2409         .addExternalSymbol("__morestack");
2410   } else {
2411     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2412         .addExternalSymbol("__morestack");
2413   }
2414 
2415   // pop {lr} - Restore return address of this original function.
2416   if (Thumb) {
2417     if (ST->isThumb1Only()) {
2418       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2419           .add(predOps(ARMCC::AL))
2420           .addReg(ScratchReg0);
2421       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2422           .addReg(ScratchReg0)
2423           .add(predOps(ARMCC::AL));
2424     } else {
2425       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2426           .addReg(ARM::LR, RegState::Define)
2427           .addReg(ARM::SP, RegState::Define)
2428           .addReg(ARM::SP)
2429           .addImm(4)
2430           .add(predOps(ARMCC::AL));
2431     }
2432   } else {
2433     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2434         .addReg(ARM::SP, RegState::Define)
2435         .addReg(ARM::SP)
2436         .add(predOps(ARMCC::AL))
2437         .addReg(ARM::LR);
2438   }
2439 
2440   // Restore SR0 and SR1 in case of __morestack() was called.
2441   // __morestack() will skip PostStackMBB block so we need to restore
2442   // scratch registers from here.
2443   // pop {SR0, SR1}
2444   if (Thumb) {
2445     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2446         .add(predOps(ARMCC::AL))
2447         .addReg(ScratchReg0)
2448         .addReg(ScratchReg1);
2449   } else {
2450     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2451         .addReg(ARM::SP, RegState::Define)
2452         .addReg(ARM::SP)
2453         .add(predOps(ARMCC::AL))
2454         .addReg(ScratchReg0)
2455         .addReg(ScratchReg1);
2456   }
2457 
2458   // Update the CFA offset now that we've popped
2459   CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2460   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2461       .addCFIIndex(CFIIndex);
2462 
2463   // Return from this function.
2464   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2465 
2466   // Restore SR0 and SR1 in case of __morestack() was not called.
2467   // pop {SR0, SR1}
2468   if (Thumb) {
2469     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2470         .add(predOps(ARMCC::AL))
2471         .addReg(ScratchReg0)
2472         .addReg(ScratchReg1);
2473   } else {
2474     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2475         .addReg(ARM::SP, RegState::Define)
2476         .addReg(ARM::SP)
2477         .add(predOps(ARMCC::AL))
2478         .addReg(ScratchReg0)
2479         .addReg(ScratchReg1);
2480   }
2481 
2482   // Update the CFA offset now that we've popped
2483   CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2484   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2485       .addCFIIndex(CFIIndex);
2486 
2487   // Tell debuggers that r4 and r5 are now the same as they were in the
2488   // previous function, that they're the "Same Value".
2489   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2490       nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2491   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2492       .addCFIIndex(CFIIndex);
2493   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2494       nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2495   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2496       .addCFIIndex(CFIIndex);
2497 
2498   // Organizing MBB lists
2499   PostStackMBB->addSuccessor(&PrologueMBB);
2500 
2501   AllocMBB->addSuccessor(PostStackMBB);
2502 
2503   GetMBB->addSuccessor(PostStackMBB);
2504   GetMBB->addSuccessor(AllocMBB);
2505 
2506   McrMBB->addSuccessor(GetMBB);
2507 
2508   PrevStackMBB->addSuccessor(McrMBB);
2509 
2510 #ifdef EXPENSIVE_CHECKS
2511   MF.verify();
2512 #endif
2513 }
2514