1;;  Mips.md	     Machine Description for MIPS based processors
2;;  Copyright (C) 1989-2013 Free Software Foundation, Inc.
3;;  Contributed by   A. Lichnewsky, lich@inria.inria.fr
4;;  Changes by       Michael Meissner, meissner@osf.org
5;;  64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
6;;  Brendan Eich, brendan@microunity.com.
7
8;; This file is part of GCC.
9
10;; GCC is free software; you can redistribute it and/or modify
11;; it under the terms of the GNU General Public License as published by
12;; the Free Software Foundation; either version 3, or (at your option)
13;; any later version.
14
15;; GCC is distributed in the hope that it will be useful,
16;; but WITHOUT ANY WARRANTY; without even the implied warranty of
17;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18;; GNU General Public License for more details.
19
20;; You should have received a copy of the GNU General Public License
21;; along with GCC; see the file COPYING3.  If not see
22;; <http://www.gnu.org/licenses/>.
23
24(define_enum "processor" [
25  r3000
26  4kc
27  4kp
28  5kc
29  5kf
30  20kc
31  24kc
32  24kf2_1
33  24kf1_1
34  74kc
35  74kf2_1
36  74kf1_1
37  74kf3_2
38  loongson_2e
39  loongson_2f
40  loongson_3a
41  m4k
42  octeon
43  octeon2
44  r3900
45  r6000
46  r4000
47  r4100
48  r4111
49  r4120
50  r4130
51  r4300
52  r4600
53  r4650
54  r4700
55  r5000
56  r5400
57  r5500
58  r7000
59  r8000
60  r9000
61  r10000
62  sb1
63  sb1a
64  sr71000
65  xlr
66  xlp
67])
68
69(define_c_enum "unspec" [
70  ;; Unaligned accesses.
71  UNSPEC_LOAD_LEFT
72  UNSPEC_LOAD_RIGHT
73  UNSPEC_STORE_LEFT
74  UNSPEC_STORE_RIGHT
75
76  ;; Floating-point moves.
77  UNSPEC_LOAD_LOW
78  UNSPEC_LOAD_HIGH
79  UNSPEC_STORE_WORD
80  UNSPEC_MFHC1
81  UNSPEC_MTHC1
82
83  ;; HI/LO moves.
84  UNSPEC_MFHI
85  UNSPEC_MTHI
86  UNSPEC_SET_HILO
87
88  ;; GP manipulation.
89  UNSPEC_LOADGP
90  UNSPEC_COPYGP
91  UNSPEC_MOVE_GP
92  UNSPEC_POTENTIAL_CPRESTORE
93  UNSPEC_CPRESTORE
94  UNSPEC_RESTORE_GP
95  UNSPEC_EH_RETURN
96  UNSPEC_GP
97  UNSPEC_SET_GOT_VERSION
98  UNSPEC_UPDATE_GOT_VERSION
99
100  ;; Symbolic accesses.
101  UNSPEC_LOAD_CALL
102  UNSPEC_LOAD_GOT
103  UNSPEC_TLS_LDM
104  UNSPEC_TLS_GET_TP
105  UNSPEC_UNSHIFTED_HIGH
106
107  ;; MIPS16 constant pools.
108  UNSPEC_ALIGN
109  UNSPEC_CONSTTABLE_INT
110  UNSPEC_CONSTTABLE_FLOAT
111
112  ;; Blockage and synchronisation.
113  UNSPEC_BLOCKAGE
114  UNSPEC_CLEAR_HAZARD
115  UNSPEC_RDHWR
116  UNSPEC_SYNCI
117  UNSPEC_SYNC
118
119  ;; Cache manipulation.
120  UNSPEC_MIPS_CACHE
121  UNSPEC_R10K_CACHE_BARRIER
122
123  ;; Interrupt handling.
124  UNSPEC_ERET
125  UNSPEC_DERET
126  UNSPEC_DI
127  UNSPEC_EHB
128  UNSPEC_RDPGPR
129  UNSPEC_COP0
130
131  ;; Used in a call expression in place of args_size.  It's present for PIC
132  ;; indirect calls where it contains args_size and the function symbol.
133  UNSPEC_CALL_ATTR
134
135  ;; MIPS16 casesi jump table dispatch.
136  UNSPEC_CASESI_DISPATCH
137
138  ;; Stack checking.
139  UNSPEC_PROBE_STACK_RANGE
140])
141
142(define_constants
143  [(TLS_GET_TP_REGNUM		3)
144   (MIPS16_T_REGNUM		24)
145   (PIC_FUNCTION_ADDR_REGNUM	25)
146   (RETURN_ADDR_REGNUM		31)
147   (CPRESTORE_SLOT_REGNUM	76)
148   (GOT_VERSION_REGNUM		79)
149
150   ;; PIC long branch sequences are never longer than 100 bytes.
151   (MAX_PIC_BRANCH_LENGTH	100)
152  ]
153)
154
155(include "predicates.md")
156(include "constraints.md")
157
158;; ....................
159;;
160;;	Attributes
161;;
162;; ....................
163
164(define_attr "got" "unset,xgot_high,load"
165  (const_string "unset"))
166
167;; For jal instructions, this attribute is DIRECT when the target address
168;; is symbolic and INDIRECT when it is a register.
169(define_attr "jal" "unset,direct,indirect"
170  (const_string "unset"))
171
172;; This attribute is YES if the instruction is a jal macro (not a
173;; real jal instruction).
174;;
175;; jal is always a macro for TARGET_CALL_CLOBBERED_GP because it includes
176;; an instruction to restore $gp.  Direct jals are also macros for
177;; !TARGET_ABSOLUTE_JUMPS because they first load the target address
178;; into a register.
179(define_attr "jal_macro" "no,yes"
180  (cond [(eq_attr "jal" "direct")
181	 (symbol_ref "(TARGET_CALL_CLOBBERED_GP || !TARGET_ABSOLUTE_JUMPS
182		       ? JAL_MACRO_YES : JAL_MACRO_NO)")
183	 (eq_attr "jal" "indirect")
184	 (symbol_ref "(TARGET_CALL_CLOBBERED_GP
185		       ? JAL_MACRO_YES : JAL_MACRO_NO)")]
186	(const_string "no")))
187
188;; Classification of moves, extensions and truncations.  Most values
189;; are as for "type" (see below) but there are also the following
190;; move-specific values:
191;;
192;; constN	move an N-constraint integer into a MIPS16 register
193;; sll0		"sll DEST,SRC,0", which on 64-bit targets is guaranteed
194;;		to produce a sign-extended DEST, even if SRC is not
195;;		properly sign-extended
196;; ext_ins	EXT, DEXT, INS or DINS instruction
197;; andi		a single ANDI instruction
198;; loadpool	move a constant into a MIPS16 register by loading it
199;;		from the pool
200;; shift_shift	a shift left followed by a shift right
201;;
202;; This attribute is used to determine the instruction's length and
203;; scheduling type.  For doubleword moves, the attribute always describes
204;; the split instructions; in some cases, it is more appropriate for the
205;; scheduling type to be "multi" instead.
206(define_attr "move_type"
207  "unknown,load,fpload,store,fpstore,mtc,mfc,mtlo,mflo,imul,move,fmove,
208   const,constN,signext,ext_ins,logical,arith,sll0,andi,loadpool,
209   shift_shift"
210  (const_string "unknown"))
211
212(define_attr "alu_type" "unknown,add,sub,not,nor,and,or,xor"
213  (const_string "unknown"))
214
215;; Main data type used by the insn
216(define_attr "mode" "unknown,none,QI,HI,SI,DI,TI,SF,DF,TF,FPSW"
217  (const_string "unknown"))
218
219;; True if the main data type is twice the size of a word.
220(define_attr "dword_mode" "no,yes"
221  (cond [(and (eq_attr "mode" "DI,DF")
222	      (not (match_test "TARGET_64BIT")))
223	 (const_string "yes")
224
225	 (and (eq_attr "mode" "TI,TF")
226	      (match_test "TARGET_64BIT"))
227	 (const_string "yes")]
228	(const_string "no")))
229
230;; Attributes describing a sync loop.  These loops have the form:
231;;
232;;       if (RELEASE_BARRIER == YES) sync
233;;    1: OLDVAL = *MEM
234;;       if ((OLDVAL & INCLUSIVE_MASK) != REQUIRED_OLDVAL) goto 2
235;;         CMP  = 0 [delay slot]
236;;       $TMP1 = OLDVAL & EXCLUSIVE_MASK
237;;       $TMP2 = INSN1 (OLDVAL, INSN1_OP2)
238;;       $TMP3 = INSN2 ($TMP2, INCLUSIVE_MASK)
239;;       $AT |= $TMP1 | $TMP3
240;;       if (!commit (*MEM = $AT)) goto 1.
241;;         if (INSN1 != MOVE && INSN1 != LI) NEWVAL = $TMP3 [delay slot]
242;;       CMP  = 1
243;;       if (ACQUIRE_BARRIER == YES) sync
244;;    2:
245;;
246;; where "$" values are temporaries and where the other values are
247;; specified by the attributes below.  Values are specified as operand
248;; numbers and insns are specified as enums.  If no operand number is
249;; specified, the following values are used instead:
250;;
251;;    - OLDVAL: $AT
252;;    - CMP: NONE
253;;    - NEWVAL: $AT
254;;    - INCLUSIVE_MASK: -1
255;;    - REQUIRED_OLDVAL: OLDVAL & INCLUSIVE_MASK
256;;    - EXCLUSIVE_MASK: 0
257;;
258;; MEM and INSN1_OP2 are required.
259;;
260;; Ideally, the operand attributes would be integers, with -1 meaning "none",
261;; but the gen* programs don't yet support that.
262(define_attr "sync_mem" "none,0,1,2,3,4,5" (const_string "none"))
263(define_attr "sync_oldval" "none,0,1,2,3,4,5" (const_string "none"))
264(define_attr "sync_cmp" "none,0,1,2,3,4,5" (const_string "none"))
265(define_attr "sync_newval" "none,0,1,2,3,4,5" (const_string "none"))
266(define_attr "sync_inclusive_mask" "none,0,1,2,3,4,5" (const_string "none"))
267(define_attr "sync_exclusive_mask" "none,0,1,2,3,4,5" (const_string "none"))
268(define_attr "sync_required_oldval" "none,0,1,2,3,4,5" (const_string "none"))
269(define_attr "sync_insn1_op2" "none,0,1,2,3,4,5" (const_string "none"))
270(define_attr "sync_insn1" "move,li,addu,addiu,subu,and,andi,or,ori,xor,xori"
271  (const_string "move"))
272(define_attr "sync_insn2" "nop,and,xor,not"
273  (const_string "nop"))
274;; Memory model specifier.
275;; "0"-"9" values specify the operand that stores the memory model value.
276;; "10" specifies MEMMODEL_ACQ_REL,
277;; "11" specifies MEMMODEL_ACQUIRE.
278(define_attr "sync_memmodel" "" (const_int 10))
279
280;; Accumulator operand for madd patterns.
281(define_attr "accum_in" "none,0,1,2,3,4,5" (const_string "none"))
282
283;; Classification of each insn.
284;; branch	conditional branch
285;; jump		unconditional jump
286;; call		unconditional call
287;; load		load instruction(s)
288;; fpload	floating point load
289;; fpidxload    floating point indexed load
290;; store	store instruction(s)
291;; fpstore	floating point store
292;; fpidxstore	floating point indexed store
293;; prefetch	memory prefetch (register + offset)
294;; prefetchx	memory indexed prefetch (register + register)
295;; condmove	conditional moves
296;; mtc		transfer to coprocessor
297;; mfc		transfer from coprocessor
298;; mthi		transfer to a hi register
299;; mtlo		transfer to a lo register
300;; mfhi		transfer from a hi register
301;; mflo		transfer from a lo register
302;; const	load constant
303;; arith	integer arithmetic instructions
304;; logical      integer logical instructions
305;; shift	integer shift instructions
306;; slt		set less than instructions
307;; signext      sign extend instructions
308;; clz		the clz and clo instructions
309;; pop		the pop instruction
310;; trap		trap if instructions
311;; imul		integer multiply 2 operands
312;; imul3	integer multiply 3 operands
313;; imul3nc	integer multiply 3 operands without clobbering HI/LO
314;; imadd	integer multiply-add
315;; idiv		integer divide 2 operands
316;; idiv3	integer divide 3 operands
317;; move		integer register move ({,D}ADD{,U} with rt = 0)
318;; fmove	floating point register move
319;; fadd		floating point add/subtract
320;; fmul		floating point multiply
321;; fmadd	floating point multiply-add
322;; fdiv		floating point divide
323;; frdiv	floating point reciprocal divide
324;; frdiv1	floating point reciprocal divide step 1
325;; frdiv2	floating point reciprocal divide step 2
326;; fabs		floating point absolute value
327;; fneg		floating point negation
328;; fcmp		floating point compare
329;; fcvt		floating point convert
330;; fsqrt	floating point square root
331;; frsqrt       floating point reciprocal square root
332;; frsqrt1      floating point reciprocal square root step1
333;; frsqrt2      floating point reciprocal square root step2
334;; dspmac       DSP MAC instructions not saturating the accumulator
335;; dspmacsat    DSP MAC instructions that saturate the accumulator
336;; accext       DSP accumulator extract instructions
337;; accmod       DSP accumulator modify instructions
338;; dspalu       DSP ALU instructions not saturating the result
339;; dspalusat    DSP ALU instructions that saturate the result
340;; multi	multiword sequence (or user asm statements)
341;; atomic	atomic memory update instruction
342;; syncloop	memory atomic operation implemented as a sync loop
343;; nop		no operation
344;; ghost	an instruction that produces no real code
345(define_attr "type"
346  "unknown,branch,jump,call,load,fpload,fpidxload,store,fpstore,fpidxstore,
347   prefetch,prefetchx,condmove,mtc,mfc,mthi,mtlo,mfhi,mflo,const,arith,logical,
348   shift,slt,signext,clz,pop,trap,imul,imul3,imul3nc,imadd,idiv,idiv3,move,
349   fmove,fadd,fmul,fmadd,fdiv,frdiv,frdiv1,frdiv2,fabs,fneg,fcmp,fcvt,fsqrt,
350   frsqrt,frsqrt1,frsqrt2,dspmac,dspmacsat,accext,accmod,dspalu,dspalusat,
351   multi,atomic,syncloop,nop,ghost"
352  (cond [(eq_attr "jal" "!unset") (const_string "call")
353	 (eq_attr "got" "load") (const_string "load")
354
355	 (eq_attr "alu_type" "add,sub") (const_string "arith")
356
357	 (eq_attr "alu_type" "not,nor,and,or,xor") (const_string "logical")
358
359	 ;; If a doubleword move uses these expensive instructions,
360	 ;; it is usually better to schedule them in the same way
361	 ;; as the singleword form, rather than as "multi".
362	 (eq_attr "move_type" "load") (const_string "load")
363	 (eq_attr "move_type" "fpload") (const_string "fpload")
364	 (eq_attr "move_type" "store") (const_string "store")
365	 (eq_attr "move_type" "fpstore") (const_string "fpstore")
366	 (eq_attr "move_type" "mtc") (const_string "mtc")
367	 (eq_attr "move_type" "mfc") (const_string "mfc")
368	 (eq_attr "move_type" "mtlo") (const_string "mtlo")
369	 (eq_attr "move_type" "mflo") (const_string "mflo")
370
371	 ;; These types of move are always single insns.
372	 (eq_attr "move_type" "imul") (const_string "imul")
373	 (eq_attr "move_type" "fmove") (const_string "fmove")
374	 (eq_attr "move_type" "loadpool") (const_string "load")
375	 (eq_attr "move_type" "signext") (const_string "signext")
376	 (eq_attr "move_type" "ext_ins") (const_string "arith")
377	 (eq_attr "move_type" "arith") (const_string "arith")
378	 (eq_attr "move_type" "logical") (const_string "logical")
379	 (eq_attr "move_type" "sll0") (const_string "shift")
380	 (eq_attr "move_type" "andi") (const_string "logical")
381
382	 ;; These types of move are always split.
383	 (eq_attr "move_type" "constN,shift_shift")
384	   (const_string "multi")
385
386	 ;; These types of move are split for doubleword modes only.
387	 (and (eq_attr "move_type" "move,const")
388	      (eq_attr "dword_mode" "yes"))
389	   (const_string "multi")
390	 (eq_attr "move_type" "move") (const_string "move")
391	 (eq_attr "move_type" "const") (const_string "const")
392	 (eq_attr "sync_mem" "!none") (const_string "syncloop")]
393	(const_string "unknown")))
394
395;; Mode for conversion types (fcvt)
396;; I2S          integer to float single (SI/DI to SF)
397;; I2D          integer to float double (SI/DI to DF)
398;; S2I          float to integer (SF to SI/DI)
399;; D2I          float to integer (DF to SI/DI)
400;; D2S          double to float single
401;; S2D          float single to double
402
403(define_attr "cnv_mode" "unknown,I2S,I2D,S2I,D2I,D2S,S2D"
404  (const_string "unknown"))
405
406;; Is this an extended instruction in mips16 mode?
407(define_attr "extended_mips16" "no,yes"
408  (if_then_else (ior (eq_attr "move_type" "sll0")
409		     (eq_attr "type" "branch")
410		     (eq_attr "jal" "direct"))
411		(const_string "yes")
412		(const_string "no")))
413
414;; Length of instruction in bytes.
415(define_attr "length" ""
416   (cond [;; Direct branch instructions have a range of [-0x20000,0x1fffc],
417	  ;; relative to the address of the delay slot.  If a branch is
418	  ;; outside this range, we have a choice of two sequences.
419	  ;; For PIC, an out-of-range branch like:
420	  ;;
421	  ;;	bne	r1,r2,target
422	  ;;	dslot
423	  ;;
424	  ;; becomes the equivalent of:
425	  ;;
426	  ;;	beq	r1,r2,1f
427	  ;;	dslot
428	  ;;	la	$at,target
429	  ;;	jr	$at
430	  ;;	nop
431	  ;; 1:
432	  ;;
433	  ;; The non-PIC case is similar except that we use a direct
434	  ;; jump instead of an la/jr pair.  Since the target of this
435	  ;; jump is an absolute 28-bit bit address (the other bits
436	  ;; coming from the address of the delay slot) this form cannot
437	  ;; cross a 256MB boundary.  We could provide the option of
438	  ;; using la/jr in this case too, but we do not do so at
439	  ;; present.
440	  ;;
441	  ;; The value we specify here does not account for the delay slot
442	  ;; instruction, whose length is added separately.  If the RTL
443	  ;; pattern has no explicit delay slot, mips_adjust_insn_length
444	  ;; will add the length of the implicit nop.  The range of
445	  ;; [-0x20000, 0x1fffc] from the address of the delay slot
446	  ;; therefore translates to a range of:
447	  ;;
448	  ;;    [-(0x20000 - sizeof (branch)), 0x1fffc - sizeof (slot)]
449	  ;; == [-0x1fffc, 0x1fff8]
450	  ;;
451	  ;; from the shorten_branches reference address.
452	  (and (eq_attr "type" "branch")
453	       (not (match_test "TARGET_MIPS16")))
454	  (cond [(and (le (minus (match_dup 0) (pc)) (const_int 131064))
455		      (le (minus (pc) (match_dup 0)) (const_int 131068)))
456		   (const_int 4)
457
458		 ;; The non-PIC case: branch, first delay slot, and J.
459		 (match_test "TARGET_ABSOLUTE_JUMPS")
460		   (const_int 12)]
461
462		 ;; Use MAX_PIC_BRANCH_LENGTH as a (gross) overestimate.
463		 ;; mips_adjust_insn_length substitutes the correct length.
464		 ;;
465		 ;; Note that we can't simply use (symbol_ref ...) here
466		 ;; because genattrtab needs to know the maximum length
467		 ;; of an insn.
468		 (const_int MAX_PIC_BRANCH_LENGTH))
469
470	  ;; An unextended MIPS16 branch has a range of [-0x100, 0xfe]
471	  ;; from the address of the following instruction, which leads
472	  ;; to a range of:
473	  ;;
474	  ;;    [-(0x100 - sizeof (branch)), 0xfe]
475	  ;; == [-0xfe, 0xfe]
476	  ;;
477	  ;; from the shorten_branches reference address.  Extended branches
478	  ;; likewise have a range of [-0x10000, 0xfffe] from the address
479	  ;; of the following instruction, which leads to a range of:
480	  ;;
481	  ;;    [-(0x10000 - sizeof (branch)), 0xfffe]
482	  ;; == [-0xfffc, 0xfffe]
483	  ;;
484	  ;; from the reference address.
485	  ;;
486	  ;; When a branch is out of range, mips_reorg splits it into a form
487	  ;; that uses in-range branches.  There are four basic sequences:
488	  ;;
489	  ;; (1) Absolute addressing with a readable text segment
490	  ;;     (32-bit addresses):
491	  ;;
492	  ;;	 b... foo		2 bytes
493	  ;;	 move $1,$2		2 bytes
494	  ;;     lw $2,label		2 bytes
495	  ;;	 jr $2			2 bytes
496	  ;;	 move $2,$1		2 bytes
497	  ;;	 .align 2		0 or 2 bytes
498	  ;; label:
499	  ;;	 .word target		4 bytes
500	  ;; foo:
501	  ;;				(16 bytes in the worst case)
502	  ;;
503	  ;; (2) Absolute addressing with a readable text segment
504	  ;;     (64-bit addresses):
505	  ;;
506	  ;;	 b... foo		2 bytes
507	  ;;	 move $1,$2		2 bytes
508	  ;;     ld $2,label		2 bytes
509	  ;;	 jr $2			2 bytes
510	  ;;	 move $2,$1		2 bytes
511	  ;;	 .align 3		0 to 6 bytes
512	  ;; label:
513	  ;;	 .dword target		8 bytes
514	  ;; foo:
515	  ;;				(24 bytes in the worst case)
516	  ;;
517	  ;; (3) Absolute addressing without a readable text segment
518	  ;;     (which requires 32-bit addresses at present):
519	  ;;
520	  ;;	 b... foo		2 bytes
521	  ;;	 move $1,$2		2 bytes
522	  ;;     lui $2,%hi(target)	4 bytes
523	  ;;	 sll $2,8		2 bytes
524	  ;;	 sll $2,8		2 bytes
525	  ;;     addiu $2,%lo(target)	4 bytes
526	  ;;	 jr $2			2 bytes
527	  ;;	 move $2,$1		2 bytes
528	  ;; foo:
529	  ;;				(20 bytes)
530	  ;;
531	  ;; (4) PIC addressing (which requires 32-bit addresses at present):
532	  ;;
533	  ;;	 b... foo		2 bytes
534	  ;;	 move $1,$2		2 bytes
535	  ;;     lw $2,cprestore	0, 2 or 4 bytes
536	  ;;	 lw $2,%got(target)($2)	4 bytes
537	  ;;     addiu $2,%lo(target)	4 bytes
538	  ;;	 jr $2			2 bytes
539	  ;;	 move $2,$1		2 bytes
540	  ;; foo:
541	  ;;				(20 bytes in the worst case)
542	  ;;
543	  ;; Note that the conditions test adjusted lengths, whereas the
544	  ;; result is an unadjusted length, and is thus twice the true value.
545	  (and (eq_attr "type" "branch")
546	       (match_test "TARGET_MIPS16"))
547	  (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
548		      (le (minus (pc) (match_dup 0)) (const_int 254)))
549		 (const_int 4)
550		 (and (le (minus (match_dup 0) (pc)) (const_int 65534))
551		      (le (minus (pc) (match_dup 0)) (const_int 65532)))
552		 (const_int 8)
553		 (and (match_test "TARGET_ABICALLS")
554		      (not (match_test "TARGET_ABSOLUTE_ABICALLS")))
555		 (const_int 40)
556		 (match_test "Pmode == SImode")
557		 (const_int 32)
558		 ] (const_int 48))
559
560	  (and (eq_attr "extended_mips16" "yes")
561	       (match_test "TARGET_MIPS16"))
562	  (const_int 8)
563
564	  ;; "Ghost" instructions occupy no space.
565	  (eq_attr "type" "ghost")
566	  (const_int 0)
567
568	  (eq_attr "got" "load")
569	  (if_then_else (match_test "TARGET_MIPS16")
570			(const_int 8)
571			(const_int 4))
572	  (eq_attr "got" "xgot_high")
573	  (const_int 8)
574
575	  ;; In general, constant-pool loads are extended instructions.
576	  (eq_attr "move_type" "loadpool")
577	  (const_int 8)
578
579	  ;; SHIFT_SHIFTs are decomposed into two separate instructions.
580	  ;; They are extended instructions on MIPS16 targets.
581	  (eq_attr "move_type" "shift_shift")
582	  (if_then_else (match_test "TARGET_MIPS16")
583			(const_int 16)
584			(const_int 8))
585
586	  ;; Check for doubleword moves that are decomposed into two
587	  ;; instructions.
588	  (and (eq_attr "move_type" "mtc,mfc,mtlo,mflo,move")
589	       (eq_attr "dword_mode" "yes"))
590	  (const_int 8)
591
592	  ;; Doubleword CONST{,N} moves are split into two word
593	  ;; CONST{,N} moves.
594	  (and (eq_attr "move_type" "const,constN")
595	       (eq_attr "dword_mode" "yes"))
596	  (symbol_ref "mips_split_const_insns (operands[1]) * 4")
597
598	  ;; Otherwise, constants, loads and stores are handled by external
599	  ;; routines.
600	  (eq_attr "move_type" "const,constN")
601	  (symbol_ref "mips_const_insns (operands[1]) * 4")
602	  (eq_attr "move_type" "load,fpload")
603	  (symbol_ref "mips_load_store_insns (operands[1], insn) * 4")
604	  (eq_attr "move_type" "store,fpstore")
605	  (cond [(not (match_test "TARGET_FIX_24K"))
606	         (symbol_ref "mips_load_store_insns (operands[0], insn) * 4")]
607	         (symbol_ref "mips_load_store_insns (operands[0], insn) * 4 + 4"))
608
609	  ;; In the worst case, a call macro will take 8 instructions:
610	  ;;
611	  ;;	 lui $25,%call_hi(FOO)
612	  ;;	 addu $25,$25,$28
613	  ;;     lw $25,%call_lo(FOO)($25)
614	  ;;	 nop
615	  ;;	 jalr $25
616	  ;;	 nop
617	  ;;	 lw $gp,X($sp)
618	  ;;	 nop
619	  (eq_attr "jal_macro" "yes")
620	  (const_int 32)
621
622	  ;; Various VR4120 errata require a nop to be inserted after a macc
623	  ;; instruction.  The assembler does this for us, so account for
624	  ;; the worst-case length here.
625	  (and (eq_attr "type" "imadd")
626	       (match_test "TARGET_FIX_VR4120"))
627	  (const_int 8)
628
629	  ;; VR4120 errata MD(4): if there are consecutive dmult instructions,
630	  ;; the result of the second one is missed.  The assembler should work
631	  ;; around this by inserting a nop after the first dmult.
632	  (and (eq_attr "type" "imul,imul3")
633	       (and (eq_attr "mode" "DI")
634		    (match_test "TARGET_FIX_VR4120")))
635	  (const_int 8)
636
637	  (eq_attr "type" "idiv,idiv3")
638	  (symbol_ref "mips_idiv_insns () * 4")
639
640	  (not (eq_attr "sync_mem" "none"))
641	  (symbol_ref "mips_sync_loop_insns (insn, operands) * 4")
642	  ] (const_int 4)))
643
644;; Attribute describing the processor.
645(define_enum_attr "cpu" "processor"
646  (const (symbol_ref "mips_tune")))
647
648;; The type of hardware hazard associated with this instruction.
649;; DELAY means that the next instruction cannot read the result
650;; of this one.  HILO means that the next two instructions cannot
651;; write to HI or LO.
652(define_attr "hazard" "none,delay,hilo"
653  (cond [(and (eq_attr "type" "load,fpload,fpidxload")
654	      (match_test "ISA_HAS_LOAD_DELAY"))
655	 (const_string "delay")
656
657	 (and (eq_attr "type" "mfc,mtc")
658	      (match_test "ISA_HAS_XFER_DELAY"))
659	 (const_string "delay")
660
661	 (and (eq_attr "type" "fcmp")
662	      (match_test "ISA_HAS_FCMP_DELAY"))
663	 (const_string "delay")
664
665	 ;; The r4000 multiplication patterns include an mflo instruction.
666	 (and (eq_attr "type" "imul")
667	      (match_test "TARGET_FIX_R4000"))
668	 (const_string "hilo")
669
670	 (and (eq_attr "type" "mfhi,mflo")
671	      (not (match_test "ISA_HAS_HILO_INTERLOCKS")))
672	 (const_string "hilo")]
673	(const_string "none")))
674
675;; Is it a single instruction?
676(define_attr "single_insn" "no,yes"
677  (symbol_ref "(get_attr_length (insn) == (TARGET_MIPS16 ? 2 : 4)
678		? SINGLE_INSN_YES : SINGLE_INSN_NO)"))
679
680;; Can the instruction be put into a delay slot?
681(define_attr "can_delay" "no,yes"
682  (if_then_else (and (eq_attr "type" "!branch,call,jump")
683		     (and (eq_attr "hazard" "none")
684			  (eq_attr "single_insn" "yes")))
685		(const_string "yes")
686		(const_string "no")))
687
688;; Attribute defining whether or not we can use the branch-likely
689;; instructions.
690(define_attr "branch_likely" "no,yes"
691  (if_then_else (match_test "GENERATE_BRANCHLIKELY")
692		(const_string "yes")
693		(const_string "no")))
694
695;; True if an instruction might assign to hi or lo when reloaded.
696;; This is used by the TUNE_MACC_CHAINS code.
697(define_attr "may_clobber_hilo" "no,yes"
698  (if_then_else (eq_attr "type" "imul,imul3,imadd,idiv,mthi,mtlo")
699		(const_string "yes")
700		(const_string "no")))
701
702;; Describe a user's asm statement.
703(define_asm_attributes
704  [(set_attr "type" "multi")
705   (set_attr "can_delay" "no")])
706
707;; This mode iterator allows 32-bit and 64-bit GPR patterns to be generated
708;; from the same template.
709(define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
710
711;; A copy of GPR that can be used when a pattern has two independent
712;; modes.
713(define_mode_iterator GPR2 [SI (DI "TARGET_64BIT")])
714
715;; This mode iterator allows :HILO to be used as the mode of the
716;; concatenated HI and LO registers.
717(define_mode_iterator HILO [(DI "!TARGET_64BIT") (TI "TARGET_64BIT")])
718
719;; This mode iterator allows :P to be used for patterns that operate on
720;; pointer-sized quantities.  Exactly one of the two alternatives will match.
721(define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
722
723;; This mode iterator allows :MOVECC to be used anywhere that a
724;; conditional-move-type condition is needed.
725(define_mode_iterator MOVECC [SI (DI "TARGET_64BIT")
726                              (CC "TARGET_HARD_FLOAT && !TARGET_LOONGSON_2EF")])
727
728;; 32-bit integer moves for which we provide move patterns.
729(define_mode_iterator IMOVE32
730  [SI
731   (V2HI "TARGET_DSP")
732   (V4QI "TARGET_DSP")
733   (V2HQ "TARGET_DSP")
734   (V2UHQ "TARGET_DSP")
735   (V2HA "TARGET_DSP")
736   (V2UHA "TARGET_DSP")
737   (V4QQ "TARGET_DSP")
738   (V4UQQ "TARGET_DSP")])
739
740;; 64-bit modes for which we provide move patterns.
741(define_mode_iterator MOVE64
742  [DI DF
743   (V2SF "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT")
744   (V2SI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")
745   (V4HI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")
746   (V8QI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")])
747
748;; 128-bit modes for which we provide move patterns on 64-bit targets.
749(define_mode_iterator MOVE128 [TI TF])
750
751;; This mode iterator allows the QI and HI extension patterns to be
752;; defined from the same template.
753(define_mode_iterator SHORT [QI HI])
754
755;; Likewise the 64-bit truncate-and-shift patterns.
756(define_mode_iterator SUBDI [QI HI SI])
757
758;; This mode iterator allows :ANYF to be used wherever a scalar or vector
759;; floating-point mode is allowed.
760(define_mode_iterator ANYF [(SF "TARGET_HARD_FLOAT")
761			    (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")
762			    (V2SF "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT")])
763
764;; Like ANYF, but only applies to scalar modes.
765(define_mode_iterator SCALARF [(SF "TARGET_HARD_FLOAT")
766			       (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")])
767
768;; A floating-point mode for which moves involving FPRs may need to be split.
769(define_mode_iterator SPLITF
770  [(DF "!TARGET_64BIT && TARGET_DOUBLE_FLOAT")
771   (DI "!TARGET_64BIT && TARGET_DOUBLE_FLOAT")
772   (V2SF "!TARGET_64BIT && TARGET_PAIRED_SINGLE_FLOAT")
773   (V2SI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
774   (V4HI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
775   (V8QI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
776   (TF "TARGET_64BIT && TARGET_FLOAT64")])
777
778;; In GPR templates, a string like "<d>subu" will expand to "subu" in the
779;; 32-bit version and "dsubu" in the 64-bit version.
780(define_mode_attr d [(SI "") (DI "d")
781		     (QQ "") (HQ "") (SQ "") (DQ "d")
782		     (UQQ "") (UHQ "") (USQ "") (UDQ "d")
783		     (HA "") (SA "") (DA "d")
784		     (UHA "") (USA "") (UDA "d")])
785
786;; Same as d but upper-case.
787(define_mode_attr D [(SI "") (DI "D")
788		     (QQ "") (HQ "") (SQ "") (DQ "D")
789		     (UQQ "") (UHQ "") (USQ "") (UDQ "D")
790		     (HA "") (SA "") (DA "D")
791		     (UHA "") (USA "") (UDA "D")])
792
793;; This attribute gives the length suffix for a load or store instruction.
794;; The same suffixes work for zero and sign extensions.
795(define_mode_attr size [(QI "b") (HI "h") (SI "w") (DI "d")])
796(define_mode_attr SIZE [(QI "B") (HI "H") (SI "W") (DI "D")])
797
798;; This attributes gives the mode mask of a SHORT.
799(define_mode_attr mask [(QI "0x00ff") (HI "0xffff")])
800
801;; Mode attributes for GPR loads.
802(define_mode_attr load [(SI "lw") (DI "ld")])
803;; Instruction names for stores.
804(define_mode_attr store [(QI "sb") (HI "sh") (SI "sw") (DI "sd")])
805
806;; Similarly for MIPS IV indexed FPR loads and stores.
807(define_mode_attr loadx [(SF "lwxc1") (DF "ldxc1") (V2SF "ldxc1")])
808(define_mode_attr storex [(SF "swxc1") (DF "sdxc1") (V2SF "sdxc1")])
809
810;; The unextended ranges of the MIPS16 addiu and daddiu instructions
811;; are different.  Some forms of unextended addiu have an 8-bit immediate
812;; field but the equivalent daddiu has only a 5-bit field.
813(define_mode_attr si8_di5 [(SI "8") (DI "5")])
814
815;; This attribute gives the best constraint to use for registers of
816;; a given mode.
817(define_mode_attr reg [(SI "d") (DI "d") (CC "z")])
818
819;; This attribute gives the format suffix for floating-point operations.
820(define_mode_attr fmt [(SF "s") (DF "d") (V2SF "ps")])
821
822;; This attribute gives the upper-case mode name for one unit of a
823;; floating-point mode.
824(define_mode_attr UNITMODE [(SF "SF") (DF "DF") (V2SF "SF")])
825
826;; This attribute gives the integer mode that has the same size as a
827;; fixed-point mode.
828(define_mode_attr IMODE [(QQ "QI") (HQ "HI") (SQ "SI") (DQ "DI")
829			 (UQQ "QI") (UHQ "HI") (USQ "SI") (UDQ "DI")
830			 (HA "HI") (SA "SI") (DA "DI")
831			 (UHA "HI") (USA "SI") (UDA "DI")
832			 (V4UQQ "SI") (V2UHQ "SI") (V2UHA "SI")
833			 (V2HQ "SI") (V2HA "SI")])
834
835;; This attribute gives the integer mode that has half the size of
836;; the controlling mode.
837(define_mode_attr HALFMODE [(DF "SI") (DI "SI") (V2SF "SI")
838			    (V2SI "SI") (V4HI "SI") (V8QI "SI")
839			    (TF "DI")])
840
841;; This attribute works around the early SB-1 rev2 core "F2" erratum:
842;;
843;; In certain cases, div.s and div.ps may have a rounding error
844;; and/or wrong inexact flag.
845;;
846;; Therefore, we only allow div.s if not working around SB-1 rev2
847;; errata or if a slight loss of precision is OK.
848(define_mode_attr divide_condition
849  [DF (SF "!TARGET_FIX_SB1 || flag_unsafe_math_optimizations")
850   (V2SF "TARGET_SB1 && (!TARGET_FIX_SB1 || flag_unsafe_math_optimizations)")])
851
852;; This attribute gives the conditions under which SQRT.fmt instructions
853;; can be used.
854(define_mode_attr sqrt_condition
855  [(SF "!ISA_MIPS1") (DF "!ISA_MIPS1") (V2SF "TARGET_SB1")])
856
857;; This attribute gives the conditions under which RECIP.fmt and RSQRT.fmt
858;; instructions can be used.  The MIPS32 and MIPS64 ISAs say that RECIP.D
859;; and RSQRT.D are unpredictable when doubles are stored in pairs of FPRs,
860;; so for safety's sake, we apply this restriction to all targets.
861(define_mode_attr recip_condition
862  [(SF "ISA_HAS_FP4")
863   (DF "ISA_HAS_FP4 && TARGET_FLOAT64")
864   (V2SF "TARGET_SB1")])
865
866;; This code iterator allows signed and unsigned widening multiplications
867;; to use the same template.
868(define_code_iterator any_extend [sign_extend zero_extend])
869
870;; This code iterator allows the two right shift instructions to be
871;; generated from the same template.
872(define_code_iterator any_shiftrt [ashiftrt lshiftrt])
873
874;; This code iterator allows the three shift instructions to be generated
875;; from the same template.
876(define_code_iterator any_shift [ashift ashiftrt lshiftrt])
877
878;; This code iterator allows unsigned and signed division to be generated
879;; from the same template.
880(define_code_iterator any_div [div udiv])
881
882;; This code iterator allows unsigned and signed modulus to be generated
883;; from the same template.
884(define_code_iterator any_mod [mod umod])
885
886;; This code iterator allows all native floating-point comparisons to be
887;; generated from the same template.
888(define_code_iterator fcond [unordered uneq unlt unle eq lt le])
889
890;; This code iterator is used for comparisons that can be implemented
891;; by swapping the operands.
892(define_code_iterator swapped_fcond [ge gt unge ungt])
893
894;; Equality operators.
895(define_code_iterator equality_op [eq ne])
896
897;; These code iterators allow the signed and unsigned scc operations to use
898;; the same template.
899(define_code_iterator any_gt [gt gtu])
900(define_code_iterator any_ge [ge geu])
901(define_code_iterator any_lt [lt ltu])
902(define_code_iterator any_le [le leu])
903
904(define_code_iterator any_return [return simple_return])
905
906;; <u> expands to an empty string when doing a signed operation and
907;; "u" when doing an unsigned operation.
908(define_code_attr u [(sign_extend "") (zero_extend "u")
909		     (div "") (udiv "u")
910		     (mod "") (umod "u")
911		     (gt "") (gtu "u")
912		     (ge "") (geu "u")
913		     (lt "") (ltu "u")
914		     (le "") (leu "u")])
915
916;; <U> is like <u> except uppercase.
917(define_code_attr U [(sign_extend "") (zero_extend "U")])
918
919;; <su> is like <u>, but the signed form expands to "s" rather than "".
920(define_code_attr su [(sign_extend "s") (zero_extend "u")])
921
922;; <optab> expands to the name of the optab for a particular code.
923(define_code_attr optab [(ashift "ashl")
924			 (ashiftrt "ashr")
925			 (lshiftrt "lshr")
926			 (ior "ior")
927			 (xor "xor")
928			 (and "and")
929			 (plus "add")
930			 (minus "sub")
931			 (return "return")
932			 (simple_return "simple_return")])
933
934;; <insn> expands to the name of the insn that implements a particular code.
935(define_code_attr insn [(ashift "sll")
936			(ashiftrt "sra")
937			(lshiftrt "srl")
938			(ior "or")
939			(xor "xor")
940			(and "and")
941			(plus "addu")
942			(minus "subu")])
943
944;; <immediate_insn> expands to the name of the insn that implements
945;; a particular code to operate on immediate values.
946(define_code_attr immediate_insn [(ior "ori")
947				  (xor "xori")
948				  (and "andi")])
949
950;; <fcond> is the c.cond.fmt condition associated with a particular code.
951(define_code_attr fcond [(unordered "un")
952			 (uneq "ueq")
953			 (unlt "ult")
954			 (unle "ule")
955			 (eq "eq")
956			 (lt "lt")
957			 (le "le")])
958
959;; Similar, but for swapped conditions.
960(define_code_attr swapped_fcond [(ge "le")
961				 (gt "lt")
962				 (unge "ule")
963				 (ungt "ult")])
964
965;; The value of the bit when the branch is taken for branch_bit patterns.
966;; Comparison is always against zero so this depends on the operator.
967(define_code_attr bbv [(eq "0") (ne "1")])
968
969;; This is the inverse value of bbv.
970(define_code_attr bbinv [(eq "1") (ne "0")])
971
972;; .........................
973;;
974;;	Branch, call and jump delay slots
975;;
976;; .........................
977
978(define_delay (and (eq_attr "type" "branch")
979		   (not (match_test "TARGET_MIPS16"))
980		   (eq_attr "branch_likely" "yes"))
981  [(eq_attr "can_delay" "yes")
982   (nil)
983   (eq_attr "can_delay" "yes")])
984
985;; Branches that don't have likely variants do not annul on false.
986(define_delay (and (eq_attr "type" "branch")
987		   (not (match_test "TARGET_MIPS16"))
988		   (eq_attr "branch_likely" "no"))
989  [(eq_attr "can_delay" "yes")
990   (nil)
991   (nil)])
992
993(define_delay (eq_attr "type" "jump")
994  [(eq_attr "can_delay" "yes")
995   (nil)
996   (nil)])
997
998(define_delay (and (eq_attr "type" "call")
999		   (eq_attr "jal_macro" "no"))
1000  [(eq_attr "can_delay" "yes")
1001   (nil)
1002   (nil)])
1003
1004;; Pipeline descriptions.
1005;;
1006;; generic.md provides a fallback for processors without a specific
1007;; pipeline description.  It is derived from the old define_function_unit
1008;; version and uses the "alu" and "imuldiv" units declared below.
1009;;
1010;; Some of the processor-specific files are also derived from old
1011;; define_function_unit descriptions and simply override the parts of
1012;; generic.md that don't apply.  The other processor-specific files
1013;; are self-contained.
1014(define_automaton "alu,imuldiv")
1015
1016(define_cpu_unit "alu" "alu")
1017(define_cpu_unit "imuldiv" "imuldiv")
1018
1019;; Ghost instructions produce no real code and introduce no hazards.
1020;; They exist purely to express an effect on dataflow.
1021(define_insn_reservation "ghost" 0
1022  (eq_attr "type" "ghost")
1023  "nothing")
1024
1025(include "4k.md")
1026(include "5k.md")
1027(include "20kc.md")
1028(include "24k.md")
1029(include "74k.md")
1030(include "3000.md")
1031(include "4000.md")
1032(include "4100.md")
1033(include "4130.md")
1034(include "4300.md")
1035(include "4600.md")
1036(include "5000.md")
1037(include "5400.md")
1038(include "5500.md")
1039(include "6000.md")
1040(include "7000.md")
1041(include "9000.md")
1042(include "10000.md")
1043(include "loongson2ef.md")
1044(include "loongson3a.md")
1045(include "octeon.md")
1046(include "sb1.md")
1047(include "sr71k.md")
1048(include "xlr.md")
1049(include "xlp.md")
1050(include "generic.md")
1051
1052;;
1053;;  ....................
1054;;
1055;;	CONDITIONAL TRAPS
1056;;
1057;;  ....................
1058;;
1059
1060(define_insn "trap"
1061  [(trap_if (const_int 1) (const_int 0))]
1062  ""
1063{
1064  if (ISA_HAS_COND_TRAP)
1065    return "teq\t$0,$0";
1066  else if (TARGET_MIPS16)
1067    return "break 0";
1068  else
1069    return "break";
1070}
1071  [(set_attr "type" "trap")])
1072
1073(define_expand "ctrap<mode>4"
1074  [(trap_if (match_operator 0 "comparison_operator"
1075			    [(match_operand:GPR 1 "reg_or_0_operand")
1076			     (match_operand:GPR 2 "arith_operand")])
1077	    (match_operand 3 "const_0_operand"))]
1078  "ISA_HAS_COND_TRAP"
1079{
1080  mips_expand_conditional_trap (operands[0]);
1081  DONE;
1082})
1083
1084(define_insn "*conditional_trap<mode>"
1085  [(trap_if (match_operator:GPR 0 "trap_comparison_operator"
1086				[(match_operand:GPR 1 "reg_or_0_operand" "dJ")
1087				 (match_operand:GPR 2 "arith_operand" "dI")])
1088	    (const_int 0))]
1089  "ISA_HAS_COND_TRAP"
1090  "t%C0\t%z1,%2"
1091  [(set_attr "type" "trap")])
1092
1093;;
1094;;  ....................
1095;;
1096;;	ADDITION
1097;;
1098;;  ....................
1099;;
1100
1101(define_insn "add<mode>3"
1102  [(set (match_operand:ANYF 0 "register_operand" "=f")
1103	(plus:ANYF (match_operand:ANYF 1 "register_operand" "f")
1104		   (match_operand:ANYF 2 "register_operand" "f")))]
1105  ""
1106  "add.<fmt>\t%0,%1,%2"
1107  [(set_attr "type" "fadd")
1108   (set_attr "mode" "<UNITMODE>")])
1109
1110(define_expand "add<mode>3"
1111  [(set (match_operand:GPR 0 "register_operand")
1112	(plus:GPR (match_operand:GPR 1 "register_operand")
1113		  (match_operand:GPR 2 "arith_operand")))]
1114  "")
1115
1116(define_insn "*add<mode>3"
1117  [(set (match_operand:GPR 0 "register_operand" "=d,d")
1118	(plus:GPR (match_operand:GPR 1 "register_operand" "d,d")
1119		  (match_operand:GPR 2 "arith_operand" "d,Q")))]
1120  "!TARGET_MIPS16"
1121  "@
1122    <d>addu\t%0,%1,%2
1123    <d>addiu\t%0,%1,%2"
1124  [(set_attr "alu_type" "add")
1125   (set_attr "mode" "<MODE>")])
1126
1127(define_insn "*add<mode>3_mips16"
1128  [(set (match_operand:GPR 0 "register_operand" "=ks,d,d,d,d")
1129	(plus:GPR (match_operand:GPR 1 "register_operand" "ks,ks,0,d,d")
1130		  (match_operand:GPR 2 "arith_operand" "Q,Q,Q,O,d")))]
1131  "TARGET_MIPS16"
1132  "@
1133    <d>addiu\t%0,%2
1134    <d>addiu\t%0,%1,%2
1135    <d>addiu\t%0,%2
1136    <d>addiu\t%0,%1,%2
1137    <d>addu\t%0,%1,%2"
1138  [(set_attr "alu_type" "add")
1139   (set_attr "mode" "<MODE>")
1140   (set_attr_alternative "length"
1141		[(if_then_else (match_operand 2 "m16_simm8_8")
1142			       (const_int 4)
1143			       (const_int 8))
1144		 (if_then_else (match_operand 2 "m16_uimm<si8_di5>_4")
1145			       (const_int 4)
1146			       (const_int 8))
1147		 (if_then_else (match_operand 2 "m16_simm<si8_di5>_1")
1148			       (const_int 4)
1149			       (const_int 8))
1150		 (if_then_else (match_operand 2 "m16_simm4_1")
1151			       (const_int 4)
1152			       (const_int 8))
1153		 (const_int 4)])])
1154
1155;; On the mips16, we can sometimes split an add of a constant which is
1156;; a 4 byte instruction into two adds which are both 2 byte
1157;; instructions.  There are two cases: one where we are adding a
1158;; constant plus a register to another register, and one where we are
1159;; simply adding a constant to a register.
1160
1161(define_split
1162  [(set (match_operand:SI 0 "d_operand")
1163	(plus:SI (match_dup 0)
1164		 (match_operand:SI 1 "const_int_operand")))]
1165  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
1166   && ((INTVAL (operands[1]) > 0x7f
1167	&& INTVAL (operands[1]) <= 0x7f + 0x7f)
1168       || (INTVAL (operands[1]) < - 0x80
1169	   && INTVAL (operands[1]) >= - 0x80 - 0x80))"
1170  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
1171   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
1172{
1173  HOST_WIDE_INT val = INTVAL (operands[1]);
1174
1175  if (val >= 0)
1176    {
1177      operands[1] = GEN_INT (0x7f);
1178      operands[2] = GEN_INT (val - 0x7f);
1179    }
1180  else
1181    {
1182      operands[1] = GEN_INT (- 0x80);
1183      operands[2] = GEN_INT (val + 0x80);
1184    }
1185})
1186
1187(define_split
1188  [(set (match_operand:SI 0 "d_operand")
1189	(plus:SI (match_operand:SI 1 "d_operand")
1190		 (match_operand:SI 2 "const_int_operand")))]
1191  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
1192   && REGNO (operands[0]) != REGNO (operands[1])
1193   && ((INTVAL (operands[2]) > 0x7
1194	&& INTVAL (operands[2]) <= 0x7 + 0x7f)
1195       || (INTVAL (operands[2]) < - 0x8
1196	   && INTVAL (operands[2]) >= - 0x8 - 0x80))"
1197  [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))
1198   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 3)))]
1199{
1200  HOST_WIDE_INT val = INTVAL (operands[2]);
1201
1202  if (val >= 0)
1203    {
1204      operands[2] = GEN_INT (0x7);
1205      operands[3] = GEN_INT (val - 0x7);
1206    }
1207  else
1208    {
1209      operands[2] = GEN_INT (- 0x8);
1210      operands[3] = GEN_INT (val + 0x8);
1211    }
1212})
1213
1214(define_split
1215  [(set (match_operand:DI 0 "d_operand")
1216	(plus:DI (match_dup 0)
1217		 (match_operand:DI 1 "const_int_operand")))]
1218  "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
1219   && ((INTVAL (operands[1]) > 0xf
1220	&& INTVAL (operands[1]) <= 0xf + 0xf)
1221       || (INTVAL (operands[1]) < - 0x10
1222	   && INTVAL (operands[1]) >= - 0x10 - 0x10))"
1223  [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
1224   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
1225{
1226  HOST_WIDE_INT val = INTVAL (operands[1]);
1227
1228  if (val >= 0)
1229    {
1230      operands[1] = GEN_INT (0xf);
1231      operands[2] = GEN_INT (val - 0xf);
1232    }
1233  else
1234    {
1235      operands[1] = GEN_INT (- 0x10);
1236      operands[2] = GEN_INT (val + 0x10);
1237    }
1238})
1239
1240(define_split
1241  [(set (match_operand:DI 0 "d_operand")
1242	(plus:DI (match_operand:DI 1 "d_operand")
1243		 (match_operand:DI 2 "const_int_operand")))]
1244  "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
1245   && REGNO (operands[0]) != REGNO (operands[1])
1246   && ((INTVAL (operands[2]) > 0x7
1247	&& INTVAL (operands[2]) <= 0x7 + 0xf)
1248       || (INTVAL (operands[2]) < - 0x8
1249	   && INTVAL (operands[2]) >= - 0x8 - 0x10))"
1250  [(set (match_dup 0) (plus:DI (match_dup 1) (match_dup 2)))
1251   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 3)))]
1252{
1253  HOST_WIDE_INT val = INTVAL (operands[2]);
1254
1255  if (val >= 0)
1256    {
1257      operands[2] = GEN_INT (0x7);
1258      operands[3] = GEN_INT (val - 0x7);
1259    }
1260  else
1261    {
1262      operands[2] = GEN_INT (- 0x8);
1263      operands[3] = GEN_INT (val + 0x8);
1264    }
1265})
1266
1267(define_insn "*addsi3_extended"
1268  [(set (match_operand:DI 0 "register_operand" "=d,d")
1269	(sign_extend:DI
1270	     (plus:SI (match_operand:SI 1 "register_operand" "d,d")
1271		      (match_operand:SI 2 "arith_operand" "d,Q"))))]
1272  "TARGET_64BIT && !TARGET_MIPS16"
1273  "@
1274    addu\t%0,%1,%2
1275    addiu\t%0,%1,%2"
1276  [(set_attr "alu_type" "add")
1277   (set_attr "mode" "SI")])
1278
1279;; Split this insn so that the addiu splitters can have a crack at it.
1280;; Use a conservative length estimate until the split.
1281(define_insn_and_split "*addsi3_extended_mips16"
1282  [(set (match_operand:DI 0 "register_operand" "=d,d,d")
1283	(sign_extend:DI
1284	     (plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
1285		      (match_operand:SI 2 "arith_operand" "Q,O,d"))))]
1286  "TARGET_64BIT && TARGET_MIPS16"
1287  "#"
1288  "&& reload_completed"
1289  [(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))]
1290  { operands[3] = gen_lowpart (SImode, operands[0]); }
1291  [(set_attr "alu_type" "add")
1292   (set_attr "mode" "SI")
1293   (set_attr "extended_mips16" "yes")])
1294
1295;; Combiner patterns for unsigned byte-add.
1296
1297(define_insn "*baddu_si"
1298  [(set (match_operand:SI 0 "register_operand" "=d")
1299        (zero_extend:SI
1300	 (plus:QI (match_operand:QI 1 "register_operand" "d")
1301		  (match_operand:QI 2 "register_operand" "d"))))]
1302  "ISA_HAS_BADDU"
1303  "baddu\\t%0,%1,%2"
1304  [(set_attr "alu_type" "add")])
1305
1306(define_insn "*baddu_di<mode>"
1307  [(set (match_operand:GPR 0 "register_operand" "=d")
1308        (zero_extend:GPR
1309	 (plus:QI (truncate:QI (match_operand:DI 1 "register_operand" "d"))
1310		  (truncate:QI (match_operand:DI 2 "register_operand" "d")))))]
1311  "ISA_HAS_BADDU && TARGET_64BIT"
1312  "baddu\\t%0,%1,%2"
1313  [(set_attr "alu_type" "add")])
1314
1315;;
1316;;  ....................
1317;;
1318;;	SUBTRACTION
1319;;
1320;;  ....................
1321;;
1322
1323(define_insn "sub<mode>3"
1324  [(set (match_operand:ANYF 0 "register_operand" "=f")
1325	(minus:ANYF (match_operand:ANYF 1 "register_operand" "f")
1326		    (match_operand:ANYF 2 "register_operand" "f")))]
1327  ""
1328  "sub.<fmt>\t%0,%1,%2"
1329  [(set_attr "type" "fadd")
1330   (set_attr "mode" "<UNITMODE>")])
1331
1332(define_insn "sub<mode>3"
1333  [(set (match_operand:GPR 0 "register_operand" "=d")
1334	(minus:GPR (match_operand:GPR 1 "register_operand" "d")
1335		   (match_operand:GPR 2 "register_operand" "d")))]
1336  ""
1337  "<d>subu\t%0,%1,%2"
1338  [(set_attr "alu_type" "sub")
1339   (set_attr "mode" "<MODE>")])
1340
1341(define_insn "*subsi3_extended"
1342  [(set (match_operand:DI 0 "register_operand" "=d")
1343	(sign_extend:DI
1344	    (minus:SI (match_operand:SI 1 "register_operand" "d")
1345		      (match_operand:SI 2 "register_operand" "d"))))]
1346  "TARGET_64BIT"
1347  "subu\t%0,%1,%2"
1348  [(set_attr "alu_type" "sub")
1349   (set_attr "mode" "DI")])
1350
1351;;
1352;;  ....................
1353;;
1354;;	MULTIPLICATION
1355;;
1356;;  ....................
1357;;
1358
1359(define_expand "mul<mode>3"
1360  [(set (match_operand:SCALARF 0 "register_operand")
1361	(mult:SCALARF (match_operand:SCALARF 1 "register_operand")
1362		      (match_operand:SCALARF 2 "register_operand")))]
1363  ""
1364  "")
1365
1366(define_insn "*mul<mode>3"
1367  [(set (match_operand:SCALARF 0 "register_operand" "=f")
1368	(mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
1369		      (match_operand:SCALARF 2 "register_operand" "f")))]
1370  "!TARGET_4300_MUL_FIX"
1371  "mul.<fmt>\t%0,%1,%2"
1372  [(set_attr "type" "fmul")
1373   (set_attr "mode" "<MODE>")])
1374
1375;; Early VR4300 silicon has a CPU bug where multiplies with certain
1376;; operands may corrupt immediately following multiplies. This is a
1377;; simple fix to insert NOPs.
1378
1379(define_insn "*mul<mode>3_r4300"
1380  [(set (match_operand:SCALARF 0 "register_operand" "=f")
1381	(mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
1382		      (match_operand:SCALARF 2 "register_operand" "f")))]
1383  "TARGET_4300_MUL_FIX"
1384  "mul.<fmt>\t%0,%1,%2\;nop"
1385  [(set_attr "type" "fmul")
1386   (set_attr "mode" "<MODE>")
1387   (set_attr "length" "8")])
1388
1389(define_insn "mulv2sf3"
1390  [(set (match_operand:V2SF 0 "register_operand" "=f")
1391	(mult:V2SF (match_operand:V2SF 1 "register_operand" "f")
1392		   (match_operand:V2SF 2 "register_operand" "f")))]
1393  "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT"
1394  "mul.ps\t%0,%1,%2"
1395  [(set_attr "type" "fmul")
1396   (set_attr "mode" "SF")])
1397
1398;; The original R4000 has a cpu bug.  If a double-word or a variable
1399;; shift executes while an integer multiplication is in progress, the
1400;; shift may give an incorrect result.  Avoid this by keeping the mflo
1401;; with the mult on the R4000.
1402;;
1403;; From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
1404;; (also valid for MIPS R4000MC processors):
1405;;
1406;; "16. R4000PC, R4000SC: Please refer to errata 28 for an update to
1407;;	this errata description.
1408;;	The following code sequence causes the R4000 to incorrectly
1409;;	execute the Double Shift Right Arithmetic 32 (dsra32)
1410;;	instruction.  If the dsra32 instruction is executed during an
1411;;	integer multiply, the dsra32 will only shift by the amount in
1412;;	specified in the instruction rather than the amount plus 32
1413;;	bits.
1414;;	instruction 1:		mult	rs,rt		integer multiply
1415;;	instruction 2-12:	dsra32	rd,rt,rs	doubleword shift
1416;;							right arithmetic + 32
1417;;	Workaround: A dsra32 instruction placed after an integer
1418;;	multiply should not be one of the 11 instructions after the
1419;;	multiply instruction."
1420;;
1421;; and:
1422;;
1423;; "28. R4000PC, R4000SC: The text from errata 16 should be replaced by
1424;;	the following description.
1425;;	All extended shifts (shift by n+32) and variable shifts (32 and
1426;;	64-bit versions) may produce incorrect results under the
1427;;	following conditions:
1428;;	1) An integer multiply is currently executing
1429;;	2) These types of shift instructions are executed immediately
1430;;	   following an integer divide instruction.
1431;;	Workaround:
1432;;	1) Make sure no integer multiply is running wihen these
1433;;	   instruction are executed.  If this cannot be predicted at
1434;;	   compile time, then insert a "mfhi" to R0 instruction
1435;;	   immediately after the integer multiply instruction.  This
1436;;	   will cause the integer multiply to complete before the shift
1437;;	   is executed.
1438;;	2) Separate integer divide and these two classes of shift
1439;;	   instructions by another instruction or a noop."
1440;;
1441;; These processors have PRId values of 0x00004220 and 0x00004300,
1442;; respectively.
1443
1444(define_expand "mul<mode>3"
1445  [(set (match_operand:GPR 0 "register_operand")
1446	(mult:GPR (match_operand:GPR 1 "register_operand")
1447		  (match_operand:GPR 2 "register_operand")))]
1448  ""
1449{
1450  rtx lo;
1451
1452  if (TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A)
1453    emit_insn (gen_mul<mode>3_mul3_loongson (operands[0], operands[1],
1454                                             operands[2]));
1455  else if (ISA_HAS_<D>MUL3)
1456    emit_insn (gen_mul<mode>3_mul3 (operands[0], operands[1], operands[2]));
1457  else if (TARGET_MIPS16)
1458    {
1459      lo = gen_rtx_REG (<MODE>mode, LO_REGNUM);
1460      emit_insn (gen_mul<mode>3_internal (lo, operands[1], operands[2]));
1461      emit_move_insn (operands[0], lo);
1462    }
1463  else if (TARGET_FIX_R4000)
1464    emit_insn (gen_mul<mode>3_r4000 (operands[0], operands[1], operands[2]));
1465  else
1466    emit_insn
1467      (gen_mul<mode>3_internal (operands[0], operands[1], operands[2]));
1468  DONE;
1469})
1470
1471(define_insn "mul<mode>3_mul3_loongson"
1472  [(set (match_operand:GPR 0 "register_operand" "=d")
1473        (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1474                  (match_operand:GPR 2 "register_operand" "d")))]
1475  "TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A"
1476{
1477  if (TARGET_LOONGSON_2EF)
1478    return "<d>multu.g\t%0,%1,%2";
1479  else
1480    return "gs<d>multu\t%0,%1,%2";
1481}
1482  [(set_attr "type" "imul3nc")
1483   (set_attr "mode" "<MODE>")])
1484
1485(define_insn "mul<mode>3_mul3"
1486  [(set (match_operand:GPR 0 "register_operand" "=d,l")
1487	(mult:GPR (match_operand:GPR 1 "register_operand" "d,d")
1488		  (match_operand:GPR 2 "register_operand" "d,d")))
1489   (clobber (match_scratch:GPR 3 "=l,X"))]
1490  "ISA_HAS_<D>MUL3"
1491{
1492  if (which_alternative == 1)
1493    return "<d>mult\t%1,%2";
1494  if (<MODE>mode == SImode && TARGET_MIPS3900)
1495    return "mult\t%0,%1,%2";
1496  return "<d>mul\t%0,%1,%2";
1497}
1498  [(set_attr "type" "imul3,imul")
1499   (set_attr "mode" "<MODE>")])
1500
1501;; If a register gets allocated to LO, and we spill to memory, the reload
1502;; will include a move from LO to a GPR.  Merge it into the multiplication
1503;; if it can set the GPR directly.
1504;;
1505;; Operand 0: LO
1506;; Operand 1: GPR (1st multiplication operand)
1507;; Operand 2: GPR (2nd multiplication operand)
1508;; Operand 3: GPR (destination)
1509(define_peephole2
1510  [(parallel
1511       [(set (match_operand:SI 0 "lo_operand")
1512	     (mult:SI (match_operand:SI 1 "d_operand")
1513		      (match_operand:SI 2 "d_operand")))
1514        (clobber (scratch:SI))])
1515   (set (match_operand:SI 3 "d_operand")
1516	(match_dup 0))]
1517  "ISA_HAS_MUL3 && peep2_reg_dead_p (2, operands[0])"
1518  [(parallel
1519       [(set (match_dup 3)
1520	     (mult:SI (match_dup 1)
1521		      (match_dup 2)))
1522        (clobber (match_dup 0))])])
1523
1524(define_insn "mul<mode>3_internal"
1525  [(set (match_operand:GPR 0 "muldiv_target_operand" "=l")
1526	(mult:GPR (match_operand:GPR 1 "register_operand" "d")
1527		  (match_operand:GPR 2 "register_operand" "d")))]
1528  "!TARGET_FIX_R4000"
1529  "<d>mult\t%1,%2"
1530  [(set_attr "type" "imul")
1531   (set_attr "mode" "<MODE>")])
1532
1533(define_insn "mul<mode>3_r4000"
1534  [(set (match_operand:GPR 0 "register_operand" "=d")
1535	(mult:GPR (match_operand:GPR 1 "register_operand" "d")
1536		  (match_operand:GPR 2 "register_operand" "d")))
1537   (clobber (match_scratch:GPR 3 "=l"))]
1538  "TARGET_FIX_R4000"
1539  "<d>mult\t%1,%2\;mflo\t%0"
1540  [(set_attr "type" "imul")
1541   (set_attr "mode" "<MODE>")
1542   (set_attr "length" "8")])
1543
1544;; On the VR4120 and VR4130, it is better to use "mtlo $0; macc" instead
1545;; of "mult; mflo".  They have the same latency, but the first form gives
1546;; us an extra cycle to compute the operands.
1547
1548;; Operand 0: LO
1549;; Operand 1: GPR (1st multiplication operand)
1550;; Operand 2: GPR (2nd multiplication operand)
1551;; Operand 3: GPR (destination)
1552(define_peephole2
1553  [(set (match_operand:SI 0 "lo_operand")
1554	(mult:SI (match_operand:SI 1 "d_operand")
1555		 (match_operand:SI 2 "d_operand")))
1556   (set (match_operand:SI 3 "d_operand")
1557	(match_dup 0))]
1558  "ISA_HAS_MACC && !ISA_HAS_MUL3"
1559  [(set (match_dup 0)
1560	(const_int 0))
1561   (parallel
1562       [(set (match_dup 0)
1563	     (plus:SI (mult:SI (match_dup 1)
1564			       (match_dup 2))
1565		      (match_dup 0)))
1566	(set (match_dup 3)
1567	     (plus:SI (mult:SI (match_dup 1)
1568			       (match_dup 2))
1569		      (match_dup 0)))])])
1570
1571;; Multiply-accumulate patterns
1572
1573;; This pattern is first matched by combine, which tries to use the
1574;; pattern wherever it can.  We don't know until later whether it
1575;; is actually profitable to use MADD over a "MUL; ADDIU" sequence,
1576;; so we need to keep both options open.
1577;;
1578;; The second alternative has a "?" marker because it is generally
1579;; one instruction more costly than the first alternative.  This "?"
1580;; marker is enough to convey the relative costs to the register
1581;; allocator.
1582;;
1583;; However, reload counts reloads of operands 4 and 5 in the same way as
1584;; reloads of the other operands, even though operands 4 and 5 need no
1585;; copy instructions.  Reload therefore thinks that the second alternative
1586;; is two reloads more costly than the first.  We add "*?*?" to the first
1587;; alternative as a counterweight.
1588(define_insn "*mul_acc_si"
1589  [(set (match_operand:SI 0 "register_operand" "=l*?*?,d?")
1590	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1591			  (match_operand:SI 2 "register_operand" "d,d"))
1592		 (match_operand:SI 3 "register_operand" "0,d")))
1593   (clobber (match_scratch:SI 4 "=X,l"))
1594   (clobber (match_scratch:SI 5 "=X,&d"))]
1595  "GENERATE_MADD_MSUB && !TARGET_MIPS16"
1596  "@
1597    madd\t%1,%2
1598    #"
1599  [(set_attr "type"	"imadd")
1600   (set_attr "accum_in"	"3")
1601   (set_attr "mode"	"SI")
1602   (set_attr "length"	"4,8")])
1603
1604;; The same idea applies here.  The middle alternative needs one less
1605;; clobber than the final alternative, so we add "*?" as a counterweight.
1606(define_insn "*mul_acc_si_r3900"
1607  [(set (match_operand:SI 0 "register_operand" "=l*?*?,d*?,d?")
1608	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d,d")
1609			  (match_operand:SI 2 "register_operand" "d,d,d"))
1610		 (match_operand:SI 3 "register_operand" "0,l,d")))
1611   (clobber (match_scratch:SI 4 "=X,3,l"))
1612   (clobber (match_scratch:SI 5 "=X,X,&d"))]
1613  "TARGET_MIPS3900 && !TARGET_MIPS16"
1614  "@
1615    madd\t%1,%2
1616    madd\t%0,%1,%2
1617    #"
1618  [(set_attr "type"	"imadd")
1619   (set_attr "accum_in"	"3")
1620   (set_attr "mode"	"SI")
1621   (set_attr "length"	"4,4,8")])
1622
1623;; Split *mul_acc_si if both the source and destination accumulator
1624;; values are GPRs.
1625(define_split
1626  [(set (match_operand:SI 0 "d_operand")
1627	(plus:SI (mult:SI (match_operand:SI 1 "d_operand")
1628			  (match_operand:SI 2 "d_operand"))
1629		 (match_operand:SI 3 "d_operand")))
1630   (clobber (match_operand:SI 4 "lo_operand"))
1631   (clobber (match_operand:SI 5 "d_operand"))]
1632  "reload_completed"
1633  [(parallel [(set (match_dup 5)
1634		   (mult:SI (match_dup 1) (match_dup 2)))
1635	      (clobber (match_dup 4))])
1636   (set (match_dup 0) (plus:SI (match_dup 5) (match_dup 3)))]
1637  "")
1638
1639(define_insn "*macc"
1640  [(set (match_operand:SI 0 "register_operand" "=l,d")
1641	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1642			  (match_operand:SI 2 "register_operand" "d,d"))
1643		 (match_operand:SI 3 "register_operand" "0,l")))
1644   (clobber (match_scratch:SI 4 "=X,3"))]
1645  "ISA_HAS_MACC"
1646{
1647  if (which_alternative == 1)
1648    return "macc\t%0,%1,%2";
1649  else if (TARGET_MIPS5500)
1650    return "madd\t%1,%2";
1651  else
1652    /* The VR4130 assumes that there is a two-cycle latency between a macc
1653       that "writes" to $0 and an instruction that reads from it.  We avoid
1654       this by assigning to $1 instead.  */
1655    return "%[macc\t%@,%1,%2%]";
1656}
1657  [(set_attr "type" "imadd")
1658   (set_attr "accum_in"	"3")
1659   (set_attr "mode" "SI")])
1660
1661(define_insn "*msac"
1662  [(set (match_operand:SI 0 "register_operand" "=l,d")
1663        (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1664                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1665                           (match_operand:SI 3 "register_operand" "d,d"))))
1666   (clobber (match_scratch:SI 4 "=X,1"))]
1667  "ISA_HAS_MSAC"
1668{
1669  if (which_alternative == 1)
1670    return "msac\t%0,%2,%3";
1671  else if (TARGET_MIPS5500)
1672    return "msub\t%2,%3";
1673  else
1674    return "msac\t$0,%2,%3";
1675}
1676  [(set_attr "type"     "imadd")
1677   (set_attr "accum_in"	"1")
1678   (set_attr "mode"     "SI")])
1679
1680;; An msac-like instruction implemented using negation and a macc.
1681(define_insn_and_split "*msac_using_macc"
1682  [(set (match_operand:SI 0 "register_operand" "=l,d")
1683        (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1684                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1685                           (match_operand:SI 3 "register_operand" "d,d"))))
1686   (clobber (match_scratch:SI 4 "=X,1"))
1687   (clobber (match_scratch:SI 5 "=d,d"))]
1688  "ISA_HAS_MACC && !ISA_HAS_MSAC"
1689  "#"
1690  "&& reload_completed"
1691  [(set (match_dup 5)
1692	(neg:SI (match_dup 3)))
1693   (parallel
1694       [(set (match_dup 0)
1695	     (plus:SI (mult:SI (match_dup 2)
1696			       (match_dup 5))
1697		      (match_dup 1)))
1698	(clobber (match_dup 4))])]
1699  ""
1700  [(set_attr "type"     "imadd")
1701   (set_attr "accum_in"	"1")
1702   (set_attr "length"	"8")])
1703
1704;; Patterns generated by the define_peephole2 below.
1705
1706(define_insn "*macc2"
1707  [(set (match_operand:SI 0 "muldiv_target_operand" "=l")
1708	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1709			  (match_operand:SI 2 "register_operand" "d"))
1710		 (match_dup 0)))
1711   (set (match_operand:SI 3 "register_operand" "=d")
1712	(plus:SI (mult:SI (match_dup 1)
1713			  (match_dup 2))
1714		 (match_dup 0)))]
1715  "ISA_HAS_MACC && reload_completed"
1716  "macc\t%3,%1,%2"
1717  [(set_attr "type"	"imadd")
1718   (set_attr "accum_in"	"0")
1719   (set_attr "mode"	"SI")])
1720
1721(define_insn "*msac2"
1722  [(set (match_operand:SI 0 "muldiv_target_operand" "=l")
1723	(minus:SI (match_dup 0)
1724		  (mult:SI (match_operand:SI 1 "register_operand" "d")
1725			   (match_operand:SI 2 "register_operand" "d"))))
1726   (set (match_operand:SI 3 "register_operand" "=d")
1727	(minus:SI (match_dup 0)
1728		  (mult:SI (match_dup 1)
1729			   (match_dup 2))))]
1730  "ISA_HAS_MSAC && reload_completed"
1731  "msac\t%3,%1,%2"
1732  [(set_attr "type"	"imadd")
1733   (set_attr "accum_in"	"0")
1734   (set_attr "mode"	"SI")])
1735
1736;; Convert macc $0,<r1>,<r2> & mflo <r3> into macc <r3>,<r1>,<r2>
1737;; Similarly msac.
1738;;
1739;; Operand 0: LO
1740;; Operand 1: macc/msac
1741;; Operand 2: GPR (destination)
1742(define_peephole2
1743  [(parallel
1744       [(set (match_operand:SI 0 "lo_operand")
1745	     (match_operand:SI 1 "macc_msac_operand"))
1746	(clobber (scratch:SI))])
1747   (set (match_operand:SI 2 "d_operand")
1748	(match_dup 0))]
1749  ""
1750  [(parallel [(set (match_dup 0)
1751		   (match_dup 1))
1752	      (set (match_dup 2)
1753		   (match_dup 1))])])
1754
1755;; When we have a three-address multiplication instruction, it should
1756;; be faster to do a separate multiply and add, rather than moving
1757;; something into LO in order to use a macc instruction.
1758;;
1759;; This peephole needs a scratch register to cater for the case when one
1760;; of the multiplication operands is the same as the destination.
1761;;
1762;; Operand 0: GPR (scratch)
1763;; Operand 1: LO
1764;; Operand 2: GPR (addend)
1765;; Operand 3: GPR (destination)
1766;; Operand 4: macc/msac
1767;; Operand 5: new multiplication
1768;; Operand 6: new addition/subtraction
1769(define_peephole2
1770  [(match_scratch:SI 0 "d")
1771   (set (match_operand:SI 1 "lo_operand")
1772	(match_operand:SI 2 "d_operand"))
1773   (match_dup 0)
1774   (parallel
1775       [(set (match_operand:SI 3 "d_operand")
1776	     (match_operand:SI 4 "macc_msac_operand"))
1777	(clobber (match_dup 1))])]
1778  "ISA_HAS_MUL3 && peep2_reg_dead_p (2, operands[1])"
1779  [(parallel [(set (match_dup 0)
1780		   (match_dup 5))
1781	      (clobber (match_dup 1))])
1782   (set (match_dup 3)
1783	(match_dup 6))]
1784{
1785  operands[5] = XEXP (operands[4], GET_CODE (operands[4]) == PLUS ? 0 : 1);
1786  operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[4]), SImode,
1787				operands[2], operands[0]);
1788})
1789
1790;; Same as above, except LO is the initial target of the macc.
1791;;
1792;; Operand 0: GPR (scratch)
1793;; Operand 1: LO
1794;; Operand 2: GPR (addend)
1795;; Operand 3: macc/msac
1796;; Operand 4: GPR (destination)
1797;; Operand 5: new multiplication
1798;; Operand 6: new addition/subtraction
1799(define_peephole2
1800  [(match_scratch:SI 0 "d")
1801   (set (match_operand:SI 1 "lo_operand")
1802	(match_operand:SI 2 "d_operand"))
1803   (match_dup 0)
1804   (parallel
1805       [(set (match_dup 1)
1806	     (match_operand:SI 3 "macc_msac_operand"))
1807	(clobber (scratch:SI))])
1808   (match_dup 0)
1809   (set (match_operand:SI 4 "d_operand")
1810	(match_dup 1))]
1811  "ISA_HAS_MUL3 && peep2_reg_dead_p (3, operands[1])"
1812  [(parallel [(set (match_dup 0)
1813		   (match_dup 5))
1814	      (clobber (match_dup 1))])
1815   (set (match_dup 4)
1816	(match_dup 6))]
1817{
1818  operands[5] = XEXP (operands[3], GET_CODE (operands[3]) == PLUS ? 0 : 1);
1819  operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[3]), SImode,
1820				operands[2], operands[0]);
1821})
1822
1823;; See the comment above *mul_add_si for details.
1824(define_insn "*mul_sub_si"
1825  [(set (match_operand:SI 0 "register_operand" "=l*?*?,d?")
1826        (minus:SI (match_operand:SI 1 "register_operand" "0,d")
1827                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1828                           (match_operand:SI 3 "register_operand" "d,d"))))
1829   (clobber (match_scratch:SI 4 "=X,l"))
1830   (clobber (match_scratch:SI 5 "=X,&d"))]
1831  "GENERATE_MADD_MSUB"
1832  "@
1833   msub\t%2,%3
1834   #"
1835  [(set_attr "type"     "imadd")
1836   (set_attr "accum_in"	"1")
1837   (set_attr "mode"     "SI")
1838   (set_attr "length"   "4,8")])
1839
1840;; Split *mul_sub_si if both the source and destination accumulator
1841;; values are GPRs.
1842(define_split
1843  [(set (match_operand:SI 0 "d_operand")
1844        (minus:SI (match_operand:SI 1 "d_operand")
1845                  (mult:SI (match_operand:SI 2 "d_operand")
1846                           (match_operand:SI 3 "d_operand"))))
1847   (clobber (match_operand:SI 4 "lo_operand"))
1848   (clobber (match_operand:SI 5 "d_operand"))]
1849  "reload_completed"
1850  [(parallel [(set (match_dup 5)
1851                   (mult:SI (match_dup 2) (match_dup 3)))
1852              (clobber (match_dup 4))])
1853   (set (match_dup 0) (minus:SI (match_dup 1) (match_dup 5)))]
1854  "")
1855
1856(define_insn "*muls"
1857  [(set (match_operand:SI 0 "register_operand" "=l,d")
1858        (neg:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1859                         (match_operand:SI 2 "register_operand" "d,d"))))
1860   (clobber (match_scratch:SI 3 "=X,l"))]
1861  "ISA_HAS_MULS"
1862  "@
1863   muls\t$0,%1,%2
1864   muls\t%0,%1,%2"
1865  [(set_attr "type"     "imul,imul3")
1866   (set_attr "mode"     "SI")])
1867
1868(define_expand "<u>mulsidi3"
1869  [(set (match_operand:DI 0 "register_operand")
1870	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1871		 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
1872  "mips_mulsidi3_gen_fn (<CODE>) != NULL"
1873{
1874  mulsidi3_gen_fn fn = mips_mulsidi3_gen_fn (<CODE>);
1875  emit_insn (fn (operands[0], operands[1], operands[2]));
1876  DONE;
1877})
1878
1879(define_expand "<u>mulsidi3_32bit_mips16"
1880  [(set (match_operand:DI 0 "register_operand")
1881	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1882		 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
1883  "!TARGET_64BIT && TARGET_MIPS16"
1884{
1885  rtx hilo;
1886
1887  hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
1888  emit_insn (gen_<u>mulsidi3_32bit (hilo, operands[1], operands[2]));
1889  emit_move_insn (operands[0], hilo);
1890  DONE;
1891})
1892
1893;; As well as being named patterns, these instructions are used by the
1894;; __builtin_mips_mult<u>() functions.  We must always make those functions
1895;; available if !TARGET_64BIT && ISA_HAS_DSP.
1896(define_insn "<u>mulsidi3_32bit"
1897  [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
1898	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1899		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))]
1900  "!TARGET_64BIT && (!TARGET_FIX_R4000 || ISA_HAS_DSP)"
1901{
1902  if (ISA_HAS_DSP_MULT)
1903    return "mult<u>\t%q0,%1,%2";
1904  else
1905    return "mult<u>\t%1,%2";
1906}
1907  [(set_attr "type" "imul")
1908   (set_attr "mode" "SI")])
1909
1910(define_insn "<u>mulsidi3_32bit_r4000"
1911  [(set (match_operand:DI 0 "register_operand" "=d")
1912	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1913		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1914   (clobber (match_scratch:DI 3 "=x"))]
1915  "!TARGET_64BIT && TARGET_FIX_R4000 && !ISA_HAS_DSP"
1916  "mult<u>\t%1,%2\;mflo\t%L0\;mfhi\t%M0"
1917  [(set_attr "type" "imul")
1918   (set_attr "mode" "SI")
1919   (set_attr "length" "12")])
1920
1921(define_insn_and_split "<u>mulsidi3_64bit"
1922  [(set (match_operand:DI 0 "register_operand" "=d")
1923	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1924		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1925   (clobber (match_scratch:TI 3 "=x"))
1926   (clobber (match_scratch:DI 4 "=d"))]
1927  "TARGET_64BIT && !TARGET_FIX_R4000 && !ISA_HAS_DMUL3 && !TARGET_MIPS16"
1928  "#"
1929  "&& reload_completed"
1930  [(const_int 0)]
1931{
1932  emit_insn (gen_<u>mulsidi3_64bit_split (operands[0], operands[1],
1933					  operands[2], operands[4]));
1934  DONE;
1935}
1936  [(set_attr "type" "imul")
1937   (set_attr "mode" "SI")
1938   (set (attr "length")
1939	(if_then_else (match_test "ISA_HAS_EXT_INS")
1940		      (const_int 16)
1941		      (const_int 28)))])
1942
1943(define_expand "<u>mulsidi3_64bit_mips16"
1944  [(set (match_operand:DI 0 "register_operand")
1945	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1946		 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
1947  "TARGET_64BIT && TARGET_MIPS16"
1948{
1949  emit_insn (gen_<u>mulsidi3_64bit_split (operands[0], operands[1],
1950					  operands[2], gen_reg_rtx (DImode)));
1951  DONE;
1952})
1953
1954(define_expand "<u>mulsidi3_64bit_split"
1955  [(set (match_operand:DI 0 "register_operand")
1956	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1957		 (any_extend:DI (match_operand:SI 2 "register_operand"))))
1958   (clobber (match_operand:DI 3 "register_operand"))]
1959  ""
1960{
1961  rtx hilo;
1962
1963  hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
1964  emit_insn (gen_<u>mulsidi3_64bit_hilo (hilo, operands[1], operands[2]));
1965
1966  emit_move_insn (operands[0], gen_rtx_REG (DImode, LO_REGNUM));
1967  emit_insn (gen_mfhidi_ti (operands[3], hilo));
1968
1969  if (ISA_HAS_EXT_INS)
1970    emit_insn (gen_insvdi (operands[0], GEN_INT (32), GEN_INT (32),
1971			   operands[3]));
1972  else
1973    {
1974      /* Zero-extend the low part.  */
1975      mips_emit_binary (ASHIFT, operands[0], operands[0], GEN_INT (32));
1976      mips_emit_binary (LSHIFTRT, operands[0], operands[0], GEN_INT (32));
1977
1978      /* Shift the high part into place.  */
1979      mips_emit_binary (ASHIFT, operands[3], operands[3], GEN_INT (32));
1980
1981      /* OR the two halves together.  */
1982      mips_emit_binary (IOR, operands[0], operands[0], operands[3]);
1983    }
1984  DONE;
1985})
1986
1987(define_insn "<u>mulsidi3_64bit_hilo"
1988  [(set (match_operand:TI 0 "muldiv_target_operand" "=x")
1989	(unspec:TI
1990	  [(mult:DI
1991	     (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1992	     (any_extend:DI (match_operand:SI 2 "register_operand" "d")))]
1993	  UNSPEC_SET_HILO))]
1994  "TARGET_64BIT && !TARGET_FIX_R4000"
1995  "mult<u>\t%1,%2"
1996  [(set_attr "type" "imul")
1997   (set_attr "mode" "SI")])
1998
1999;; See comment before the ISA_HAS_DMUL3 case in mips_mulsidi3_gen_fn.
2000(define_insn "mulsidi3_64bit_dmul"
2001  [(set (match_operand:DI 0 "register_operand" "=d")
2002	(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d"))
2003		 (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2004   (clobber (match_scratch:DI 3 "=l"))]
2005  "TARGET_64BIT && ISA_HAS_DMUL3"
2006  "dmul\t%0,%1,%2"
2007  [(set_attr "type" "imul3")
2008   (set_attr "mode" "DI")])
2009
2010;; Widening multiply with negation.
2011(define_insn "*muls<u>_di"
2012  [(set (match_operand:DI 0 "muldiv_target_operand" "=x")
2013        (neg:DI
2014	 (mult:DI
2015	  (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2016	  (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
2017  "!TARGET_64BIT && ISA_HAS_MULS"
2018  "muls<u>\t$0,%1,%2"
2019  [(set_attr "type" "imul")
2020   (set_attr "mode" "SI")])
2021
2022;; As well as being named patterns, these instructions are used by the
2023;; __builtin_mips_msub<u>() functions.  We must always make those functions
2024;; available if !TARGET_64BIT && ISA_HAS_DSP.
2025;;
2026;; This leads to a slight inconsistency.  We honor any tuning overrides
2027;; in GENERATE_MADD_MSUB for -mno-dsp, but always ignore them for -mdsp,
2028;; even if !ISA_HAS_DSP_MULT.
2029(define_insn "<u>msubsidi4"
2030  [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
2031        (minus:DI
2032	   (match_operand:DI 3 "muldiv_target_operand" "0")
2033	   (mult:DI
2034	      (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2035	      (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
2036  "!TARGET_64BIT && (ISA_HAS_MSAC || GENERATE_MADD_MSUB || ISA_HAS_DSP)"
2037{
2038  if (ISA_HAS_DSP_MULT)
2039    return "msub<u>\t%q0,%1,%2";
2040  else if (TARGET_MIPS5500 || GENERATE_MADD_MSUB)
2041    return "msub<u>\t%1,%2";
2042  else
2043    return "msac<u>\t$0,%1,%2";
2044}
2045  [(set_attr "type" "imadd")
2046   (set_attr "accum_in"	"3")
2047   (set_attr "mode" "SI")])
2048
2049;; _highpart patterns
2050
2051(define_expand "<su>mulsi3_highpart"
2052  [(set (match_operand:SI 0 "register_operand")
2053	(truncate:SI
2054	 (lshiftrt:DI
2055	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2056		   (any_extend:DI (match_operand:SI 2 "register_operand")))
2057	  (const_int 32))))]
2058  ""
2059{
2060  if (ISA_HAS_MULHI)
2061    emit_insn (gen_<su>mulsi3_highpart_mulhi_internal (operands[0],
2062						       operands[1],
2063						       operands[2]));
2064  else if (TARGET_MIPS16)
2065    emit_insn (gen_<su>mulsi3_highpart_split (operands[0], operands[1],
2066					      operands[2]));
2067  else
2068    emit_insn (gen_<su>mulsi3_highpart_internal (operands[0], operands[1],
2069					         operands[2]));
2070  DONE;
2071})
2072
2073(define_insn_and_split "<su>mulsi3_highpart_internal"
2074  [(set (match_operand:SI 0 "register_operand" "=d")
2075	(truncate:SI
2076	 (lshiftrt:DI
2077	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2078		   (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2079	  (const_int 32))))
2080   (clobber (match_scratch:SI 3 "=l"))]
2081  "!ISA_HAS_MULHI && !TARGET_MIPS16"
2082  { return TARGET_FIX_R4000 ? "mult<u>\t%1,%2\n\tmfhi\t%0" : "#"; }
2083  "&& reload_completed && !TARGET_FIX_R4000"
2084  [(const_int 0)]
2085{
2086  emit_insn (gen_<su>mulsi3_highpart_split (operands[0], operands[1],
2087					    operands[2]));
2088  DONE;
2089}
2090  [(set_attr "type" "imul")
2091   (set_attr "mode" "SI")
2092   (set_attr "length" "8")])
2093
2094(define_expand "<su>mulsi3_highpart_split"
2095  [(set (match_operand:SI 0 "register_operand")
2096	(truncate:SI
2097	 (lshiftrt:DI
2098	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2099		   (any_extend:DI (match_operand:SI 2 "register_operand")))
2100	  (const_int 32))))]
2101  ""
2102{
2103  rtx hilo;
2104
2105  if (TARGET_64BIT)
2106    {
2107      hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2108      emit_insn (gen_<u>mulsidi3_64bit_hilo (hilo, operands[1], operands[2]));
2109      emit_insn (gen_mfhisi_ti (operands[0], hilo));
2110    }
2111  else
2112    {
2113      hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2114      emit_insn (gen_<u>mulsidi3_32bit (hilo, operands[1], operands[2]));
2115      emit_insn (gen_mfhisi_di (operands[0], hilo));
2116    }
2117  DONE;
2118})
2119
2120(define_insn "<su>mulsi3_highpart_mulhi_internal"
2121  [(set (match_operand:SI 0 "register_operand" "=d")
2122        (truncate:SI
2123	 (lshiftrt:DI
2124	  (mult:DI
2125	   (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2126	   (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2127	  (const_int 32))))
2128   (clobber (match_scratch:SI 3 "=l"))]
2129  "ISA_HAS_MULHI"
2130  "mulhi<u>\t%0,%1,%2"
2131  [(set_attr "type" "imul3")
2132   (set_attr "mode" "SI")])
2133
2134(define_insn "*<su>mulsi3_highpart_neg_mulhi_internal"
2135  [(set (match_operand:SI 0 "register_operand" "=d")
2136        (truncate:SI
2137	 (lshiftrt:DI
2138	  (neg:DI
2139	   (mult:DI
2140	    (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2141	    (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2142	  (const_int 32))))
2143   (clobber (match_scratch:SI 3 "=l"))]
2144  "ISA_HAS_MULHI"
2145  "mulshi<u>\t%0,%1,%2"
2146  [(set_attr "type" "imul3")
2147   (set_attr "mode" "SI")])
2148
2149;; Disable unsigned multiplication for -mfix-vr4120.  This is for VR4120
2150;; errata MD(0), which says that dmultu does not always produce the
2151;; correct result.
2152(define_expand "<su>muldi3_highpart"
2153  [(set (match_operand:DI 0 "register_operand")
2154	(truncate:DI
2155	 (lshiftrt:TI
2156	  (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2157		   (any_extend:TI (match_operand:DI 2 "register_operand")))
2158	  (const_int 64))))]
2159  "TARGET_64BIT && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2160{
2161  if (TARGET_MIPS16)
2162    emit_insn (gen_<su>muldi3_highpart_split (operands[0], operands[1],
2163					      operands[2]));
2164  else
2165    emit_insn (gen_<su>muldi3_highpart_internal (operands[0], operands[1],
2166						 operands[2]));
2167  DONE;
2168})
2169
2170(define_insn_and_split "<su>muldi3_highpart_internal"
2171  [(set (match_operand:DI 0 "register_operand" "=d")
2172	(truncate:DI
2173	 (lshiftrt:TI
2174	  (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2175		   (any_extend:TI (match_operand:DI 2 "register_operand" "d")))
2176	  (const_int 64))))
2177   (clobber (match_scratch:DI 3 "=l"))]
2178  "TARGET_64BIT
2179   && !TARGET_MIPS16
2180   && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2181  { return TARGET_FIX_R4000 ? "dmult<u>\t%1,%2\n\tmfhi\t%0" : "#"; }
2182  "&& reload_completed && !TARGET_FIX_R4000"
2183  [(const_int 0)]
2184{
2185  emit_insn (gen_<su>muldi3_highpart_split (operands[0], operands[1],
2186					    operands[2]));
2187  DONE;
2188}
2189  [(set_attr "type" "imul")
2190   (set_attr "mode" "DI")
2191   (set_attr "length" "8")])
2192
2193(define_expand "<su>muldi3_highpart_split"
2194  [(set (match_operand:DI 0 "register_operand")
2195	(truncate:DI
2196	 (lshiftrt:TI
2197	  (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2198		   (any_extend:TI (match_operand:DI 2 "register_operand")))
2199	  (const_int 64))))]
2200  ""
2201{
2202  rtx hilo;
2203
2204  hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2205  emit_insn (gen_<u>mulditi3_internal (hilo, operands[1], operands[2]));
2206  emit_insn (gen_mfhidi_ti (operands[0], hilo));
2207  DONE;
2208})
2209
2210(define_expand "<u>mulditi3"
2211  [(set (match_operand:TI 0 "register_operand")
2212	(mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2213		 (any_extend:TI (match_operand:DI 2 "register_operand"))))]
2214  "TARGET_64BIT && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2215{
2216  rtx hilo;
2217
2218  if (TARGET_MIPS16)
2219    {
2220      hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2221      emit_insn (gen_<u>mulditi3_internal (hilo, operands[1], operands[2]));
2222      emit_move_insn (operands[0], hilo);
2223    }
2224  else if (TARGET_FIX_R4000)
2225    emit_insn (gen_<u>mulditi3_r4000 (operands[0], operands[1], operands[2]));
2226  else
2227    emit_insn (gen_<u>mulditi3_internal (operands[0], operands[1],
2228					 operands[2]));
2229  DONE;
2230})
2231
2232(define_insn "<u>mulditi3_internal"
2233  [(set (match_operand:TI 0 "muldiv_target_operand" "=x")
2234	(mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2235		 (any_extend:TI (match_operand:DI 2 "register_operand" "d"))))]
2236  "TARGET_64BIT
2237   && !TARGET_FIX_R4000
2238   && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2239  "dmult<u>\t%1,%2"
2240  [(set_attr "type" "imul")
2241   (set_attr "mode" "DI")])
2242
2243(define_insn "<u>mulditi3_r4000"
2244  [(set (match_operand:TI 0 "register_operand" "=d")
2245	(mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2246		 (any_extend:TI (match_operand:DI 2 "register_operand" "d"))))
2247   (clobber (match_scratch:TI 3 "=x"))]
2248  "TARGET_64BIT
2249   && TARGET_FIX_R4000
2250   && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2251  "dmult<u>\t%1,%2\;mflo\t%L0\;mfhi\t%M0"
2252  [(set_attr "type" "imul")
2253   (set_attr "mode" "DI")
2254   (set_attr "length" "12")])
2255
2256;; The R4650 supports a 32-bit multiply/ 64-bit accumulate
2257;; instruction.  The HI/LO registers are used as a 64-bit accumulator.
2258
2259(define_insn "madsi"
2260  [(set (match_operand:SI 0 "register_operand" "+l")
2261	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
2262			  (match_operand:SI 2 "register_operand" "d"))
2263		 (match_dup 0)))]
2264  "TARGET_MAD"
2265  "mad\t%1,%2"
2266  [(set_attr "type"	"imadd")
2267   (set_attr "accum_in"	"0")
2268   (set_attr "mode"	"SI")])
2269
2270;; See the comment above <u>msubsidi4 for the relationship between
2271;; ISA_HAS_DSP and ISA_HAS_DSP_MULT.
2272(define_insn "<u>maddsidi4"
2273  [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
2274	(plus:DI
2275	 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2276		  (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2277	 (match_operand:DI 3 "muldiv_target_operand" "0")))]
2278  "(TARGET_MAD || ISA_HAS_MACC || GENERATE_MADD_MSUB || ISA_HAS_DSP)
2279   && !TARGET_64BIT"
2280{
2281  if (TARGET_MAD)
2282    return "mad<u>\t%1,%2";
2283  else if (ISA_HAS_DSP_MULT)
2284    return "madd<u>\t%q0,%1,%2";
2285  else if (GENERATE_MADD_MSUB || TARGET_MIPS5500)
2286    return "madd<u>\t%1,%2";
2287  else
2288    /* See comment in *macc.  */
2289    return "%[macc<u>\t%@,%1,%2%]";
2290}
2291  [(set_attr "type" "imadd")
2292   (set_attr "accum_in"	"3")
2293   (set_attr "mode" "SI")])
2294
2295;; Floating point multiply accumulate instructions.
2296
2297(define_insn "*madd4<mode>"
2298  [(set (match_operand:ANYF 0 "register_operand" "=f")
2299	(plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2300			      (match_operand:ANYF 2 "register_operand" "f"))
2301		   (match_operand:ANYF 3 "register_operand" "f")))]
2302  "ISA_HAS_FP_MADD4_MSUB4 && TARGET_FUSED_MADD"
2303  "madd.<fmt>\t%0,%3,%1,%2"
2304  [(set_attr "type" "fmadd")
2305   (set_attr "accum_in"	"3")
2306   (set_attr "mode" "<UNITMODE>")])
2307
2308(define_insn "*madd3<mode>"
2309  [(set (match_operand:ANYF 0 "register_operand" "=f")
2310	(plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2311			      (match_operand:ANYF 2 "register_operand" "f"))
2312		   (match_operand:ANYF 3 "register_operand" "0")))]
2313  "ISA_HAS_FP_MADD3_MSUB3 && TARGET_FUSED_MADD"
2314  "madd.<fmt>\t%0,%1,%2"
2315  [(set_attr "type" "fmadd")
2316   (set_attr "accum_in"	"3")
2317   (set_attr "mode" "<UNITMODE>")])
2318
2319(define_insn "*msub4<mode>"
2320  [(set (match_operand:ANYF 0 "register_operand" "=f")
2321	(minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2322			       (match_operand:ANYF 2 "register_operand" "f"))
2323		    (match_operand:ANYF 3 "register_operand" "f")))]
2324  "ISA_HAS_FP_MADD4_MSUB4 && TARGET_FUSED_MADD"
2325  "msub.<fmt>\t%0,%3,%1,%2"
2326  [(set_attr "type" "fmadd")
2327   (set_attr "accum_in"	"3")
2328   (set_attr "mode" "<UNITMODE>")])
2329
2330(define_insn "*msub3<mode>"
2331  [(set (match_operand:ANYF 0 "register_operand" "=f")
2332	(minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2333			       (match_operand:ANYF 2 "register_operand" "f"))
2334		    (match_operand:ANYF 3 "register_operand" "0")))]
2335  "ISA_HAS_FP_MADD3_MSUB3 && TARGET_FUSED_MADD"
2336  "msub.<fmt>\t%0,%1,%2"
2337  [(set_attr "type" "fmadd")
2338   (set_attr "accum_in"	"3")
2339   (set_attr "mode" "<UNITMODE>")])
2340
2341(define_insn "*nmadd4<mode>"
2342  [(set (match_operand:ANYF 0 "register_operand" "=f")
2343	(neg:ANYF (plus:ANYF
2344		   (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2345			      (match_operand:ANYF 2 "register_operand" "f"))
2346		   (match_operand:ANYF 3 "register_operand" "f"))))]
2347  "ISA_HAS_NMADD4_NMSUB4 (<MODE>mode)
2348   && TARGET_FUSED_MADD
2349   && HONOR_SIGNED_ZEROS (<MODE>mode)
2350   && !HONOR_NANS (<MODE>mode)"
2351  "nmadd.<fmt>\t%0,%3,%1,%2"
2352  [(set_attr "type" "fmadd")
2353   (set_attr "accum_in"	"3")
2354   (set_attr "mode" "<UNITMODE>")])
2355
2356(define_insn "*nmadd3<mode>"
2357  [(set (match_operand:ANYF 0 "register_operand" "=f")
2358	(neg:ANYF (plus:ANYF
2359		   (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2360			      (match_operand:ANYF 2 "register_operand" "f"))
2361		   (match_operand:ANYF 3 "register_operand" "0"))))]
2362  "ISA_HAS_NMADD3_NMSUB3 (<MODE>mode)
2363   && TARGET_FUSED_MADD
2364   && HONOR_SIGNED_ZEROS (<MODE>mode)
2365   && !HONOR_NANS (<MODE>mode)"
2366  "nmadd.<fmt>\t%0,%1,%2"
2367  [(set_attr "type" "fmadd")
2368   (set_attr "accum_in"	"3")
2369   (set_attr "mode" "<UNITMODE>")])
2370
2371(define_insn "*nmadd4<mode>_fastmath"
2372  [(set (match_operand:ANYF 0 "register_operand" "=f")
2373	(minus:ANYF
2374	 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
2375		    (match_operand:ANYF 2 "register_operand" "f"))
2376	 (match_operand:ANYF 3 "register_operand" "f")))]
2377  "ISA_HAS_NMADD4_NMSUB4 (<MODE>mode)
2378   && TARGET_FUSED_MADD
2379   && !HONOR_SIGNED_ZEROS (<MODE>mode)
2380   && !HONOR_NANS (<MODE>mode)"
2381  "nmadd.<fmt>\t%0,%3,%1,%2"
2382  [(set_attr "type" "fmadd")
2383   (set_attr "accum_in"	"3")
2384   (set_attr "mode" "<UNITMODE>")])
2385
2386(define_insn "*nmadd3<mode>_fastmath"
2387  [(set (match_operand:ANYF 0 "register_operand" "=f")
2388	(minus:ANYF
2389	 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
2390		    (match_operand:ANYF 2 "register_operand" "f"))
2391	 (match_operand:ANYF 3 "register_operand" "0")))]
2392  "ISA_HAS_NMADD3_NMSUB3 (<MODE>mode)
2393   && TARGET_FUSED_MADD
2394   && !HONOR_SIGNED_ZEROS (<MODE>mode)
2395   && !HONOR_NANS (<MODE>mode)"
2396  "nmadd.<fmt>\t%0,%1,%2"
2397  [(set_attr "type" "fmadd")
2398   (set_attr "accum_in"	"3")
2399   (set_attr "mode" "<UNITMODE>")])
2400
2401(define_insn "*nmsub4<mode>"
2402  [(set (match_operand:ANYF 0 "register_operand" "=f")
2403	(neg:ANYF (minus:ANYF
2404		   (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2405			      (match_operand:ANYF 3 "register_operand" "f"))
2406		   (match_operand:ANYF 1 "register_operand" "f"))))]
2407  "ISA_HAS_NMADD4_NMSUB4 (<MODE>mode)
2408   && TARGET_FUSED_MADD
2409   && HONOR_SIGNED_ZEROS (<MODE>mode)
2410   && !HONOR_NANS (<MODE>mode)"
2411  "nmsub.<fmt>\t%0,%1,%2,%3"
2412  [(set_attr "type" "fmadd")
2413   (set_attr "accum_in"	"1")
2414   (set_attr "mode" "<UNITMODE>")])
2415
2416(define_insn "*nmsub3<mode>"
2417  [(set (match_operand:ANYF 0 "register_operand" "=f")
2418	(neg:ANYF (minus:ANYF
2419		   (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2420			      (match_operand:ANYF 3 "register_operand" "f"))
2421		   (match_operand:ANYF 1 "register_operand" "0"))))]
2422  "ISA_HAS_NMADD3_NMSUB3 (<MODE>mode)
2423   && TARGET_FUSED_MADD
2424   && HONOR_SIGNED_ZEROS (<MODE>mode)
2425   && !HONOR_NANS (<MODE>mode)"
2426  "nmsub.<fmt>\t%0,%1,%2"
2427  [(set_attr "type" "fmadd")
2428   (set_attr "accum_in"	"1")
2429   (set_attr "mode" "<UNITMODE>")])
2430
2431(define_insn "*nmsub4<mode>_fastmath"
2432  [(set (match_operand:ANYF 0 "register_operand" "=f")
2433	(minus:ANYF
2434	 (match_operand:ANYF 1 "register_operand" "f")
2435	 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2436		    (match_operand:ANYF 3 "register_operand" "f"))))]
2437  "ISA_HAS_NMADD4_NMSUB4 (<MODE>mode)
2438   && TARGET_FUSED_MADD
2439   && !HONOR_SIGNED_ZEROS (<MODE>mode)
2440   && !HONOR_NANS (<MODE>mode)"
2441  "nmsub.<fmt>\t%0,%1,%2,%3"
2442  [(set_attr "type" "fmadd")
2443   (set_attr "accum_in"	"1")
2444   (set_attr "mode" "<UNITMODE>")])
2445
2446(define_insn "*nmsub3<mode>_fastmath"
2447  [(set (match_operand:ANYF 0 "register_operand" "=f")
2448	(minus:ANYF
2449	 (match_operand:ANYF 1 "register_operand" "f")
2450	 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2451		    (match_operand:ANYF 3 "register_operand" "0"))))]
2452  "ISA_HAS_NMADD3_NMSUB3 (<MODE>mode)
2453   && TARGET_FUSED_MADD
2454   && !HONOR_SIGNED_ZEROS (<MODE>mode)
2455   && !HONOR_NANS (<MODE>mode)"
2456  "nmsub.<fmt>\t%0,%1,%2"
2457  [(set_attr "type" "fmadd")
2458   (set_attr "accum_in"	"1")
2459   (set_attr "mode" "<UNITMODE>")])
2460
2461;;
2462;;  ....................
2463;;
2464;;	DIVISION and REMAINDER
2465;;
2466;;  ....................
2467;;
2468
2469(define_expand "div<mode>3"
2470  [(set (match_operand:ANYF 0 "register_operand")
2471	(div:ANYF (match_operand:ANYF 1 "reg_or_1_operand")
2472		  (match_operand:ANYF 2 "register_operand")))]
2473  "<divide_condition>"
2474{
2475  if (const_1_operand (operands[1], <MODE>mode))
2476    if (!(<recip_condition> && flag_unsafe_math_optimizations))
2477      operands[1] = force_reg (<MODE>mode, operands[1]);
2478})
2479
2480;; These patterns work around the early SB-1 rev2 core "F1" erratum:
2481;;
2482;; If an mfc1 or dmfc1 happens to access the floating point register
2483;; file at the same time a long latency operation (div, sqrt, recip,
2484;; sqrt) iterates an intermediate result back through the floating
2485;; point register file bypass, then instead returning the correct
2486;; register value the mfc1 or dmfc1 operation returns the intermediate
2487;; result of the long latency operation.
2488;;
2489;; The workaround is to insert an unconditional 'mov' from/to the
2490;; long latency op destination register.
2491
2492(define_insn "*div<mode>3"
2493  [(set (match_operand:ANYF 0 "register_operand" "=f")
2494	(div:ANYF (match_operand:ANYF 1 "register_operand" "f")
2495		  (match_operand:ANYF 2 "register_operand" "f")))]
2496  "<divide_condition>"
2497{
2498  if (TARGET_FIX_SB1)
2499    return "div.<fmt>\t%0,%1,%2\;mov.<fmt>\t%0,%0";
2500  else
2501    return "div.<fmt>\t%0,%1,%2";
2502}
2503  [(set_attr "type" "fdiv")
2504   (set_attr "mode" "<UNITMODE>")
2505   (set (attr "length")
2506        (if_then_else (match_test "TARGET_FIX_SB1")
2507                      (const_int 8)
2508                      (const_int 4)))])
2509
2510(define_insn "*recip<mode>3"
2511  [(set (match_operand:ANYF 0 "register_operand" "=f")
2512	(div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2513		  (match_operand:ANYF 2 "register_operand" "f")))]
2514  "<recip_condition> && flag_unsafe_math_optimizations"
2515{
2516  if (TARGET_FIX_SB1)
2517    return "recip.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2518  else
2519    return "recip.<fmt>\t%0,%2";
2520}
2521  [(set_attr "type" "frdiv")
2522   (set_attr "mode" "<UNITMODE>")
2523   (set (attr "length")
2524        (if_then_else (match_test "TARGET_FIX_SB1")
2525                      (const_int 8)
2526                      (const_int 4)))])
2527
2528;; VR4120 errata MD(A1): signed division instructions do not work correctly
2529;; with negative operands.  We use special libgcc functions instead.
2530(define_expand "divmod<mode>4"
2531  [(set (match_operand:GPR 0 "register_operand")
2532	(div:GPR (match_operand:GPR 1 "register_operand")
2533		 (match_operand:GPR 2 "register_operand")))
2534   (set (match_operand:GPR 3 "register_operand")
2535	(mod:GPR (match_dup 1)
2536		 (match_dup 2)))]
2537  "!TARGET_FIX_VR4120"
2538{
2539  if (TARGET_MIPS16)
2540    {
2541      emit_insn (gen_divmod<mode>4_split (operands[3], operands[1],
2542					  operands[2]));
2543      emit_move_insn (operands[0], gen_rtx_REG (<MODE>mode, LO_REGNUM));
2544    }
2545  else
2546    emit_insn (gen_divmod<mode>4_internal (operands[0], operands[1],
2547					   operands[2], operands[3]));
2548  DONE;
2549})
2550
2551(define_insn_and_split "divmod<mode>4_internal"
2552  [(set (match_operand:GPR 0 "muldiv_target_operand" "=l")
2553	(div:GPR (match_operand:GPR 1 "register_operand" "d")
2554		 (match_operand:GPR 2 "register_operand" "d")))
2555   (set (match_operand:GPR 3 "register_operand" "=d")
2556	(mod:GPR (match_dup 1)
2557		 (match_dup 2)))]
2558  "!TARGET_FIX_VR4120 && !TARGET_MIPS16"
2559  "#"
2560  "&& reload_completed"
2561  [(const_int 0)]
2562{
2563  emit_insn (gen_divmod<mode>4_split (operands[3], operands[1], operands[2]));
2564  DONE;
2565}
2566 [(set_attr "type" "idiv")
2567  (set_attr "mode" "<MODE>")
2568  (set_attr "length" "8")])
2569
2570(define_expand "udivmod<mode>4"
2571  [(set (match_operand:GPR 0 "register_operand")
2572	(udiv:GPR (match_operand:GPR 1 "register_operand")
2573		  (match_operand:GPR 2 "register_operand")))
2574   (set (match_operand:GPR 3 "register_operand")
2575	(umod:GPR (match_dup 1)
2576		  (match_dup 2)))]
2577  ""
2578{
2579  if (TARGET_MIPS16)
2580    {
2581      emit_insn (gen_udivmod<mode>4_split (operands[3], operands[1],
2582					   operands[2]));
2583      emit_move_insn (operands[0], gen_rtx_REG (<MODE>mode, LO_REGNUM));
2584    }
2585  else
2586    emit_insn (gen_udivmod<mode>4_internal (operands[0], operands[1],
2587					    operands[2], operands[3]));
2588  DONE;
2589})
2590
2591(define_insn_and_split "udivmod<mode>4_internal"
2592  [(set (match_operand:GPR 0 "muldiv_target_operand" "=l")
2593	(udiv:GPR (match_operand:GPR 1 "register_operand" "d")
2594		  (match_operand:GPR 2 "register_operand" "d")))
2595   (set (match_operand:GPR 3 "register_operand" "=d")
2596	(umod:GPR (match_dup 1)
2597		  (match_dup 2)))]
2598  "!TARGET_MIPS16"
2599  "#"
2600  "reload_completed"
2601  [(const_int 0)]
2602{
2603  emit_insn (gen_udivmod<mode>4_split (operands[3], operands[1], operands[2]));
2604  DONE;
2605}
2606 [(set_attr "type" "idiv")
2607  (set_attr "mode" "<MODE>")
2608  (set_attr "length" "8")])
2609
2610(define_expand "<u>divmod<mode>4_split"
2611  [(set (match_operand:GPR 0 "register_operand")
2612	(any_mod:GPR (match_operand:GPR 1 "register_operand")
2613		     (match_operand:GPR 2 "register_operand")))]
2614  ""
2615{
2616  rtx hilo;
2617
2618  if (TARGET_64BIT)
2619    {
2620      hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2621      emit_insn (gen_<u>divmod<mode>4_hilo_ti (hilo, operands[1],
2622					       operands[2]));
2623      emit_insn (gen_mfhi<mode>_ti (operands[0], hilo));
2624    }
2625  else
2626    {
2627      hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2628      emit_insn (gen_<u>divmod<mode>4_hilo_di (hilo, operands[1],
2629					       operands[2]));
2630      emit_insn (gen_mfhi<mode>_di (operands[0], hilo));
2631    }
2632  DONE;
2633})
2634
2635(define_insn "<u>divmod<GPR:mode>4_hilo_<HILO:mode>"
2636  [(set (match_operand:HILO 0 "muldiv_target_operand" "=x")
2637	(unspec:HILO
2638	  [(any_div:GPR (match_operand:GPR 1 "register_operand" "d")
2639			(match_operand:GPR 2 "register_operand" "d"))]
2640	  UNSPEC_SET_HILO))]
2641  ""
2642  { return mips_output_division ("<GPR:d>div<u>\t%.,%1,%2", operands); }
2643  [(set_attr "type" "idiv")
2644   (set_attr "mode" "<GPR:MODE>")])
2645
2646;;
2647;;  ....................
2648;;
2649;;	SQUARE ROOT
2650;;
2651;;  ....................
2652
2653;; These patterns work around the early SB-1 rev2 core "F1" erratum (see
2654;; "*div[sd]f3" comment for details).
2655
2656(define_insn "sqrt<mode>2"
2657  [(set (match_operand:ANYF 0 "register_operand" "=f")
2658	(sqrt:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2659  "<sqrt_condition>"
2660{
2661  if (TARGET_FIX_SB1)
2662    return "sqrt.<fmt>\t%0,%1\;mov.<fmt>\t%0,%0";
2663  else
2664    return "sqrt.<fmt>\t%0,%1";
2665}
2666  [(set_attr "type" "fsqrt")
2667   (set_attr "mode" "<UNITMODE>")
2668   (set (attr "length")
2669        (if_then_else (match_test "TARGET_FIX_SB1")
2670                      (const_int 8)
2671                      (const_int 4)))])
2672
2673(define_insn "*rsqrt<mode>a"
2674  [(set (match_operand:ANYF 0 "register_operand" "=f")
2675	(div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2676		  (sqrt:ANYF (match_operand:ANYF 2 "register_operand" "f"))))]
2677  "<recip_condition> && flag_unsafe_math_optimizations"
2678{
2679  if (TARGET_FIX_SB1)
2680    return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2681  else
2682    return "rsqrt.<fmt>\t%0,%2";
2683}
2684  [(set_attr "type" "frsqrt")
2685   (set_attr "mode" "<UNITMODE>")
2686   (set (attr "length")
2687        (if_then_else (match_test "TARGET_FIX_SB1")
2688                      (const_int 8)
2689                      (const_int 4)))])
2690
2691(define_insn "*rsqrt<mode>b"
2692  [(set (match_operand:ANYF 0 "register_operand" "=f")
2693	(sqrt:ANYF (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2694			     (match_operand:ANYF 2 "register_operand" "f"))))]
2695  "<recip_condition> && flag_unsafe_math_optimizations"
2696{
2697  if (TARGET_FIX_SB1)
2698    return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2699  else
2700    return "rsqrt.<fmt>\t%0,%2";
2701}
2702  [(set_attr "type" "frsqrt")
2703   (set_attr "mode" "<UNITMODE>")
2704   (set (attr "length")
2705        (if_then_else (match_test "TARGET_FIX_SB1")
2706                      (const_int 8)
2707                      (const_int 4)))])
2708
2709;;
2710;;  ....................
2711;;
2712;;	ABSOLUTE VALUE
2713;;
2714;;  ....................
2715
2716;; Do not use the integer abs macro instruction, since that signals an
2717;; exception on -2147483648 (sigh).
2718
2719;; abs.fmt is an arithmetic instruction and treats all NaN inputs as
2720;; invalid; it does not clear their sign bits.  We therefore can't use
2721;; abs.fmt if the signs of NaNs matter.
2722
2723(define_insn "abs<mode>2"
2724  [(set (match_operand:ANYF 0 "register_operand" "=f")
2725	(abs:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2726  "!HONOR_NANS (<MODE>mode)"
2727  "abs.<fmt>\t%0,%1"
2728  [(set_attr "type" "fabs")
2729   (set_attr "mode" "<UNITMODE>")])
2730
2731;;
2732;;  ...................
2733;;
2734;;  Count leading zeroes.
2735;;
2736;;  ...................
2737;;
2738
2739(define_insn "clz<mode>2"
2740  [(set (match_operand:GPR 0 "register_operand" "=d")
2741	(clz:GPR (match_operand:GPR 1 "register_operand" "d")))]
2742  "ISA_HAS_CLZ_CLO"
2743  "<d>clz\t%0,%1"
2744  [(set_attr "type" "clz")
2745   (set_attr "mode" "<MODE>")])
2746
2747;;
2748;;  ...................
2749;;
2750;;  Count number of set bits.
2751;;
2752;;  ...................
2753;;
2754
2755(define_insn "popcount<mode>2"
2756  [(set (match_operand:GPR 0 "register_operand" "=d")
2757	(popcount:GPR (match_operand:GPR 1 "register_operand" "d")))]
2758  "ISA_HAS_POP"
2759  "<d>pop\t%0,%1"
2760  [(set_attr "type" "pop")
2761   (set_attr "mode" "<MODE>")])
2762
2763;; The POP instruction is special as it does not take into account the upper
2764;; 32bits and is documented that way.
2765(define_insn "*popcountdi2_trunc"
2766  [(set (match_operand:SI 0 "register_operand" "=d")
2767       (popcount:SI (truncate:SI (match_operand:DI 1 "register_operand" "d"))))]
2768  "ISA_HAS_POP && TARGET_64BIT"
2769  "pop\t%0,%1"
2770  [(set_attr "type" "pop")
2771   (set_attr "mode" "SI")])
2772
2773;;
2774;;  ....................
2775;;
2776;;	NEGATION and ONE'S COMPLEMENT
2777;;
2778;;  ....................
2779
2780(define_insn "negsi2"
2781  [(set (match_operand:SI 0 "register_operand" "=d")
2782	(neg:SI (match_operand:SI 1 "register_operand" "d")))]
2783  ""
2784{
2785  if (TARGET_MIPS16)
2786    return "neg\t%0,%1";
2787  else
2788    return "subu\t%0,%.,%1";
2789}
2790  [(set_attr "alu_type"	"sub")
2791   (set_attr "mode"	"SI")])
2792
2793(define_insn "negdi2"
2794  [(set (match_operand:DI 0 "register_operand" "=d")
2795	(neg:DI (match_operand:DI 1 "register_operand" "d")))]
2796  "TARGET_64BIT && !TARGET_MIPS16"
2797  "dsubu\t%0,%.,%1"
2798  [(set_attr "alu_type"	"sub")
2799   (set_attr "mode"	"DI")])
2800
2801;; neg.fmt is an arithmetic instruction and treats all NaN inputs as
2802;; invalid; it does not flip their sign bit.  We therefore can't use
2803;; neg.fmt if the signs of NaNs matter.
2804
2805(define_insn "neg<mode>2"
2806  [(set (match_operand:ANYF 0 "register_operand" "=f")
2807	(neg:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2808  "!HONOR_NANS (<MODE>mode)"
2809  "neg.<fmt>\t%0,%1"
2810  [(set_attr "type" "fneg")
2811   (set_attr "mode" "<UNITMODE>")])
2812
2813(define_insn "one_cmpl<mode>2"
2814  [(set (match_operand:GPR 0 "register_operand" "=d")
2815	(not:GPR (match_operand:GPR 1 "register_operand" "d")))]
2816  ""
2817{
2818  if (TARGET_MIPS16)
2819    return "not\t%0,%1";
2820  else
2821    return "nor\t%0,%.,%1";
2822}
2823  [(set_attr "alu_type" "not")
2824   (set_attr "mode" "<MODE>")])
2825
2826;;
2827;;  ....................
2828;;
2829;;	LOGICAL
2830;;
2831;;  ....................
2832;;
2833
2834;; Many of these instructions use trivial define_expands, because we
2835;; want to use a different set of constraints when TARGET_MIPS16.
2836
2837(define_expand "and<mode>3"
2838  [(set (match_operand:GPR 0 "register_operand")
2839	(and:GPR (match_operand:GPR 1 "register_operand")
2840		 (match_operand:GPR 2 "and_reg_operand")))])
2841
2842;; The middle-end is not allowed to convert ANDing with 0xffff_ffff into a
2843;; zero_extendsidi2 because of TRULY_NOOP_TRUNCATION, so handle these here.
2844;; Note that this variant does not trigger for SI mode because we require
2845;; a 64-bit HOST_WIDE_INT and 0xffff_ffff wouldn't be a canonical
2846;; sign-extended SImode value.
2847;;
2848;; These are possible combinations for operand 1 and 2.  The table
2849;; includes both MIPS and MIPS16 cases.  (r=register, mem=memory,
2850;; 16=MIPS16, x=match, S=split):
2851;;
2852;;     \ op1    r/EXT   r/!EXT  mem   r/16   mem/16
2853;;  op2
2854;;
2855;;  andi           x     x
2856;;  0xff           x     x       x             x
2857;;  0xffff         x     x       x             x
2858;;  0xffff_ffff    x     S       x     S       x
2859;;  low-bitmask    x
2860;;  register       x     x
2861;;  register =op1                      x
2862
2863(define_insn "*and<mode>3"
2864  [(set (match_operand:GPR 0 "register_operand" "=d,d,d,d,d,d,d")
2865	(and:GPR (match_operand:GPR 1 "nonimmediate_operand" "o,o,W,d,d,d,d")
2866		 (match_operand:GPR 2 "and_operand" "Yb,Yh,Yw,K,Yx,Yw,d")))]
2867  "!TARGET_MIPS16 && and_operands_ok (<MODE>mode, operands[1], operands[2])"
2868{
2869  int len;
2870
2871  switch (which_alternative)
2872    {
2873    case 0:
2874      operands[1] = gen_lowpart (QImode, operands[1]);
2875      return "lbu\t%0,%1";
2876    case 1:
2877      operands[1] = gen_lowpart (HImode, operands[1]);
2878      return "lhu\t%0,%1";
2879    case 2:
2880      operands[1] = gen_lowpart (SImode, operands[1]);
2881      return "lwu\t%0,%1";
2882    case 3:
2883      return "andi\t%0,%1,%x2";
2884    case 4:
2885      len = low_bitmask_len (<MODE>mode, INTVAL (operands[2]));
2886      operands[2] = GEN_INT (len);
2887      return "<d>ext\t%0,%1,0,%2";
2888    case 5:
2889      return "#";
2890    case 6:
2891      return "and\t%0,%1,%2";
2892    default:
2893      gcc_unreachable ();
2894    }
2895}
2896  [(set_attr "move_type" "load,load,load,andi,ext_ins,shift_shift,logical")
2897   (set_attr "mode" "<MODE>")])
2898
2899(define_insn "*and<mode>3_mips16"
2900  [(set (match_operand:GPR 0 "register_operand" "=d,d,d,d,d")
2901	(and:GPR (match_operand:GPR 1 "nonimmediate_operand" "%W,W,W,d,0")
2902		 (match_operand:GPR 2 "and_operand" "Yb,Yh,Yw,Yw,d")))]
2903  "TARGET_MIPS16 && and_operands_ok (<MODE>mode, operands[1], operands[2])"
2904{
2905  switch (which_alternative)
2906    {
2907    case 0:
2908      operands[1] = gen_lowpart (QImode, operands[1]);
2909      return "lbu\t%0,%1";
2910    case 1:
2911      operands[1] = gen_lowpart (HImode, operands[1]);
2912      return "lhu\t%0,%1";
2913    case 2:
2914      operands[1] = gen_lowpart (SImode, operands[1]);
2915      return "lwu\t%0,%1";
2916    case 3:
2917      return "#";
2918    case 4:
2919      return "and\t%0,%2";
2920    default:
2921      gcc_unreachable ();
2922    }
2923}
2924  [(set_attr "move_type" "load,load,load,shift_shift,logical")
2925   (set_attr "mode" "<MODE>")])
2926
2927(define_expand "ior<mode>3"
2928  [(set (match_operand:GPR 0 "register_operand")
2929	(ior:GPR (match_operand:GPR 1 "register_operand")
2930		 (match_operand:GPR 2 "uns_arith_operand")))]
2931  ""
2932{
2933  if (TARGET_MIPS16)
2934    operands[2] = force_reg (<MODE>mode, operands[2]);
2935})
2936
2937(define_insn "*ior<mode>3"
2938  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2939	(ior:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2940		 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2941  "!TARGET_MIPS16"
2942  "@
2943   or\t%0,%1,%2
2944   ori\t%0,%1,%x2"
2945  [(set_attr "alu_type" "or")
2946   (set_attr "mode" "<MODE>")])
2947
2948(define_insn "*ior<mode>3_mips16"
2949  [(set (match_operand:GPR 0 "register_operand" "=d")
2950	(ior:GPR (match_operand:GPR 1 "register_operand" "%0")
2951		 (match_operand:GPR 2 "register_operand" "d")))]
2952  "TARGET_MIPS16"
2953  "or\t%0,%2"
2954  [(set_attr "alu_type" "or")
2955   (set_attr "mode" "<MODE>")])
2956
2957(define_expand "xor<mode>3"
2958  [(set (match_operand:GPR 0 "register_operand")
2959	(xor:GPR (match_operand:GPR 1 "register_operand")
2960		 (match_operand:GPR 2 "uns_arith_operand")))]
2961  ""
2962  "")
2963
2964(define_insn ""
2965  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2966	(xor:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2967		 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2968  "!TARGET_MIPS16"
2969  "@
2970   xor\t%0,%1,%2
2971   xori\t%0,%1,%x2"
2972  [(set_attr "alu_type" "xor")
2973   (set_attr "mode" "<MODE>")])
2974
2975(define_insn ""
2976  [(set (match_operand:GPR 0 "register_operand" "=d,t,t")
2977	(xor:GPR (match_operand:GPR 1 "register_operand" "%0,d,d")
2978		 (match_operand:GPR 2 "uns_arith_operand" "d,K,d")))]
2979  "TARGET_MIPS16"
2980  "@
2981   xor\t%0,%2
2982   cmpi\t%1,%2
2983   cmp\t%1,%2"
2984  [(set_attr "alu_type" "xor")
2985   (set_attr "mode" "<MODE>")
2986   (set_attr_alternative "length"
2987		[(const_int 4)
2988		 (if_then_else (match_operand:VOID 2 "m16_uimm8_1")
2989			       (const_int 4)
2990			       (const_int 8))
2991		 (const_int 4)])])
2992
2993(define_insn "*nor<mode>3"
2994  [(set (match_operand:GPR 0 "register_operand" "=d")
2995	(and:GPR (not:GPR (match_operand:GPR 1 "register_operand" "d"))
2996		 (not:GPR (match_operand:GPR 2 "register_operand" "d"))))]
2997  "!TARGET_MIPS16"
2998  "nor\t%0,%1,%2"
2999  [(set_attr "alu_type" "nor")
3000   (set_attr "mode" "<MODE>")])
3001
3002;;
3003;;  ....................
3004;;
3005;;	TRUNCATION
3006;;
3007;;  ....................
3008
3009
3010
3011(define_insn "truncdfsf2"
3012  [(set (match_operand:SF 0 "register_operand" "=f")
3013	(float_truncate:SF (match_operand:DF 1 "register_operand" "f")))]
3014  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3015  "cvt.s.d\t%0,%1"
3016  [(set_attr "type"	"fcvt")
3017   (set_attr "cnv_mode"	"D2S")
3018   (set_attr "mode"	"SF")])
3019
3020;; Integer truncation patterns.  Truncating SImode values to smaller
3021;; modes is a no-op, as it is for most other GCC ports.  Truncating
3022;; DImode values to SImode is not a no-op for TARGET_64BIT since we
3023;; need to make sure that the lower 32 bits are properly sign-extended
3024;; (see TRULY_NOOP_TRUNCATION).  Truncating DImode values into modes
3025;; smaller than SImode is equivalent to two separate truncations:
3026;;
3027;;                        A       B
3028;;    DI ---> HI  ==  DI ---> SI ---> HI
3029;;    DI ---> QI  ==  DI ---> SI ---> QI
3030;;
3031;; Step A needs a real instruction but step B does not.
3032
3033(define_insn "truncdi<mode>2"
3034  [(set (match_operand:SUBDI 0 "nonimmediate_operand" "=d,m")
3035        (truncate:SUBDI (match_operand:DI 1 "register_operand" "d,d")))]
3036  "TARGET_64BIT"
3037  "@
3038    sll\t%0,%1,0
3039    <store>\t%1,%0"
3040  [(set_attr "move_type" "sll0,store")
3041   (set_attr "mode" "SI")])
3042
3043;; Combiner patterns to optimize shift/truncate combinations.
3044
3045(define_insn "*ashr_trunc<mode>"
3046  [(set (match_operand:SUBDI 0 "register_operand" "=d")
3047        (truncate:SUBDI
3048	  (ashiftrt:DI (match_operand:DI 1 "register_operand" "d")
3049		       (match_operand:DI 2 "const_arith_operand" ""))))]
3050  "TARGET_64BIT && !TARGET_MIPS16 && IN_RANGE (INTVAL (operands[2]), 32, 63)"
3051  "dsra\t%0,%1,%2"
3052  [(set_attr "type" "shift")
3053   (set_attr "mode" "<MODE>")])
3054
3055(define_insn "*lshr32_trunc<mode>"
3056  [(set (match_operand:SUBDI 0 "register_operand" "=d")
3057        (truncate:SUBDI
3058	  (lshiftrt:DI (match_operand:DI 1 "register_operand" "d")
3059		       (const_int 32))))]
3060  "TARGET_64BIT && !TARGET_MIPS16"
3061  "dsra\t%0,%1,32"
3062  [(set_attr "type" "shift")
3063   (set_attr "mode" "<MODE>")])
3064
3065;; Logical shift by more than 32 results in proper SI values so truncation is
3066;; removed by the middle end.  Note that a logical shift by 32 is handled by
3067;; the previous pattern.
3068(define_insn "*<optab>_trunc<mode>_exts"
3069  [(set (match_operand:SUBDI 0 "register_operand" "=d")
3070        (truncate:SUBDI
3071	 (any_shiftrt:DI (match_operand:DI 1 "register_operand" "d")
3072			 (match_operand:DI 2 "const_arith_operand" ""))))]
3073  "ISA_HAS_EXTS && TARGET_64BIT && UINTVAL (operands[2]) < 32"
3074  "exts\t%0,%1,%2,31"
3075  [(set_attr "type" "arith")
3076   (set_attr "mode" "<MODE>")])
3077
3078;;
3079;;  ....................
3080;;
3081;;	ZERO EXTENSION
3082;;
3083;;  ....................
3084
3085;; Extension insns.
3086
3087(define_expand "zero_extendsidi2"
3088  [(set (match_operand:DI 0 "register_operand")
3089        (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand")))]
3090  "TARGET_64BIT")
3091
3092(define_insn_and_split "*zero_extendsidi2"
3093  [(set (match_operand:DI 0 "register_operand" "=d,d")
3094        (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
3095  "TARGET_64BIT && !ISA_HAS_EXT_INS"
3096  "@
3097   #
3098   lwu\t%0,%1"
3099  "&& reload_completed && REG_P (operands[1])"
3100  [(set (match_dup 0)
3101        (ashift:DI (match_dup 1) (const_int 32)))
3102   (set (match_dup 0)
3103        (lshiftrt:DI (match_dup 0) (const_int 32)))]
3104  { operands[1] = gen_lowpart (DImode, operands[1]); }
3105  [(set_attr "move_type" "shift_shift,load")
3106   (set_attr "mode" "DI")])
3107
3108(define_insn "*zero_extendsidi2_dext"
3109  [(set (match_operand:DI 0 "register_operand" "=d,d")
3110        (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
3111  "TARGET_64BIT && ISA_HAS_EXT_INS"
3112  "@
3113   dext\t%0,%1,0,32
3114   lwu\t%0,%1"
3115  [(set_attr "move_type" "arith,load")
3116   (set_attr "mode" "DI")])
3117
3118;; See the comment before the *and<mode>3 pattern why this is generated by
3119;; combine.
3120
3121(define_split
3122  [(set (match_operand:DI 0 "register_operand")
3123        (and:DI (match_operand:DI 1 "register_operand")
3124		(const_int 4294967295)))]
3125  "TARGET_64BIT && !ISA_HAS_EXT_INS && reload_completed"
3126  [(set (match_dup 0)
3127        (ashift:DI (match_dup 1) (const_int 32)))
3128   (set (match_dup 0)
3129        (lshiftrt:DI (match_dup 0) (const_int 32)))])
3130
3131(define_expand "zero_extend<SHORT:mode><GPR:mode>2"
3132  [(set (match_operand:GPR 0 "register_operand")
3133        (zero_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
3134  ""
3135{
3136  if (TARGET_MIPS16 && !GENERATE_MIPS16E
3137      && !memory_operand (operands[1], <SHORT:MODE>mode))
3138    {
3139      emit_insn (gen_and<GPR:mode>3 (operands[0],
3140				     gen_lowpart (<GPR:MODE>mode, operands[1]),
3141				     force_reg (<GPR:MODE>mode,
3142						GEN_INT (<SHORT:mask>))));
3143      DONE;
3144    }
3145})
3146
3147(define_insn "*zero_extend<SHORT:mode><GPR:mode>2"
3148  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3149        (zero_extend:GPR
3150	     (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
3151  "!TARGET_MIPS16"
3152  "@
3153   andi\t%0,%1,<SHORT:mask>
3154   l<SHORT:size>u\t%0,%1"
3155  [(set_attr "move_type" "andi,load")
3156   (set_attr "mode" "<GPR:MODE>")])
3157
3158(define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16e"
3159  [(set (match_operand:GPR 0 "register_operand" "=d")
3160        (zero_extend:GPR (match_operand:SHORT 1 "register_operand" "0")))]
3161  "GENERATE_MIPS16E"
3162  "ze<SHORT:size>\t%0"
3163  ;; This instruction is effectively a special encoding of ANDI.
3164  [(set_attr "move_type" "andi")
3165   (set_attr "mode" "<GPR:MODE>")])
3166
3167(define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16"
3168  [(set (match_operand:GPR 0 "register_operand" "=d")
3169        (zero_extend:GPR (match_operand:SHORT 1 "memory_operand" "m")))]
3170  "TARGET_MIPS16"
3171  "l<SHORT:size>u\t%0,%1"
3172  [(set_attr "move_type" "load")
3173   (set_attr "mode" "<GPR:MODE>")])
3174
3175(define_expand "zero_extendqihi2"
3176  [(set (match_operand:HI 0 "register_operand")
3177	(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
3178  ""
3179{
3180  if (TARGET_MIPS16 && !memory_operand (operands[1], QImode))
3181    {
3182      emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
3183				       operands[1]));
3184      DONE;
3185    }
3186})
3187
3188(define_insn "*zero_extendqihi2"
3189  [(set (match_operand:HI 0 "register_operand" "=d,d")
3190        (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3191  "!TARGET_MIPS16"
3192  "@
3193   andi\t%0,%1,0x00ff
3194   lbu\t%0,%1"
3195  [(set_attr "move_type" "andi,load")
3196   (set_attr "mode" "HI")])
3197
3198(define_insn "*zero_extendqihi2_mips16"
3199  [(set (match_operand:HI 0 "register_operand" "=d")
3200        (zero_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
3201  "TARGET_MIPS16"
3202  "lbu\t%0,%1"
3203  [(set_attr "move_type" "load")
3204   (set_attr "mode" "HI")])
3205
3206;; Combiner patterns to optimize truncate/zero_extend combinations.
3207
3208(define_insn "*zero_extend<GPR:mode>_trunc<SHORT:mode>"
3209  [(set (match_operand:GPR 0 "register_operand" "=d")
3210        (zero_extend:GPR
3211	    (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3212  "TARGET_64BIT && !TARGET_MIPS16"
3213{
3214  operands[2] = GEN_INT (GET_MODE_MASK (<SHORT:MODE>mode));
3215  return "andi\t%0,%1,%x2";
3216}
3217  [(set_attr "alu_type" "and")
3218   (set_attr "mode" "<GPR:MODE>")])
3219
3220(define_insn "*zero_extendhi_truncqi"
3221  [(set (match_operand:HI 0 "register_operand" "=d")
3222        (zero_extend:HI
3223	    (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3224  "TARGET_64BIT && !TARGET_MIPS16"
3225  "andi\t%0,%1,0xff"
3226  [(set_attr "alu_type" "and")
3227   (set_attr "mode" "HI")])
3228
3229;;
3230;;  ....................
3231;;
3232;;	SIGN EXTENSION
3233;;
3234;;  ....................
3235
3236;; Extension insns.
3237;; Those for integer source operand are ordered widest source type first.
3238
3239;; When TARGET_64BIT, all SImode integer and accumulator registers
3240;; should already be in sign-extended form (see TRULY_NOOP_TRUNCATION
3241;; and truncdisi2).  We can therefore get rid of register->register
3242;; instructions if we constrain the source to be in the same register as
3243;; the destination.
3244;;
3245;; Only the pre-reload scheduler sees the type of the register alternatives;
3246;; we split them into nothing before the post-reload scheduler runs.
3247;; These alternatives therefore have type "move" in order to reflect
3248;; what happens if the two pre-reload operands cannot be tied, and are
3249;; instead allocated two separate GPRs.  We don't distinguish between
3250;; the GPR and LO cases because we don't usually know during pre-reload
3251;; scheduling whether an operand will be LO or not.
3252(define_insn_and_split "extendsidi2"
3253  [(set (match_operand:DI 0 "register_operand" "=d,l,d")
3254        (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "0,0,m")))]
3255  "TARGET_64BIT"
3256  "@
3257   #
3258   #
3259   lw\t%0,%1"
3260  "&& reload_completed && register_operand (operands[1], VOIDmode)"
3261  [(const_int 0)]
3262{
3263  emit_note (NOTE_INSN_DELETED);
3264  DONE;
3265}
3266  [(set_attr "move_type" "move,move,load")
3267   (set_attr "mode" "DI")])
3268
3269(define_expand "extend<SHORT:mode><GPR:mode>2"
3270  [(set (match_operand:GPR 0 "register_operand")
3271        (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
3272  "")
3273
3274(define_insn "*extend<SHORT:mode><GPR:mode>2_mips16e"
3275  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3276        (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand" "0,m")))]
3277  "GENERATE_MIPS16E"
3278  "@
3279   se<SHORT:size>\t%0
3280   l<SHORT:size>\t%0,%1"
3281  [(set_attr "move_type" "signext,load")
3282   (set_attr "mode" "<GPR:MODE>")])
3283
3284(define_insn_and_split "*extend<SHORT:mode><GPR:mode>2"
3285  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3286        (sign_extend:GPR
3287	     (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
3288  "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
3289  "@
3290   #
3291   l<SHORT:size>\t%0,%1"
3292  "&& reload_completed && REG_P (operands[1])"
3293  [(set (match_dup 0) (ashift:GPR (match_dup 1) (match_dup 2)))
3294   (set (match_dup 0) (ashiftrt:GPR (match_dup 0) (match_dup 2)))]
3295{
3296  operands[1] = gen_lowpart (<GPR:MODE>mode, operands[1]);
3297  operands[2] = GEN_INT (GET_MODE_BITSIZE (<GPR:MODE>mode)
3298			 - GET_MODE_BITSIZE (<SHORT:MODE>mode));
3299}
3300  [(set_attr "move_type" "shift_shift,load")
3301   (set_attr "mode" "<GPR:MODE>")])
3302
3303(define_insn "*extend<SHORT:mode><GPR:mode>2_se<SHORT:size>"
3304  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3305        (sign_extend:GPR
3306	     (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
3307  "ISA_HAS_SEB_SEH"
3308  "@
3309   se<SHORT:size>\t%0,%1
3310   l<SHORT:size>\t%0,%1"
3311  [(set_attr "move_type" "signext,load")
3312   (set_attr "mode" "<GPR:MODE>")])
3313
3314(define_expand "extendqihi2"
3315  [(set (match_operand:HI 0 "register_operand")
3316        (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
3317  "")
3318
3319(define_insn "*extendqihi2_mips16e"
3320  [(set (match_operand:HI 0 "register_operand" "=d,d")
3321        (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,m")))]
3322  "GENERATE_MIPS16E"
3323  "@
3324   seb\t%0
3325   lb\t%0,%1"
3326  [(set_attr "move_type" "signext,load")
3327   (set_attr "mode" "SI")])
3328
3329(define_insn_and_split "*extendqihi2"
3330  [(set (match_operand:HI 0 "register_operand" "=d,d")
3331        (sign_extend:HI
3332	     (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3333  "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
3334  "@
3335   #
3336   lb\t%0,%1"
3337  "&& reload_completed && REG_P (operands[1])"
3338  [(set (match_dup 0) (ashift:SI (match_dup 1) (match_dup 2)))
3339   (set (match_dup 0) (ashiftrt:SI (match_dup 0) (match_dup 2)))]
3340{
3341  operands[0] = gen_lowpart (SImode, operands[0]);
3342  operands[1] = gen_lowpart (SImode, operands[1]);
3343  operands[2] = GEN_INT (GET_MODE_BITSIZE (SImode)
3344			 - GET_MODE_BITSIZE (QImode));
3345}
3346  [(set_attr "move_type" "shift_shift,load")
3347   (set_attr "mode" "SI")])
3348
3349(define_insn "*extendqihi2_seb"
3350  [(set (match_operand:HI 0 "register_operand" "=d,d")
3351        (sign_extend:HI
3352	     (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3353  "ISA_HAS_SEB_SEH"
3354  "@
3355   seb\t%0,%1
3356   lb\t%0,%1"
3357  [(set_attr "move_type" "signext,load")
3358   (set_attr "mode" "SI")])
3359
3360;; Combiner patterns for truncate/sign_extend combinations.  The SI versions
3361;; use the shift/truncate patterns.
3362
3363(define_insn_and_split "*extenddi_truncate<mode>"
3364  [(set (match_operand:DI 0 "register_operand" "=d")
3365	(sign_extend:DI
3366	    (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3367  "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3368  "#"
3369  "&& reload_completed"
3370  [(set (match_dup 2)
3371	(ashift:DI (match_dup 1)
3372		   (match_dup 3)))
3373   (set (match_dup 0)
3374	(ashiftrt:DI (match_dup 2)
3375		     (match_dup 3)))]
3376{
3377  operands[2] = gen_lowpart (DImode, operands[0]);
3378  operands[3] = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (<MODE>mode));
3379}
3380  [(set_attr "move_type" "shift_shift")
3381   (set_attr "mode" "DI")])
3382
3383(define_insn_and_split "*extendsi_truncate<mode>"
3384  [(set (match_operand:SI 0 "register_operand" "=d")
3385	(sign_extend:SI
3386	    (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3387  "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3388  "#"
3389  "&& reload_completed"
3390  [(set (match_dup 2)
3391	(ashift:DI (match_dup 1)
3392		   (match_dup 3)))
3393   (set (match_dup 0)
3394	(truncate:SI (ashiftrt:DI (match_dup 2)
3395				  (match_dup 3))))]
3396{
3397  operands[2] = gen_lowpart (DImode, operands[0]);
3398  operands[3] = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (<MODE>mode));
3399}
3400  [(set_attr "move_type" "shift_shift")
3401   (set_attr "mode" "SI")])
3402
3403(define_insn_and_split "*extendhi_truncateqi"
3404  [(set (match_operand:HI 0 "register_operand" "=d")
3405	(sign_extend:HI
3406	    (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3407  "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3408  "#"
3409  "&& reload_completed"
3410  [(set (match_dup 2)
3411	(ashift:DI (match_dup 1)
3412		   (const_int 56)))
3413   (set (match_dup 0)
3414	(truncate:HI (ashiftrt:DI (match_dup 2)
3415				  (const_int 56))))]
3416{
3417  operands[2] = gen_lowpart (DImode, operands[0]);
3418}
3419  [(set_attr "move_type" "shift_shift")
3420   (set_attr "mode" "SI")])
3421
3422(define_insn "*extend<GPR:mode>_truncate<SHORT:mode>_exts"
3423  [(set (match_operand:GPR 0 "register_operand" "=d")
3424	(sign_extend:GPR
3425	    (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3426  "TARGET_64BIT && !TARGET_MIPS16 && ISA_HAS_EXTS"
3427{
3428  operands[2] = GEN_INT (GET_MODE_BITSIZE (<SHORT:MODE>mode));
3429  return "exts\t%0,%1,0,%m2";
3430}
3431  [(set_attr "type" "arith")
3432   (set_attr "mode" "<GPR:MODE>")])
3433
3434(define_insn "*extendhi_truncateqi_exts"
3435  [(set (match_operand:HI 0 "register_operand" "=d")
3436	(sign_extend:HI
3437	    (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3438  "TARGET_64BIT && !TARGET_MIPS16 && ISA_HAS_EXTS"
3439  "exts\t%0,%1,0,7"
3440  [(set_attr "type" "arith")
3441   (set_attr "mode" "SI")])
3442
3443(define_insn "extendsfdf2"
3444  [(set (match_operand:DF 0 "register_operand" "=f")
3445	(float_extend:DF (match_operand:SF 1 "register_operand" "f")))]
3446  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3447  "cvt.d.s\t%0,%1"
3448  [(set_attr "type"	"fcvt")
3449   (set_attr "cnv_mode"	"S2D")
3450   (set_attr "mode"	"DF")])
3451
3452;;
3453;;  ....................
3454;;
3455;;	CONVERSIONS
3456;;
3457;;  ....................
3458
3459(define_expand "fix_truncdfsi2"
3460  [(set (match_operand:SI 0 "register_operand")
3461	(fix:SI (match_operand:DF 1 "register_operand")))]
3462  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3463{
3464  if (!ISA_HAS_TRUNC_W)
3465    {
3466      emit_insn (gen_fix_truncdfsi2_macro (operands[0], operands[1]));
3467      DONE;
3468    }
3469})
3470
3471(define_insn "fix_truncdfsi2_insn"
3472  [(set (match_operand:SI 0 "register_operand" "=f")
3473	(fix:SI (match_operand:DF 1 "register_operand" "f")))]
3474  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && ISA_HAS_TRUNC_W"
3475  "trunc.w.d %0,%1"
3476  [(set_attr "type"	"fcvt")
3477   (set_attr "mode"	"DF")
3478   (set_attr "cnv_mode"	"D2I")])
3479
3480(define_insn "fix_truncdfsi2_macro"
3481  [(set (match_operand:SI 0 "register_operand" "=f")
3482	(fix:SI (match_operand:DF 1 "register_operand" "f")))
3483   (clobber (match_scratch:DF 2 "=d"))]
3484  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !ISA_HAS_TRUNC_W"
3485{
3486  if (mips_nomacro.nesting_level > 0)
3487    return ".set\tmacro\;trunc.w.d %0,%1,%2\;.set\tnomacro";
3488  else
3489    return "trunc.w.d %0,%1,%2";
3490}
3491  [(set_attr "type"	"fcvt")
3492   (set_attr "mode"	"DF")
3493   (set_attr "cnv_mode"	"D2I")
3494   (set_attr "length"	"36")])
3495
3496(define_expand "fix_truncsfsi2"
3497  [(set (match_operand:SI 0 "register_operand")
3498	(fix:SI (match_operand:SF 1 "register_operand")))]
3499  "TARGET_HARD_FLOAT"
3500{
3501  if (!ISA_HAS_TRUNC_W)
3502    {
3503      emit_insn (gen_fix_truncsfsi2_macro (operands[0], operands[1]));
3504      DONE;
3505    }
3506})
3507
3508(define_insn "fix_truncsfsi2_insn"
3509  [(set (match_operand:SI 0 "register_operand" "=f")
3510	(fix:SI (match_operand:SF 1 "register_operand" "f")))]
3511  "TARGET_HARD_FLOAT && ISA_HAS_TRUNC_W"
3512  "trunc.w.s %0,%1"
3513  [(set_attr "type"	"fcvt")
3514   (set_attr "mode"	"SF")
3515   (set_attr "cnv_mode"	"S2I")])
3516
3517(define_insn "fix_truncsfsi2_macro"
3518  [(set (match_operand:SI 0 "register_operand" "=f")
3519	(fix:SI (match_operand:SF 1 "register_operand" "f")))
3520   (clobber (match_scratch:SF 2 "=d"))]
3521  "TARGET_HARD_FLOAT && !ISA_HAS_TRUNC_W"
3522{
3523  if (mips_nomacro.nesting_level > 0)
3524    return ".set\tmacro\;trunc.w.s %0,%1,%2\;.set\tnomacro";
3525  else
3526    return "trunc.w.s %0,%1,%2";
3527}
3528  [(set_attr "type"	"fcvt")
3529   (set_attr "mode"	"SF")
3530   (set_attr "cnv_mode"	"S2I")
3531   (set_attr "length"	"36")])
3532
3533
3534(define_insn "fix_truncdfdi2"
3535  [(set (match_operand:DI 0 "register_operand" "=f")
3536	(fix:DI (match_operand:DF 1 "register_operand" "f")))]
3537  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3538  "trunc.l.d %0,%1"
3539  [(set_attr "type"	"fcvt")
3540   (set_attr "mode"	"DF")
3541   (set_attr "cnv_mode"	"D2I")])
3542
3543
3544(define_insn "fix_truncsfdi2"
3545  [(set (match_operand:DI 0 "register_operand" "=f")
3546	(fix:DI (match_operand:SF 1 "register_operand" "f")))]
3547  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3548  "trunc.l.s %0,%1"
3549  [(set_attr "type"	"fcvt")
3550   (set_attr "mode"	"SF")
3551   (set_attr "cnv_mode"	"S2I")])
3552
3553
3554(define_insn "floatsidf2"
3555  [(set (match_operand:DF 0 "register_operand" "=f")
3556	(float:DF (match_operand:SI 1 "register_operand" "f")))]
3557  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3558  "cvt.d.w\t%0,%1"
3559  [(set_attr "type"	"fcvt")
3560   (set_attr "mode"	"DF")
3561   (set_attr "cnv_mode"	"I2D")])
3562
3563
3564(define_insn "floatdidf2"
3565  [(set (match_operand:DF 0 "register_operand" "=f")
3566	(float:DF (match_operand:DI 1 "register_operand" "f")))]
3567  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3568  "cvt.d.l\t%0,%1"
3569  [(set_attr "type"	"fcvt")
3570   (set_attr "mode"	"DF")
3571   (set_attr "cnv_mode"	"I2D")])
3572
3573
3574(define_insn "floatsisf2"
3575  [(set (match_operand:SF 0 "register_operand" "=f")
3576	(float:SF (match_operand:SI 1 "register_operand" "f")))]
3577  "TARGET_HARD_FLOAT"
3578  "cvt.s.w\t%0,%1"
3579  [(set_attr "type"	"fcvt")
3580   (set_attr "mode"	"SF")
3581   (set_attr "cnv_mode"	"I2S")])
3582
3583
3584(define_insn "floatdisf2"
3585  [(set (match_operand:SF 0 "register_operand" "=f")
3586	(float:SF (match_operand:DI 1 "register_operand" "f")))]
3587  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3588  "cvt.s.l\t%0,%1"
3589  [(set_attr "type"	"fcvt")
3590   (set_attr "mode"	"SF")
3591   (set_attr "cnv_mode"	"I2S")])
3592
3593
3594(define_expand "fixuns_truncdfsi2"
3595  [(set (match_operand:SI 0 "register_operand")
3596	(unsigned_fix:SI (match_operand:DF 1 "register_operand")))]
3597  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3598{
3599  rtx reg1 = gen_reg_rtx (DFmode);
3600  rtx reg2 = gen_reg_rtx (DFmode);
3601  rtx reg3 = gen_reg_rtx (SImode);
3602  rtx label1 = gen_label_rtx ();
3603  rtx label2 = gen_label_rtx ();
3604  rtx test;
3605  REAL_VALUE_TYPE offset;
3606
3607  real_2expN (&offset, 31, DFmode);
3608
3609  if (reg1)			/* Turn off complaints about unreached code.  */
3610    {
3611      mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
3612      do_pending_stack_adjust ();
3613
3614      test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3615      emit_jump_insn (gen_cbranchdf4 (test, operands[1], reg1, label1));
3616
3617      emit_insn (gen_fix_truncdfsi2 (operands[0], operands[1]));
3618      emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3619				   gen_rtx_LABEL_REF (VOIDmode, label2)));
3620      emit_barrier ();
3621
3622      emit_label (label1);
3623      mips_emit_move (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
3624      mips_emit_move (reg3, GEN_INT (trunc_int_for_mode
3625				     (BITMASK_HIGH, SImode)));
3626
3627      emit_insn (gen_fix_truncdfsi2 (operands[0], reg2));
3628      emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
3629
3630      emit_label (label2);
3631
3632      /* Allow REG_NOTES to be set on last insn (labels don't have enough
3633	 fields, and can't be used for REG_NOTES anyway).  */
3634      emit_use (stack_pointer_rtx);
3635      DONE;
3636    }
3637})
3638
3639
3640(define_expand "fixuns_truncdfdi2"
3641  [(set (match_operand:DI 0 "register_operand")
3642	(unsigned_fix:DI (match_operand:DF 1 "register_operand")))]
3643  "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
3644{
3645  rtx reg1 = gen_reg_rtx (DFmode);
3646  rtx reg2 = gen_reg_rtx (DFmode);
3647  rtx reg3 = gen_reg_rtx (DImode);
3648  rtx label1 = gen_label_rtx ();
3649  rtx label2 = gen_label_rtx ();
3650  rtx test;
3651  REAL_VALUE_TYPE offset;
3652
3653  real_2expN (&offset, 63, DFmode);
3654
3655  mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
3656  do_pending_stack_adjust ();
3657
3658  test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3659  emit_jump_insn (gen_cbranchdf4 (test, operands[1], reg1, label1));
3660
3661  emit_insn (gen_fix_truncdfdi2 (operands[0], operands[1]));
3662  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3663			       gen_rtx_LABEL_REF (VOIDmode, label2)));
3664  emit_barrier ();
3665
3666  emit_label (label1);
3667  mips_emit_move (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
3668  mips_emit_move (reg3, GEN_INT (BITMASK_HIGH));
3669  emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
3670
3671  emit_insn (gen_fix_truncdfdi2 (operands[0], reg2));
3672  emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
3673
3674  emit_label (label2);
3675
3676  /* Allow REG_NOTES to be set on last insn (labels don't have enough
3677     fields, and can't be used for REG_NOTES anyway).  */
3678  emit_use (stack_pointer_rtx);
3679  DONE;
3680})
3681
3682
3683(define_expand "fixuns_truncsfsi2"
3684  [(set (match_operand:SI 0 "register_operand")
3685	(unsigned_fix:SI (match_operand:SF 1 "register_operand")))]
3686  "TARGET_HARD_FLOAT"
3687{
3688  rtx reg1 = gen_reg_rtx (SFmode);
3689  rtx reg2 = gen_reg_rtx (SFmode);
3690  rtx reg3 = gen_reg_rtx (SImode);
3691  rtx label1 = gen_label_rtx ();
3692  rtx label2 = gen_label_rtx ();
3693  rtx test;
3694  REAL_VALUE_TYPE offset;
3695
3696  real_2expN (&offset, 31, SFmode);
3697
3698  mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
3699  do_pending_stack_adjust ();
3700
3701  test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3702  emit_jump_insn (gen_cbranchsf4 (test, operands[1], reg1, label1));
3703
3704  emit_insn (gen_fix_truncsfsi2 (operands[0], operands[1]));
3705  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3706			       gen_rtx_LABEL_REF (VOIDmode, label2)));
3707  emit_barrier ();
3708
3709  emit_label (label1);
3710  mips_emit_move (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
3711  mips_emit_move (reg3, GEN_INT (trunc_int_for_mode
3712				 (BITMASK_HIGH, SImode)));
3713
3714  emit_insn (gen_fix_truncsfsi2 (operands[0], reg2));
3715  emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
3716
3717  emit_label (label2);
3718
3719  /* Allow REG_NOTES to be set on last insn (labels don't have enough
3720     fields, and can't be used for REG_NOTES anyway).  */
3721  emit_use (stack_pointer_rtx);
3722  DONE;
3723})
3724
3725
3726(define_expand "fixuns_truncsfdi2"
3727  [(set (match_operand:DI 0 "register_operand")
3728	(unsigned_fix:DI (match_operand:SF 1 "register_operand")))]
3729  "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
3730{
3731  rtx reg1 = gen_reg_rtx (SFmode);
3732  rtx reg2 = gen_reg_rtx (SFmode);
3733  rtx reg3 = gen_reg_rtx (DImode);
3734  rtx label1 = gen_label_rtx ();
3735  rtx label2 = gen_label_rtx ();
3736  rtx test;
3737  REAL_VALUE_TYPE offset;
3738
3739  real_2expN (&offset, 63, SFmode);
3740
3741  mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
3742  do_pending_stack_adjust ();
3743
3744  test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3745  emit_jump_insn (gen_cbranchsf4 (test, operands[1], reg1, label1));
3746
3747  emit_insn (gen_fix_truncsfdi2 (operands[0], operands[1]));
3748  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3749			       gen_rtx_LABEL_REF (VOIDmode, label2)));
3750  emit_barrier ();
3751
3752  emit_label (label1);
3753  mips_emit_move (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
3754  mips_emit_move (reg3, GEN_INT (BITMASK_HIGH));
3755  emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
3756
3757  emit_insn (gen_fix_truncsfdi2 (operands[0], reg2));
3758  emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
3759
3760  emit_label (label2);
3761
3762  /* Allow REG_NOTES to be set on last insn (labels don't have enough
3763     fields, and can't be used for REG_NOTES anyway).  */
3764  emit_use (stack_pointer_rtx);
3765  DONE;
3766})
3767
3768;;
3769;;  ....................
3770;;
3771;;	DATA MOVEMENT
3772;;
3773;;  ....................
3774
3775;; Bit field extract patterns which use lwl/lwr or ldl/ldr.
3776
3777(define_expand "extvmisalign<mode>"
3778  [(set (match_operand:GPR 0 "register_operand")
3779	(sign_extract:GPR (match_operand:BLK 1 "memory_operand")
3780			  (match_operand 2 "const_int_operand")
3781			  (match_operand 3 "const_int_operand")))]
3782  "!TARGET_MIPS16"
3783{
3784  if (mips_expand_ext_as_unaligned_load (operands[0], operands[1],
3785					 INTVAL (operands[2]),
3786					 INTVAL (operands[3]),
3787					 /*unsigned=*/ false))
3788    DONE;
3789  else
3790    FAIL;
3791})
3792
3793(define_expand "extv<mode>"
3794  [(set (match_operand:GPR 0 "register_operand")
3795	(sign_extract:GPR (match_operand:GPR 1 "register_operand")
3796			  (match_operand 2 "const_int_operand")
3797			  (match_operand 3 "const_int_operand")))]
3798  "ISA_HAS_EXTS"
3799{
3800  if (UINTVAL (operands[2]) > 32)
3801    FAIL;
3802})
3803
3804(define_insn "*extv<mode>"
3805  [(set (match_operand:GPR 0 "register_operand" "=d")
3806        (sign_extract:GPR (match_operand:GPR 1 "register_operand" "d")
3807			  (match_operand 2 "const_int_operand" "")
3808			  (match_operand 3 "const_int_operand" "")))]
3809  "ISA_HAS_EXTS && UINTVAL (operands[2]) <= 32"
3810  "exts\t%0,%1,%3,%m2"
3811  [(set_attr "type"     "arith")
3812   (set_attr "mode"     "<MODE>")])
3813
3814(define_expand "extzvmisalign<mode>"
3815  [(set (match_operand:GPR 0 "register_operand")
3816	(zero_extract:GPR (match_operand:BLK 1 "memory_operand")
3817			  (match_operand 2 "const_int_operand")
3818			  (match_operand 3 "const_int_operand")))]
3819  "!TARGET_MIPS16"
3820{
3821  if (mips_expand_ext_as_unaligned_load (operands[0], operands[1],
3822					 INTVAL (operands[2]),
3823					 INTVAL (operands[3]),
3824					 /*unsigned=*/ true))
3825    DONE;
3826  else
3827    FAIL;
3828})
3829
3830(define_expand "extzv<mode>"
3831  [(set (match_operand:GPR 0 "register_operand")
3832	(zero_extract:GPR (match_operand:GPR 1 "register_operand")
3833			  (match_operand 2 "const_int_operand")
3834			  (match_operand 3 "const_int_operand")))]
3835  ""
3836{
3837  if (!mips_use_ins_ext_p (operands[1], INTVAL (operands[2]),
3838			   INTVAL (operands[3])))
3839    FAIL;
3840})
3841
3842(define_insn "*extzv<mode>"
3843  [(set (match_operand:GPR 0 "register_operand" "=d")
3844	(zero_extract:GPR (match_operand:GPR 1 "register_operand" "d")
3845			  (match_operand 2 "const_int_operand" "")
3846			  (match_operand 3 "const_int_operand" "")))]
3847  "mips_use_ins_ext_p (operands[1], INTVAL (operands[2]),
3848		       INTVAL (operands[3]))"
3849  "<d>ext\t%0,%1,%3,%2"
3850  [(set_attr "type"	"arith")
3851   (set_attr "mode"	"<MODE>")])
3852
3853(define_insn "*extzv_truncsi_exts"
3854  [(set (match_operand:SI 0 "register_operand" "=d")
3855        (truncate:SI
3856	 (zero_extract:DI (match_operand:DI 1 "register_operand" "d")
3857			  (match_operand 2 "const_int_operand" "")
3858			  (match_operand 3 "const_int_operand" ""))))]
3859  "ISA_HAS_EXTS && TARGET_64BIT && IN_RANGE (INTVAL (operands[2]), 32, 63)"
3860  "exts\t%0,%1,%3,31"
3861  [(set_attr "type"     "arith")
3862   (set_attr "mode"     "SI")])
3863
3864
3865(define_expand "insvmisalign<mode>"
3866  [(set (zero_extract:GPR (match_operand:BLK 0 "memory_operand")
3867			  (match_operand 1 "const_int_operand")
3868			  (match_operand 2 "const_int_operand"))
3869	(match_operand:GPR 3 "reg_or_0_operand"))]
3870  "!TARGET_MIPS16"
3871{
3872  if (mips_expand_ins_as_unaligned_store (operands[0], operands[3],
3873					  INTVAL (operands[1]),
3874					  INTVAL (operands[2])))
3875    DONE;
3876  else
3877    FAIL;
3878})
3879
3880(define_expand "insv<mode>"
3881  [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand")
3882			  (match_operand 1 "const_int_operand")
3883			  (match_operand 2 "const_int_operand"))
3884	(match_operand:GPR 3 "reg_or_0_operand"))]
3885  ""
3886{
3887  if (!mips_use_ins_ext_p (operands[0], INTVAL (operands[1]),
3888			   INTVAL (operands[2])))
3889    FAIL;
3890})
3891
3892(define_insn "*insv<mode>"
3893  [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand" "+d")
3894			  (match_operand:SI 1 "const_int_operand" "")
3895			  (match_operand:SI 2 "const_int_operand" ""))
3896	(match_operand:GPR 3 "reg_or_0_operand" "dJ"))]
3897  "mips_use_ins_ext_p (operands[0], INTVAL (operands[1]),
3898		       INTVAL (operands[2]))"
3899  "<d>ins\t%0,%z3,%2,%1"
3900  [(set_attr "type"	"arith")
3901   (set_attr "mode"	"<MODE>")])
3902
3903;; Combiner pattern for cins (clear and insert bit field).  We can
3904;; implement mask-and-shift-left operation with this.  Note that if
3905;; the upper bit of the mask is set in an SImode operation, the mask
3906;; itself will be sign-extended.  mask_low_and_shift_len will
3907;; therefore be greater than our threshold of 32.
3908
3909(define_insn "*cins<mode>"
3910  [(set (match_operand:GPR 0 "register_operand" "=d")
3911	(and:GPR
3912	 (ashift:GPR (match_operand:GPR 1 "register_operand" "d")
3913		     (match_operand:GPR 2 "const_int_operand" ""))
3914	 (match_operand:GPR 3 "const_int_operand" "")))]
3915  "ISA_HAS_CINS
3916   && mask_low_and_shift_p (<MODE>mode, operands[3], operands[2], 32)"
3917{
3918  operands[3] =
3919    GEN_INT (mask_low_and_shift_len (<MODE>mode, operands[3], operands[2]));
3920  return "cins\t%0,%1,%2,%m3";
3921}
3922  [(set_attr "type"     "shift")
3923   (set_attr "mode"     "<MODE>")])
3924
3925;; Unaligned word moves generated by the bit field patterns.
3926;;
3927;; As far as the rtl is concerned, both the left-part and right-part
3928;; instructions can access the whole field.  However, the real operand
3929;; refers to just the first or the last byte (depending on endianness).
3930;; We therefore use two memory operands to each instruction, one to
3931;; describe the rtl effect and one to use in the assembly output.
3932;;
3933;; Operands 0 and 1 are the rtl-level target and source respectively.
3934;; This allows us to use the standard length calculations for the "load"
3935;; and "store" type attributes.
3936
3937(define_insn "mov_<load>l"
3938  [(set (match_operand:GPR 0 "register_operand" "=d")
3939	(unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
3940		     (match_operand:QI 2 "memory_operand" "m")]
3941		    UNSPEC_LOAD_LEFT))]
3942  "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[1])"
3943  "<load>l\t%0,%2"
3944  [(set_attr "move_type" "load")
3945   (set_attr "mode" "<MODE>")])
3946
3947(define_insn "mov_<load>r"
3948  [(set (match_operand:GPR 0 "register_operand" "=d")
3949	(unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
3950		     (match_operand:QI 2 "memory_operand" "m")
3951		     (match_operand:GPR 3 "register_operand" "0")]
3952		    UNSPEC_LOAD_RIGHT))]
3953  "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[1])"
3954  "<load>r\t%0,%2"
3955  [(set_attr "move_type" "load")
3956   (set_attr "mode" "<MODE>")])
3957
3958(define_insn "mov_<store>l"
3959  [(set (match_operand:BLK 0 "memory_operand" "=m")
3960	(unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
3961		     (match_operand:QI 2 "memory_operand" "m")]
3962		    UNSPEC_STORE_LEFT))]
3963  "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[0])"
3964  "<store>l\t%z1,%2"
3965  [(set_attr "move_type" "store")
3966   (set_attr "mode" "<MODE>")])
3967
3968(define_insn "mov_<store>r"
3969  [(set (match_operand:BLK 0 "memory_operand" "+m")
3970	(unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
3971		     (match_operand:QI 2 "memory_operand" "m")
3972		     (match_dup 0)]
3973		    UNSPEC_STORE_RIGHT))]
3974  "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[0])"
3975  "<store>r\t%z1,%2"
3976  [(set_attr "move_type" "store")
3977   (set_attr "mode" "<MODE>")])
3978
3979;; An instruction to calculate the high part of a 64-bit SYMBOL_ABSOLUTE.
3980;; The required value is:
3981;;
3982;;	(%highest(op1) << 48) + (%higher(op1) << 32) + (%hi(op1) << 16)
3983;;
3984;; which translates to:
3985;;
3986;;	lui	op0,%highest(op1)
3987;;	daddiu	op0,op0,%higher(op1)
3988;;	dsll	op0,op0,16
3989;;	daddiu	op0,op0,%hi(op1)
3990;;	dsll	op0,op0,16
3991;;
3992;; The split is deferred until after flow2 to allow the peephole2 below
3993;; to take effect.
3994(define_insn_and_split "*lea_high64"
3995  [(set (match_operand:DI 0 "register_operand" "=d")
3996	(high:DI (match_operand:DI 1 "absolute_symbolic_operand" "")))]
3997  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
3998  "#"
3999  "&& epilogue_completed"
4000  [(set (match_dup 0) (high:DI (match_dup 2)))
4001   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 2)))
4002   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))
4003   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
4004   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))]
4005{
4006  operands[2] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
4007  operands[3] = mips_unspec_address (operands[1], SYMBOL_64_MID);
4008}
4009  [(set_attr "length" "20")])
4010
4011;; Use a scratch register to reduce the latency of the above pattern
4012;; on superscalar machines.  The optimized sequence is:
4013;;
4014;;	lui	op1,%highest(op2)
4015;;	lui	op0,%hi(op2)
4016;;	daddiu	op1,op1,%higher(op2)
4017;;	dsll32	op1,op1,0
4018;;	daddu	op1,op1,op0
4019(define_peephole2
4020  [(set (match_operand:DI 1 "d_operand")
4021	(high:DI (match_operand:DI 2 "absolute_symbolic_operand")))
4022   (match_scratch:DI 0 "d")]
4023  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
4024  [(set (match_dup 1) (high:DI (match_dup 3)))
4025   (set (match_dup 0) (high:DI (match_dup 4)))
4026   (set (match_dup 1) (lo_sum:DI (match_dup 1) (match_dup 3)))
4027   (set (match_dup 1) (ashift:DI (match_dup 1) (const_int 32)))
4028   (set (match_dup 1) (plus:DI (match_dup 1) (match_dup 0)))]
4029{
4030  operands[3] = mips_unspec_address (operands[2], SYMBOL_64_HIGH);
4031  operands[4] = mips_unspec_address (operands[2], SYMBOL_64_LOW);
4032})
4033
4034;; On most targets, the expansion of (lo_sum (high X) X) for a 64-bit
4035;; SYMBOL_ABSOLUTE X will take 6 cycles.  This next pattern allows combine
4036;; to merge the HIGH and LO_SUM parts of a move if the HIGH part is only
4037;; used once.  We can then use the sequence:
4038;;
4039;;	lui	op0,%highest(op1)
4040;;	lui	op2,%hi(op1)
4041;;	daddiu	op0,op0,%higher(op1)
4042;;	daddiu	op2,op2,%lo(op1)
4043;;	dsll32	op0,op0,0
4044;;	daddu	op0,op0,op2
4045;;
4046;; which takes 4 cycles on most superscalar targets.
4047(define_insn_and_split "*lea64"
4048  [(set (match_operand:DI 0 "register_operand" "=d")
4049	(match_operand:DI 1 "absolute_symbolic_operand" ""))
4050   (clobber (match_scratch:DI 2 "=&d"))]
4051  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS && cse_not_expected"
4052  "#"
4053  "&& reload_completed"
4054  [(set (match_dup 0) (high:DI (match_dup 3)))
4055   (set (match_dup 2) (high:DI (match_dup 4)))
4056   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
4057   (set (match_dup 2) (lo_sum:DI (match_dup 2) (match_dup 4)))
4058   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 32)))
4059   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
4060{
4061  operands[3] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
4062  operands[4] = mips_unspec_address (operands[1], SYMBOL_64_LOW);
4063}
4064  [(set_attr "length" "24")])
4065
4066;; Split HIGHs into:
4067;;
4068;;	li op0,%hi(sym)
4069;;	sll op0,16
4070;;
4071;; on MIPS16 targets.
4072(define_split
4073  [(set (match_operand:P 0 "d_operand")
4074	(high:P (match_operand:P 1 "symbolic_operand_with_high")))]
4075  "TARGET_MIPS16 && reload_completed"
4076  [(set (match_dup 0) (unspec:P [(match_dup 1)] UNSPEC_UNSHIFTED_HIGH))
4077   (set (match_dup 0) (ashift:P (match_dup 0) (const_int 16)))])
4078
4079(define_insn "*unshifted_high"
4080  [(set (match_operand:P 0 "d_operand" "=d")
4081	(unspec:P [(match_operand:P 1 "symbolic_operand_with_high")]
4082		  UNSPEC_UNSHIFTED_HIGH))]
4083  ""
4084  "li\t%0,%h1"
4085  [(set_attr "extended_mips16" "yes")])
4086
4087;; Insns to fetch a symbol from a big GOT.
4088
4089(define_insn_and_split "*xgot_hi<mode>"
4090  [(set (match_operand:P 0 "register_operand" "=d")
4091	(high:P (match_operand:P 1 "got_disp_operand" "")))]
4092  "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
4093  "#"
4094  "&& reload_completed"
4095  [(set (match_dup 0) (high:P (match_dup 2)))
4096   (set (match_dup 0) (plus:P (match_dup 0) (match_dup 3)))]
4097{
4098  operands[2] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_DISP);
4099  operands[3] = pic_offset_table_rtx;
4100}
4101  [(set_attr "got" "xgot_high")
4102   (set_attr "mode" "<MODE>")])
4103
4104(define_insn_and_split "*xgot_lo<mode>"
4105  [(set (match_operand:P 0 "register_operand" "=d")
4106	(lo_sum:P (match_operand:P 1 "register_operand" "d")
4107		  (match_operand:P 2 "got_disp_operand" "")))]
4108  "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
4109  "#"
4110  "&& reload_completed"
4111  [(set (match_dup 0)
4112	(unspec:P [(match_dup 1) (match_dup 3)] UNSPEC_LOAD_GOT))]
4113  { operands[3] = mips_unspec_address (operands[2], SYMBOL_GOTOFF_DISP); }
4114  [(set_attr "got" "load")
4115   (set_attr "mode" "<MODE>")])
4116
4117;; Insns to fetch a symbol from a normal GOT.
4118
4119(define_insn_and_split "*got_disp<mode>"
4120  [(set (match_operand:P 0 "register_operand" "=d")
4121	(match_operand:P 1 "got_disp_operand" ""))]
4122  "TARGET_EXPLICIT_RELOCS && !mips_split_p[SYMBOL_GOT_DISP]"
4123  "#"
4124  "&& reload_completed"
4125  [(set (match_dup 0) (match_dup 2))]
4126  { operands[2] = mips_got_load (NULL, operands[1], SYMBOL_GOTOFF_DISP); }
4127  [(set_attr "got" "load")
4128   (set_attr "mode" "<MODE>")])
4129
4130;; Insns for loading the "page" part of a page/ofst address from the GOT.
4131
4132(define_insn_and_split "*got_page<mode>"
4133  [(set (match_operand:P 0 "register_operand" "=d")
4134	(high:P (match_operand:P 1 "got_page_ofst_operand" "")))]
4135  "TARGET_EXPLICIT_RELOCS && !mips_split_hi_p[SYMBOL_GOT_PAGE_OFST]"
4136  "#"
4137  "&& reload_completed"
4138  [(set (match_dup 0) (match_dup 2))]
4139  { operands[2] = mips_got_load (NULL, operands[1], SYMBOL_GOTOFF_PAGE); }
4140  [(set_attr "got" "load")
4141   (set_attr "mode" "<MODE>")])
4142
4143;; Convenience expander that generates the rhs of a load_got<mode> insn.
4144(define_expand "unspec_got_<mode>"
4145  [(unspec:P [(match_operand:P 0)
4146	      (match_operand:P 1)] UNSPEC_LOAD_GOT)])
4147
4148;; Lower-level instructions for loading an address from the GOT.
4149;; We could use MEMs, but an unspec gives more optimization
4150;; opportunities.
4151
4152(define_insn "load_got<mode>"
4153  [(set (match_operand:P 0 "register_operand" "=d")
4154	(unspec:P [(match_operand:P 1 "register_operand" "d")
4155		   (match_operand:P 2 "immediate_operand" "")]
4156		  UNSPEC_LOAD_GOT))]
4157  ""
4158  "<load>\t%0,%R2(%1)"
4159  [(set_attr "got" "load")
4160   (set_attr "mode" "<MODE>")])
4161
4162;; Instructions for adding the low 16 bits of an address to a register.
4163;; Operand 2 is the address: mips_print_operand works out which relocation
4164;; should be applied.
4165
4166(define_insn "*low<mode>"
4167  [(set (match_operand:P 0 "register_operand" "=d")
4168	(lo_sum:P (match_operand:P 1 "register_operand" "d")
4169		  (match_operand:P 2 "immediate_operand" "")))]
4170  "!TARGET_MIPS16"
4171  "<d>addiu\t%0,%1,%R2"
4172  [(set_attr "alu_type" "add")
4173   (set_attr "mode" "<MODE>")])
4174
4175(define_insn "*low<mode>_mips16"
4176  [(set (match_operand:P 0 "register_operand" "=d")
4177	(lo_sum:P (match_operand:P 1 "register_operand" "0")
4178		  (match_operand:P 2 "immediate_operand" "")))]
4179  "TARGET_MIPS16"
4180  "<d>addiu\t%0,%R2"
4181  [(set_attr "alu_type" "add")
4182   (set_attr "mode" "<MODE>")
4183   (set_attr "extended_mips16" "yes")])
4184
4185;; Expose MIPS16 uses of the global pointer after reload if the function
4186;; is responsible for setting up the register itself.
4187(define_split
4188  [(set (match_operand:GPR 0 "d_operand")
4189	(const:GPR (unspec:GPR [(const_int 0)] UNSPEC_GP)))]
4190  "TARGET_MIPS16 && TARGET_USE_GOT && reload_completed"
4191  [(set (match_dup 0) (match_dup 1))]
4192  { operands[1] = pic_offset_table_rtx; })
4193
4194;; Allow combine to split complex const_int load sequences, using operand 2
4195;; to store the intermediate results.  See move_operand for details.
4196(define_split
4197  [(set (match_operand:GPR 0 "register_operand")
4198	(match_operand:GPR 1 "splittable_const_int_operand"))
4199   (clobber (match_operand:GPR 2 "register_operand"))]
4200  ""
4201  [(const_int 0)]
4202{
4203  mips_move_integer (operands[2], operands[0], INTVAL (operands[1]));
4204  DONE;
4205})
4206
4207;; Likewise, for symbolic operands.
4208(define_split
4209  [(set (match_operand:P 0 "register_operand")
4210	(match_operand:P 1))
4211   (clobber (match_operand:P 2 "register_operand"))]
4212  "mips_split_symbol (operands[2], operands[1], MAX_MACHINE_MODE, NULL)"
4213  [(set (match_dup 0) (match_dup 3))]
4214{
4215  mips_split_symbol (operands[2], operands[1],
4216		     MAX_MACHINE_MODE, &operands[3]);
4217})
4218
4219;; 64-bit integer moves
4220
4221;; Unlike most other insns, the move insns can't be split with
4222;; different predicates, because register spilling and other parts of
4223;; the compiler, have memoized the insn number already.
4224
4225(define_expand "movdi"
4226  [(set (match_operand:DI 0 "")
4227	(match_operand:DI 1 ""))]
4228  ""
4229{
4230  if (mips_legitimize_move (DImode, operands[0], operands[1]))
4231    DONE;
4232})
4233
4234;; For mips16, we need a special case to handle storing $31 into
4235;; memory, since we don't have a constraint to match $31.  This
4236;; instruction can be generated by save_restore_insns.
4237
4238(define_insn "*mov<mode>_ra"
4239  [(set (match_operand:GPR 0 "stack_operand" "=m")
4240	(reg:GPR RETURN_ADDR_REGNUM))]
4241  "TARGET_MIPS16"
4242  "<store>\t$31,%0"
4243  [(set_attr "move_type" "store")
4244   (set_attr "mode" "<MODE>")])
4245
4246(define_insn "*movdi_32bit"
4247  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,d,m,*a,*a,*d,*f,*f,*d,*m,*B*C*D,*B*C*D,*d,*m")
4248	(match_operand:DI 1 "move_operand" "d,i,m,d,*J,*d,*a,*J*d,*m,*f,*f,*d,*m,*B*C*D,*B*C*D"))]
4249  "!TARGET_64BIT && !TARGET_MIPS16
4250   && (register_operand (operands[0], DImode)
4251       || reg_or_0_operand (operands[1], DImode))"
4252  { return mips_output_move (operands[0], operands[1]); }
4253  [(set_attr "move_type" "move,const,load,store,imul,mtlo,mflo,mtc,fpload,mfc,fpstore,mtc,fpload,mfc,fpstore")
4254   (set (attr "mode")
4255   	(if_then_else (eq_attr "move_type" "imul")
4256		      (const_string "SI")
4257		      (const_string "DI")))])
4258
4259(define_insn "*movdi_32bit_mips16"
4260  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4261	(match_operand:DI 1 "move_operand" "d,d,y,K,N,m,d,*x"))]
4262  "!TARGET_64BIT && TARGET_MIPS16
4263   && (register_operand (operands[0], DImode)
4264       || register_operand (operands[1], DImode))"
4265  { return mips_output_move (operands[0], operands[1]); }
4266  [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4267   (set_attr "mode" "DI")])
4268
4269(define_insn "*movdi_64bit"
4270  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*d,*m,*a,*d,*B*C*D,*B*C*D,*d,*m")
4271	(match_operand:DI 1 "move_operand" "d,U,T,m,dJ,*d*J,*m,*f,*f,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
4272  "TARGET_64BIT && !TARGET_MIPS16
4273   && (register_operand (operands[0], DImode)
4274       || reg_or_0_operand (operands[1], DImode))"
4275  { return mips_output_move (operands[0], operands[1]); }
4276  [(set_attr "move_type" "move,const,const,load,store,mtc,fpload,mfc,fpstore,mtlo,mflo,mtc,fpload,mfc,fpstore")
4277   (set_attr "mode" "DI")])
4278
4279(define_insn "*movdi_64bit_mips16"
4280  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,d,m,*d")
4281	(match_operand:DI 1 "move_operand" "d,d,y,K,N,U,kf,m,d,*a"))]
4282  "TARGET_64BIT && TARGET_MIPS16
4283   && (register_operand (operands[0], DImode)
4284       || register_operand (operands[1], DImode))"
4285  { return mips_output_move (operands[0], operands[1]); }
4286  [(set_attr "move_type" "move,move,move,const,constN,const,loadpool,load,store,mflo")
4287   (set_attr "mode" "DI")])
4288
4289;; On the mips16, we can split ld $r,N($r) into an add and a load,
4290;; when the original load is a 4 byte instruction but the add and the
4291;; load are 2 2 byte instructions.
4292
4293(define_split
4294  [(set (match_operand:DI 0 "d_operand")
4295	(mem:DI (plus:DI (match_dup 0)
4296			 (match_operand:DI 1 "const_int_operand"))))]
4297  "TARGET_64BIT && TARGET_MIPS16 && reload_completed
4298   && !TARGET_DEBUG_D_MODE
4299   && ((INTVAL (operands[1]) < 0
4300	&& INTVAL (operands[1]) >= -0x10)
4301       || (INTVAL (operands[1]) >= 32 * 8
4302	   && INTVAL (operands[1]) <= 31 * 8 + 0x8)
4303       || (INTVAL (operands[1]) >= 0
4304	   && INTVAL (operands[1]) < 32 * 8
4305	   && (INTVAL (operands[1]) & 7) != 0))"
4306  [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
4307   (set (match_dup 0) (mem:DI (plus:DI (match_dup 0) (match_dup 2))))]
4308{
4309  HOST_WIDE_INT val = INTVAL (operands[1]);
4310
4311  if (val < 0)
4312    operands[2] = const0_rtx;
4313  else if (val >= 32 * 8)
4314    {
4315      int off = val & 7;
4316
4317      operands[1] = GEN_INT (0x8 + off);
4318      operands[2] = GEN_INT (val - off - 0x8);
4319    }
4320  else
4321    {
4322      int off = val & 7;
4323
4324      operands[1] = GEN_INT (off);
4325      operands[2] = GEN_INT (val - off);
4326    }
4327})
4328
4329;; 32-bit Integer moves
4330
4331;; Unlike most other insns, the move insns can't be split with
4332;; different predicates, because register spilling and other parts of
4333;; the compiler, have memoized the insn number already.
4334
4335(define_expand "mov<mode>"
4336  [(set (match_operand:IMOVE32 0 "")
4337	(match_operand:IMOVE32 1 ""))]
4338  ""
4339{
4340  if (mips_legitimize_move (<MODE>mode, operands[0], operands[1]))
4341    DONE;
4342})
4343
4344;; The difference between these two is whether or not ints are allowed
4345;; in FP registers (off by default, use -mdebugh to enable).
4346
4347(define_insn "*mov<mode>_internal"
4348  [(set (match_operand:IMOVE32 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*d,*m,*d,*z,*a,*d,*B*C*D,*B*C*D,*d,*m")
4349	(match_operand:IMOVE32 1 "move_operand" "d,U,T,m,dJ,*d*J,*m,*f,*f,*z,*d,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
4350  "!TARGET_MIPS16
4351   && (register_operand (operands[0], <MODE>mode)
4352       || reg_or_0_operand (operands[1], <MODE>mode))"
4353  { return mips_output_move (operands[0], operands[1]); }
4354  [(set_attr "move_type" "move,const,const,load,store,mtc,fpload,mfc,fpstore,mfc,mtc,mtlo,mflo,mtc,fpload,mfc,fpstore")
4355   (set_attr "mode" "SI")])
4356
4357(define_insn "*mov<mode>_mips16"
4358  [(set (match_operand:IMOVE32 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,d,m,*d")
4359	(match_operand:IMOVE32 1 "move_operand" "d,d,y,K,N,U,kf,m,d,*a"))]
4360  "TARGET_MIPS16
4361   && (register_operand (operands[0], <MODE>mode)
4362       || register_operand (operands[1], <MODE>mode))"
4363  { return mips_output_move (operands[0], operands[1]); }
4364  [(set_attr "move_type" "move,move,move,const,constN,const,loadpool,load,store,mflo")
4365   (set_attr "mode" "SI")])
4366
4367;; On the mips16, we can split lw $r,N($r) into an add and a load,
4368;; when the original load is a 4 byte instruction but the add and the
4369;; load are 2 2 byte instructions.
4370
4371(define_split
4372  [(set (match_operand:SI 0 "d_operand")
4373	(mem:SI (plus:SI (match_dup 0)
4374			 (match_operand:SI 1 "const_int_operand"))))]
4375  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4376   && ((INTVAL (operands[1]) < 0
4377	&& INTVAL (operands[1]) >= -0x80)
4378       || (INTVAL (operands[1]) >= 32 * 4
4379	   && INTVAL (operands[1]) <= 31 * 4 + 0x7c)
4380       || (INTVAL (operands[1]) >= 0
4381	   && INTVAL (operands[1]) < 32 * 4
4382	   && (INTVAL (operands[1]) & 3) != 0))"
4383  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4384   (set (match_dup 0) (mem:SI (plus:SI (match_dup 0) (match_dup 2))))]
4385{
4386  HOST_WIDE_INT val = INTVAL (operands[1]);
4387
4388  if (val < 0)
4389    operands[2] = const0_rtx;
4390  else if (val >= 32 * 4)
4391    {
4392      int off = val & 3;
4393
4394      operands[1] = GEN_INT (0x7c + off);
4395      operands[2] = GEN_INT (val - off - 0x7c);
4396    }
4397  else
4398    {
4399      int off = val & 3;
4400
4401      operands[1] = GEN_INT (off);
4402      operands[2] = GEN_INT (val - off);
4403    }
4404})
4405
4406;; On the mips16, we can split a load of certain constants into a load
4407;; and an add.  This turns a 4 byte instruction into 2 2 byte
4408;; instructions.
4409
4410(define_split
4411  [(set (match_operand:SI 0 "d_operand")
4412	(match_operand:SI 1 "const_int_operand"))]
4413  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4414   && INTVAL (operands[1]) >= 0x100
4415   && INTVAL (operands[1]) <= 0xff + 0x7f"
4416  [(set (match_dup 0) (match_dup 1))
4417   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
4418{
4419  int val = INTVAL (operands[1]);
4420
4421  operands[1] = GEN_INT (0xff);
4422  operands[2] = GEN_INT (val - 0xff);
4423})
4424
4425;; MIPS4 supports loading and storing a floating point register from
4426;; the sum of two general registers.  We use two versions for each of
4427;; these four instructions: one where the two general registers are
4428;; SImode, and one where they are DImode.  This is because general
4429;; registers will be in SImode when they hold 32-bit values, but,
4430;; since the 32-bit values are always sign extended, the [ls][wd]xc1
4431;; instructions will still work correctly.
4432
4433;; ??? Perhaps it would be better to support these instructions by
4434;; modifying TARGET_LEGITIMATE_ADDRESS_P and friends.  However, since
4435;; these instructions can only be used to load and store floating
4436;; point registers, that would probably cause trouble in reload.
4437
4438(define_insn "*<ANYF:loadx>_<P:mode>"
4439  [(set (match_operand:ANYF 0 "register_operand" "=f")
4440	(mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
4441			  (match_operand:P 2 "register_operand" "d"))))]
4442  "ISA_HAS_FP4"
4443  "<ANYF:loadx>\t%0,%1(%2)"
4444  [(set_attr "type" "fpidxload")
4445   (set_attr "mode" "<ANYF:UNITMODE>")])
4446
4447(define_insn "*<ANYF:storex>_<P:mode>"
4448  [(set (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
4449			  (match_operand:P 2 "register_operand" "d")))
4450	(match_operand:ANYF 0 "register_operand" "f"))]
4451  "ISA_HAS_FP4"
4452  "<ANYF:storex>\t%0,%1(%2)"
4453  [(set_attr "type" "fpidxstore")
4454   (set_attr "mode" "<ANYF:UNITMODE>")])
4455
4456;; Scaled indexed address load.
4457;; Per md.texi, we only need to look for a pattern with multiply in the
4458;; address expression, not shift.
4459
4460(define_insn "*lwxs"
4461  [(set (match_operand:IMOVE32 0 "register_operand" "=d")
4462	(mem:IMOVE32
4463	  (plus:P (mult:P (match_operand:P 1 "register_operand" "d")
4464			  (const_int 4))
4465		  (match_operand:P 2 "register_operand" "d"))))]
4466  "ISA_HAS_LWXS"
4467  "lwxs\t%0,%1(%2)"
4468  [(set_attr "type"	"load")
4469   (set_attr "mode"	"SI")])
4470
4471;; 16-bit Integer moves
4472
4473;; Unlike most other insns, the move insns can't be split with
4474;; different predicates, because register spilling and other parts of
4475;; the compiler, have memoized the insn number already.
4476;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
4477
4478(define_expand "movhi"
4479  [(set (match_operand:HI 0 "")
4480	(match_operand:HI 1 ""))]
4481  ""
4482{
4483  if (mips_legitimize_move (HImode, operands[0], operands[1]))
4484    DONE;
4485})
4486
4487(define_insn "*movhi_internal"
4488  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,d,d,m,*a,*d")
4489	(match_operand:HI 1 "move_operand"         "d,I,m,dJ,*d*J,*a"))]
4490  "!TARGET_MIPS16
4491   && (register_operand (operands[0], HImode)
4492       || reg_or_0_operand (operands[1], HImode))"
4493  { return mips_output_move (operands[0], operands[1]); }
4494  [(set_attr "move_type" "move,const,load,store,mtlo,mflo")
4495   (set_attr "mode" "HI")])
4496
4497(define_insn "*movhi_mips16"
4498  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4499	(match_operand:HI 1 "move_operand"         "d,d,y,K,N,m,d,*a"))]
4500  "TARGET_MIPS16
4501   && (register_operand (operands[0], HImode)
4502       || register_operand (operands[1], HImode))"
4503  { return mips_output_move (operands[0], operands[1]); }
4504  [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4505   (set_attr "mode" "HI")])
4506
4507;; On the mips16, we can split lh $r,N($r) into an add and a load,
4508;; when the original load is a 4 byte instruction but the add and the
4509;; load are 2 2 byte instructions.
4510
4511(define_split
4512  [(set (match_operand:HI 0 "d_operand")
4513	(mem:HI (plus:SI (match_dup 0)
4514			 (match_operand:SI 1 "const_int_operand"))))]
4515  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4516   && ((INTVAL (operands[1]) < 0
4517	&& INTVAL (operands[1]) >= -0x80)
4518       || (INTVAL (operands[1]) >= 32 * 2
4519	   && INTVAL (operands[1]) <= 31 * 2 + 0x7e)
4520       || (INTVAL (operands[1]) >= 0
4521	   && INTVAL (operands[1]) < 32 * 2
4522	   && (INTVAL (operands[1]) & 1) != 0))"
4523  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4524   (set (match_dup 0) (mem:HI (plus:SI (match_dup 0) (match_dup 2))))]
4525{
4526  HOST_WIDE_INT val = INTVAL (operands[1]);
4527
4528  if (val < 0)
4529    operands[2] = const0_rtx;
4530  else if (val >= 32 * 2)
4531    {
4532      int off = val & 1;
4533
4534      operands[1] = GEN_INT (0x7e + off);
4535      operands[2] = GEN_INT (val - off - 0x7e);
4536    }
4537  else
4538    {
4539      int off = val & 1;
4540
4541      operands[1] = GEN_INT (off);
4542      operands[2] = GEN_INT (val - off);
4543    }
4544})
4545
4546;; 8-bit Integer moves
4547
4548;; Unlike most other insns, the move insns can't be split with
4549;; different predicates, because register spilling and other parts of
4550;; the compiler, have memoized the insn number already.
4551;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
4552
4553(define_expand "movqi"
4554  [(set (match_operand:QI 0 "")
4555	(match_operand:QI 1 ""))]
4556  ""
4557{
4558  if (mips_legitimize_move (QImode, operands[0], operands[1]))
4559    DONE;
4560})
4561
4562(define_insn "*movqi_internal"
4563  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,d,d,m,*a,*d")
4564	(match_operand:QI 1 "move_operand"         "d,I,m,dJ,*d*J,*a"))]
4565  "!TARGET_MIPS16
4566   && (register_operand (operands[0], QImode)
4567       || reg_or_0_operand (operands[1], QImode))"
4568  { return mips_output_move (operands[0], operands[1]); }
4569  [(set_attr "move_type" "move,const,load,store,mtlo,mflo")
4570   (set_attr "mode" "QI")])
4571
4572(define_insn "*movqi_mips16"
4573  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4574	(match_operand:QI 1 "move_operand"         "d,d,y,K,N,m,d,*a"))]
4575  "TARGET_MIPS16
4576   && (register_operand (operands[0], QImode)
4577       || register_operand (operands[1], QImode))"
4578  { return mips_output_move (operands[0], operands[1]); }
4579  [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4580   (set_attr "mode" "QI")])
4581
4582;; On the mips16, we can split lb $r,N($r) into an add and a load,
4583;; when the original load is a 4 byte instruction but the add and the
4584;; load are 2 2 byte instructions.
4585
4586(define_split
4587  [(set (match_operand:QI 0 "d_operand")
4588	(mem:QI (plus:SI (match_dup 0)
4589			 (match_operand:SI 1 "const_int_operand"))))]
4590  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4591   && ((INTVAL (operands[1]) < 0
4592	&& INTVAL (operands[1]) >= -0x80)
4593       || (INTVAL (operands[1]) >= 32
4594	   && INTVAL (operands[1]) <= 31 + 0x7f))"
4595  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4596   (set (match_dup 0) (mem:QI (plus:SI (match_dup 0) (match_dup 2))))]
4597{
4598  HOST_WIDE_INT val = INTVAL (operands[1]);
4599
4600  if (val < 0)
4601    operands[2] = const0_rtx;
4602  else
4603    {
4604      operands[1] = GEN_INT (0x7f);
4605      operands[2] = GEN_INT (val - 0x7f);
4606    }
4607})
4608
4609;; 32-bit floating point moves
4610
4611(define_expand "movsf"
4612  [(set (match_operand:SF 0 "")
4613	(match_operand:SF 1 ""))]
4614  ""
4615{
4616  if (mips_legitimize_move (SFmode, operands[0], operands[1]))
4617    DONE;
4618})
4619
4620(define_insn "*movsf_hardfloat"
4621  [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4622	(match_operand:SF 1 "move_operand" "f,G,m,f,G,*d,*f,*G*d,*m,*d"))]
4623  "TARGET_HARD_FLOAT
4624   && (register_operand (operands[0], SFmode)
4625       || reg_or_0_operand (operands[1], SFmode))"
4626  { return mips_output_move (operands[0], operands[1]); }
4627  [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4628   (set_attr "mode" "SF")])
4629
4630(define_insn "*movsf_softfloat"
4631  [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,m")
4632	(match_operand:SF 1 "move_operand" "Gd,m,d"))]
4633  "TARGET_SOFT_FLOAT && !TARGET_MIPS16
4634   && (register_operand (operands[0], SFmode)
4635       || reg_or_0_operand (operands[1], SFmode))"
4636  { return mips_output_move (operands[0], operands[1]); }
4637  [(set_attr "move_type" "move,load,store")
4638   (set_attr "mode" "SF")])
4639
4640(define_insn "*movsf_mips16"
4641  [(set (match_operand:SF 0 "nonimmediate_operand" "=d,y,d,d,m")
4642	(match_operand:SF 1 "move_operand" "d,d,y,m,d"))]
4643  "TARGET_MIPS16
4644   && (register_operand (operands[0], SFmode)
4645       || register_operand (operands[1], SFmode))"
4646  { return mips_output_move (operands[0], operands[1]); }
4647  [(set_attr "move_type" "move,move,move,load,store")
4648   (set_attr "mode" "SF")])
4649
4650;; 64-bit floating point moves
4651
4652(define_expand "movdf"
4653  [(set (match_operand:DF 0 "")
4654	(match_operand:DF 1 ""))]
4655  ""
4656{
4657  if (mips_legitimize_move (DFmode, operands[0], operands[1]))
4658    DONE;
4659})
4660
4661(define_insn "*movdf_hardfloat"
4662  [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4663	(match_operand:DF 1 "move_operand" "f,G,m,f,G,*d,*f,*d*G,*m,*d"))]
4664  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT
4665   && (register_operand (operands[0], DFmode)
4666       || reg_or_0_operand (operands[1], DFmode))"
4667  { return mips_output_move (operands[0], operands[1]); }
4668  [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4669   (set_attr "mode" "DF")])
4670
4671(define_insn "*movdf_softfloat"
4672  [(set (match_operand:DF 0 "nonimmediate_operand" "=d,d,m")
4673	(match_operand:DF 1 "move_operand" "dG,m,dG"))]
4674  "(TARGET_SOFT_FLOAT || TARGET_SINGLE_FLOAT) && !TARGET_MIPS16
4675   && (register_operand (operands[0], DFmode)
4676       || reg_or_0_operand (operands[1], DFmode))"
4677  { return mips_output_move (operands[0], operands[1]); }
4678  [(set_attr "move_type" "move,load,store")
4679   (set_attr "mode" "DF")])
4680
4681(define_insn "*movdf_mips16"
4682  [(set (match_operand:DF 0 "nonimmediate_operand" "=d,y,d,d,m")
4683	(match_operand:DF 1 "move_operand" "d,d,y,m,d"))]
4684  "TARGET_MIPS16
4685   && (register_operand (operands[0], DFmode)
4686       || register_operand (operands[1], DFmode))"
4687  { return mips_output_move (operands[0], operands[1]); }
4688  [(set_attr "move_type" "move,move,move,load,store")
4689   (set_attr "mode" "DF")])
4690
4691;; 128-bit integer moves
4692
4693(define_expand "movti"
4694  [(set (match_operand:TI 0)
4695	(match_operand:TI 1))]
4696  "TARGET_64BIT"
4697{
4698  if (mips_legitimize_move (TImode, operands[0], operands[1]))
4699    DONE;
4700})
4701
4702(define_insn "*movti"
4703  [(set (match_operand:TI 0 "nonimmediate_operand" "=d,d,d,m,*a,*a,*d")
4704	(match_operand:TI 1 "move_operand" "d,i,m,dJ,*J,*d,*a"))]
4705  "TARGET_64BIT
4706   && !TARGET_MIPS16
4707   && (register_operand (operands[0], TImode)
4708       || reg_or_0_operand (operands[1], TImode))"
4709  { return mips_output_move (operands[0], operands[1]); }
4710  [(set_attr "move_type" "move,const,load,store,imul,mtlo,mflo")
4711   (set (attr "mode")
4712   	(if_then_else (eq_attr "move_type" "imul")
4713		      (const_string "SI")
4714		      (const_string "TI")))])
4715
4716(define_insn "*movti_mips16"
4717  [(set (match_operand:TI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4718	(match_operand:TI 1 "move_operand" "d,d,y,K,N,m,d,*a"))]
4719  "TARGET_64BIT
4720   && TARGET_MIPS16
4721   && (register_operand (operands[0], TImode)
4722       || register_operand (operands[1], TImode))"
4723  "#"
4724  [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4725   (set_attr "mode" "TI")])
4726
4727;; 128-bit floating point moves
4728
4729(define_expand "movtf"
4730  [(set (match_operand:TF 0)
4731	(match_operand:TF 1))]
4732  "TARGET_64BIT"
4733{
4734  if (mips_legitimize_move (TFmode, operands[0], operands[1]))
4735    DONE;
4736})
4737
4738;; This pattern handles both hard- and soft-float cases.
4739(define_insn "*movtf"
4740  [(set (match_operand:TF 0 "nonimmediate_operand" "=d,d,m,f,d,f,m")
4741	(match_operand:TF 1 "move_operand" "dG,m,dG,dG,f,m,f"))]
4742  "TARGET_64BIT
4743   && !TARGET_MIPS16
4744   && (register_operand (operands[0], TFmode)
4745       || reg_or_0_operand (operands[1], TFmode))"
4746  "#"
4747  [(set_attr "move_type" "move,load,store,mtc,mfc,fpload,fpstore")
4748   (set_attr "mode" "TF")])
4749
4750(define_insn "*movtf_mips16"
4751  [(set (match_operand:TF 0 "nonimmediate_operand" "=d,y,d,d,m")
4752	(match_operand:TF 1 "move_operand" "d,d,y,m,d"))]
4753  "TARGET_64BIT
4754   && TARGET_MIPS16
4755   && (register_operand (operands[0], TFmode)
4756       || register_operand (operands[1], TFmode))"
4757  "#"
4758  [(set_attr "move_type" "move,move,move,load,store")
4759   (set_attr "mode" "TF")])
4760
4761(define_split
4762  [(set (match_operand:MOVE64 0 "nonimmediate_operand")
4763	(match_operand:MOVE64 1 "move_operand"))]
4764  "reload_completed && mips_split_move_insn_p (operands[0], operands[1], insn)"
4765  [(const_int 0)]
4766{
4767  mips_split_move_insn (operands[0], operands[1], curr_insn);
4768  DONE;
4769})
4770
4771(define_split
4772  [(set (match_operand:MOVE128 0 "nonimmediate_operand")
4773	(match_operand:MOVE128 1 "move_operand"))]
4774  "reload_completed && mips_split_move_insn_p (operands[0], operands[1], insn)"
4775  [(const_int 0)]
4776{
4777  mips_split_move_insn (operands[0], operands[1], curr_insn);
4778  DONE;
4779})
4780
4781;; When generating mips16 code, split moves of negative constants into
4782;; a positive "li" followed by a negation.
4783(define_split
4784  [(set (match_operand 0 "d_operand")
4785	(match_operand 1 "const_int_operand"))]
4786  "TARGET_MIPS16 && reload_completed && INTVAL (operands[1]) < 0"
4787  [(set (match_dup 2)
4788	(match_dup 3))
4789   (set (match_dup 2)
4790	(neg:SI (match_dup 2)))]
4791{
4792  operands[2] = gen_lowpart (SImode, operands[0]);
4793  operands[3] = GEN_INT (-INTVAL (operands[1]));
4794})
4795
4796;; 64-bit paired-single floating point moves
4797
4798(define_expand "movv2sf"
4799  [(set (match_operand:V2SF 0)
4800	(match_operand:V2SF 1))]
4801  "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT"
4802{
4803  if (mips_legitimize_move (V2SFmode, operands[0], operands[1]))
4804    DONE;
4805})
4806
4807(define_insn "*movv2sf"
4808  [(set (match_operand:V2SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4809	(match_operand:V2SF 1 "move_operand" "f,YG,m,f,YG,*d,*f,*d*YG,*m,*d"))]
4810  "TARGET_HARD_FLOAT
4811   && TARGET_PAIRED_SINGLE_FLOAT
4812   && (register_operand (operands[0], V2SFmode)
4813       || reg_or_0_operand (operands[1], V2SFmode))"
4814  { return mips_output_move (operands[0], operands[1]); }
4815  [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4816   (set_attr "mode" "DF")])
4817
4818;; Extract the high part of a HI/LO value.  See mips_hard_regno_mode_ok_p
4819;; for the reason why we can't just use (reg:GPR HI_REGNUM).
4820;;
4821;; When generating VR4120 or VR4130 code, we use MACCHI and DMACCHI
4822;; instead of MFHI.  This avoids both the normal MIPS III hi/lo hazards
4823;; and the errata related to -mfix-vr4130.
4824(define_insn "mfhi<GPR:mode>_<HILO:mode>"
4825  [(set (match_operand:GPR 0 "register_operand" "=d")
4826	(unspec:GPR [(match_operand:HILO 1 "hilo_operand" "x")]
4827		    UNSPEC_MFHI))]
4828  ""
4829  { return ISA_HAS_MACCHI ? "<GPR:d>macchi\t%0,%.,%." : "mfhi\t%0"; }
4830  [(set_attr "type" "mfhi")
4831   (set_attr "mode" "<GPR:MODE>")])
4832
4833;; Set the high part of a HI/LO value, given that the low part has
4834;; already been set.  See mips_hard_regno_mode_ok_p for the reason
4835;; why we can't just use (reg:GPR HI_REGNUM).
4836(define_insn "mthi<GPR:mode>_<HILO:mode>"
4837  [(set (match_operand:HILO 0 "register_operand" "=x")
4838	(unspec:HILO [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
4839		      (match_operand:GPR 2 "register_operand" "l")]
4840		     UNSPEC_MTHI))]
4841  ""
4842  "mthi\t%z1"
4843  [(set_attr "type" "mthi")
4844   (set_attr "mode" "SI")])
4845
4846;; Emit a doubleword move in which exactly one of the operands is
4847;; a floating-point register.  We can't just emit two normal moves
4848;; because of the constraints imposed by the FPU register model;
4849;; see mips_cannot_change_mode_class for details.  Instead, we keep
4850;; the FPR whole and use special patterns to refer to each word of
4851;; the other operand.
4852
4853(define_expand "move_doubleword_fpr<mode>"
4854  [(set (match_operand:SPLITF 0)
4855	(match_operand:SPLITF 1))]
4856  ""
4857{
4858  if (FP_REG_RTX_P (operands[0]))
4859    {
4860      rtx low = mips_subword (operands[1], 0);
4861      rtx high = mips_subword (operands[1], 1);
4862      emit_insn (gen_load_low<mode> (operands[0], low));
4863      if (TARGET_FLOAT64 && !TARGET_64BIT)
4864      	emit_insn (gen_mthc1<mode> (operands[0], high, operands[0]));
4865      else
4866	emit_insn (gen_load_high<mode> (operands[0], high, operands[0]));
4867    }
4868  else
4869    {
4870      rtx low = mips_subword (operands[0], 0);
4871      rtx high = mips_subword (operands[0], 1);
4872      emit_insn (gen_store_word<mode> (low, operands[1], const0_rtx));
4873      if (TARGET_FLOAT64 && !TARGET_64BIT)
4874	emit_insn (gen_mfhc1<mode> (high, operands[1]));
4875      else
4876	emit_insn (gen_store_word<mode> (high, operands[1], const1_rtx));
4877    }
4878  DONE;
4879})
4880
4881;; Load the low word of operand 0 with operand 1.
4882(define_insn "load_low<mode>"
4883  [(set (match_operand:SPLITF 0 "register_operand" "=f,f")
4884	(unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ,m")]
4885		       UNSPEC_LOAD_LOW))]
4886  "TARGET_HARD_FLOAT"
4887{
4888  operands[0] = mips_subword (operands[0], 0);
4889  return mips_output_move (operands[0], operands[1]);
4890}
4891  [(set_attr "move_type" "mtc,fpload")
4892   (set_attr "mode" "<HALFMODE>")])
4893
4894;; Load the high word of operand 0 from operand 1, preserving the value
4895;; in the low word.
4896(define_insn "load_high<mode>"
4897  [(set (match_operand:SPLITF 0 "register_operand" "=f,f")
4898	(unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ,m")
4899			(match_operand:SPLITF 2 "register_operand" "0,0")]
4900		       UNSPEC_LOAD_HIGH))]
4901  "TARGET_HARD_FLOAT"
4902{
4903  operands[0] = mips_subword (operands[0], 1);
4904  return mips_output_move (operands[0], operands[1]);
4905}
4906  [(set_attr "move_type" "mtc,fpload")
4907   (set_attr "mode" "<HALFMODE>")])
4908
4909;; Store one word of operand 1 in operand 0.  Operand 2 is 1 to store the
4910;; high word and 0 to store the low word.
4911(define_insn "store_word<mode>"
4912  [(set (match_operand:<HALFMODE> 0 "nonimmediate_operand" "=d,m")
4913	(unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f,f")
4914			    (match_operand 2 "const_int_operand")]
4915			   UNSPEC_STORE_WORD))]
4916  "TARGET_HARD_FLOAT"
4917{
4918  operands[1] = mips_subword (operands[1], INTVAL (operands[2]));
4919  return mips_output_move (operands[0], operands[1]);
4920}
4921  [(set_attr "move_type" "mfc,fpstore")
4922   (set_attr "mode" "<HALFMODE>")])
4923
4924;; Move operand 1 to the high word of operand 0 using mthc1, preserving the
4925;; value in the low word.
4926(define_insn "mthc1<mode>"
4927  [(set (match_operand:SPLITF 0 "register_operand" "=f")
4928	(unspec:SPLITF [(match_operand:<HALFMODE> 1 "reg_or_0_operand" "dJ")
4929		        (match_operand:SPLITF 2 "register_operand" "0")]
4930		       UNSPEC_MTHC1))]
4931  "TARGET_HARD_FLOAT && ISA_HAS_MXHC1"
4932  "mthc1\t%z1,%0"
4933  [(set_attr "move_type" "mtc")
4934   (set_attr "mode" "<HALFMODE>")])
4935
4936;; Move high word of operand 1 to operand 0 using mfhc1.
4937(define_insn "mfhc1<mode>"
4938  [(set (match_operand:<HALFMODE> 0 "register_operand" "=d")
4939	(unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f")]
4940			    UNSPEC_MFHC1))]
4941  "TARGET_HARD_FLOAT && ISA_HAS_MXHC1"
4942  "mfhc1\t%0,%1"
4943  [(set_attr "move_type" "mfc")
4944   (set_attr "mode" "<HALFMODE>")])
4945
4946;; Move a constant that satisfies CONST_GP_P into operand 0.
4947(define_expand "load_const_gp_<mode>"
4948  [(set (match_operand:P 0 "register_operand" "=d")
4949	(const:P (unspec:P [(const_int 0)] UNSPEC_GP)))])
4950
4951;; Insn to initialize $gp for n32/n64 abicalls.  Operand 0 is the offset
4952;; of _gp from the start of this function.  Operand 1 is the incoming
4953;; function address.
4954(define_insn_and_split "loadgp_newabi_<mode>"
4955  [(set (match_operand:P 0 "register_operand" "=&d")
4956	(unspec:P [(match_operand:P 1)
4957		   (match_operand:P 2 "register_operand" "d")]
4958		  UNSPEC_LOADGP))]
4959  "mips_current_loadgp_style () == LOADGP_NEWABI"
4960  { return mips_must_initialize_gp_p () ? "#" : ""; }
4961  "&& mips_must_initialize_gp_p ()"
4962  [(set (match_dup 0) (match_dup 3))
4963   (set (match_dup 0) (match_dup 4))
4964   (set (match_dup 0) (match_dup 5))]
4965{
4966  operands[3] = gen_rtx_HIGH (Pmode, operands[1]);
4967  operands[4] = gen_rtx_PLUS (Pmode, operands[0], operands[2]);
4968  operands[5] = gen_rtx_LO_SUM (Pmode, operands[0], operands[1]);
4969}
4970  [(set_attr "type" "ghost")])
4971
4972;; Likewise, for -mno-shared code.  Operand 0 is the __gnu_local_gp symbol.
4973(define_insn_and_split "loadgp_absolute_<mode>"
4974  [(set (match_operand:P 0 "register_operand" "=d")
4975	(unspec:P [(match_operand:P 1)] UNSPEC_LOADGP))]
4976  "mips_current_loadgp_style () == LOADGP_ABSOLUTE"
4977  { return mips_must_initialize_gp_p () ? "#" : ""; }
4978  "&& mips_must_initialize_gp_p ()"
4979  [(const_int 0)]
4980{
4981  mips_emit_move (operands[0], operands[1]);
4982  DONE;
4983}
4984  [(set_attr "type" "ghost")])
4985
4986;; This blockage instruction prevents the gp load from being
4987;; scheduled after an implicit use of gp.  It also prevents
4988;; the load from being deleted as dead.
4989(define_insn "loadgp_blockage"
4990  [(unspec_volatile [(reg:SI 28)] UNSPEC_BLOCKAGE)]
4991  ""
4992  ""
4993  [(set_attr "type" "ghost")])
4994
4995;; Initialize $gp for RTP PIC.  Operand 0 is the __GOTT_BASE__ symbol
4996;; and operand 1 is the __GOTT_INDEX__ symbol.
4997(define_insn_and_split "loadgp_rtp_<mode>"
4998  [(set (match_operand:P 0 "register_operand" "=d")
4999	(unspec:P [(match_operand:P 1 "symbol_ref_operand")
5000		   (match_operand:P 2 "symbol_ref_operand")]
5001		  UNSPEC_LOADGP))]
5002  "mips_current_loadgp_style () == LOADGP_RTP"
5003  { return mips_must_initialize_gp_p () ? "#" : ""; }
5004  "&& mips_must_initialize_gp_p ()"
5005  [(set (match_dup 0) (high:P (match_dup 3)))
5006   (set (match_dup 0) (unspec:P [(match_dup 0)
5007				 (match_dup 3)] UNSPEC_LOAD_GOT))
5008   (set (match_dup 0) (unspec:P [(match_dup 0)
5009				 (match_dup 4)] UNSPEC_LOAD_GOT))]
5010{
5011  operands[3] = mips_unspec_address (operands[1], SYMBOL_ABSOLUTE);
5012  operands[4] = mips_unspec_address (operands[2], SYMBOL_HALF);
5013}
5014  [(set_attr "type" "ghost")])
5015
5016;; Initialize the global pointer for MIPS16 code.  Operand 0 is the
5017;; global pointer and operand 1 is the MIPS16 register that holds
5018;; the required value.
5019(define_insn_and_split "copygp_mips16_<mode>"
5020  [(set (match_operand:P 0 "register_operand" "=y")
5021	(unspec:P [(match_operand:P 1 "register_operand" "d")]
5022		  UNSPEC_COPYGP))]
5023  "TARGET_MIPS16"
5024  { return mips_must_initialize_gp_p () ? "#" : ""; }
5025  "&& mips_must_initialize_gp_p ()"
5026  [(set (match_dup 0) (match_dup 1))]
5027  ""
5028  [(set_attr "type" "ghost")])
5029
5030;; A placeholder for where the cprestore instruction should go,
5031;; if we decide we need one.  Operand 0 and operand 1 are as for
5032;; "cprestore".  Operand 2 is a register that holds the gp value.
5033;;
5034;; The "cprestore" pattern requires operand 2 to be pic_offset_table_rtx,
5035;; otherwise any register that holds the correct value will do.
5036(define_insn_and_split "potential_cprestore_<mode>"
5037  [(set (match_operand:P 0 "cprestore_save_slot_operand" "=X,X")
5038	(unspec:P [(match_operand:P 1 "const_int_operand" "I,i")
5039		   (match_operand:P 2 "register_operand" "d,d")]
5040		  UNSPEC_POTENTIAL_CPRESTORE))
5041   (clobber (match_operand:P 3 "scratch_operand" "=X,&d"))]
5042  "!TARGET_CPRESTORE_DIRECTIVE || operands[2] == pic_offset_table_rtx"
5043  { return mips_must_initialize_gp_p () ? "#" : ""; }
5044  "mips_must_initialize_gp_p ()"
5045  [(const_int 0)]
5046{
5047  mips_save_gp_to_cprestore_slot (operands[0], operands[1],
5048				  operands[2], operands[3]);
5049  DONE;
5050}
5051  [(set_attr "type" "ghost")])
5052
5053;; Emit a .cprestore directive, which normally expands to a single store
5054;; instruction.  Operand 0 is a (possibly illegitimate) sp-based MEM
5055;; for the cprestore slot.  Operand 1 is the offset of the slot from
5056;; the stack pointer.  (This is redundant with operand 0, but it makes
5057;; things a little simpler.)
5058(define_insn "cprestore_<mode>"
5059  [(set (match_operand:P 0 "cprestore_save_slot_operand" "=X,X")
5060	(unspec:P [(match_operand:P 1 "const_int_operand" "I,i")
5061		   (reg:P 28)]
5062		  UNSPEC_CPRESTORE))]
5063  "TARGET_CPRESTORE_DIRECTIVE"
5064{
5065  if (mips_nomacro.nesting_level > 0 && which_alternative == 1)
5066    return ".set\tmacro\;.cprestore\t%1\;.set\tnomacro";
5067  else
5068    return ".cprestore\t%1";
5069}
5070  [(set_attr "type" "store")
5071   (set_attr "length" "4,12")])
5072
5073(define_insn "use_cprestore_<mode>"
5074  [(set (reg:P CPRESTORE_SLOT_REGNUM)
5075	(match_operand:P 0 "cprestore_load_slot_operand"))]
5076  ""
5077  ""
5078  [(set_attr "type" "ghost")])
5079
5080;; Expand in-line code to clear the instruction cache between operand[0] and
5081;; operand[1].
5082(define_expand "clear_cache"
5083  [(match_operand 0 "pmode_register_operand")
5084   (match_operand 1 "pmode_register_operand")]
5085  ""
5086  "
5087{
5088  if (TARGET_SYNCI)
5089    {
5090      mips_expand_synci_loop (operands[0], operands[1]);
5091      emit_insn (gen_sync ());
5092      emit_insn (PMODE_INSN (gen_clear_hazard, ()));
5093    }
5094  else if (mips_cache_flush_func && mips_cache_flush_func[0])
5095    {
5096      rtx len = gen_reg_rtx (Pmode);
5097      emit_insn (gen_sub3_insn (len, operands[1], operands[0]));
5098      MIPS_ICACHE_SYNC (operands[0], len);
5099    }
5100  DONE;
5101}")
5102
5103(define_insn "sync"
5104  [(unspec_volatile [(const_int 0)] UNSPEC_SYNC)]
5105  "GENERATE_SYNC"
5106  { return mips_output_sync (); })
5107
5108(define_insn "synci"
5109  [(unspec_volatile [(match_operand 0 "pmode_register_operand" "d")]
5110		    UNSPEC_SYNCI)]
5111  "TARGET_SYNCI"
5112  "synci\t0(%0)")
5113
5114(define_insn "rdhwr_synci_step_<mode>"
5115  [(set (match_operand:P 0 "register_operand" "=d")
5116        (unspec_volatile [(const_int 1)]
5117        UNSPEC_RDHWR))]
5118  "ISA_HAS_SYNCI"
5119  "rdhwr\t%0,$1")
5120
5121(define_insn "clear_hazard_<mode>"
5122  [(unspec_volatile [(const_int 0)] UNSPEC_CLEAR_HAZARD)
5123   (clobber (reg:P RETURN_ADDR_REGNUM))]
5124  "ISA_HAS_SYNCI"
5125{
5126  return "%(%<bal\t1f\n"
5127         "\tnop\n"
5128         "1:\t<d>addiu\t$31,$31,12\n"
5129         "\tjr.hb\t$31\n"
5130         "\tnop%>%)";
5131}
5132  [(set_attr "length" "20")])
5133
5134;; Cache operations for R4000-style caches.
5135(define_insn "mips_cache"
5136  [(set (mem:BLK (scratch))
5137	(unspec:BLK [(match_operand:SI 0 "const_int_operand")
5138		     (match_operand:QI 1 "address_operand" "p")]
5139		    UNSPEC_MIPS_CACHE))]
5140  "ISA_HAS_CACHE"
5141  "cache\t%X0,%a1")
5142
5143;; Similar, but with the operands hard-coded to an R10K cache barrier
5144;; operation.  We keep the pattern distinct so that we can identify
5145;; cache operations inserted by -mr10k-cache-barrier=, and so that
5146;; the operation is never inserted into a delay slot.
5147(define_insn "r10k_cache_barrier"
5148  [(set (mem:BLK (scratch))
5149	(unspec:BLK [(const_int 0)] UNSPEC_R10K_CACHE_BARRIER))]
5150  "ISA_HAS_CACHE"
5151  "cache\t0x14,0(%$)"
5152  [(set_attr "can_delay" "no")])
5153
5154;; Block moves, see mips.c for more details.
5155;; Argument 0 is the destination
5156;; Argument 1 is the source
5157;; Argument 2 is the length
5158;; Argument 3 is the alignment
5159
5160(define_expand "movmemsi"
5161  [(parallel [(set (match_operand:BLK 0 "general_operand")
5162		   (match_operand:BLK 1 "general_operand"))
5163	      (use (match_operand:SI 2 ""))
5164	      (use (match_operand:SI 3 "const_int_operand"))])]
5165  "!TARGET_MIPS16 && !TARGET_MEMCPY"
5166{
5167  if (mips_expand_block_move (operands[0], operands[1], operands[2]))
5168    DONE;
5169  else
5170    FAIL;
5171})
5172
5173;;
5174;;  ....................
5175;;
5176;;	SHIFTS
5177;;
5178;;  ....................
5179
5180(define_expand "<optab><mode>3"
5181  [(set (match_operand:GPR 0 "register_operand")
5182	(any_shift:GPR (match_operand:GPR 1 "register_operand")
5183		       (match_operand:SI 2 "arith_operand")))]
5184  ""
5185{
5186  /* On the mips16, a shift of more than 8 is a four byte instruction,
5187     so, for a shift between 8 and 16, it is just as fast to do two
5188     shifts of 8 or less.  If there is a lot of shifting going on, we
5189     may win in CSE.  Otherwise combine will put the shifts back
5190     together again.  This can be called by mips_function_arg, so we must
5191     be careful not to allocate a new register if we've reached the
5192     reload pass.  */
5193  if (TARGET_MIPS16
5194      && optimize
5195      && CONST_INT_P (operands[2])
5196      && INTVAL (operands[2]) > 8
5197      && INTVAL (operands[2]) <= 16
5198      && !reload_in_progress
5199      && !reload_completed)
5200    {
5201      rtx temp = gen_reg_rtx (<MODE>mode);
5202
5203      emit_insn (gen_<optab><mode>3 (temp, operands[1], GEN_INT (8)));
5204      emit_insn (gen_<optab><mode>3 (operands[0], temp,
5205				     GEN_INT (INTVAL (operands[2]) - 8)));
5206      DONE;
5207    }
5208})
5209
5210(define_insn "*<optab><mode>3"
5211  [(set (match_operand:GPR 0 "register_operand" "=d")
5212	(any_shift:GPR (match_operand:GPR 1 "register_operand" "d")
5213		       (match_operand:SI 2 "arith_operand" "dI")))]
5214  "!TARGET_MIPS16"
5215{
5216  if (CONST_INT_P (operands[2]))
5217    operands[2] = GEN_INT (INTVAL (operands[2])
5218			   & (GET_MODE_BITSIZE (<MODE>mode) - 1));
5219
5220  return "<d><insn>\t%0,%1,%2";
5221}
5222  [(set_attr "type" "shift")
5223   (set_attr "mode" "<MODE>")])
5224
5225(define_insn "*<optab>si3_extend"
5226  [(set (match_operand:DI 0 "register_operand" "=d")
5227	(sign_extend:DI
5228	   (any_shift:SI (match_operand:SI 1 "register_operand" "d")
5229			 (match_operand:SI 2 "arith_operand" "dI"))))]
5230  "TARGET_64BIT && !TARGET_MIPS16"
5231{
5232  if (CONST_INT_P (operands[2]))
5233    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
5234
5235  return "<insn>\t%0,%1,%2";
5236}
5237  [(set_attr "type" "shift")
5238   (set_attr "mode" "SI")])
5239
5240(define_insn "*<optab>si3_mips16"
5241  [(set (match_operand:SI 0 "register_operand" "=d,d")
5242	(any_shift:SI (match_operand:SI 1 "register_operand" "0,d")
5243		      (match_operand:SI 2 "arith_operand" "d,I")))]
5244  "TARGET_MIPS16"
5245{
5246  if (which_alternative == 0)
5247    return "<insn>\t%0,%2";
5248
5249  operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
5250  return "<insn>\t%0,%1,%2";
5251}
5252  [(set_attr "type" "shift")
5253   (set_attr "mode" "SI")
5254   (set_attr_alternative "length"
5255		[(const_int 4)
5256		 (if_then_else (match_operand 2 "m16_uimm3_b")
5257			       (const_int 4)
5258			       (const_int 8))])])
5259
5260;; We need separate DImode MIPS16 patterns because of the irregularity
5261;; of right shifts.
5262(define_insn "*ashldi3_mips16"
5263  [(set (match_operand:DI 0 "register_operand" "=d,d")
5264	(ashift:DI (match_operand:DI 1 "register_operand" "0,d")
5265		   (match_operand:SI 2 "arith_operand" "d,I")))]
5266  "TARGET_64BIT && TARGET_MIPS16"
5267{
5268  if (which_alternative == 0)
5269    return "dsll\t%0,%2";
5270
5271  operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5272  return "dsll\t%0,%1,%2";
5273}
5274  [(set_attr "type" "shift")
5275   (set_attr "mode" "DI")
5276   (set_attr_alternative "length"
5277		[(const_int 4)
5278		 (if_then_else (match_operand 2 "m16_uimm3_b")
5279			       (const_int 4)
5280			       (const_int 8))])])
5281
5282(define_insn "*ashrdi3_mips16"
5283  [(set (match_operand:DI 0 "register_operand" "=d,d")
5284	(ashiftrt:DI (match_operand:DI 1 "register_operand" "0,0")
5285		     (match_operand:SI 2 "arith_operand" "d,I")))]
5286  "TARGET_64BIT && TARGET_MIPS16"
5287{
5288  if (CONST_INT_P (operands[2]))
5289    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5290
5291  return "dsra\t%0,%2";
5292}
5293  [(set_attr "type" "shift")
5294   (set_attr "mode" "DI")
5295   (set_attr_alternative "length"
5296		[(const_int 4)
5297		 (if_then_else (match_operand 2 "m16_uimm3_b")
5298			       (const_int 4)
5299			       (const_int 8))])])
5300
5301(define_insn "*lshrdi3_mips16"
5302  [(set (match_operand:DI 0 "register_operand" "=d,d")
5303	(lshiftrt:DI (match_operand:DI 1 "register_operand" "0,0")
5304		     (match_operand:SI 2 "arith_operand" "d,I")))]
5305  "TARGET_64BIT && TARGET_MIPS16"
5306{
5307  if (CONST_INT_P (operands[2]))
5308    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5309
5310  return "dsrl\t%0,%2";
5311}
5312  [(set_attr "type" "shift")
5313   (set_attr "mode" "DI")
5314   (set_attr_alternative "length"
5315		[(const_int 4)
5316		 (if_then_else (match_operand 2 "m16_uimm3_b")
5317			       (const_int 4)
5318			       (const_int 8))])])
5319
5320;; On the mips16, we can split a 4 byte shift into 2 2 byte shifts.
5321
5322(define_split
5323  [(set (match_operand:GPR 0 "d_operand")
5324	(any_shift:GPR (match_operand:GPR 1 "d_operand")
5325		       (match_operand:GPR 2 "const_int_operand")))]
5326  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
5327   && INTVAL (operands[2]) > 8
5328   && INTVAL (operands[2]) <= 16"
5329  [(set (match_dup 0) (any_shift:GPR (match_dup 1) (const_int 8)))
5330   (set (match_dup 0) (any_shift:GPR (match_dup 0) (match_dup 2)))]
5331  { operands[2] = GEN_INT (INTVAL (operands[2]) - 8); })
5332
5333;; If we load a byte on the mips16 as a bitfield, the resulting
5334;; sequence of instructions is too complicated for combine, because it
5335;; involves four instructions: a load, a shift, a constant load into a
5336;; register, and an and (the key problem here is that the mips16 does
5337;; not have and immediate).  We recognize a shift of a load in order
5338;; to make it simple enough for combine to understand.
5339;;
5340;; The length here is the worst case: the length of the split version
5341;; will be more accurate.
5342(define_insn_and_split ""
5343  [(set (match_operand:SI 0 "register_operand" "=d")
5344	(lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
5345		     (match_operand:SI 2 "immediate_operand" "I")))]
5346  "TARGET_MIPS16"
5347  "#"
5348  ""
5349  [(set (match_dup 0) (match_dup 1))
5350   (set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 2)))]
5351  ""
5352  [(set_attr "type"	"load")
5353   (set_attr "mode"	"SI")
5354   (set_attr "length"	"16")])
5355
5356(define_insn "rotr<mode>3"
5357  [(set (match_operand:GPR 0 "register_operand" "=d")
5358	(rotatert:GPR (match_operand:GPR 1 "register_operand" "d")
5359		      (match_operand:SI 2 "arith_operand" "dI")))]
5360  "ISA_HAS_ROR"
5361{
5362  if (CONST_INT_P (operands[2]))
5363    gcc_assert (INTVAL (operands[2]) >= 0
5364		&& INTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode));
5365
5366  return "<d>ror\t%0,%1,%2";
5367}
5368  [(set_attr "type" "shift")
5369   (set_attr "mode" "<MODE>")])
5370
5371;;
5372;;  ....................
5373;;
5374;;	CONDITIONAL BRANCHES
5375;;
5376;;  ....................
5377
5378;; Conditional branches on floating-point equality tests.
5379
5380(define_insn "*branch_fp"
5381  [(set (pc)
5382        (if_then_else
5383         (match_operator 1 "equality_operator"
5384                         [(match_operand:CC 2 "register_operand" "z")
5385			  (const_int 0)])
5386         (label_ref (match_operand 0 "" ""))
5387         (pc)))]
5388  "TARGET_HARD_FLOAT"
5389{
5390  return mips_output_conditional_branch (insn, operands,
5391					 MIPS_BRANCH ("b%F1", "%Z2%0"),
5392					 MIPS_BRANCH ("b%W1", "%Z2%0"));
5393}
5394  [(set_attr "type" "branch")])
5395
5396(define_insn "*branch_fp_inverted"
5397  [(set (pc)
5398        (if_then_else
5399         (match_operator 1 "equality_operator"
5400                         [(match_operand:CC 2 "register_operand" "z")
5401			  (const_int 0)])
5402         (pc)
5403         (label_ref (match_operand 0 "" ""))))]
5404  "TARGET_HARD_FLOAT"
5405{
5406  return mips_output_conditional_branch (insn, operands,
5407					 MIPS_BRANCH ("b%W1", "%Z2%0"),
5408					 MIPS_BRANCH ("b%F1", "%Z2%0"));
5409}
5410  [(set_attr "type" "branch")])
5411
5412;; Conditional branches on ordered comparisons with zero.
5413
5414(define_insn "*branch_order<mode>"
5415  [(set (pc)
5416	(if_then_else
5417	 (match_operator 1 "order_operator"
5418			 [(match_operand:GPR 2 "register_operand" "d")
5419			  (const_int 0)])
5420	 (label_ref (match_operand 0 "" ""))
5421	 (pc)))]
5422  "!TARGET_MIPS16"
5423  { return mips_output_order_conditional_branch (insn, operands, false); }
5424  [(set_attr "type" "branch")])
5425
5426(define_insn "*branch_order<mode>_inverted"
5427  [(set (pc)
5428	(if_then_else
5429	 (match_operator 1 "order_operator"
5430			 [(match_operand:GPR 2 "register_operand" "d")
5431			  (const_int 0)])
5432	 (pc)
5433	 (label_ref (match_operand 0 "" ""))))]
5434  "!TARGET_MIPS16"
5435  { return mips_output_order_conditional_branch (insn, operands, true); }
5436  [(set_attr "type" "branch")])
5437
5438;; Conditional branch on equality comparison.
5439
5440(define_insn "*branch_equality<mode>"
5441  [(set (pc)
5442	(if_then_else
5443	 (match_operator 1 "equality_operator"
5444			 [(match_operand:GPR 2 "register_operand" "d")
5445			  (match_operand:GPR 3 "reg_or_0_operand" "dJ")])
5446	 (label_ref (match_operand 0 "" ""))
5447	 (pc)))]
5448  "!TARGET_MIPS16"
5449{
5450  return mips_output_conditional_branch (insn, operands,
5451					 MIPS_BRANCH ("b%C1", "%2,%z3,%0"),
5452					 MIPS_BRANCH ("b%N1", "%2,%z3,%0"));
5453}
5454  [(set_attr "type" "branch")])
5455
5456(define_insn "*branch_equality<mode>_inverted"
5457  [(set (pc)
5458	(if_then_else
5459	 (match_operator 1 "equality_operator"
5460			 [(match_operand:GPR 2 "register_operand" "d")
5461			  (match_operand:GPR 3 "reg_or_0_operand" "dJ")])
5462	 (pc)
5463	 (label_ref (match_operand 0 "" ""))))]
5464  "!TARGET_MIPS16"
5465{
5466  return mips_output_conditional_branch (insn, operands,
5467					 MIPS_BRANCH ("b%N1", "%2,%z3,%0"),
5468					 MIPS_BRANCH ("b%C1", "%2,%z3,%0"));
5469}
5470  [(set_attr "type" "branch")])
5471
5472;; MIPS16 branches
5473
5474(define_insn "*branch_equality<mode>_mips16"
5475  [(set (pc)
5476	(if_then_else
5477	 (match_operator 1 "equality_operator"
5478			 [(match_operand:GPR 2 "register_operand" "d,t")
5479			  (const_int 0)])
5480	 (label_ref (match_operand 0 "" ""))
5481	 (pc)))]
5482  "TARGET_MIPS16"
5483  "@
5484   b%C1z\t%2,%0
5485   bt%C1z\t%0"
5486  [(set_attr "type" "branch")])
5487
5488(define_insn "*branch_equality<mode>_mips16_inverted"
5489  [(set (pc)
5490	(if_then_else
5491	 (match_operator 1 "equality_operator"
5492			 [(match_operand:GPR 2 "register_operand" "d,t")
5493			  (const_int 0)])
5494	 (pc)
5495	 (label_ref (match_operand 0 "" ""))))]
5496  "TARGET_MIPS16"
5497  "@
5498   b%N1z\t%2,%0
5499   bt%N1z\t%0"
5500  [(set_attr "type" "branch")])
5501
5502(define_expand "cbranch<mode>4"
5503  [(set (pc)
5504	(if_then_else (match_operator 0 "comparison_operator"
5505		       [(match_operand:GPR 1 "register_operand")
5506		        (match_operand:GPR 2 "nonmemory_operand")])
5507		      (label_ref (match_operand 3 ""))
5508		      (pc)))]
5509  ""
5510{
5511  mips_expand_conditional_branch (operands);
5512  DONE;
5513})
5514
5515(define_expand "cbranch<mode>4"
5516  [(set (pc)
5517	(if_then_else (match_operator 0 "comparison_operator"
5518		       [(match_operand:SCALARF 1 "register_operand")
5519		        (match_operand:SCALARF 2 "register_operand")])
5520		      (label_ref (match_operand 3 ""))
5521		      (pc)))]
5522  ""
5523{
5524  mips_expand_conditional_branch (operands);
5525  DONE;
5526})
5527
5528;; Used to implement built-in functions.
5529(define_expand "condjump"
5530  [(set (pc)
5531	(if_then_else (match_operand 0)
5532		      (label_ref (match_operand 1))
5533		      (pc)))])
5534
5535;; Branch if bit is set/clear.
5536
5537(define_insn "*branch_bit<bbv><mode>"
5538  [(set (pc)
5539	(if_then_else
5540	 (equality_op (zero_extract:GPR
5541		       (match_operand:GPR 1 "register_operand" "d")
5542		       (const_int 1)
5543		       (match_operand 2 "const_int_operand" ""))
5544		      (const_int 0))
5545	 (label_ref (match_operand 0 ""))
5546	 (pc)))]
5547  "ISA_HAS_BBIT && UINTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode)"
5548{
5549  return
5550    mips_output_conditional_branch (insn, operands,
5551				    MIPS_BRANCH ("bbit<bbv>", "%1,%2,%0"),
5552				    MIPS_BRANCH ("bbit<bbinv>", "%1,%2,%0"));
5553}
5554  [(set_attr "type"	     "branch")
5555   (set_attr "branch_likely" "no")])
5556
5557(define_insn "*branch_bit<bbv><mode>_inverted"
5558  [(set (pc)
5559	(if_then_else
5560	 (equality_op (zero_extract:GPR
5561		       (match_operand:GPR 1 "register_operand" "d")
5562		       (const_int 1)
5563		       (match_operand 2 "const_int_operand" ""))
5564		      (const_int 0))
5565	 (pc)
5566	 (label_ref (match_operand 0 ""))))]
5567  "ISA_HAS_BBIT && UINTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode)"
5568{
5569  return
5570    mips_output_conditional_branch (insn, operands,
5571				    MIPS_BRANCH ("bbit<bbinv>", "%1,%2,%0"),
5572				    MIPS_BRANCH ("bbit<bbv>", "%1,%2,%0"));
5573}
5574  [(set_attr "type"	     "branch")
5575   (set_attr "branch_likely" "no")])
5576
5577;;
5578;;  ....................
5579;;
5580;;	SETTING A REGISTER FROM A COMPARISON
5581;;
5582;;  ....................
5583
5584;; Destination is always set in SI mode.
5585
5586(define_expand "cstore<mode>4"
5587  [(set (match_operand:SI 0 "register_operand")
5588	(match_operator:SI 1 "mips_cstore_operator"
5589	 [(match_operand:GPR 2 "register_operand")
5590	  (match_operand:GPR 3 "nonmemory_operand")]))]
5591  ""
5592{
5593  mips_expand_scc (operands);
5594  DONE;
5595})
5596
5597(define_insn "*seq_zero_<GPR:mode><GPR2:mode>"
5598  [(set (match_operand:GPR2 0 "register_operand" "=d")
5599	(eq:GPR2 (match_operand:GPR 1 "register_operand" "d")
5600		 (const_int 0)))]
5601  "!TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5602  "sltu\t%0,%1,1"
5603  [(set_attr "type" "slt")
5604   (set_attr "mode" "<GPR:MODE>")])
5605
5606(define_insn "*seq_zero_<GPR:mode><GPR2:mode>_mips16"
5607  [(set (match_operand:GPR2 0 "register_operand" "=t")
5608	(eq:GPR2 (match_operand:GPR 1 "register_operand" "d")
5609		 (const_int 0)))]
5610  "TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5611  "sltu\t%1,1"
5612  [(set_attr "type" "slt")
5613   (set_attr "mode" "<GPR:MODE>")])
5614
5615;; Generate sltiu unless using seq results in better code.
5616(define_insn "*seq_<GPR:mode><GPR2:mode>_seq"
5617  [(set (match_operand:GPR2 0 "register_operand" "=d,d,d")
5618	(eq:GPR2 (match_operand:GPR 1 "register_operand" "%d,d,d")
5619		 (match_operand:GPR 2 "reg_imm10_operand" "d,J,YB")))]
5620  "ISA_HAS_SEQ_SNE"
5621  "@
5622   seq\t%0,%1,%2
5623   sltiu\t%0,%1,1
5624   seqi\t%0,%1,%2"
5625  [(set_attr "type" "slt")
5626   (set_attr "mode" "<GPR:MODE>")])
5627
5628(define_insn "*sne_zero_<GPR:mode><GPR2:mode>"
5629  [(set (match_operand:GPR2 0 "register_operand" "=d")
5630	(ne:GPR2 (match_operand:GPR 1 "register_operand" "d")
5631		 (const_int 0)))]
5632  "!TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5633  "sltu\t%0,%.,%1"
5634  [(set_attr "type" "slt")
5635   (set_attr "mode" "<GPR:MODE>")])
5636
5637;; Generate sltu unless using sne results in better code.
5638(define_insn "*sne_<GPR:mode><GPR2:mode>_sne"
5639  [(set (match_operand:GPR2 0 "register_operand" "=d,d,d")
5640	(ne:GPR2 (match_operand:GPR 1 "register_operand" "%d,d,d")
5641		 (match_operand:GPR 2 "reg_imm10_operand" "d,J,YB")))]
5642  "ISA_HAS_SEQ_SNE"
5643  "@
5644   sne\t%0,%1,%2
5645   sltu\t%0,%.,%1
5646   snei\t%0,%1,%2"
5647  [(set_attr "type" "slt")
5648   (set_attr "mode" "<GPR:MODE>")])
5649
5650(define_insn "*sgt<u>_<GPR:mode><GPR2:mode>"
5651  [(set (match_operand:GPR2 0 "register_operand" "=d")
5652	(any_gt:GPR2 (match_operand:GPR 1 "register_operand" "d")
5653		     (match_operand:GPR 2 "reg_or_0_operand" "dJ")))]
5654  "!TARGET_MIPS16"
5655  "slt<u>\t%0,%z2,%1"
5656  [(set_attr "type" "slt")
5657   (set_attr "mode" "<GPR:MODE>")])
5658
5659(define_insn "*sgt<u>_<GPR:mode><GPR2:mode>_mips16"
5660  [(set (match_operand:GPR2 0 "register_operand" "=t")
5661	(any_gt:GPR2 (match_operand:GPR 1 "register_operand" "d")
5662		     (match_operand:GPR 2 "register_operand" "d")))]
5663  "TARGET_MIPS16"
5664  "slt<u>\t%2,%1"
5665  [(set_attr "type" "slt")
5666   (set_attr "mode" "<GPR:MODE>")])
5667
5668(define_insn "*sge<u>_<GPR:mode><GPR2:mode>"
5669  [(set (match_operand:GPR2 0 "register_operand" "=d")
5670	(any_ge:GPR2 (match_operand:GPR 1 "register_operand" "d")
5671		     (const_int 1)))]
5672  "!TARGET_MIPS16"
5673  "slt<u>\t%0,%.,%1"
5674  [(set_attr "type" "slt")
5675   (set_attr "mode" "<GPR:MODE>")])
5676
5677(define_insn "*slt<u>_<GPR:mode><GPR2:mode>"
5678  [(set (match_operand:GPR2 0 "register_operand" "=d")
5679	(any_lt:GPR2 (match_operand:GPR 1 "register_operand" "d")
5680		     (match_operand:GPR 2 "arith_operand" "dI")))]
5681  "!TARGET_MIPS16"
5682  "slt<u>\t%0,%1,%2"
5683  [(set_attr "type" "slt")
5684   (set_attr "mode" "<GPR:MODE>")])
5685
5686(define_insn "*slt<u>_<GPR:mode><GPR2:mode>_mips16"
5687  [(set (match_operand:GPR2 0 "register_operand" "=t,t")
5688	(any_lt:GPR2 (match_operand:GPR 1 "register_operand" "d,d")
5689		     (match_operand:GPR 2 "arith_operand" "d,I")))]
5690  "TARGET_MIPS16"
5691  "slt<u>\t%1,%2"
5692  [(set_attr "type" "slt")
5693   (set_attr "mode" "<GPR:MODE>")
5694   (set_attr_alternative "length"
5695		[(const_int 4)
5696		 (if_then_else (match_operand 2 "m16_uimm8_1")
5697			       (const_int 4)
5698			       (const_int 8))])])
5699
5700(define_insn "*sle<u>_<GPR:mode><GPR2:mode>"
5701  [(set (match_operand:GPR2 0 "register_operand" "=d")
5702	(any_le:GPR2 (match_operand:GPR 1 "register_operand" "d")
5703		     (match_operand:GPR 2 "sle_operand" "")))]
5704  "!TARGET_MIPS16"
5705{
5706  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
5707  return "slt<u>\t%0,%1,%2";
5708}
5709  [(set_attr "type" "slt")
5710   (set_attr "mode" "<GPR:MODE>")])
5711
5712(define_insn "*sle<u>_<GPR:mode><GPR2:mode>_mips16"
5713  [(set (match_operand:GPR2 0 "register_operand" "=t")
5714	(any_le:GPR2 (match_operand:GPR 1 "register_operand" "d")
5715		     (match_operand:GPR 2 "sle_operand" "")))]
5716  "TARGET_MIPS16"
5717{
5718  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
5719  return "slt<u>\t%1,%2";
5720}
5721  [(set_attr "type" "slt")
5722   (set_attr "mode" "<GPR:MODE>")
5723   (set (attr "length") (if_then_else (match_operand 2 "m16_uimm8_m1_1")
5724				      (const_int 4)
5725				      (const_int 8)))])
5726
5727;;
5728;;  ....................
5729;;
5730;;	FLOATING POINT COMPARISONS
5731;;
5732;;  ....................
5733
5734(define_insn "s<code>_<mode>"
5735  [(set (match_operand:CC 0 "register_operand" "=z")
5736	(fcond:CC (match_operand:SCALARF 1 "register_operand" "f")
5737		  (match_operand:SCALARF 2 "register_operand" "f")))]
5738  ""
5739  "c.<fcond>.<fmt>\t%Z0%1,%2"
5740  [(set_attr "type" "fcmp")
5741   (set_attr "mode" "FPSW")])
5742
5743(define_insn "s<code>_<mode>"
5744  [(set (match_operand:CC 0 "register_operand" "=z")
5745	(swapped_fcond:CC (match_operand:SCALARF 1 "register_operand" "f")
5746		          (match_operand:SCALARF 2 "register_operand" "f")))]
5747  ""
5748  "c.<swapped_fcond>.<fmt>\t%Z0%2,%1"
5749  [(set_attr "type" "fcmp")
5750   (set_attr "mode" "FPSW")])
5751
5752;;
5753;;  ....................
5754;;
5755;;	UNCONDITIONAL BRANCHES
5756;;
5757;;  ....................
5758
5759;; Unconditional branches.
5760
5761(define_expand "jump"
5762  [(set (pc)
5763	(label_ref (match_operand 0)))])
5764
5765(define_insn "*jump_absolute"
5766  [(set (pc)
5767	(label_ref (match_operand 0)))]
5768  "!TARGET_MIPS16 && TARGET_ABSOLUTE_JUMPS"
5769  { return MIPS_ABSOLUTE_JUMP ("%*j\t%l0%/"); }
5770  [(set_attr "type" "jump")])
5771
5772(define_insn "*jump_pic"
5773  [(set (pc)
5774	(label_ref (match_operand 0)))]
5775  "!TARGET_MIPS16 && !TARGET_ABSOLUTE_JUMPS"
5776{
5777  if (get_attr_length (insn) <= 8)
5778    return "%*b\t%l0%/";
5779  else
5780    {
5781      mips_output_load_label (operands[0]);
5782      return "%*jr\t%@%/%]";
5783    }
5784}
5785  [(set_attr "type" "branch")])
5786
5787;; We need a different insn for the mips16, because a mips16 branch
5788;; does not have a delay slot.
5789
5790(define_insn "*jump_mips16"
5791  [(set (pc)
5792	(label_ref (match_operand 0 "" "")))]
5793  "TARGET_MIPS16"
5794  "b\t%l0"
5795  [(set_attr "type" "branch")
5796   (set (attr "length")
5797	;; This calculation is like the normal branch one, but the
5798	;; range of the unextended instruction is [-0x800, 0x7fe] rather
5799	;; than [-0x100, 0xfe].  This translates to a range of:
5800	;;
5801	;;    [-(0x800 - sizeof (branch)), 0x7fe]
5802	;; == [-0x7fe, 0x7fe]
5803	;;
5804	;; from the shorten_branches reference address.  Long-branch
5805	;; sequences will replace this one, so the minimum length
5806	;; is one instruction shorter than for conditional branches.
5807	(cond [(and (le (minus (match_dup 0) (pc)) (const_int 2046))
5808		    (le (minus (pc) (match_dup 0)) (const_int 2046)))
5809	       (const_int 4)
5810	       (and (le (minus (match_dup 0) (pc)) (const_int 65534))
5811		    (le (minus (pc) (match_dup 0)) (const_int 65532)))
5812	       (const_int 8)
5813	       (and (match_test "TARGET_ABICALLS")
5814		    (not (match_test "TARGET_ABSOLUTE_ABICALLS")))
5815	       (const_int 36)
5816	       (match_test "Pmode == SImode")
5817	       (const_int 28)
5818	       ] (const_int 44)))])
5819
5820(define_expand "indirect_jump"
5821  [(set (pc) (match_operand 0 "register_operand"))]
5822  ""
5823{
5824  operands[0] = force_reg (Pmode, operands[0]);
5825  emit_jump_insn (PMODE_INSN (gen_indirect_jump, (operands[0])));
5826  DONE;
5827})
5828
5829(define_insn "indirect_jump_<mode>"
5830  [(set (pc) (match_operand:P 0 "register_operand" "d"))]
5831  ""
5832  "%*j\t%0%/"
5833  [(set_attr "type" "jump")
5834   (set_attr "mode" "none")])
5835
5836;; A combined jump-and-move instruction, used for MIPS16 long-branch
5837;; sequences.  Having a dedicated pattern is more convenient than
5838;; creating a SEQUENCE for this special case.
5839(define_insn "indirect_jump_and_restore_<mode>"
5840  [(set (pc) (match_operand:P 1 "register_operand" "d"))
5841   (set (match_operand:P 0 "register_operand" "=d")
5842   	(match_operand:P 2 "register_operand" "y"))]
5843  ""
5844  "%(%<jr\t%1\;move\t%0,%2%>%)"
5845  [(set_attr "type" "multi")
5846   (set_attr "extended_mips16" "yes")])
5847
5848(define_expand "tablejump"
5849  [(set (pc)
5850	(match_operand 0 "register_operand"))
5851   (use (label_ref (match_operand 1 "")))]
5852  "!TARGET_MIPS16_SHORT_JUMP_TABLES"
5853{
5854  if (TARGET_GPWORD)
5855    operands[0] = expand_binop (Pmode, add_optab, operands[0],
5856				pic_offset_table_rtx, 0, 0, OPTAB_WIDEN);
5857  else if (TARGET_RTP_PIC)
5858    {
5859      /* When generating RTP PIC, we use case table entries that are relative
5860	 to the start of the function.  Add the function's address to the
5861	 value we loaded.  */
5862      rtx start = get_hard_reg_initial_val (Pmode, PIC_FUNCTION_ADDR_REGNUM);
5863      operands[0] = expand_binop (ptr_mode, add_optab, operands[0],
5864				  start, 0, 0, OPTAB_WIDEN);
5865    }
5866
5867  emit_jump_insn (PMODE_INSN (gen_tablejump, (operands[0], operands[1])));
5868  DONE;
5869})
5870
5871(define_insn "tablejump_<mode>"
5872  [(set (pc)
5873	(match_operand:P 0 "register_operand" "d"))
5874   (use (label_ref (match_operand 1 "" "")))]
5875  ""
5876  "%*j\t%0%/"
5877  [(set_attr "type" "jump")
5878   (set_attr "mode" "none")])
5879
5880;; For MIPS16, we don't know whether a given jump table will use short or
5881;; word-sized offsets until late in compilation, when we are able to determine
5882;; the sizes of the insns which comprise the containing function.  This
5883;; necessitates the use of the casesi rather than the tablejump pattern, since
5884;; the latter tries to calculate the index of the offset to jump through early
5885;; in compilation, i.e. at expand time, when nothing is known about the
5886;; eventual function layout.
5887
5888(define_expand "casesi"
5889  [(match_operand:SI 0 "register_operand" "")	; index to jump on
5890   (match_operand:SI 1 "const_int_operand" "")	; lower bound
5891   (match_operand:SI 2 "const_int_operand" "")	; total range
5892   (match_operand 3 "" "")			; table label
5893   (match_operand 4 "" "")]			; out of range label
5894  "TARGET_MIPS16_SHORT_JUMP_TABLES"
5895{
5896  if (operands[1] != const0_rtx)
5897    {
5898      rtx reg = gen_reg_rtx (SImode);
5899      rtx offset = gen_int_mode (-INTVAL (operands[1]), SImode);
5900
5901      if (!arith_operand (offset, SImode))
5902        offset = force_reg (SImode, offset);
5903
5904      emit_insn (gen_addsi3 (reg, operands[0], offset));
5905      operands[0] = reg;
5906    }
5907
5908  if (!arith_operand (operands[0], SImode))
5909    operands[0] = force_reg (SImode, operands[0]);
5910
5911  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
5912
5913  emit_jump_insn (PMODE_INSN (gen_casesi_internal_mips16,
5914			      (operands[0], operands[2],
5915			       operands[3], operands[4])));
5916
5917  DONE;
5918})
5919
5920(define_insn "casesi_internal_mips16_<mode>"
5921  [(set (pc)
5922     (if_then_else
5923       (leu (match_operand:SI 0 "register_operand" "d")
5924	    (match_operand:SI 1 "arith_operand" "dI"))
5925       (unspec:P
5926        [(match_dup 0)
5927	 (label_ref (match_operand 2 "" ""))]
5928	UNSPEC_CASESI_DISPATCH)
5929       (label_ref (match_operand 3 "" ""))))
5930   (clobber (match_scratch:P 4 "=d"))
5931   (clobber (match_scratch:P 5 "=d"))
5932   (clobber (reg:SI MIPS16_T_REGNUM))]
5933  "TARGET_MIPS16_SHORT_JUMP_TABLES"
5934{
5935  rtx diff_vec = PATTERN (next_real_insn (operands[2]));
5936
5937  gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);
5938
5939  output_asm_insn ("sltu\t%0, %1", operands);
5940  output_asm_insn ("bteqz\t%3", operands);
5941
5942  switch (GET_MODE (diff_vec))
5943    {
5944    case HImode:
5945      output_asm_insn ("sll\t%5, %0, 1", operands);
5946      output_asm_insn ("la\t%4, %2", operands);
5947      output_asm_insn ("<d>addu\t%5, %4, %5", operands);
5948      output_asm_insn ("lh\t%5, 0(%5)", operands);
5949      break;
5950
5951    case SImode:
5952      output_asm_insn ("sll\t%5, %0, 2", operands);
5953      output_asm_insn ("la\t%4, %2", operands);
5954      output_asm_insn ("<d>addu\t%5, %4, %5", operands);
5955      output_asm_insn ("lw\t%5, 0(%5)", operands);
5956      break;
5957
5958    default:
5959      gcc_unreachable ();
5960    }
5961
5962  output_asm_insn ("addu\t%4, %4, %5", operands);
5963
5964  return "j\t%4";
5965}
5966  [(set_attr "length" "32")])
5967
5968;; For TARGET_USE_GOT, we save the gp in the jmp_buf as well.
5969;; While it is possible to either pull it off the stack (in the
5970;; o32 case) or recalculate it given t9 and our target label,
5971;; it takes 3 or 4 insns to do so.
5972
5973(define_expand "builtin_setjmp_setup"
5974  [(use (match_operand 0 "register_operand"))]
5975  "TARGET_USE_GOT"
5976{
5977  rtx addr;
5978
5979  addr = plus_constant (Pmode, operands[0], GET_MODE_SIZE (Pmode) * 3);
5980  mips_emit_move (gen_rtx_MEM (Pmode, addr), pic_offset_table_rtx);
5981  DONE;
5982})
5983
5984;; Restore the gp that we saved above.  Despite the earlier comment, it seems
5985;; that older code did recalculate the gp from $25.  Continue to jump through
5986;; $25 for compatibility (we lose nothing by doing so).
5987
5988(define_expand "builtin_longjmp"
5989  [(use (match_operand 0 "register_operand"))]
5990  "TARGET_USE_GOT"
5991{
5992  /* The elements of the buffer are, in order:  */
5993  int W = GET_MODE_SIZE (Pmode);
5994  rtx fp = gen_rtx_MEM (Pmode, operands[0]);
5995  rtx lab = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 1*W));
5996  rtx stack = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 2*W));
5997  rtx gpv = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 3*W));
5998  rtx pv = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
5999  /* Use gen_raw_REG to avoid being given pic_offset_table_rtx.
6000     The target is bound to be using $28 as the global pointer
6001     but the current function might not be.  */
6002  rtx gp = gen_raw_REG (Pmode, GLOBAL_POINTER_REGNUM);
6003
6004  /* This bit is similar to expand_builtin_longjmp except that it
6005     restores $gp as well.  */
6006  mips_emit_move (hard_frame_pointer_rtx, fp);
6007  mips_emit_move (pv, lab);
6008  emit_stack_restore (SAVE_NONLOCAL, stack);
6009  mips_emit_move (gp, gpv);
6010  emit_use (hard_frame_pointer_rtx);
6011  emit_use (stack_pointer_rtx);
6012  emit_use (gp);
6013  emit_indirect_jump (pv);
6014  DONE;
6015})
6016
6017;;
6018;;  ....................
6019;;
6020;;	Function prologue/epilogue
6021;;
6022;;  ....................
6023;;
6024
6025(define_expand "prologue"
6026  [(const_int 1)]
6027  ""
6028{
6029  mips_expand_prologue ();
6030  DONE;
6031})
6032
6033;; Block any insns from being moved before this point, since the
6034;; profiling call to mcount can use various registers that aren't
6035;; saved or used to pass arguments.
6036
6037(define_insn "blockage"
6038  [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)]
6039  ""
6040  ""
6041  [(set_attr "type" "ghost")
6042   (set_attr "mode" "none")])
6043
6044(define_insn "probe_stack_range_<P:mode>"
6045  [(set (match_operand:P 0 "register_operand" "=d")
6046	(unspec_volatile:P [(match_operand:P 1 "register_operand" "0")
6047			    (match_operand:P 2 "register_operand" "d")]
6048			    UNSPEC_PROBE_STACK_RANGE))]
6049  ""
6050 { return mips_output_probe_stack_range (operands[0], operands[2]); }
6051  [(set_attr "type" "unknown")
6052   (set_attr "can_delay" "no")
6053   (set_attr "mode" "<MODE>")])
6054
6055(define_expand "epilogue"
6056  [(const_int 2)]
6057  ""
6058{
6059  mips_expand_epilogue (false);
6060  DONE;
6061})
6062
6063(define_expand "sibcall_epilogue"
6064  [(const_int 2)]
6065  ""
6066{
6067  mips_expand_epilogue (true);
6068  DONE;
6069})
6070
6071;; Trivial return.  Make it look like a normal return insn as that
6072;; allows jump optimizations to work better.
6073
6074(define_expand "return"
6075  [(simple_return)]
6076  "mips_can_use_return_insn ()"
6077  { mips_expand_before_return (); })
6078
6079(define_expand "simple_return"
6080  [(simple_return)]
6081  ""
6082  { mips_expand_before_return (); })
6083
6084(define_insn "*<optab>"
6085  [(any_return)]
6086  ""
6087  "%*j\t$31%/"
6088  [(set_attr "type"	"jump")
6089   (set_attr "mode"	"none")])
6090
6091;; Normal return.
6092
6093(define_insn "<optab>_internal"
6094  [(any_return)
6095   (use (match_operand 0 "pmode_register_operand" ""))]
6096  ""
6097  "%*j\t%0%/"
6098  [(set_attr "type"	"jump")
6099   (set_attr "mode"	"none")])
6100
6101;; Exception return.
6102(define_insn "mips_eret"
6103  [(return)
6104   (unspec_volatile [(const_int 0)] UNSPEC_ERET)]
6105  ""
6106  "eret"
6107  [(set_attr "type"	"trap")
6108   (set_attr "mode"	"none")])
6109
6110;; Debug exception return.
6111(define_insn "mips_deret"
6112  [(return)
6113   (unspec_volatile [(const_int 0)] UNSPEC_DERET)]
6114  ""
6115  "deret"
6116  [(set_attr "type"	"trap")
6117   (set_attr "mode"	"none")])
6118
6119;; Disable interrupts.
6120(define_insn "mips_di"
6121  [(unspec_volatile [(const_int 0)] UNSPEC_DI)]
6122  ""
6123  "di"
6124  [(set_attr "type"	"trap")
6125   (set_attr "mode"	"none")])
6126
6127;; Execution hazard barrier.
6128(define_insn "mips_ehb"
6129  [(unspec_volatile [(const_int 0)] UNSPEC_EHB)]
6130  ""
6131  "ehb"
6132  [(set_attr "type"	"trap")
6133   (set_attr "mode"	"none")])
6134
6135;; Read GPR from previous shadow register set.
6136(define_insn "mips_rdpgpr"
6137  [(set (match_operand:SI 0 "register_operand" "=d")
6138	(unspec_volatile:SI [(match_operand:SI 1 "register_operand" "d")]
6139			    UNSPEC_RDPGPR))]
6140  ""
6141  "rdpgpr\t%0,%1"
6142  [(set_attr "type"	"move")
6143   (set_attr "mode"	"SI")])
6144
6145;; Move involving COP0 registers.
6146(define_insn "cop0_move"
6147  [(set (match_operand:SI 0 "register_operand" "=B,d")
6148	(unspec_volatile:SI [(match_operand:SI 1 "register_operand" "d,B")]
6149			    UNSPEC_COP0))]
6150  ""
6151{ return mips_output_move (operands[0], operands[1]); }
6152  [(set_attr "type"	"mtc,mfc")
6153   (set_attr "mode"	"SI")])
6154
6155;; This is used in compiling the unwind routines.
6156(define_expand "eh_return"
6157  [(use (match_operand 0 "general_operand"))]
6158  ""
6159{
6160  if (GET_MODE (operands[0]) != word_mode)
6161    operands[0] = convert_to_mode (word_mode, operands[0], 0);
6162  if (TARGET_64BIT)
6163    emit_insn (gen_eh_set_lr_di (operands[0]));
6164  else
6165    emit_insn (gen_eh_set_lr_si (operands[0]));
6166  DONE;
6167})
6168
6169;; Clobber the return address on the stack.  We can't expand this
6170;; until we know where it will be put in the stack frame.
6171
6172(define_insn "eh_set_lr_si"
6173  [(unspec [(match_operand:SI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
6174   (clobber (match_scratch:SI 1 "=&d"))]
6175  "! TARGET_64BIT"
6176  "#")
6177
6178(define_insn "eh_set_lr_di"
6179  [(unspec [(match_operand:DI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
6180   (clobber (match_scratch:DI 1 "=&d"))]
6181  "TARGET_64BIT"
6182  "#")
6183
6184(define_split
6185  [(unspec [(match_operand 0 "register_operand")] UNSPEC_EH_RETURN)
6186   (clobber (match_scratch 1))]
6187  "reload_completed"
6188  [(const_int 0)]
6189{
6190  mips_set_return_address (operands[0], operands[1]);
6191  DONE;
6192})
6193
6194(define_expand "exception_receiver"
6195  [(const_int 0)]
6196  "TARGET_USE_GOT"
6197{
6198  /* See the comment above load_call<mode> for details.  */
6199  emit_insn (gen_set_got_version ());
6200
6201  /* If we have a call-clobbered $gp, restore it from its save slot.  */
6202  if (HAVE_restore_gp_si)
6203    emit_insn (gen_restore_gp_si ());
6204  else if (HAVE_restore_gp_di)
6205    emit_insn (gen_restore_gp_di ());
6206  DONE;
6207})
6208
6209(define_expand "nonlocal_goto_receiver"
6210  [(const_int 0)]
6211  "TARGET_USE_GOT"
6212{
6213  /* See the comment above load_call<mode> for details.  */
6214  emit_insn (gen_set_got_version ());
6215  DONE;
6216})
6217
6218;; Restore $gp from its .cprestore stack slot.  The instruction remains
6219;; volatile until all uses of $28 are exposed.
6220(define_insn_and_split "restore_gp_<mode>"
6221  [(set (reg:P 28)
6222	(unspec_volatile:P [(const_int 0)] UNSPEC_RESTORE_GP))
6223   (clobber (match_scratch:P 0 "=&d"))]
6224  "TARGET_CALL_CLOBBERED_GP"
6225  "#"
6226  "&& epilogue_completed"
6227  [(const_int 0)]
6228{
6229  mips_restore_gp_from_cprestore_slot (operands[0]);
6230  DONE;
6231}
6232  [(set_attr "type" "ghost")])
6233
6234;; Move between $gp and its register save slot.
6235(define_insn_and_split "move_gp<mode>"
6236  [(set (match_operand:GPR 0 "nonimmediate_operand" "=d,m")
6237  	(unspec:GPR [(match_operand:GPR 1 "move_operand" "m,d")]
6238		    UNSPEC_MOVE_GP))]
6239  ""
6240  { return mips_must_initialize_gp_p () ? "#" : ""; }
6241  "mips_must_initialize_gp_p ()"
6242  [(const_int 0)]
6243{
6244  mips_emit_move (operands[0], operands[1]);
6245  DONE;
6246}
6247  [(set_attr "type" "ghost")])
6248
6249;;
6250;;  ....................
6251;;
6252;;	FUNCTION CALLS
6253;;
6254;;  ....................
6255
6256;; Instructions to load a call address from the GOT.  The address might
6257;; point to a function or to a lazy binding stub.  In the latter case,
6258;; the stub will use the dynamic linker to resolve the function, which
6259;; in turn will change the GOT entry to point to the function's real
6260;; address.
6261;;
6262;; This means that every call, even pure and constant ones, can
6263;; potentially modify the GOT entry.  And once a stub has been called,
6264;; we must not call it again.
6265;;
6266;; We represent this restriction using an imaginary, fixed, call-saved
6267;; register called GOT_VERSION_REGNUM.  The idea is to make the register
6268;; live throughout the function and to change its value after every
6269;; potential call site.  This stops any rtx value that uses the register
6270;; from being computed before an earlier call.  To do this, we:
6271;;
6272;;    - Ensure that the register is live on entry to the function,
6273;;	so that it is never thought to be used uninitalized.
6274;;
6275;;    - Ensure that the register is live on exit from the function,
6276;;	so that it is live throughout.
6277;;
6278;;    - Make each call (lazily-bound or not) use the current value
6279;;	of GOT_VERSION_REGNUM, so that updates of the register are
6280;;	not moved across call boundaries.
6281;;
6282;;    - Add "ghost" definitions of the register to the beginning of
6283;;	blocks reached by EH and ABNORMAL_CALL edges, because those
6284;;	edges may involve calls that normal paths don't.  (E.g. the
6285;;	unwinding code that handles a non-call exception may change
6286;;	lazily-bound GOT entries.)  We do this by making the
6287;;	exception_receiver and nonlocal_goto_receiver expanders emit
6288;;	a set_got_version instruction.
6289;;
6290;;    - After each call (lazily-bound or not), use a "ghost"
6291;;	update_got_version instruction to change the register's value.
6292;;	This instruction mimics the _possible_ effect of the dynamic
6293;;	resolver during the call and it remains live even if the call
6294;;	itself becomes dead.
6295;;
6296;;    - Leave GOT_VERSION_REGNUM out of all register classes.
6297;;	The register is therefore not a valid register_operand
6298;;	and cannot be moved to or from other registers.
6299
6300(define_insn "load_call<mode>"
6301  [(set (match_operand:P 0 "register_operand" "=d")
6302	(unspec:P [(match_operand:P 1 "register_operand" "d")
6303		   (match_operand:P 2 "immediate_operand" "")
6304		   (reg:SI GOT_VERSION_REGNUM)] UNSPEC_LOAD_CALL))]
6305  "TARGET_USE_GOT"
6306  "<load>\t%0,%R2(%1)"
6307  [(set_attr "got" "load")
6308   (set_attr "mode" "<MODE>")])
6309
6310(define_insn "set_got_version"
6311  [(set (reg:SI GOT_VERSION_REGNUM)
6312	(unspec_volatile:SI [(const_int 0)] UNSPEC_SET_GOT_VERSION))]
6313  "TARGET_USE_GOT"
6314  ""
6315  [(set_attr "type" "ghost")])
6316
6317(define_insn "update_got_version"
6318  [(set (reg:SI GOT_VERSION_REGNUM)
6319	(unspec:SI [(reg:SI GOT_VERSION_REGNUM)] UNSPEC_UPDATE_GOT_VERSION))]
6320  "TARGET_USE_GOT"
6321  ""
6322  [(set_attr "type" "ghost")])
6323
6324;; Sibling calls.  All these patterns use jump instructions.
6325
6326;; If TARGET_SIBCALLS, call_insn_operand will only accept constant
6327;; addresses if a direct jump is acceptable.  Since the 'S' constraint
6328;; is defined in terms of call_insn_operand, the same is true of the
6329;; constraints.
6330
6331;; When we use an indirect jump, we need a register that will be
6332;; preserved by the epilogue.  Since TARGET_USE_PIC_FN_ADDR_REG forces
6333;; us to use $25 for this purpose -- and $25 is never clobbered by the
6334;; epilogue -- we might as well use it for !TARGET_USE_PIC_FN_ADDR_REG
6335;; as well.
6336
6337(define_expand "sibcall"
6338  [(parallel [(call (match_operand 0 "")
6339		    (match_operand 1 ""))
6340	      (use (match_operand 2 ""))	;; next_arg_reg
6341	      (use (match_operand 3 ""))])]	;; struct_value_size_rtx
6342  "TARGET_SIBCALLS"
6343{
6344  mips_expand_call (MIPS_CALL_SIBCALL, NULL_RTX, XEXP (operands[0], 0),
6345		    operands[1], operands[2], false);
6346  DONE;
6347})
6348
6349(define_insn "sibcall_internal"
6350  [(call (mem:SI (match_operand 0 "call_insn_operand" "j,S"))
6351	 (match_operand 1 "" ""))]
6352  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6353  { return MIPS_CALL ("j", operands, 0, 1); }
6354  [(set_attr "jal" "indirect,direct")
6355   (set_attr "jal_macro" "no")])
6356
6357(define_expand "sibcall_value"
6358  [(parallel [(set (match_operand 0 "")
6359		   (call (match_operand 1 "")
6360			 (match_operand 2 "")))
6361	      (use (match_operand 3 ""))])]		;; next_arg_reg
6362  "TARGET_SIBCALLS"
6363{
6364  mips_expand_call (MIPS_CALL_SIBCALL, operands[0], XEXP (operands[1], 0),
6365		    operands[2], operands[3], false);
6366  DONE;
6367})
6368
6369(define_insn "sibcall_value_internal"
6370  [(set (match_operand 0 "register_operand" "")
6371        (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
6372              (match_operand 2 "" "")))]
6373  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6374  { return MIPS_CALL ("j", operands, 1, 2); }
6375  [(set_attr "jal" "indirect,direct")
6376   (set_attr "jal_macro" "no")])
6377
6378(define_insn "sibcall_value_multiple_internal"
6379  [(set (match_operand 0 "register_operand" "")
6380        (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
6381              (match_operand 2 "" "")))
6382   (set (match_operand 3 "register_operand" "")
6383	(call (mem:SI (match_dup 1))
6384	      (match_dup 2)))]
6385  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6386  { return MIPS_CALL ("j", operands, 1, 2); }
6387  [(set_attr "jal" "indirect,direct")
6388   (set_attr "jal_macro" "no")])
6389
6390(define_expand "call"
6391  [(parallel [(call (match_operand 0 "")
6392		    (match_operand 1 ""))
6393	      (use (match_operand 2 ""))	;; next_arg_reg
6394	      (use (match_operand 3 ""))])]	;; struct_value_size_rtx
6395  ""
6396{
6397  mips_expand_call (MIPS_CALL_NORMAL, NULL_RTX, XEXP (operands[0], 0),
6398		    operands[1], operands[2], false);
6399  DONE;
6400})
6401
6402;; This instruction directly corresponds to an assembly-language "jal".
6403;; There are four cases:
6404;;
6405;;    - -mno-abicalls:
6406;;	  Both symbolic and register destinations are OK.  The pattern
6407;;	  always expands to a single mips instruction.
6408;;
6409;;    - -mabicalls/-mno-explicit-relocs:
6410;;	  Again, both symbolic and register destinations are OK.
6411;;	  The call is treated as a multi-instruction black box.
6412;;
6413;;    - -mabicalls/-mexplicit-relocs with n32 or n64:
6414;;	  Only "jal $25" is allowed.  This expands to a single "jalr $25"
6415;;	  instruction.
6416;;
6417;;    - -mabicalls/-mexplicit-relocs with o32 or o64:
6418;;	  Only "jal $25" is allowed.  The call is actually two instructions:
6419;;	  "jalr $25" followed by an insn to reload $gp.
6420;;
6421;; In the last case, we can generate the individual instructions with
6422;; a define_split.  There are several things to be wary of:
6423;;
6424;;   - We can't expose the load of $gp before reload.  If we did,
6425;;     it might get removed as dead, but reload can introduce new
6426;;     uses of $gp by rematerializing constants.
6427;;
6428;;   - We shouldn't restore $gp after calls that never return.
6429;;     It isn't valid to insert instructions between a noreturn
6430;;     call and the following barrier.
6431;;
6432;;   - The splitter deliberately changes the liveness of $gp.  The unsplit
6433;;     instruction preserves $gp and so have no effect on its liveness.
6434;;     But once we generate the separate insns, it becomes obvious that
6435;;     $gp is not live on entry to the call.
6436;;
6437(define_insn_and_split "call_internal"
6438  [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
6439	 (match_operand 1 "" ""))
6440   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6441  ""
6442  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 0, 1); }
6443  "reload_completed && TARGET_SPLIT_CALLS"
6444  [(const_int 0)]
6445{
6446  mips_split_call (curr_insn, gen_call_split (operands[0], operands[1]));
6447  DONE;
6448}
6449  [(set_attr "jal" "indirect,direct")])
6450
6451(define_insn "call_split"
6452  [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
6453	 (match_operand 1 "" ""))
6454   (clobber (reg:SI RETURN_ADDR_REGNUM))
6455   (clobber (reg:SI 28))]
6456  "TARGET_SPLIT_CALLS"
6457  { return MIPS_CALL ("jal", operands, 0, 1); }
6458  [(set_attr "jal" "indirect,direct")
6459   (set_attr "jal_macro" "no")])
6460
6461;; A pattern for calls that must be made directly.  It is used for
6462;; MIPS16 calls that the linker may need to redirect to a hard-float
6463;; stub; the linker relies on the call relocation type to detect when
6464;; such redirection is needed.
6465(define_insn_and_split "call_internal_direct"
6466  [(call (mem:SI (match_operand 0 "const_call_insn_operand"))
6467	 (match_operand 1))
6468   (const_int 1)
6469   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6470  ""
6471  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 0, -1); }
6472  "reload_completed && TARGET_SPLIT_CALLS"
6473  [(const_int 0)]
6474{
6475  mips_split_call (curr_insn,
6476		   gen_call_direct_split (operands[0], operands[1]));
6477  DONE;
6478}
6479  [(set_attr "jal" "direct")])
6480
6481(define_insn "call_direct_split"
6482  [(call (mem:SI (match_operand 0 "const_call_insn_operand"))
6483	 (match_operand 1))
6484   (const_int 1)
6485   (clobber (reg:SI RETURN_ADDR_REGNUM))
6486   (clobber (reg:SI 28))]
6487  "TARGET_SPLIT_CALLS"
6488  { return MIPS_CALL ("jal", operands, 0, -1); }
6489  [(set_attr "jal" "direct")
6490   (set_attr "jal_macro" "no")])
6491
6492(define_expand "call_value"
6493  [(parallel [(set (match_operand 0 "")
6494		   (call (match_operand 1 "")
6495			 (match_operand 2 "")))
6496	      (use (match_operand 3 ""))])]		;; next_arg_reg
6497  ""
6498{
6499  mips_expand_call (MIPS_CALL_NORMAL, operands[0], XEXP (operands[1], 0),
6500		    operands[2], operands[3], false);
6501  DONE;
6502})
6503
6504;; See comment for call_internal.
6505(define_insn_and_split "call_value_internal"
6506  [(set (match_operand 0 "register_operand" "")
6507        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6508              (match_operand 2 "" "")))
6509   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6510  ""
6511  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, 2); }
6512  "reload_completed && TARGET_SPLIT_CALLS"
6513  [(const_int 0)]
6514{
6515  mips_split_call (curr_insn,
6516		   gen_call_value_split (operands[0], operands[1],
6517					 operands[2]));
6518  DONE;
6519}
6520  [(set_attr "jal" "indirect,direct")])
6521
6522(define_insn "call_value_split"
6523  [(set (match_operand 0 "register_operand" "")
6524        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6525              (match_operand 2 "" "")))
6526   (clobber (reg:SI RETURN_ADDR_REGNUM))
6527   (clobber (reg:SI 28))]
6528  "TARGET_SPLIT_CALLS"
6529  { return MIPS_CALL ("jal", operands, 1, 2); }
6530  [(set_attr "jal" "indirect,direct")
6531   (set_attr "jal_macro" "no")])
6532
6533;; See call_internal_direct.
6534(define_insn_and_split "call_value_internal_direct"
6535  [(set (match_operand 0 "register_operand")
6536        (call (mem:SI (match_operand 1 "const_call_insn_operand"))
6537              (match_operand 2)))
6538   (const_int 1)
6539   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6540  ""
6541  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, -1); }
6542  "reload_completed && TARGET_SPLIT_CALLS"
6543  [(const_int 0)]
6544{
6545  mips_split_call (curr_insn,
6546		   gen_call_value_direct_split (operands[0], operands[1],
6547						operands[2]));
6548  DONE;
6549}
6550  [(set_attr "jal" "direct")])
6551
6552(define_insn "call_value_direct_split"
6553  [(set (match_operand 0 "register_operand")
6554        (call (mem:SI (match_operand 1 "const_call_insn_operand"))
6555              (match_operand 2)))
6556   (const_int 1)
6557   (clobber (reg:SI RETURN_ADDR_REGNUM))
6558   (clobber (reg:SI 28))]
6559  "TARGET_SPLIT_CALLS"
6560  { return MIPS_CALL ("jal", operands, 1, -1); }
6561  [(set_attr "jal" "direct")
6562   (set_attr "jal_macro" "no")])
6563
6564;; See comment for call_internal.
6565(define_insn_and_split "call_value_multiple_internal"
6566  [(set (match_operand 0 "register_operand" "")
6567        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6568              (match_operand 2 "" "")))
6569   (set (match_operand 3 "register_operand" "")
6570	(call (mem:SI (match_dup 1))
6571	      (match_dup 2)))
6572   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6573  ""
6574  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, 2); }
6575  "reload_completed && TARGET_SPLIT_CALLS"
6576  [(const_int 0)]
6577{
6578  mips_split_call (curr_insn,
6579		   gen_call_value_multiple_split (operands[0], operands[1],
6580						  operands[2], operands[3]));
6581  DONE;
6582}
6583  [(set_attr "jal" "indirect,direct")])
6584
6585(define_insn "call_value_multiple_split"
6586  [(set (match_operand 0 "register_operand" "")
6587        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6588              (match_operand 2 "" "")))
6589   (set (match_operand 3 "register_operand" "")
6590	(call (mem:SI (match_dup 1))
6591	      (match_dup 2)))
6592   (clobber (reg:SI RETURN_ADDR_REGNUM))
6593   (clobber (reg:SI 28))]
6594  "TARGET_SPLIT_CALLS"
6595  { return MIPS_CALL ("jal", operands, 1, 2); }
6596  [(set_attr "jal" "indirect,direct")
6597   (set_attr "jal_macro" "no")])
6598
6599;; Call subroutine returning any type.
6600
6601(define_expand "untyped_call"
6602  [(parallel [(call (match_operand 0 "")
6603		    (const_int 0))
6604	      (match_operand 1 "")
6605	      (match_operand 2 "")])]
6606  ""
6607{
6608  int i;
6609
6610  emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
6611
6612  for (i = 0; i < XVECLEN (operands[2], 0); i++)
6613    {
6614      rtx set = XVECEXP (operands[2], 0, i);
6615      mips_emit_move (SET_DEST (set), SET_SRC (set));
6616    }
6617
6618  emit_insn (gen_blockage ());
6619  DONE;
6620})
6621
6622;;
6623;;  ....................
6624;;
6625;;	MISC.
6626;;
6627;;  ....................
6628;;
6629
6630
6631(define_insn "prefetch"
6632  [(prefetch (match_operand:QI 0 "address_operand" "p")
6633	     (match_operand 1 "const_int_operand" "n")
6634	     (match_operand 2 "const_int_operand" "n"))]
6635  "ISA_HAS_PREFETCH && TARGET_EXPLICIT_RELOCS"
6636{
6637  if (TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A)
6638    /* Loongson 2[ef] and Loongson 3a use load to $0 to perform prefetching.  */
6639    return "ld\t$0,%a0";
6640  operands[1] = mips_prefetch_cookie (operands[1], operands[2]);
6641  return "pref\t%1,%a0";
6642}
6643  [(set_attr "type" "prefetch")])
6644
6645(define_insn "*prefetch_indexed_<mode>"
6646  [(prefetch (plus:P (match_operand:P 0 "register_operand" "d")
6647		     (match_operand:P 1 "register_operand" "d"))
6648	     (match_operand 2 "const_int_operand" "n")
6649	     (match_operand 3 "const_int_operand" "n"))]
6650  "ISA_HAS_PREFETCHX && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
6651{
6652  operands[2] = mips_prefetch_cookie (operands[2], operands[3]);
6653  return "prefx\t%2,%1(%0)";
6654}
6655  [(set_attr "type" "prefetchx")])
6656
6657(define_insn "nop"
6658  [(const_int 0)]
6659  ""
6660  "%(nop%)"
6661  [(set_attr "type"	"nop")
6662   (set_attr "mode"	"none")])
6663
6664;; Like nop, but commented out when outside a .set noreorder block.
6665(define_insn "hazard_nop"
6666  [(const_int 1)]
6667  ""
6668  {
6669    if (mips_noreorder.nesting_level > 0)
6670      return "nop";
6671    else
6672      return "#nop";
6673  }
6674  [(set_attr "type"	"nop")])
6675
6676;; MIPS4 Conditional move instructions.
6677
6678(define_insn "*mov<GPR:mode>_on_<MOVECC:mode>"
6679  [(set (match_operand:GPR 0 "register_operand" "=d,d")
6680	(if_then_else:GPR
6681	 (match_operator:MOVECC 4 "equality_operator"
6682		[(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
6683		 (const_int 0)])
6684	 (match_operand:GPR 2 "reg_or_0_operand" "dJ,0")
6685	 (match_operand:GPR 3 "reg_or_0_operand" "0,dJ")))]
6686  "ISA_HAS_CONDMOVE"
6687  "@
6688    mov%T4\t%0,%z2,%1
6689    mov%t4\t%0,%z3,%1"
6690  [(set_attr "type" "condmove")
6691   (set_attr "mode" "<GPR:MODE>")])
6692
6693(define_insn "*mov<SCALARF:mode>_on_<MOVECC:mode>"
6694  [(set (match_operand:SCALARF 0 "register_operand" "=f,f")
6695	(if_then_else:SCALARF
6696	 (match_operator:MOVECC 4 "equality_operator"
6697		[(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
6698		 (const_int 0)])
6699	 (match_operand:SCALARF 2 "register_operand" "f,0")
6700	 (match_operand:SCALARF 3 "register_operand" "0,f")))]
6701  "ISA_HAS_FP_CONDMOVE"
6702  "@
6703    mov%T4.<fmt>\t%0,%2,%1
6704    mov%t4.<fmt>\t%0,%3,%1"
6705  [(set_attr "type" "condmove")
6706   (set_attr "mode" "<SCALARF:MODE>")])
6707
6708;; These are the main define_expand's used to make conditional moves.
6709
6710(define_expand "mov<mode>cc"
6711  [(set (match_dup 4) (match_operand 1 "comparison_operator"))
6712   (set (match_operand:GPR 0 "register_operand")
6713	(if_then_else:GPR (match_dup 5)
6714			  (match_operand:GPR 2 "reg_or_0_operand")
6715			  (match_operand:GPR 3 "reg_or_0_operand")))]
6716  "ISA_HAS_CONDMOVE"
6717{
6718  mips_expand_conditional_move (operands);
6719  DONE;
6720})
6721
6722(define_expand "mov<mode>cc"
6723  [(set (match_dup 4) (match_operand 1 "comparison_operator"))
6724   (set (match_operand:SCALARF 0 "register_operand")
6725	(if_then_else:SCALARF (match_dup 5)
6726			      (match_operand:SCALARF 2 "register_operand")
6727			      (match_operand:SCALARF 3 "register_operand")))]
6728  "ISA_HAS_FP_CONDMOVE"
6729{
6730  mips_expand_conditional_move (operands);
6731  DONE;
6732})
6733
6734;;
6735;;  ....................
6736;;
6737;;	mips16 inline constant tables
6738;;
6739;;  ....................
6740;;
6741
6742(define_insn "consttable_tls_reloc"
6743  [(unspec_volatile [(match_operand 0 "tls_reloc_operand" "")
6744		     (match_operand 1 "const_int_operand" "")]
6745		    UNSPEC_CONSTTABLE_INT)]
6746  "TARGET_MIPS16_PCREL_LOADS"
6747  { return mips_output_tls_reloc_directive (&operands[0]); }
6748  [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
6749
6750(define_insn "consttable_int"
6751  [(unspec_volatile [(match_operand 0 "consttable_operand" "")
6752		     (match_operand 1 "const_int_operand" "")]
6753		    UNSPEC_CONSTTABLE_INT)]
6754  "TARGET_MIPS16"
6755{
6756  assemble_integer (mips_strip_unspec_address (operands[0]),
6757		    INTVAL (operands[1]),
6758		    BITS_PER_UNIT * INTVAL (operands[1]), 1);
6759  return "";
6760}
6761  [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
6762
6763(define_insn "consttable_float"
6764  [(unspec_volatile [(match_operand 0 "consttable_operand" "")]
6765		    UNSPEC_CONSTTABLE_FLOAT)]
6766  "TARGET_MIPS16"
6767{
6768  REAL_VALUE_TYPE d;
6769
6770  gcc_assert (GET_CODE (operands[0]) == CONST_DOUBLE);
6771  REAL_VALUE_FROM_CONST_DOUBLE (d, operands[0]);
6772  assemble_real (d, GET_MODE (operands[0]),
6773		 GET_MODE_BITSIZE (GET_MODE (operands[0])));
6774  return "";
6775}
6776  [(set (attr "length")
6777	(symbol_ref "GET_MODE_SIZE (GET_MODE (operands[0]))"))])
6778
6779(define_insn "align"
6780  [(unspec_volatile [(match_operand 0 "const_int_operand" "")] UNSPEC_ALIGN)]
6781  ""
6782  ".align\t%0"
6783  [(set (attr "length") (symbol_ref "(1 << INTVAL (operands[0])) - 1"))])
6784
6785(define_split
6786  [(match_operand 0 "small_data_pattern")]
6787  "reload_completed"
6788  [(match_dup 0)]
6789  { operands[0] = mips_rewrite_small_data (operands[0]); })
6790
6791;;
6792;;  ....................
6793;;
6794;;	MIPS16e Save/Restore
6795;;
6796;;  ....................
6797;;
6798
6799(define_insn "*mips16e_save_restore"
6800  [(match_parallel 0 ""
6801       [(set (match_operand:SI 1 "register_operand")
6802	     (plus:SI (match_dup 1)
6803		      (match_operand:SI 2 "const_int_operand")))])]
6804  "operands[1] == stack_pointer_rtx
6805   && mips16e_save_restore_pattern_p (operands[0], INTVAL (operands[2]), NULL)"
6806  { return mips16e_output_save_restore (operands[0], INTVAL (operands[2])); }
6807  [(set_attr "type" "arith")
6808   (set_attr "extended_mips16" "yes")])
6809
6810;; Thread-Local Storage
6811
6812;; The TLS base pointer is accessed via "rdhwr $3, $29".  No current
6813;; MIPS architecture defines this register, and no current
6814;; implementation provides it; instead, any OS which supports TLS is
6815;; expected to trap and emulate this instruction.  rdhwr is part of the
6816;; MIPS 32r2 specification, but we use it on any architecture because
6817;; we expect it to be emulated.  Use .set to force the assembler to
6818;; accept it.
6819;;
6820;; We do not use a constraint to force the destination to be $3
6821;; because $3 can appear explicitly as a function return value.
6822;; If we leave the use of $3 implicit in the constraints until
6823;; reload, we may end up making a $3 return value live across
6824;; the instruction, leading to a spill failure when reloading it.
6825(define_insn_and_split "tls_get_tp_<mode>"
6826  [(set (match_operand:P 0 "register_operand" "=d")
6827	(unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))
6828   (clobber (reg:P TLS_GET_TP_REGNUM))]
6829  "HAVE_AS_TLS && !TARGET_MIPS16"
6830  "#"
6831  "&& reload_completed"
6832  [(set (reg:P TLS_GET_TP_REGNUM)
6833	(unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))
6834   (set (match_dup 0) (reg:P TLS_GET_TP_REGNUM))]
6835  ""
6836  [(set_attr "type" "unknown")
6837   ; Since rdhwr always generates a trap for now, putting it in a delay
6838   ; slot would make the kernel's emulation of it much slower.
6839   (set_attr "can_delay" "no")
6840   (set_attr "mode" "<MODE>")
6841   (set_attr "length" "8")])
6842
6843(define_insn "*tls_get_tp_<mode>_split"
6844  [(set (reg:P TLS_GET_TP_REGNUM)
6845	(unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))]
6846  "HAVE_AS_TLS && !TARGET_MIPS16"
6847  ".set\tpush\;.set\tmips32r2\t\;rdhwr\t$3,$29\;.set\tpop"
6848  [(set_attr "type" "unknown")
6849   ; See tls_get_tp_<mode>
6850   (set_attr "can_delay" "no")
6851   (set_attr "mode" "<MODE>")])
6852
6853;; In MIPS16 mode, the TLS base pointer is accessed by a
6854;; libgcc helper function __mips16_rdhwr(), as 'rdhwr' is not
6855;; accessible in MIPS16.
6856;;
6857;; This is not represented as a call insn, to avoid the
6858;; unnecesarry clobbering of caller-save registers by a
6859;; function consisting only of: "rdhwr $3,$29; j $31; nop;"
6860;;
6861;; A $25 clobber is added to cater for a $25 load stub added by the
6862;; linker to __mips16_rdhwr when the call is made from non-PIC code.
6863
6864(define_insn_and_split "tls_get_tp_mips16_<mode>"
6865  [(set (match_operand:P 0 "register_operand" "=d")
6866	(unspec:P [(match_operand:P 1 "call_insn_operand" "dS")]
6867		  UNSPEC_TLS_GET_TP))
6868   (clobber (reg:P TLS_GET_TP_REGNUM))
6869   (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
6870   (clobber (reg:P RETURN_ADDR_REGNUM))]
6871  "HAVE_AS_TLS && TARGET_MIPS16"
6872  "#"
6873  "&& reload_completed"
6874  [(parallel [(set (reg:P TLS_GET_TP_REGNUM)
6875	  	   (unspec:P [(match_dup 1)] UNSPEC_TLS_GET_TP))
6876	      (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
6877	      (clobber (reg:P RETURN_ADDR_REGNUM))])
6878   (set (match_dup 0) (reg:P TLS_GET_TP_REGNUM))]
6879  ""
6880  [(set_attr "type" "multi")
6881   (set_attr "length" "16")
6882   (set_attr "mode" "<MODE>")])
6883
6884(define_insn "*tls_get_tp_mips16_call_<mode>"
6885  [(set (reg:P TLS_GET_TP_REGNUM)
6886	(unspec:P [(match_operand:P 0 "call_insn_operand" "dS")]
6887		  UNSPEC_TLS_GET_TP))
6888   (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
6889   (clobber (reg:P RETURN_ADDR_REGNUM))]
6890  "HAVE_AS_TLS && TARGET_MIPS16"
6891  { return MIPS_CALL ("jal", operands, 0, -1); }
6892  [(set_attr "type" "call")
6893   (set_attr "length" "12")
6894   (set_attr "mode" "<MODE>")])
6895
6896;; Named pattern for expanding thread pointer reference.
6897(define_expand "get_thread_pointer<mode>"
6898  [(match_operand:P 0 "register_operand" "=d")]
6899  "HAVE_AS_TLS"
6900{
6901  mips_expand_thread_pointer (operands[0]);
6902  DONE;
6903})
6904
6905
6906;; Synchronization instructions.
6907
6908(include "sync.md")
6909
6910; The MIPS Paired-Single Floating Point and MIPS-3D Instructions.
6911
6912(include "mips-ps-3d.md")
6913
6914; The MIPS DSP Instructions.
6915
6916(include "mips-dsp.md")
6917
6918; The MIPS DSP REV 2 Instructions.
6919
6920(include "mips-dspr2.md")
6921
6922; MIPS fixed-point instructions.
6923(include "mips-fixed.md")
6924
6925; ST-Microelectronics Loongson-2E/2F-specific patterns.
6926(include "loongson.md")
6927
6928(define_c_enum "unspec" [
6929  UNSPEC_ADDRESS_FIRST
6930])
6931