1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
11 #include "llvm/Analysis/BasicAliasAnalysis.h"
12 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
13 #include "llvm/Analysis/ProfileSummaryInfo.h"
14 #include "llvm/Analysis/TypeMetadataUtils.h"
15 #include "llvm/Bitcode/BitcodeWriter.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Object/ModuleSymbolTable.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/IPO/FunctionAttrs.h"
27 #include "llvm/Transforms/IPO/FunctionImport.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
29 #include "llvm/Transforms/Utils/ModuleUtils.h"
30 using namespace llvm;
31 
32 namespace {
33 
34 // Promote each local-linkage entity defined by ExportM and used by ImportM by
35 // changing visibility and appending the given ModuleId.
promoteInternals(Module & ExportM,Module & ImportM,StringRef ModuleId,SetVector<GlobalValue * > & PromoteExtra)36 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
37                       SetVector<GlobalValue *> &PromoteExtra) {
38   DenseMap<const Comdat *, Comdat *> RenamedComdats;
39   for (auto &ExportGV : ExportM.global_values()) {
40     if (!ExportGV.hasLocalLinkage())
41       continue;
42 
43     auto Name = ExportGV.getName();
44     GlobalValue *ImportGV = nullptr;
45     if (!PromoteExtra.count(&ExportGV)) {
46       ImportGV = ImportM.getNamedValue(Name);
47       if (!ImportGV)
48         continue;
49       ImportGV->removeDeadConstantUsers();
50       if (ImportGV->use_empty()) {
51         ImportGV->eraseFromParent();
52         continue;
53       }
54     }
55 
56     std::string NewName = (Name + ModuleId).str();
57 
58     if (const auto *C = ExportGV.getComdat())
59       if (C->getName() == Name)
60         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
61 
62     ExportGV.setName(NewName);
63     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
64     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
65 
66     if (ImportGV) {
67       ImportGV->setName(NewName);
68       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
69     }
70   }
71 
72   if (!RenamedComdats.empty())
73     for (auto &GO : ExportM.global_objects())
74       if (auto *C = GO.getComdat()) {
75         auto Replacement = RenamedComdats.find(C);
76         if (Replacement != RenamedComdats.end())
77           GO.setComdat(Replacement->second);
78       }
79 }
80 
81 // Promote all internal (i.e. distinct) type ids used by the module by replacing
82 // them with external type ids formed using the module id.
83 //
84 // Note that this needs to be done before we clone the module because each clone
85 // will receive its own set of distinct metadata nodes.
promoteTypeIds(Module & M,StringRef ModuleId)86 void promoteTypeIds(Module &M, StringRef ModuleId) {
87   DenseMap<Metadata *, Metadata *> LocalToGlobal;
88   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
89     Metadata *MD =
90         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
91 
92     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
93       Metadata *&GlobalMD = LocalToGlobal[MD];
94       if (!GlobalMD) {
95         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
96         GlobalMD = MDString::get(M.getContext(), NewName);
97       }
98 
99       CI->setArgOperand(ArgNo,
100                         MetadataAsValue::get(M.getContext(), GlobalMD));
101     }
102   };
103 
104   if (Function *TypeTestFunc =
105           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
106     for (const Use &U : TypeTestFunc->uses()) {
107       auto CI = cast<CallInst>(U.getUser());
108       ExternalizeTypeId(CI, 1);
109     }
110   }
111 
112   if (Function *TypeCheckedLoadFunc =
113           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
114     for (const Use &U : TypeCheckedLoadFunc->uses()) {
115       auto CI = cast<CallInst>(U.getUser());
116       ExternalizeTypeId(CI, 2);
117     }
118   }
119 
120   for (GlobalObject &GO : M.global_objects()) {
121     SmallVector<MDNode *, 1> MDs;
122     GO.getMetadata(LLVMContext::MD_type, MDs);
123 
124     GO.eraseMetadata(LLVMContext::MD_type);
125     for (auto MD : MDs) {
126       auto I = LocalToGlobal.find(MD->getOperand(1));
127       if (I == LocalToGlobal.end()) {
128         GO.addMetadata(LLVMContext::MD_type, *MD);
129         continue;
130       }
131       GO.addMetadata(
132           LLVMContext::MD_type,
133           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
134     }
135   }
136 }
137 
138 // Drop unused globals, and drop type information from function declarations.
139 // FIXME: If we made functions typeless then there would be no need to do this.
simplifyExternals(Module & M)140 void simplifyExternals(Module &M) {
141   FunctionType *EmptyFT =
142       FunctionType::get(Type::getVoidTy(M.getContext()), false);
143 
144   for (auto I = M.begin(), E = M.end(); I != E;) {
145     Function &F = *I++;
146     if (F.isDeclaration() && F.use_empty()) {
147       F.eraseFromParent();
148       continue;
149     }
150 
151     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
152         // Changing the type of an intrinsic may invalidate the IR.
153         F.getName().startswith("llvm."))
154       continue;
155 
156     Function *NewF =
157         Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
158                          F.getAddressSpace(), "", &M);
159     NewF->setVisibility(F.getVisibility());
160     NewF->takeName(&F);
161     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
162     F.eraseFromParent();
163   }
164 
165   for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
166     GlobalVariable &GV = *I++;
167     if (GV.isDeclaration() && GV.use_empty()) {
168       GV.eraseFromParent();
169       continue;
170     }
171   }
172 }
173 
174 static void
filterModule(Module * M,function_ref<bool (const GlobalValue *)> ShouldKeepDefinition)175 filterModule(Module *M,
176              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
177   std::vector<GlobalValue *> V;
178   for (GlobalValue &GV : M->global_values())
179     if (!ShouldKeepDefinition(&GV))
180       V.push_back(&GV);
181 
182   for (GlobalValue *GV : V)
183     if (!convertToDeclaration(*GV))
184       GV->eraseFromParent();
185 }
186 
forEachVirtualFunction(Constant * C,function_ref<void (Function *)> Fn)187 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
188   if (auto *F = dyn_cast<Function>(C))
189     return Fn(F);
190   if (isa<GlobalValue>(C))
191     return;
192   for (Value *Op : C->operands())
193     forEachVirtualFunction(cast<Constant>(Op), Fn);
194 }
195 
196 // If it's possible to split M into regular and thin LTO parts, do so and write
197 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
198 // regular LTO bitcode file to OS.
splitAndWriteThinLTOBitcode(raw_ostream & OS,raw_ostream * ThinLinkOS,function_ref<AAResults & (Function &)> AARGetter,Module & M)199 void splitAndWriteThinLTOBitcode(
200     raw_ostream &OS, raw_ostream *ThinLinkOS,
201     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
202   std::string ModuleId = getUniqueModuleId(&M);
203   if (ModuleId.empty()) {
204     // We couldn't generate a module ID for this module, write it out as a
205     // regular LTO module with an index for summary-based dead stripping.
206     ProfileSummaryInfo PSI(M);
207     M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
208     ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
209     WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
210 
211     if (ThinLinkOS)
212       // We don't have a ThinLTO part, but still write the module to the
213       // ThinLinkOS if requested so that the expected output file is produced.
214       WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
215                          &Index);
216 
217     return;
218   }
219 
220   promoteTypeIds(M, ModuleId);
221 
222   // Returns whether a global has attached type metadata. Such globals may
223   // participate in CFI or whole-program devirtualization, so they need to
224   // appear in the merged module instead of the thin LTO module.
225   auto HasTypeMetadata = [](const GlobalObject *GO) {
226     return GO->hasMetadata(LLVMContext::MD_type);
227   };
228 
229   // Collect the set of virtual functions that are eligible for virtual constant
230   // propagation. Each eligible function must not access memory, must return
231   // an integer of width <=64 bits, must take at least one argument, must not
232   // use its first argument (assumed to be "this") and all arguments other than
233   // the first one must be of <=64 bit integer type.
234   //
235   // Note that we test whether this copy of the function is readnone, rather
236   // than testing function attributes, which must hold for any copy of the
237   // function, even a less optimized version substituted at link time. This is
238   // sound because the virtual constant propagation optimizations effectively
239   // inline all implementations of the virtual function into each call site,
240   // rather than using function attributes to perform local optimization.
241   DenseSet<const Function *> EligibleVirtualFns;
242   // If any member of a comdat lives in MergedM, put all members of that
243   // comdat in MergedM to keep the comdat together.
244   DenseSet<const Comdat *> MergedMComdats;
245   for (GlobalVariable &GV : M.globals())
246     if (HasTypeMetadata(&GV)) {
247       if (const auto *C = GV.getComdat())
248         MergedMComdats.insert(C);
249       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
250         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
251         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
252             !F->arg_begin()->use_empty())
253           return;
254         for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
255           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
256           if (!ArgT || ArgT->getBitWidth() > 64)
257             return;
258         }
259         if (!F->isDeclaration() &&
260             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
261           EligibleVirtualFns.insert(F);
262       });
263     }
264 
265   ValueToValueMapTy VMap;
266   std::unique_ptr<Module> MergedM(
267       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
268         if (const auto *C = GV->getComdat())
269           if (MergedMComdats.count(C))
270             return true;
271         if (auto *F = dyn_cast<Function>(GV))
272           return EligibleVirtualFns.count(F);
273         if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
274           return HasTypeMetadata(GVar);
275         return false;
276       }));
277   StripDebugInfo(*MergedM);
278   MergedM->setModuleInlineAsm("");
279 
280   for (Function &F : *MergedM)
281     if (!F.isDeclaration()) {
282       // Reset the linkage of all functions eligible for virtual constant
283       // propagation. The canonical definitions live in the thin LTO module so
284       // that they can be imported.
285       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
286       F.setComdat(nullptr);
287     }
288 
289   SetVector<GlobalValue *> CfiFunctions;
290   for (auto &F : M)
291     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
292       CfiFunctions.insert(&F);
293 
294   // Remove all globals with type metadata, globals with comdats that live in
295   // MergedM, and aliases pointing to such globals from the thin LTO module.
296   filterModule(&M, [&](const GlobalValue *GV) {
297     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
298       if (HasTypeMetadata(GVar))
299         return false;
300     if (const auto *C = GV->getComdat())
301       if (MergedMComdats.count(C))
302         return false;
303     return true;
304   });
305 
306   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
307   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
308 
309   auto &Ctx = MergedM->getContext();
310   SmallVector<MDNode *, 8> CfiFunctionMDs;
311   for (auto V : CfiFunctions) {
312     Function &F = *cast<Function>(V);
313     SmallVector<MDNode *, 2> Types;
314     F.getMetadata(LLVMContext::MD_type, Types);
315 
316     SmallVector<Metadata *, 4> Elts;
317     Elts.push_back(MDString::get(Ctx, F.getName()));
318     CfiFunctionLinkage Linkage;
319     if (!F.isDeclarationForLinker())
320       Linkage = CFL_Definition;
321     else if (F.isWeakForLinker())
322       Linkage = CFL_WeakDeclaration;
323     else
324       Linkage = CFL_Declaration;
325     Elts.push_back(ConstantAsMetadata::get(
326         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
327     for (auto Type : Types)
328       Elts.push_back(Type);
329     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
330   }
331 
332   if(!CfiFunctionMDs.empty()) {
333     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
334     for (auto MD : CfiFunctionMDs)
335       NMD->addOperand(MD);
336   }
337 
338   SmallVector<MDNode *, 8> FunctionAliases;
339   for (auto &A : M.aliases()) {
340     if (!isa<Function>(A.getAliasee()))
341       continue;
342 
343     auto *F = cast<Function>(A.getAliasee());
344 
345     Metadata *Elts[] = {
346         MDString::get(Ctx, A.getName()),
347         MDString::get(Ctx, F->getName()),
348         ConstantAsMetadata::get(
349             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
350         ConstantAsMetadata::get(
351             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
352     };
353 
354     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
355   }
356 
357   if (!FunctionAliases.empty()) {
358     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
359     for (auto MD : FunctionAliases)
360       NMD->addOperand(MD);
361   }
362 
363   SmallVector<MDNode *, 8> Symvers;
364   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
365     Function *F = M.getFunction(Name);
366     if (!F || F->use_empty())
367       return;
368 
369     Symvers.push_back(MDTuple::get(
370         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
371   });
372 
373   if (!Symvers.empty()) {
374     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
375     for (auto MD : Symvers)
376       NMD->addOperand(MD);
377   }
378 
379   simplifyExternals(*MergedM);
380 
381   // FIXME: Try to re-use BSI and PFI from the original module here.
382   ProfileSummaryInfo PSI(M);
383   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
384 
385   // Mark the merged module as requiring full LTO. We still want an index for
386   // it though, so that it can participate in summary-based dead stripping.
387   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
388   ModuleSummaryIndex MergedMIndex =
389       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
390 
391   SmallVector<char, 0> Buffer;
392 
393   BitcodeWriter W(Buffer);
394   // Save the module hash produced for the full bitcode, which will
395   // be used in the backends, and use that in the minimized bitcode
396   // produced for the full link.
397   ModuleHash ModHash = {{0}};
398   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
399                 /*GenerateHash=*/true, &ModHash);
400   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
401   W.writeSymtab();
402   W.writeStrtab();
403   OS << Buffer;
404 
405   // If a minimized bitcode module was requested for the thin link, only
406   // the information that is needed by thin link will be written in the
407   // given OS (the merged module will be written as usual).
408   if (ThinLinkOS) {
409     Buffer.clear();
410     BitcodeWriter W2(Buffer);
411     StripDebugInfo(M);
412     W2.writeThinLinkBitcode(M, Index, ModHash);
413     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
414                    &MergedMIndex);
415     W2.writeSymtab();
416     W2.writeStrtab();
417     *ThinLinkOS << Buffer;
418   }
419 }
420 
421 // Returns whether this module needs to be split because splitting is
422 // enabled and it uses type metadata.
requiresSplit(Module & M)423 bool requiresSplit(Module &M) {
424   // First check if the LTO Unit splitting has been enabled.
425   bool EnableSplitLTOUnit = false;
426   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
427           M.getModuleFlag("EnableSplitLTOUnit")))
428     EnableSplitLTOUnit = MD->getZExtValue();
429   if (!EnableSplitLTOUnit)
430     return false;
431 
432   // Module only needs to be split if it contains type metadata.
433   for (auto &GO : M.global_objects()) {
434     if (GO.hasMetadata(LLVMContext::MD_type))
435       return true;
436   }
437 
438   return false;
439 }
440 
writeThinLTOBitcode(raw_ostream & OS,raw_ostream * ThinLinkOS,function_ref<AAResults & (Function &)> AARGetter,Module & M,const ModuleSummaryIndex * Index)441 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
442                          function_ref<AAResults &(Function &)> AARGetter,
443                          Module &M, const ModuleSummaryIndex *Index) {
444   // Split module if splitting is enabled and it contains any type metadata.
445   if (requiresSplit(M))
446     return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
447 
448   // Otherwise we can just write it out as a regular module.
449 
450   // Save the module hash produced for the full bitcode, which will
451   // be used in the backends, and use that in the minimized bitcode
452   // produced for the full link.
453   ModuleHash ModHash = {{0}};
454   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
455                      /*GenerateHash=*/true, &ModHash);
456   // If a minimized bitcode module was requested for the thin link, only
457   // the information that is needed by thin link will be written in the
458   // given OS.
459   if (ThinLinkOS && Index)
460     WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
461 }
462 
463 class WriteThinLTOBitcode : public ModulePass {
464   raw_ostream &OS; // raw_ostream to print on
465   // The output stream on which to emit a minimized module for use
466   // just in the thin link, if requested.
467   raw_ostream *ThinLinkOS;
468 
469 public:
470   static char ID; // Pass identification, replacement for typeid
WriteThinLTOBitcode()471   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
472     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
473   }
474 
WriteThinLTOBitcode(raw_ostream & o,raw_ostream * ThinLinkOS)475   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
476       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
477     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
478   }
479 
getPassName() const480   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
481 
runOnModule(Module & M)482   bool runOnModule(Module &M) override {
483     const ModuleSummaryIndex *Index =
484         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
485     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
486     return true;
487   }
getAnalysisUsage(AnalysisUsage & AU) const488   void getAnalysisUsage(AnalysisUsage &AU) const override {
489     AU.setPreservesAll();
490     AU.addRequired<AssumptionCacheTracker>();
491     AU.addRequired<ModuleSummaryIndexWrapperPass>();
492     AU.addRequired<TargetLibraryInfoWrapperPass>();
493   }
494 };
495 } // anonymous namespace
496 
497 char WriteThinLTOBitcode::ID = 0;
498 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
499                       "Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)500 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
501 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
502 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
503 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
504                     "Write ThinLTO Bitcode", false, true)
505 
506 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
507                                                 raw_ostream *ThinLinkOS) {
508   return new WriteThinLTOBitcode(Str, ThinLinkOS);
509 }
510 
511 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)512 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
513   FunctionAnalysisManager &FAM =
514       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
515   writeThinLTOBitcode(OS, ThinLinkOS,
516                       [&FAM](Function &F) -> AAResults & {
517                         return FAM.getResult<AAManager>(F);
518                       },
519                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
520   return PreservedAnalyses::all();
521 }
522