1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992-2013 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This pass converts stack-like registers from the "flat register
21    file" model that gcc uses, to a stack convention that the 387 uses.
22 
23    * The form of the input:
24 
25    On input, the function consists of insn that have had their
26    registers fully allocated to a set of "virtual" registers.  Note that
27    the word "virtual" is used differently here than elsewhere in gcc: for
28    each virtual stack reg, there is a hard reg, but the mapping between
29    them is not known until this pass is run.  On output, hard register
30    numbers have been substituted, and various pop and exchange insns have
31    been emitted.  The hard register numbers and the virtual register
32    numbers completely overlap - before this pass, all stack register
33    numbers are virtual, and afterward they are all hard.
34 
35    The virtual registers can be manipulated normally by gcc, and their
36    semantics are the same as for normal registers.  After the hard
37    register numbers are substituted, the semantics of an insn containing
38    stack-like regs are not the same as for an insn with normal regs: for
39    instance, it is not safe to delete an insn that appears to be a no-op
40    move.  In general, no insn containing hard regs should be changed
41    after this pass is done.
42 
43    * The form of the output:
44 
45    After this pass, hard register numbers represent the distance from
46    the current top of stack to the desired register.  A reference to
47    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48    represents the register just below that, and so forth.  Also, REG_DEAD
49    notes indicate whether or not a stack register should be popped.
50 
51    A "swap" insn looks like a parallel of two patterns, where each
52    pattern is a SET: one sets A to B, the other B to A.
53 
54    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
56    will replace the existing stack top, not push a new value.
57 
58    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59    SET_SRC is REG or MEM.
60 
61    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62    appears ambiguous.  As a special case, the presence of a REG_DEAD note
63    for FIRST_STACK_REG differentiates between a load insn and a pop.
64 
65    If a REG_DEAD is present, the insn represents a "pop" that discards
66    the top of the register stack.  If there is no REG_DEAD note, then the
67    insn represents a "dup" or a push of the current top of stack onto the
68    stack.
69 
70    * Methodology:
71 
72    Existing REG_DEAD and REG_UNUSED notes for stack registers are
73    deleted and recreated from scratch.  REG_DEAD is never created for a
74    SET_DEST, only REG_UNUSED.
75 
76    * asm_operands:
77 
78    There are several rules on the usage of stack-like regs in
79    asm_operands insns.  These rules apply only to the operands that are
80    stack-like regs:
81 
82    1. Given a set of input regs that die in an asm_operands, it is
83       necessary to know which are implicitly popped by the asm, and
84       which must be explicitly popped by gcc.
85 
86 	An input reg that is implicitly popped by the asm must be
87 	explicitly clobbered, unless it is constrained to match an
88 	output operand.
89 
90    2. For any input reg that is implicitly popped by an asm, it is
91       necessary to know how to adjust the stack to compensate for the pop.
92       If any non-popped input is closer to the top of the reg-stack than
93       the implicitly popped reg, it would not be possible to know what the
94       stack looked like - it's not clear how the rest of the stack "slides
95       up".
96 
97 	All implicitly popped input regs must be closer to the top of
98 	the reg-stack than any input that is not implicitly popped.
99 
100    3. It is possible that if an input dies in an insn, reload might
101       use the input reg for an output reload.  Consider this example:
102 
103 		asm ("foo" : "=t" (a) : "f" (b));
104 
105       This asm says that input B is not popped by the asm, and that
106       the asm pushes a result onto the reg-stack, i.e., the stack is one
107       deeper after the asm than it was before.  But, it is possible that
108       reload will think that it can use the same reg for both the input and
109       the output, if input B dies in this insn.
110 
111 	If any input operand uses the "f" constraint, all output reg
112 	constraints must use the "&" earlyclobber.
113 
114       The asm above would be written as
115 
116 		asm ("foo" : "=&t" (a) : "f" (b));
117 
118    4. Some operands need to be in particular places on the stack.  All
119       output operands fall in this category - there is no other way to
120       know which regs the outputs appear in unless the user indicates
121       this in the constraints.
122 
123 	Output operands must specifically indicate which reg an output
124 	appears in after an asm.  "=f" is not allowed: the operand
125 	constraints must select a class with a single reg.
126 
127    5. Output operands may not be "inserted" between existing stack regs.
128       Since no 387 opcode uses a read/write operand, all output operands
129       are dead before the asm_operands, and are pushed by the asm_operands.
130       It makes no sense to push anywhere but the top of the reg-stack.
131 
132 	Output operands must start at the top of the reg-stack: output
133 	operands may not "skip" a reg.
134 
135    6. Some asm statements may need extra stack space for internal
136       calculations.  This can be guaranteed by clobbering stack registers
137       unrelated to the inputs and outputs.
138 
139    Here are a couple of reasonable asms to want to write.  This asm
140    takes one input, which is internally popped, and produces two outputs.
141 
142 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
143 
144    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145    and replaces them with one output.  The user must code the "st(1)"
146    clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
147 
148 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
149 
150 */
151 
152 #include "config.h"
153 #include "system.h"
154 #include "coretypes.h"
155 #include "tm.h"
156 #include "tree.h"
157 #include "rtl-error.h"
158 #include "tm_p.h"
159 #include "function.h"
160 #include "insn-config.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "recog.h"
165 #include "basic-block.h"
166 #include "reload.h"
167 #include "ggc.h"
168 #include "tree-pass.h"
169 #include "target.h"
170 #include "df.h"
171 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
172 
173 #ifdef STACK_REGS
174 
175 /* We use this array to cache info about insns, because otherwise we
176    spend too much time in stack_regs_mentioned_p.
177 
178    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
179    the insn uses stack registers, two indicates the insn does not use
180    stack registers.  */
181 static vec<char> stack_regs_mentioned_data;
182 
183 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
184 
185 int regstack_completed = 0;
186 
187 /* This is the basic stack record.  TOP is an index into REG[] such
188    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
189 
190    If TOP is -2, REG[] is not yet initialized.  Stack initialization
191    consists of placing each live reg in array `reg' and setting `top'
192    appropriately.
193 
194    REG_SET indicates which registers are live.  */
195 
196 typedef struct stack_def
197 {
198   int top;			/* index to top stack element */
199   HARD_REG_SET reg_set;		/* set of live registers */
200   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
201 } *stack_ptr;
202 
203 /* This is used to carry information about basic blocks.  It is
204    attached to the AUX field of the standard CFG block.  */
205 
206 typedef struct block_info_def
207 {
208   struct stack_def stack_in;	/* Input stack configuration.  */
209   struct stack_def stack_out;	/* Output stack configuration.  */
210   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
211   int done;			/* True if block already converted.  */
212   int predecessors;		/* Number of predecessors that need
213 				   to be visited.  */
214 } *block_info;
215 
216 #define BLOCK_INFO(B)	((block_info) (B)->aux)
217 
218 /* Passed to change_stack to indicate where to emit insns.  */
219 enum emit_where
220 {
221   EMIT_AFTER,
222   EMIT_BEFORE
223 };
224 
225 /* The block we're currently working on.  */
226 static basic_block current_block;
227 
228 /* In the current_block, whether we're processing the first register
229    stack or call instruction, i.e. the regstack is currently the
230    same as BLOCK_INFO(current_block)->stack_in.  */
231 static bool starting_stack_p;
232 
233 /* This is the register file for all register after conversion.  */
234 static rtx
235   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
236 
237 #define FP_MODE_REG(regno,mode)	\
238   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
239 
240 /* Used to initialize uninitialized registers.  */
241 static rtx not_a_num;
242 
243 /* Forward declarations */
244 
245 static int stack_regs_mentioned_p (const_rtx pat);
246 static void pop_stack (stack_ptr, int);
247 static rtx *get_true_reg (rtx *);
248 
249 static int check_asm_stack_operands (rtx);
250 static void get_asm_operands_in_out (rtx, int *, int *);
251 static rtx stack_result (tree);
252 static void replace_reg (rtx *, int);
253 static void remove_regno_note (rtx, enum reg_note, unsigned int);
254 static int get_hard_regnum (stack_ptr, rtx);
255 static rtx emit_pop_insn (rtx, stack_ptr, rtx, enum emit_where);
256 static void swap_to_top(rtx, stack_ptr, rtx, rtx);
257 static bool move_for_stack_reg (rtx, stack_ptr, rtx);
258 static bool move_nan_for_stack_reg (rtx, stack_ptr, rtx);
259 static int swap_rtx_condition_1 (rtx);
260 static int swap_rtx_condition (rtx);
261 static void compare_for_stack_reg (rtx, stack_ptr, rtx);
262 static bool subst_stack_regs_pat (rtx, stack_ptr, rtx);
263 static void subst_asm_stack_regs (rtx, stack_ptr);
264 static bool subst_stack_regs (rtx, stack_ptr);
265 static void change_stack (rtx, stack_ptr, stack_ptr, enum emit_where);
266 static void print_stack (FILE *, stack_ptr);
267 static rtx next_flags_user (rtx);
268 
269 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
270 
271 static int
stack_regs_mentioned_p(const_rtx pat)272 stack_regs_mentioned_p (const_rtx pat)
273 {
274   const char *fmt;
275   int i;
276 
277   if (STACK_REG_P (pat))
278     return 1;
279 
280   fmt = GET_RTX_FORMAT (GET_CODE (pat));
281   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
282     {
283       if (fmt[i] == 'E')
284 	{
285 	  int j;
286 
287 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
288 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
289 	      return 1;
290 	}
291       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
292 	return 1;
293     }
294 
295   return 0;
296 }
297 
298 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
299 
300 int
stack_regs_mentioned(const_rtx insn)301 stack_regs_mentioned (const_rtx insn)
302 {
303   unsigned int uid, max;
304   int test;
305 
306   if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
307     return 0;
308 
309   uid = INSN_UID (insn);
310   max = stack_regs_mentioned_data.length ();
311   if (uid >= max)
312     {
313       /* Allocate some extra size to avoid too many reallocs, but
314 	 do not grow too quickly.  */
315       max = uid + uid / 20 + 1;
316       stack_regs_mentioned_data.safe_grow_cleared (max);
317     }
318 
319   test = stack_regs_mentioned_data[uid];
320   if (test == 0)
321     {
322       /* This insn has yet to be examined.  Do so now.  */
323       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
324       stack_regs_mentioned_data[uid] = test;
325     }
326 
327   return test == 1;
328 }
329 
330 static rtx ix86_flags_rtx;
331 
332 static rtx
next_flags_user(rtx insn)333 next_flags_user (rtx insn)
334 {
335   /* Search forward looking for the first use of this value.
336      Stop at block boundaries.  */
337 
338   while (insn != BB_END (current_block))
339     {
340       insn = NEXT_INSN (insn);
341 
342       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
343 	return insn;
344 
345       if (CALL_P (insn))
346 	return NULL_RTX;
347     }
348   return NULL_RTX;
349 }
350 
351 /* Reorganize the stack into ascending numbers, before this insn.  */
352 
353 static void
straighten_stack(rtx insn,stack_ptr regstack)354 straighten_stack (rtx insn, stack_ptr regstack)
355 {
356   struct stack_def temp_stack;
357   int top;
358 
359   /* If there is only a single register on the stack, then the stack is
360      already in increasing order and no reorganization is needed.
361 
362      Similarly if the stack is empty.  */
363   if (regstack->top <= 0)
364     return;
365 
366   COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
367 
368   for (top = temp_stack.top = regstack->top; top >= 0; top--)
369     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
370 
371   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
372 }
373 
374 /* Pop a register from the stack.  */
375 
376 static void
pop_stack(stack_ptr regstack,int regno)377 pop_stack (stack_ptr regstack, int regno)
378 {
379   int top = regstack->top;
380 
381   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
382   regstack->top--;
383   /* If regno was not at the top of stack then adjust stack.  */
384   if (regstack->reg [top] != regno)
385     {
386       int i;
387       for (i = regstack->top; i >= 0; i--)
388 	if (regstack->reg [i] == regno)
389 	  {
390 	    int j;
391 	    for (j = i; j < top; j++)
392 	      regstack->reg [j] = regstack->reg [j + 1];
393 	    break;
394 	  }
395     }
396 }
397 
398 /* Return a pointer to the REG expression within PAT.  If PAT is not a
399    REG, possible enclosed by a conversion rtx, return the inner part of
400    PAT that stopped the search.  */
401 
402 static rtx *
get_true_reg(rtx * pat)403 get_true_reg (rtx *pat)
404 {
405   for (;;)
406     switch (GET_CODE (*pat))
407       {
408       case SUBREG:
409 	/* Eliminate FP subregister accesses in favor of the
410 	   actual FP register in use.  */
411 	{
412 	  rtx subreg;
413 	  if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
414 	    {
415 	      int regno_off = subreg_regno_offset (REGNO (subreg),
416 						   GET_MODE (subreg),
417 						   SUBREG_BYTE (*pat),
418 						   GET_MODE (*pat));
419 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
420 				  GET_MODE (subreg));
421 	      return pat;
422 	    }
423 	}
424       case FLOAT:
425       case FIX:
426       case FLOAT_EXTEND:
427 	pat = & XEXP (*pat, 0);
428 	break;
429 
430       case UNSPEC:
431 	if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
432 	    || XINT (*pat, 1) == UNSPEC_LDA)
433 	  pat = & XVECEXP (*pat, 0, 0);
434 	return pat;
435 
436       case FLOAT_TRUNCATE:
437 	if (!flag_unsafe_math_optimizations)
438 	  return pat;
439 	pat = & XEXP (*pat, 0);
440 	break;
441 
442       default:
443 	return pat;
444       }
445 }
446 
447 /* Set if we find any malformed asms in a block.  */
448 static bool any_malformed_asm;
449 
450 /* There are many rules that an asm statement for stack-like regs must
451    follow.  Those rules are explained at the top of this file: the rule
452    numbers below refer to that explanation.  */
453 
454 static int
check_asm_stack_operands(rtx insn)455 check_asm_stack_operands (rtx insn)
456 {
457   int i;
458   int n_clobbers;
459   int malformed_asm = 0;
460   rtx body = PATTERN (insn);
461 
462   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
463   char implicitly_dies[FIRST_PSEUDO_REGISTER];
464   int alt;
465 
466   rtx *clobber_reg = 0;
467   int n_inputs, n_outputs;
468 
469   /* Find out what the constraints require.  If no constraint
470      alternative matches, this asm is malformed.  */
471   extract_insn (insn);
472   constrain_operands (1);
473   alt = which_alternative;
474 
475   preprocess_constraints ();
476 
477   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
478 
479   if (alt < 0)
480     {
481       malformed_asm = 1;
482       /* Avoid further trouble with this insn.  */
483       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
484       return 0;
485     }
486 
487   /* Strip SUBREGs here to make the following code simpler.  */
488   for (i = 0; i < recog_data.n_operands; i++)
489     if (GET_CODE (recog_data.operand[i]) == SUBREG
490 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
491       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
492 
493   /* Set up CLOBBER_REG.  */
494 
495   n_clobbers = 0;
496 
497   if (GET_CODE (body) == PARALLEL)
498     {
499       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
500 
501       for (i = 0; i < XVECLEN (body, 0); i++)
502 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
503 	  {
504 	    rtx clobber = XVECEXP (body, 0, i);
505 	    rtx reg = XEXP (clobber, 0);
506 
507 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
508 	      reg = SUBREG_REG (reg);
509 
510 	    if (STACK_REG_P (reg))
511 	      {
512 		clobber_reg[n_clobbers] = reg;
513 		n_clobbers++;
514 	      }
515 	  }
516     }
517 
518   /* Enforce rule #4: Output operands must specifically indicate which
519      reg an output appears in after an asm.  "=f" is not allowed: the
520      operand constraints must select a class with a single reg.
521 
522      Also enforce rule #5: Output operands must start at the top of
523      the reg-stack: output operands may not "skip" a reg.  */
524 
525   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
526   for (i = 0; i < n_outputs; i++)
527     if (STACK_REG_P (recog_data.operand[i]))
528       {
529 	if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
530 	  {
531 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
532 	    malformed_asm = 1;
533 	  }
534 	else
535 	  {
536 	    int j;
537 
538 	    for (j = 0; j < n_clobbers; j++)
539 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
540 		{
541 		  error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
542 				 i, reg_names [REGNO (clobber_reg[j])]);
543 		  malformed_asm = 1;
544 		  break;
545 		}
546 	    if (j == n_clobbers)
547 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
548 	  }
549       }
550 
551 
552   /* Search for first non-popped reg.  */
553   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
554     if (! reg_used_as_output[i])
555       break;
556 
557   /* If there are any other popped regs, that's an error.  */
558   for (; i < LAST_STACK_REG + 1; i++)
559     if (reg_used_as_output[i])
560       break;
561 
562   if (i != LAST_STACK_REG + 1)
563     {
564       error_for_asm (insn, "output regs must be grouped at top of stack");
565       malformed_asm = 1;
566     }
567 
568   /* Enforce rule #2: All implicitly popped input regs must be closer
569      to the top of the reg-stack than any input that is not implicitly
570      popped.  */
571 
572   memset (implicitly_dies, 0, sizeof (implicitly_dies));
573   for (i = n_outputs; i < n_outputs + n_inputs; i++)
574     if (STACK_REG_P (recog_data.operand[i]))
575       {
576 	/* An input reg is implicitly popped if it is tied to an
577 	   output, or if there is a CLOBBER for it.  */
578 	int j;
579 
580 	for (j = 0; j < n_clobbers; j++)
581 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
582 	    break;
583 
584 	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
585 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
586       }
587 
588   /* Search for first non-popped reg.  */
589   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
590     if (! implicitly_dies[i])
591       break;
592 
593   /* If there are any other popped regs, that's an error.  */
594   for (; i < LAST_STACK_REG + 1; i++)
595     if (implicitly_dies[i])
596       break;
597 
598   if (i != LAST_STACK_REG + 1)
599     {
600       error_for_asm (insn,
601 		     "implicitly popped regs must be grouped at top of stack");
602       malformed_asm = 1;
603     }
604 
605   /* Enforce rule #3: If any input operand uses the "f" constraint, all
606      output constraints must use the "&" earlyclobber.
607 
608      ??? Detect this more deterministically by having constrain_asm_operands
609      record any earlyclobber.  */
610 
611   for (i = n_outputs; i < n_outputs + n_inputs; i++)
612     if (recog_op_alt[i][alt].matches == -1)
613       {
614 	int j;
615 
616 	for (j = 0; j < n_outputs; j++)
617 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
618 	    {
619 	      error_for_asm (insn,
620 			     "output operand %d must use %<&%> constraint", j);
621 	      malformed_asm = 1;
622 	    }
623       }
624 
625   if (malformed_asm)
626     {
627       /* Avoid further trouble with this insn.  */
628       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
629       any_malformed_asm = true;
630       return 0;
631     }
632 
633   return 1;
634 }
635 
636 /* Calculate the number of inputs and outputs in BODY, an
637    asm_operands.  N_OPERANDS is the total number of operands, and
638    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
639    placed.  */
640 
641 static void
get_asm_operands_in_out(rtx body,int * pout,int * pin)642 get_asm_operands_in_out (rtx body, int *pout, int *pin)
643 {
644   rtx asmop = extract_asm_operands (body);
645 
646   *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
647   *pout = (recog_data.n_operands
648 	   - ASM_OPERANDS_INPUT_LENGTH (asmop)
649 	   - ASM_OPERANDS_LABEL_LENGTH (asmop));
650 }
651 
652 /* If current function returns its result in an fp stack register,
653    return the REG.  Otherwise, return 0.  */
654 
655 static rtx
stack_result(tree decl)656 stack_result (tree decl)
657 {
658   rtx result;
659 
660   /* If the value is supposed to be returned in memory, then clearly
661      it is not returned in a stack register.  */
662   if (aggregate_value_p (DECL_RESULT (decl), decl))
663     return 0;
664 
665   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
666   if (result != 0)
667     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
668 					   decl, true);
669 
670   return result != 0 && STACK_REG_P (result) ? result : 0;
671 }
672 
673 
674 /*
675  * This section deals with stack register substitution, and forms the second
676  * pass over the RTL.
677  */
678 
679 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
680    the desired hard REGNO.  */
681 
682 static void
replace_reg(rtx * reg,int regno)683 replace_reg (rtx *reg, int regno)
684 {
685   gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
686   gcc_assert (STACK_REG_P (*reg));
687 
688   gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
689 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
690 
691   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
692 }
693 
694 /* Remove a note of type NOTE, which must be found, for register
695    number REGNO from INSN.  Remove only one such note.  */
696 
697 static void
remove_regno_note(rtx insn,enum reg_note note,unsigned int regno)698 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
699 {
700   rtx *note_link, this_rtx;
701 
702   note_link = &REG_NOTES (insn);
703   for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
704     if (REG_NOTE_KIND (this_rtx) == note
705 	&& REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
706       {
707 	*note_link = XEXP (this_rtx, 1);
708 	return;
709       }
710     else
711       note_link = &XEXP (this_rtx, 1);
712 
713   gcc_unreachable ();
714 }
715 
716 /* Find the hard register number of virtual register REG in REGSTACK.
717    The hard register number is relative to the top of the stack.  -1 is
718    returned if the register is not found.  */
719 
720 static int
get_hard_regnum(stack_ptr regstack,rtx reg)721 get_hard_regnum (stack_ptr regstack, rtx reg)
722 {
723   int i;
724 
725   gcc_assert (STACK_REG_P (reg));
726 
727   for (i = regstack->top; i >= 0; i--)
728     if (regstack->reg[i] == REGNO (reg))
729       break;
730 
731   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
732 }
733 
734 /* Emit an insn to pop virtual register REG before or after INSN.
735    REGSTACK is the stack state after INSN and is updated to reflect this
736    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
737    is represented as a SET whose destination is the register to be popped
738    and source is the top of stack.  A death note for the top of stack
739    cases the movdf pattern to pop.  */
740 
741 static rtx
emit_pop_insn(rtx insn,stack_ptr regstack,rtx reg,enum emit_where where)742 emit_pop_insn (rtx insn, stack_ptr regstack, rtx reg, enum emit_where where)
743 {
744   rtx pop_insn, pop_rtx;
745   int hard_regno;
746 
747   /* For complex types take care to pop both halves.  These may survive in
748      CLOBBER and USE expressions.  */
749   if (COMPLEX_MODE_P (GET_MODE (reg)))
750     {
751       rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
752       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
753 
754       pop_insn = NULL_RTX;
755       if (get_hard_regnum (regstack, reg1) >= 0)
756 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
757       if (get_hard_regnum (regstack, reg2) >= 0)
758 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
759       gcc_assert (pop_insn);
760       return pop_insn;
761     }
762 
763   hard_regno = get_hard_regnum (regstack, reg);
764 
765   gcc_assert (hard_regno >= FIRST_STACK_REG);
766 
767   pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
768 			 FP_MODE_REG (FIRST_STACK_REG, DFmode));
769 
770   if (where == EMIT_AFTER)
771     pop_insn = emit_insn_after (pop_rtx, insn);
772   else
773     pop_insn = emit_insn_before (pop_rtx, insn);
774 
775   add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
776 
777   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
778     = regstack->reg[regstack->top];
779   regstack->top -= 1;
780   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
781 
782   return pop_insn;
783 }
784 
785 /* Emit an insn before or after INSN to swap virtual register REG with
786    the top of stack.  REGSTACK is the stack state before the swap, and
787    is updated to reflect the swap.  A swap insn is represented as a
788    PARALLEL of two patterns: each pattern moves one reg to the other.
789 
790    If REG is already at the top of the stack, no insn is emitted.  */
791 
792 static void
emit_swap_insn(rtx insn,stack_ptr regstack,rtx reg)793 emit_swap_insn (rtx insn, stack_ptr regstack, rtx reg)
794 {
795   int hard_regno;
796   rtx swap_rtx;
797   int tmp, other_reg;		/* swap regno temps */
798   rtx i1;			/* the stack-reg insn prior to INSN */
799   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
800 
801   hard_regno = get_hard_regnum (regstack, reg);
802 
803   if (hard_regno == FIRST_STACK_REG)
804     return;
805   if (hard_regno == -1)
806     {
807       /* Something failed if the register wasn't on the stack.  If we had
808 	 malformed asms, we zapped the instruction itself, but that didn't
809 	 produce the same pattern of register sets as before.  To prevent
810 	 further failure, adjust REGSTACK to include REG at TOP.  */
811       gcc_assert (any_malformed_asm);
812       regstack->reg[++regstack->top] = REGNO (reg);
813       return;
814     }
815   gcc_assert (hard_regno >= FIRST_STACK_REG);
816 
817   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
818 
819   tmp = regstack->reg[other_reg];
820   regstack->reg[other_reg] = regstack->reg[regstack->top];
821   regstack->reg[regstack->top] = tmp;
822 
823   /* Find the previous insn involving stack regs, but don't pass a
824      block boundary.  */
825   i1 = NULL;
826   if (current_block && insn != BB_HEAD (current_block))
827     {
828       rtx tmp = PREV_INSN (insn);
829       rtx limit = PREV_INSN (BB_HEAD (current_block));
830       while (tmp != limit)
831 	{
832 	  if (LABEL_P (tmp)
833 	      || CALL_P (tmp)
834 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
835 	      || (NONJUMP_INSN_P (tmp)
836 		  && stack_regs_mentioned (tmp)))
837 	    {
838 	      i1 = tmp;
839 	      break;
840 	    }
841 	  tmp = PREV_INSN (tmp);
842 	}
843     }
844 
845   if (i1 != NULL_RTX
846       && (i1set = single_set (i1)) != NULL_RTX)
847     {
848       rtx i1src = *get_true_reg (&SET_SRC (i1set));
849       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
850 
851       /* If the previous register stack push was from the reg we are to
852 	 swap with, omit the swap.  */
853 
854       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
855 	  && REG_P (i1src)
856 	  && REGNO (i1src) == (unsigned) hard_regno - 1
857 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
858 	return;
859 
860       /* If the previous insn wrote to the reg we are to swap with,
861 	 omit the swap.  */
862 
863       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
864 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
865 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
866 	return;
867     }
868 
869   /* Avoid emitting the swap if this is the first register stack insn
870      of the current_block.  Instead update the current_block's stack_in
871      and let compensate edges take care of this for us.  */
872   if (current_block && starting_stack_p)
873     {
874       BLOCK_INFO (current_block)->stack_in = *regstack;
875       starting_stack_p = false;
876       return;
877     }
878 
879   swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
880 			 FP_MODE_REG (FIRST_STACK_REG, XFmode));
881 
882   if (i1)
883     emit_insn_after (swap_rtx, i1);
884   else if (current_block)
885     emit_insn_before (swap_rtx, BB_HEAD (current_block));
886   else
887     emit_insn_before (swap_rtx, insn);
888 }
889 
890 /* Emit an insns before INSN to swap virtual register SRC1 with
891    the top of stack and virtual register SRC2 with second stack
892    slot. REGSTACK is the stack state before the swaps, and
893    is updated to reflect the swaps.  A swap insn is represented as a
894    PARALLEL of two patterns: each pattern moves one reg to the other.
895 
896    If SRC1 and/or SRC2 are already at the right place, no swap insn
897    is emitted.  */
898 
899 static void
swap_to_top(rtx insn,stack_ptr regstack,rtx src1,rtx src2)900 swap_to_top (rtx insn, stack_ptr regstack, rtx src1, rtx src2)
901 {
902   struct stack_def temp_stack;
903   int regno, j, k, temp;
904 
905   temp_stack = *regstack;
906 
907   /* Place operand 1 at the top of stack.  */
908   regno = get_hard_regnum (&temp_stack, src1);
909   gcc_assert (regno >= 0);
910   if (regno != FIRST_STACK_REG)
911     {
912       k = temp_stack.top - (regno - FIRST_STACK_REG);
913       j = temp_stack.top;
914 
915       temp = temp_stack.reg[k];
916       temp_stack.reg[k] = temp_stack.reg[j];
917       temp_stack.reg[j] = temp;
918     }
919 
920   /* Place operand 2 next on the stack.  */
921   regno = get_hard_regnum (&temp_stack, src2);
922   gcc_assert (regno >= 0);
923   if (regno != FIRST_STACK_REG + 1)
924     {
925       k = temp_stack.top - (regno - FIRST_STACK_REG);
926       j = temp_stack.top - 1;
927 
928       temp = temp_stack.reg[k];
929       temp_stack.reg[k] = temp_stack.reg[j];
930       temp_stack.reg[j] = temp;
931     }
932 
933   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
934 }
935 
936 /* Handle a move to or from a stack register in PAT, which is in INSN.
937    REGSTACK is the current stack.  Return whether a control flow insn
938    was deleted in the process.  */
939 
940 static bool
move_for_stack_reg(rtx insn,stack_ptr regstack,rtx pat)941 move_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat)
942 {
943   rtx *psrc =  get_true_reg (&SET_SRC (pat));
944   rtx *pdest = get_true_reg (&SET_DEST (pat));
945   rtx src, dest;
946   rtx note;
947   bool control_flow_insn_deleted = false;
948 
949   src = *psrc; dest = *pdest;
950 
951   if (STACK_REG_P (src) && STACK_REG_P (dest))
952     {
953       /* Write from one stack reg to another.  If SRC dies here, then
954 	 just change the register mapping and delete the insn.  */
955 
956       note = find_regno_note (insn, REG_DEAD, REGNO (src));
957       if (note)
958 	{
959 	  int i;
960 
961 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
962 	  gcc_assert (REGNO (src) != REGNO (dest));
963 
964 	  for (i = regstack->top; i >= 0; i--)
965 	    if (regstack->reg[i] == REGNO (src))
966 	      break;
967 
968 	  /* The destination must be dead, or life analysis is borked.  */
969 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
970 
971 	  /* If the source is not live, this is yet another case of
972 	     uninitialized variables.  Load up a NaN instead.  */
973 	  if (i < 0)
974 	    return move_nan_for_stack_reg (insn, regstack, dest);
975 
976 	  /* It is possible that the dest is unused after this insn.
977 	     If so, just pop the src.  */
978 
979 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
980 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
981 	  else
982 	    {
983 	      regstack->reg[i] = REGNO (dest);
984 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
985 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
986 	    }
987 
988 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
989 	  delete_insn (insn);
990 	  return control_flow_insn_deleted;
991 	}
992 
993       /* The source reg does not die.  */
994 
995       /* If this appears to be a no-op move, delete it, or else it
996 	 will confuse the machine description output patterns. But if
997 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
998 	 for REG_UNUSED will not work for deleted insns.  */
999 
1000       if (REGNO (src) == REGNO (dest))
1001 	{
1002 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1003 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1004 
1005 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1006 	  delete_insn (insn);
1007 	  return control_flow_insn_deleted;
1008 	}
1009 
1010       /* The destination ought to be dead.  */
1011       gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1012 
1013       replace_reg (psrc, get_hard_regnum (regstack, src));
1014 
1015       regstack->reg[++regstack->top] = REGNO (dest);
1016       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1017       replace_reg (pdest, FIRST_STACK_REG);
1018     }
1019   else if (STACK_REG_P (src))
1020     {
1021       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1022 	 only top of stack may be saved, emit an exchange first if
1023 	 needs be.  */
1024 
1025       emit_swap_insn (insn, regstack, src);
1026 
1027       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1028       if (note)
1029 	{
1030 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1031 	  regstack->top--;
1032 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1033 	}
1034       else if ((GET_MODE (src) == XFmode)
1035 	       && regstack->top < REG_STACK_SIZE - 1)
1036 	{
1037 	  /* A 387 cannot write an XFmode value to a MEM without
1038 	     clobbering the source reg.  The output code can handle
1039 	     this by reading back the value from the MEM.
1040 	     But it is more efficient to use a temp register if one is
1041 	     available.  Push the source value here if the register
1042 	     stack is not full, and then write the value to memory via
1043 	     a pop.  */
1044 	  rtx push_rtx;
1045 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1046 
1047 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1048 	  emit_insn_before (push_rtx, insn);
1049 	  add_reg_note (insn, REG_DEAD, top_stack_reg);
1050 	}
1051 
1052       replace_reg (psrc, FIRST_STACK_REG);
1053     }
1054   else
1055     {
1056       rtx pat = PATTERN (insn);
1057 
1058       gcc_assert (STACK_REG_P (dest));
1059 
1060       /* Load from MEM, or possibly integer REG or constant, into the
1061 	 stack regs.  The actual target is always the top of the
1062 	 stack. The stack mapping is changed to reflect that DEST is
1063 	 now at top of stack.  */
1064 
1065       /* The destination ought to be dead.  However, there is a
1066 	 special case with i387 UNSPEC_TAN, where destination is live
1067 	 (an argument to fptan) but inherent load of 1.0 is modelled
1068 	 as a load from a constant.  */
1069       if (GET_CODE (pat) == PARALLEL
1070 	  && XVECLEN (pat, 0) == 2
1071 	  && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1072 	  && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1073 	  && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1074 	emit_swap_insn (insn, regstack, dest);
1075       else
1076 	gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1077 
1078       gcc_assert (regstack->top < REG_STACK_SIZE);
1079 
1080       regstack->reg[++regstack->top] = REGNO (dest);
1081       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1082       replace_reg (pdest, FIRST_STACK_REG);
1083     }
1084 
1085   return control_flow_insn_deleted;
1086 }
1087 
1088 /* A helper function which replaces INSN with a pattern that loads up
1089    a NaN into DEST, then invokes move_for_stack_reg.  */
1090 
1091 static bool
move_nan_for_stack_reg(rtx insn,stack_ptr regstack,rtx dest)1092 move_nan_for_stack_reg (rtx insn, stack_ptr regstack, rtx dest)
1093 {
1094   rtx pat;
1095 
1096   dest = FP_MODE_REG (REGNO (dest), SFmode);
1097   pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1098   PATTERN (insn) = pat;
1099   INSN_CODE (insn) = -1;
1100 
1101   return move_for_stack_reg (insn, regstack, pat);
1102 }
1103 
1104 /* Swap the condition on a branch, if there is one.  Return true if we
1105    found a condition to swap.  False if the condition was not used as
1106    such.  */
1107 
1108 static int
swap_rtx_condition_1(rtx pat)1109 swap_rtx_condition_1 (rtx pat)
1110 {
1111   const char *fmt;
1112   int i, r = 0;
1113 
1114   if (COMPARISON_P (pat))
1115     {
1116       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1117       r = 1;
1118     }
1119   else
1120     {
1121       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1122       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1123 	{
1124 	  if (fmt[i] == 'E')
1125 	    {
1126 	      int j;
1127 
1128 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1129 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1130 	    }
1131 	  else if (fmt[i] == 'e')
1132 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1133 	}
1134     }
1135 
1136   return r;
1137 }
1138 
1139 static int
swap_rtx_condition(rtx insn)1140 swap_rtx_condition (rtx insn)
1141 {
1142   rtx pat = PATTERN (insn);
1143 
1144   /* We're looking for a single set to cc0 or an HImode temporary.  */
1145 
1146   if (GET_CODE (pat) == SET
1147       && REG_P (SET_DEST (pat))
1148       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1149     {
1150       insn = next_flags_user (insn);
1151       if (insn == NULL_RTX)
1152 	return 0;
1153       pat = PATTERN (insn);
1154     }
1155 
1156   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1157      with the cc value right now.  We may be able to search for one
1158      though.  */
1159 
1160   if (GET_CODE (pat) == SET
1161       && GET_CODE (SET_SRC (pat)) == UNSPEC
1162       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1163     {
1164       rtx dest = SET_DEST (pat);
1165 
1166       /* Search forward looking for the first use of this value.
1167 	 Stop at block boundaries.  */
1168       while (insn != BB_END (current_block))
1169 	{
1170 	  insn = NEXT_INSN (insn);
1171 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1172 	    break;
1173 	  if (CALL_P (insn))
1174 	    return 0;
1175 	}
1176 
1177       /* We haven't found it.  */
1178       if (insn == BB_END (current_block))
1179 	return 0;
1180 
1181       /* So we've found the insn using this value.  If it is anything
1182 	 other than sahf or the value does not die (meaning we'd have
1183 	 to search further), then we must give up.  */
1184       pat = PATTERN (insn);
1185       if (GET_CODE (pat) != SET
1186 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1187 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1188 	  || ! dead_or_set_p (insn, dest))
1189 	return 0;
1190 
1191       /* Now we are prepared to handle this as a normal cc0 setter.  */
1192       insn = next_flags_user (insn);
1193       if (insn == NULL_RTX)
1194 	return 0;
1195       pat = PATTERN (insn);
1196     }
1197 
1198   if (swap_rtx_condition_1 (pat))
1199     {
1200       int fail = 0;
1201       INSN_CODE (insn) = -1;
1202       if (recog_memoized (insn) == -1)
1203 	fail = 1;
1204       /* In case the flags don't die here, recurse to try fix
1205          following user too.  */
1206       else if (! dead_or_set_p (insn, ix86_flags_rtx))
1207 	{
1208 	  insn = next_flags_user (insn);
1209 	  if (!insn || !swap_rtx_condition (insn))
1210 	    fail = 1;
1211 	}
1212       if (fail)
1213 	{
1214 	  swap_rtx_condition_1 (pat);
1215 	  return 0;
1216 	}
1217       return 1;
1218     }
1219   return 0;
1220 }
1221 
1222 /* Handle a comparison.  Special care needs to be taken to avoid
1223    causing comparisons that a 387 cannot do correctly, such as EQ.
1224 
1225    Also, a pop insn may need to be emitted.  The 387 does have an
1226    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1227    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1228    set up.  */
1229 
1230 static void
compare_for_stack_reg(rtx insn,stack_ptr regstack,rtx pat_src)1231 compare_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat_src)
1232 {
1233   rtx *src1, *src2;
1234   rtx src1_note, src2_note;
1235 
1236   src1 = get_true_reg (&XEXP (pat_src, 0));
1237   src2 = get_true_reg (&XEXP (pat_src, 1));
1238 
1239   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1240      registers that die in this insn - move those to stack top first.  */
1241   if ((! STACK_REG_P (*src1)
1242        || (STACK_REG_P (*src2)
1243 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1244       && swap_rtx_condition (insn))
1245     {
1246       rtx temp;
1247       temp = XEXP (pat_src, 0);
1248       XEXP (pat_src, 0) = XEXP (pat_src, 1);
1249       XEXP (pat_src, 1) = temp;
1250 
1251       src1 = get_true_reg (&XEXP (pat_src, 0));
1252       src2 = get_true_reg (&XEXP (pat_src, 1));
1253 
1254       INSN_CODE (insn) = -1;
1255     }
1256 
1257   /* We will fix any death note later.  */
1258 
1259   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1260 
1261   if (STACK_REG_P (*src2))
1262     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1263   else
1264     src2_note = NULL_RTX;
1265 
1266   emit_swap_insn (insn, regstack, *src1);
1267 
1268   replace_reg (src1, FIRST_STACK_REG);
1269 
1270   if (STACK_REG_P (*src2))
1271     replace_reg (src2, get_hard_regnum (regstack, *src2));
1272 
1273   if (src1_note)
1274     {
1275       pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1276       replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1277     }
1278 
1279   /* If the second operand dies, handle that.  But if the operands are
1280      the same stack register, don't bother, because only one death is
1281      needed, and it was just handled.  */
1282 
1283   if (src2_note
1284       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1285 	    && REGNO (*src1) == REGNO (*src2)))
1286     {
1287       /* As a special case, two regs may die in this insn if src2 is
1288 	 next to top of stack and the top of stack also dies.  Since
1289 	 we have already popped src1, "next to top of stack" is really
1290 	 at top (FIRST_STACK_REG) now.  */
1291 
1292       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1293 	  && src1_note)
1294 	{
1295 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1296 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1297 	}
1298       else
1299 	{
1300 	  /* The 386 can only represent death of the first operand in
1301 	     the case handled above.  In all other cases, emit a separate
1302 	     pop and remove the death note from here.  */
1303 
1304 	  /* link_cc0_insns (insn); */
1305 
1306 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1307 
1308 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1309 			 EMIT_AFTER);
1310 	}
1311     }
1312 }
1313 
1314 /* Substitute new registers in LOC, which is part of a debug insn.
1315    REGSTACK is the current register layout.  */
1316 
1317 static int
subst_stack_regs_in_debug_insn(rtx * loc,void * data)1318 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1319 {
1320   stack_ptr regstack = (stack_ptr)data;
1321   int hard_regno;
1322 
1323   if (!STACK_REG_P (*loc))
1324     return 0;
1325 
1326   hard_regno = get_hard_regnum (regstack, *loc);
1327 
1328   /* If we can't find an active register, reset this debug insn.  */
1329   if (hard_regno == -1)
1330     return 1;
1331 
1332   gcc_assert (hard_regno >= FIRST_STACK_REG);
1333 
1334   replace_reg (loc, hard_regno);
1335 
1336   return -1;
1337 }
1338 
1339 /* Substitute hardware stack regs in debug insn INSN, using stack
1340    layout REGSTACK.  If we can't find a hardware stack reg for any of
1341    the REGs in it, reset the debug insn.  */
1342 
1343 static void
subst_all_stack_regs_in_debug_insn(rtx insn,struct stack_def * regstack)1344 subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1345 {
1346   int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1347 			  subst_stack_regs_in_debug_insn,
1348 			  regstack);
1349 
1350   if (ret == 1)
1351     INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1352   else
1353     gcc_checking_assert (ret == 0);
1354 }
1355 
1356 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1357    is the current register layout.  Return whether a control flow insn
1358    was deleted in the process.  */
1359 
1360 static bool
subst_stack_regs_pat(rtx insn,stack_ptr regstack,rtx pat)1361 subst_stack_regs_pat (rtx insn, stack_ptr regstack, rtx pat)
1362 {
1363   rtx *dest, *src;
1364   bool control_flow_insn_deleted = false;
1365 
1366   switch (GET_CODE (pat))
1367     {
1368     case USE:
1369       /* Deaths in USE insns can happen in non optimizing compilation.
1370 	 Handle them by popping the dying register.  */
1371       src = get_true_reg (&XEXP (pat, 0));
1372       if (STACK_REG_P (*src)
1373 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1374 	{
1375 	  /* USEs are ignored for liveness information so USEs of dead
1376 	     register might happen.  */
1377           if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1378 	    emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1379 	  return control_flow_insn_deleted;
1380 	}
1381       /* Uninitialized USE might happen for functions returning uninitialized
1382          value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1383 	 so it is safe to ignore the use here. This is consistent with behavior
1384 	 of dataflow analyzer that ignores USE too.  (This also imply that
1385 	 forcibly initializing the register to NaN here would lead to ICE later,
1386 	 since the REG_DEAD notes are not issued.)  */
1387       break;
1388 
1389     case VAR_LOCATION:
1390       gcc_unreachable ();
1391 
1392     case CLOBBER:
1393       {
1394 	rtx note;
1395 
1396 	dest = get_true_reg (&XEXP (pat, 0));
1397 	if (STACK_REG_P (*dest))
1398 	  {
1399 	    note = find_reg_note (insn, REG_DEAD, *dest);
1400 
1401 	    if (pat != PATTERN (insn))
1402 	      {
1403 		/* The fix_truncdi_1 pattern wants to be able to
1404 		   allocate its own scratch register.  It does this by
1405 		   clobbering an fp reg so that it is assured of an
1406 		   empty reg-stack register.  If the register is live,
1407 		   kill it now.  Remove the DEAD/UNUSED note so we
1408 		   don't try to kill it later too.
1409 
1410 		   In reality the UNUSED note can be absent in some
1411 		   complicated cases when the register is reused for
1412 		   partially set variable.  */
1413 
1414 		if (note)
1415 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1416 		else
1417 		  note = find_reg_note (insn, REG_UNUSED, *dest);
1418 		if (note)
1419 		  remove_note (insn, note);
1420 		replace_reg (dest, FIRST_STACK_REG + 1);
1421 	      }
1422 	    else
1423 	      {
1424 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1425 		   indicates an uninitialized value.  Because reload removed
1426 		   all other clobbers, this must be due to a function
1427 		   returning without a value.  Load up a NaN.  */
1428 
1429 		if (!note)
1430 		  {
1431 		    rtx t = *dest;
1432 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1433 		      {
1434 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1435 			if (get_hard_regnum (regstack, u) == -1)
1436 			  {
1437 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1438 			    rtx insn2 = emit_insn_before (pat2, insn);
1439 			    control_flow_insn_deleted
1440 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1441 			  }
1442 		      }
1443 		    if (get_hard_regnum (regstack, t) == -1)
1444 		      control_flow_insn_deleted
1445 			|= move_nan_for_stack_reg (insn, regstack, t);
1446 		  }
1447 	      }
1448 	  }
1449 	break;
1450       }
1451 
1452     case SET:
1453       {
1454 	rtx *src1 = (rtx *) 0, *src2;
1455 	rtx src1_note, src2_note;
1456 	rtx pat_src;
1457 
1458 	dest = get_true_reg (&SET_DEST (pat));
1459 	src  = get_true_reg (&SET_SRC (pat));
1460 	pat_src = SET_SRC (pat);
1461 
1462 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1463 	if (STACK_REG_P (*src)
1464 	    || (STACK_REG_P (*dest)
1465 		&& (REG_P (*src) || MEM_P (*src)
1466 		    || CONST_DOUBLE_P (*src))))
1467 	  {
1468 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1469 	    break;
1470 	  }
1471 
1472 	switch (GET_CODE (pat_src))
1473 	  {
1474 	  case COMPARE:
1475 	    compare_for_stack_reg (insn, regstack, pat_src);
1476 	    break;
1477 
1478 	  case CALL:
1479 	    {
1480 	      int count;
1481 	      for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1482 		   --count >= 0;)
1483 		{
1484 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1485 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1486 		}
1487 	    }
1488 	    replace_reg (dest, FIRST_STACK_REG);
1489 	    break;
1490 
1491 	  case REG:
1492 	    /* This is a `tstM2' case.  */
1493 	    gcc_assert (*dest == cc0_rtx);
1494 	    src1 = src;
1495 
1496 	    /* Fall through.  */
1497 
1498 	  case FLOAT_TRUNCATE:
1499 	  case SQRT:
1500 	  case ABS:
1501 	  case NEG:
1502 	    /* These insns only operate on the top of the stack. DEST might
1503 	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1504 	       possible that the tstM case results in a REG_DEAD note on the
1505 	       source.  */
1506 
1507 	    if (src1 == 0)
1508 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1509 
1510 	    emit_swap_insn (insn, regstack, *src1);
1511 
1512 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1513 
1514 	    if (STACK_REG_P (*dest))
1515 	      replace_reg (dest, FIRST_STACK_REG);
1516 
1517 	    if (src1_note)
1518 	      {
1519 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1520 		regstack->top--;
1521 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1522 	      }
1523 
1524 	    replace_reg (src1, FIRST_STACK_REG);
1525 	    break;
1526 
1527 	  case MINUS:
1528 	  case DIV:
1529 	    /* On i386, reversed forms of subM3 and divM3 exist for
1530 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1531 	       can be used.  */
1532 	  case MULT:
1533 	  case PLUS:
1534 	    /* These insns can accept the top of stack as a destination
1535 	       from a stack reg or mem, or can use the top of stack as a
1536 	       source and some other stack register (possibly top of stack)
1537 	       as a destination.  */
1538 
1539 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1540 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1541 
1542 	    /* We will fix any death note later.  */
1543 
1544 	    if (STACK_REG_P (*src1))
1545 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1546 	    else
1547 	      src1_note = NULL_RTX;
1548 	    if (STACK_REG_P (*src2))
1549 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1550 	    else
1551 	      src2_note = NULL_RTX;
1552 
1553 	    /* If either operand is not a stack register, then the dest
1554 	       must be top of stack.  */
1555 
1556 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1557 	      emit_swap_insn (insn, regstack, *dest);
1558 	    else
1559 	      {
1560 		/* Both operands are REG.  If neither operand is already
1561 		   at the top of stack, choose to make the one that is the
1562 		   dest the new top of stack.  */
1563 
1564 		int src1_hard_regnum, src2_hard_regnum;
1565 
1566 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1567 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1568 
1569 		/* If the source is not live, this is yet another case of
1570 		   uninitialized variables.  Load up a NaN instead.  */
1571 		if (src1_hard_regnum == -1)
1572 		  {
1573 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1574 		    rtx insn2 = emit_insn_before (pat2, insn);
1575 		    control_flow_insn_deleted
1576 		      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1577 		  }
1578 		if (src2_hard_regnum == -1)
1579 		  {
1580 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1581 		    rtx insn2 = emit_insn_before (pat2, insn);
1582 		    control_flow_insn_deleted
1583 		      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1584 		  }
1585 
1586 		if (src1_hard_regnum != FIRST_STACK_REG
1587 		    && src2_hard_regnum != FIRST_STACK_REG)
1588 		  emit_swap_insn (insn, regstack, *dest);
1589 	      }
1590 
1591 	    if (STACK_REG_P (*src1))
1592 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1593 	    if (STACK_REG_P (*src2))
1594 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1595 
1596 	    if (src1_note)
1597 	      {
1598 		rtx src1_reg = XEXP (src1_note, 0);
1599 
1600 		/* If the register that dies is at the top of stack, then
1601 		   the destination is somewhere else - merely substitute it.
1602 		   But if the reg that dies is not at top of stack, then
1603 		   move the top of stack to the dead reg, as though we had
1604 		   done the insn and then a store-with-pop.  */
1605 
1606 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1607 		  {
1608 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1609 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1610 		  }
1611 		else
1612 		  {
1613 		    int regno = get_hard_regnum (regstack, src1_reg);
1614 
1615 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1616 		    replace_reg (dest, regno);
1617 
1618 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1619 		      = regstack->reg[regstack->top];
1620 		  }
1621 
1622 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1623 				    REGNO (XEXP (src1_note, 0)));
1624 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1625 		regstack->top--;
1626 	      }
1627 	    else if (src2_note)
1628 	      {
1629 		rtx src2_reg = XEXP (src2_note, 0);
1630 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1631 		  {
1632 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1633 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1634 		  }
1635 		else
1636 		  {
1637 		    int regno = get_hard_regnum (regstack, src2_reg);
1638 
1639 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1640 		    replace_reg (dest, regno);
1641 
1642 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1643 		      = regstack->reg[regstack->top];
1644 		  }
1645 
1646 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1647 				    REGNO (XEXP (src2_note, 0)));
1648 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1649 		regstack->top--;
1650 	      }
1651 	    else
1652 	      {
1653 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1654 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1655 	      }
1656 
1657 	    /* Keep operand 1 matching with destination.  */
1658 	    if (COMMUTATIVE_ARITH_P (pat_src)
1659 		&& REG_P (*src1) && REG_P (*src2)
1660 		&& REGNO (*src1) != REGNO (*dest))
1661 	     {
1662 		int tmp = REGNO (*src1);
1663 		replace_reg (src1, REGNO (*src2));
1664 		replace_reg (src2, tmp);
1665 	     }
1666 	    break;
1667 
1668 	  case UNSPEC:
1669 	    switch (XINT (pat_src, 1))
1670 	      {
1671 	      case UNSPEC_STA:
1672 	      case UNSPEC_FIST:
1673 
1674 	      case UNSPEC_FIST_FLOOR:
1675 	      case UNSPEC_FIST_CEIL:
1676 
1677 		/* These insns only operate on the top of the stack.  */
1678 
1679 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1680 		emit_swap_insn (insn, regstack, *src1);
1681 
1682 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1683 
1684 		if (STACK_REG_P (*dest))
1685 		  replace_reg (dest, FIRST_STACK_REG);
1686 
1687 		if (src1_note)
1688 		  {
1689 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1690 		    regstack->top--;
1691 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1692 		  }
1693 
1694 		replace_reg (src1, FIRST_STACK_REG);
1695 		break;
1696 
1697 	      case UNSPEC_FXAM:
1698 
1699 		/* This insn only operate on the top of the stack.  */
1700 
1701 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1702 		emit_swap_insn (insn, regstack, *src1);
1703 
1704 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1705 
1706 		replace_reg (src1, FIRST_STACK_REG);
1707 
1708 		if (src1_note)
1709 		  {
1710 		    remove_regno_note (insn, REG_DEAD,
1711 				       REGNO (XEXP (src1_note, 0)));
1712 		    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1713 				   EMIT_AFTER);
1714 		  }
1715 
1716 		break;
1717 
1718 	      case UNSPEC_SIN:
1719 	      case UNSPEC_COS:
1720 	      case UNSPEC_FRNDINT:
1721 	      case UNSPEC_F2XM1:
1722 
1723 	      case UNSPEC_FRNDINT_FLOOR:
1724 	      case UNSPEC_FRNDINT_CEIL:
1725 	      case UNSPEC_FRNDINT_TRUNC:
1726 	      case UNSPEC_FRNDINT_MASK_PM:
1727 
1728 		/* Above insns operate on the top of the stack.  */
1729 
1730 	      case UNSPEC_SINCOS_COS:
1731 	      case UNSPEC_XTRACT_FRACT:
1732 
1733 		/* Above insns operate on the top two stack slots,
1734 		   first part of one input, double output insn.  */
1735 
1736 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1737 
1738 		emit_swap_insn (insn, regstack, *src1);
1739 
1740 		/* Input should never die, it is replaced with output.  */
1741 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1742 		gcc_assert (!src1_note);
1743 
1744 		if (STACK_REG_P (*dest))
1745 		  replace_reg (dest, FIRST_STACK_REG);
1746 
1747 		replace_reg (src1, FIRST_STACK_REG);
1748 		break;
1749 
1750 	      case UNSPEC_SINCOS_SIN:
1751 	      case UNSPEC_XTRACT_EXP:
1752 
1753 		/* These insns operate on the top two stack slots,
1754 		   second part of one input, double output insn.  */
1755 
1756 		regstack->top++;
1757 		/* FALLTHRU */
1758 
1759 	      case UNSPEC_TAN:
1760 
1761 		/* For UNSPEC_TAN, regstack->top is already increased
1762 		   by inherent load of constant 1.0.  */
1763 
1764 		/* Output value is generated in the second stack slot.
1765 		   Move current value from second slot to the top.  */
1766 		regstack->reg[regstack->top]
1767 		  = regstack->reg[regstack->top - 1];
1768 
1769 		gcc_assert (STACK_REG_P (*dest));
1770 
1771 		regstack->reg[regstack->top - 1] = REGNO (*dest);
1772 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1773 		replace_reg (dest, FIRST_STACK_REG + 1);
1774 
1775 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1776 
1777 		replace_reg (src1, FIRST_STACK_REG);
1778 		break;
1779 
1780 	      case UNSPEC_FPATAN:
1781 	      case UNSPEC_FYL2X:
1782 	      case UNSPEC_FYL2XP1:
1783 		/* These insns operate on the top two stack slots.  */
1784 
1785 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1786 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1787 
1788 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1789 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1790 
1791 		swap_to_top (insn, regstack, *src1, *src2);
1792 
1793 		replace_reg (src1, FIRST_STACK_REG);
1794 		replace_reg (src2, FIRST_STACK_REG + 1);
1795 
1796 		if (src1_note)
1797 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1798 		if (src2_note)
1799 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1800 
1801 		/* Pop both input operands from the stack.  */
1802 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1803 				    regstack->reg[regstack->top]);
1804 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1805 				    regstack->reg[regstack->top - 1]);
1806 		regstack->top -= 2;
1807 
1808 		/* Push the result back onto the stack.  */
1809 		regstack->reg[++regstack->top] = REGNO (*dest);
1810 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1811 		replace_reg (dest, FIRST_STACK_REG);
1812 		break;
1813 
1814 	      case UNSPEC_FSCALE_FRACT:
1815 	      case UNSPEC_FPREM_F:
1816 	      case UNSPEC_FPREM1_F:
1817 		/* These insns operate on the top two stack slots,
1818 		   first part of double input, double output insn.  */
1819 
1820 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1821 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1822 
1823 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1824 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1825 
1826 		/* Inputs should never die, they are
1827 		   replaced with outputs.  */
1828 		gcc_assert (!src1_note);
1829 		gcc_assert (!src2_note);
1830 
1831 		swap_to_top (insn, regstack, *src1, *src2);
1832 
1833 		/* Push the result back onto stack. Empty stack slot
1834 		   will be filled in second part of insn.  */
1835 		if (STACK_REG_P (*dest))
1836 		  {
1837 		    regstack->reg[regstack->top] = REGNO (*dest);
1838 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1839 		    replace_reg (dest, FIRST_STACK_REG);
1840 		  }
1841 
1842 		replace_reg (src1, FIRST_STACK_REG);
1843 		replace_reg (src2, FIRST_STACK_REG + 1);
1844 		break;
1845 
1846 	      case UNSPEC_FSCALE_EXP:
1847 	      case UNSPEC_FPREM_U:
1848 	      case UNSPEC_FPREM1_U:
1849 		/* These insns operate on the top two stack slots,
1850 		   second part of double input, double output insn.  */
1851 
1852 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1853 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1854 
1855 		/* Push the result back onto stack. Fill empty slot from
1856 		   first part of insn and fix top of stack pointer.  */
1857 		if (STACK_REG_P (*dest))
1858 		  {
1859 		    regstack->reg[regstack->top - 1] = REGNO (*dest);
1860 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1861 		    replace_reg (dest, FIRST_STACK_REG + 1);
1862 		  }
1863 
1864 		replace_reg (src1, FIRST_STACK_REG);
1865 		replace_reg (src2, FIRST_STACK_REG + 1);
1866 		break;
1867 
1868 	      case UNSPEC_C2_FLAG:
1869 		/* This insn operates on the top two stack slots,
1870 		   third part of C2 setting double input insn.  */
1871 
1872 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1873 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1874 
1875 		replace_reg (src1, FIRST_STACK_REG);
1876 		replace_reg (src2, FIRST_STACK_REG + 1);
1877 		break;
1878 
1879 	      case UNSPEC_SAHF:
1880 		/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1881 		   The combination matches the PPRO fcomi instruction.  */
1882 
1883 		pat_src = XVECEXP (pat_src, 0, 0);
1884 		gcc_assert (GET_CODE (pat_src) == UNSPEC);
1885 		gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1886 		/* Fall through.  */
1887 
1888 	      case UNSPEC_FNSTSW:
1889 		/* Combined fcomp+fnstsw generated for doing well with
1890 		   CSE.  When optimizing this would have been broken
1891 		   up before now.  */
1892 
1893 		pat_src = XVECEXP (pat_src, 0, 0);
1894 		gcc_assert (GET_CODE (pat_src) == COMPARE);
1895 
1896 		compare_for_stack_reg (insn, regstack, pat_src);
1897 		break;
1898 
1899 	      default:
1900 		gcc_unreachable ();
1901 	      }
1902 	    break;
1903 
1904 	  case IF_THEN_ELSE:
1905 	    /* This insn requires the top of stack to be the destination.  */
1906 
1907 	    src1 = get_true_reg (&XEXP (pat_src, 1));
1908 	    src2 = get_true_reg (&XEXP (pat_src, 2));
1909 
1910 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1911 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1912 
1913 	    /* If the comparison operator is an FP comparison operator,
1914 	       it is handled correctly by compare_for_stack_reg () who
1915 	       will move the destination to the top of stack. But if the
1916 	       comparison operator is not an FP comparison operator, we
1917 	       have to handle it here.  */
1918 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1919 		&& REGNO (*dest) != regstack->reg[regstack->top])
1920 	      {
1921 		/* In case one of operands is the top of stack and the operands
1922 		   dies, it is safe to make it the destination operand by
1923 		   reversing the direction of cmove and avoid fxch.  */
1924 		if ((REGNO (*src1) == regstack->reg[regstack->top]
1925 		     && src1_note)
1926 		    || (REGNO (*src2) == regstack->reg[regstack->top]
1927 			&& src2_note))
1928 		  {
1929 		    int idx1 = (get_hard_regnum (regstack, *src1)
1930 				- FIRST_STACK_REG);
1931 		    int idx2 = (get_hard_regnum (regstack, *src2)
1932 				- FIRST_STACK_REG);
1933 
1934 		    /* Make reg-stack believe that the operands are already
1935 		       swapped on the stack */
1936 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
1937 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
1938 
1939 		    /* Reverse condition to compensate the operand swap.
1940 		       i386 do have comparison always reversible.  */
1941 		    PUT_CODE (XEXP (pat_src, 0),
1942 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
1943 		  }
1944 		else
1945 	          emit_swap_insn (insn, regstack, *dest);
1946 	      }
1947 
1948 	    {
1949 	      rtx src_note [3];
1950 	      int i;
1951 
1952 	      src_note[0] = 0;
1953 	      src_note[1] = src1_note;
1954 	      src_note[2] = src2_note;
1955 
1956 	      if (STACK_REG_P (*src1))
1957 		replace_reg (src1, get_hard_regnum (regstack, *src1));
1958 	      if (STACK_REG_P (*src2))
1959 		replace_reg (src2, get_hard_regnum (regstack, *src2));
1960 
1961 	      for (i = 1; i <= 2; i++)
1962 		if (src_note [i])
1963 		  {
1964 		    int regno = REGNO (XEXP (src_note[i], 0));
1965 
1966 		    /* If the register that dies is not at the top of
1967 		       stack, then move the top of stack to the dead reg.
1968 		       Top of stack should never die, as it is the
1969 		       destination.  */
1970 		    gcc_assert (regno != regstack->reg[regstack->top]);
1971 		    remove_regno_note (insn, REG_DEAD, regno);
1972 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1973 				    EMIT_AFTER);
1974 		  }
1975 	    }
1976 
1977 	    /* Make dest the top of stack.  Add dest to regstack if
1978 	       not present.  */
1979 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1980 	      regstack->reg[++regstack->top] = REGNO (*dest);
1981 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1982 	    replace_reg (dest, FIRST_STACK_REG);
1983 	    break;
1984 
1985 	  default:
1986 	    gcc_unreachable ();
1987 	  }
1988 	break;
1989       }
1990 
1991     default:
1992       break;
1993     }
1994 
1995   return control_flow_insn_deleted;
1996 }
1997 
1998 /* Substitute hard regnums for any stack regs in INSN, which has
1999    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
2000    before the insn, and is updated with changes made here.
2001 
2002    There are several requirements and assumptions about the use of
2003    stack-like regs in asm statements.  These rules are enforced by
2004    record_asm_stack_regs; see comments there for details.  Any
2005    asm_operands left in the RTL at this point may be assume to meet the
2006    requirements, since record_asm_stack_regs removes any problem asm.  */
2007 
2008 static void
subst_asm_stack_regs(rtx insn,stack_ptr regstack)2009 subst_asm_stack_regs (rtx insn, stack_ptr regstack)
2010 {
2011   rtx body = PATTERN (insn);
2012   int alt;
2013 
2014   rtx *note_reg;		/* Array of note contents */
2015   rtx **note_loc;		/* Address of REG field of each note */
2016   enum reg_note *note_kind;	/* The type of each note */
2017 
2018   rtx *clobber_reg = 0;
2019   rtx **clobber_loc = 0;
2020 
2021   struct stack_def temp_stack;
2022   int n_notes;
2023   int n_clobbers;
2024   rtx note;
2025   int i;
2026   int n_inputs, n_outputs;
2027 
2028   if (! check_asm_stack_operands (insn))
2029     return;
2030 
2031   /* Find out what the constraints required.  If no constraint
2032      alternative matches, that is a compiler bug: we should have caught
2033      such an insn in check_asm_stack_operands.  */
2034   extract_insn (insn);
2035   constrain_operands (1);
2036   alt = which_alternative;
2037 
2038   preprocess_constraints ();
2039 
2040   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2041 
2042   gcc_assert (alt >= 0);
2043 
2044   /* Strip SUBREGs here to make the following code simpler.  */
2045   for (i = 0; i < recog_data.n_operands; i++)
2046     if (GET_CODE (recog_data.operand[i]) == SUBREG
2047 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
2048       {
2049 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2050 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2051       }
2052 
2053   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2054 
2055   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2056     i++;
2057 
2058   note_reg = XALLOCAVEC (rtx, i);
2059   note_loc = XALLOCAVEC (rtx *, i);
2060   note_kind = XALLOCAVEC (enum reg_note, i);
2061 
2062   n_notes = 0;
2063   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2064     {
2065       rtx reg = XEXP (note, 0);
2066       rtx *loc = & XEXP (note, 0);
2067 
2068       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2069 	{
2070 	  loc = & SUBREG_REG (reg);
2071 	  reg = SUBREG_REG (reg);
2072 	}
2073 
2074       if (STACK_REG_P (reg)
2075 	  && (REG_NOTE_KIND (note) == REG_DEAD
2076 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2077 	{
2078 	  note_reg[n_notes] = reg;
2079 	  note_loc[n_notes] = loc;
2080 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2081 	  n_notes++;
2082 	}
2083     }
2084 
2085   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2086 
2087   n_clobbers = 0;
2088 
2089   if (GET_CODE (body) == PARALLEL)
2090     {
2091       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2092       clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2093 
2094       for (i = 0; i < XVECLEN (body, 0); i++)
2095 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2096 	  {
2097 	    rtx clobber = XVECEXP (body, 0, i);
2098 	    rtx reg = XEXP (clobber, 0);
2099 	    rtx *loc = & XEXP (clobber, 0);
2100 
2101 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2102 	      {
2103 		loc = & SUBREG_REG (reg);
2104 		reg = SUBREG_REG (reg);
2105 	      }
2106 
2107 	    if (STACK_REG_P (reg))
2108 	      {
2109 		clobber_reg[n_clobbers] = reg;
2110 		clobber_loc[n_clobbers] = loc;
2111 		n_clobbers++;
2112 	      }
2113 	  }
2114     }
2115 
2116   temp_stack = *regstack;
2117 
2118   /* Put the input regs into the desired place in TEMP_STACK.  */
2119 
2120   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2121     if (STACK_REG_P (recog_data.operand[i])
2122 	&& reg_class_subset_p (recog_op_alt[i][alt].cl,
2123 			       FLOAT_REGS)
2124 	&& recog_op_alt[i][alt].cl != FLOAT_REGS)
2125       {
2126 	/* If an operand needs to be in a particular reg in
2127 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2128 	   these constraints are for single register classes, and
2129 	   reload guaranteed that operand[i] is already in that class,
2130 	   we can just use REGNO (recog_data.operand[i]) to know which
2131 	   actual reg this operand needs to be in.  */
2132 
2133 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2134 
2135 	gcc_assert (regno >= 0);
2136 
2137 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2138 	  {
2139 	    /* recog_data.operand[i] is not in the right place.  Find
2140 	       it and swap it with whatever is already in I's place.
2141 	       K is where recog_data.operand[i] is now.  J is where it
2142 	       should be.  */
2143 	    int j, k, temp;
2144 
2145 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2146 	    j = (temp_stack.top
2147 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2148 
2149 	    temp = temp_stack.reg[k];
2150 	    temp_stack.reg[k] = temp_stack.reg[j];
2151 	    temp_stack.reg[j] = temp;
2152 	  }
2153       }
2154 
2155   /* Emit insns before INSN to make sure the reg-stack is in the right
2156      order.  */
2157 
2158   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2159 
2160   /* Make the needed input register substitutions.  Do death notes and
2161      clobbers too, because these are for inputs, not outputs.  */
2162 
2163   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2164     if (STACK_REG_P (recog_data.operand[i]))
2165       {
2166 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2167 
2168 	gcc_assert (regnum >= 0);
2169 
2170 	replace_reg (recog_data.operand_loc[i], regnum);
2171       }
2172 
2173   for (i = 0; i < n_notes; i++)
2174     if (note_kind[i] == REG_DEAD)
2175       {
2176 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2177 
2178 	gcc_assert (regnum >= 0);
2179 
2180 	replace_reg (note_loc[i], regnum);
2181       }
2182 
2183   for (i = 0; i < n_clobbers; i++)
2184     {
2185       /* It's OK for a CLOBBER to reference a reg that is not live.
2186          Don't try to replace it in that case.  */
2187       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2188 
2189       if (regnum >= 0)
2190 	{
2191 	  /* Sigh - clobbers always have QImode.  But replace_reg knows
2192 	     that these regs can't be MODE_INT and will assert.  Just put
2193 	     the right reg there without calling replace_reg.  */
2194 
2195 	  *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2196 	}
2197     }
2198 
2199   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2200 
2201   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2202     if (STACK_REG_P (recog_data.operand[i]))
2203       {
2204 	/* An input reg is implicitly popped if it is tied to an
2205 	   output, or if there is a CLOBBER for it.  */
2206 	int j;
2207 
2208 	for (j = 0; j < n_clobbers; j++)
2209 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2210 	    break;
2211 
2212 	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2213 	  {
2214 	    /* recog_data.operand[i] might not be at the top of stack.
2215 	       But that's OK, because all we need to do is pop the
2216 	       right number of regs off of the top of the reg-stack.
2217 	       record_asm_stack_regs guaranteed that all implicitly
2218 	       popped regs were grouped at the top of the reg-stack.  */
2219 
2220 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2221 				regstack->reg[regstack->top]);
2222 	    regstack->top--;
2223 	  }
2224       }
2225 
2226   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2227      Note that there isn't any need to substitute register numbers.
2228      ???  Explain why this is true.  */
2229 
2230   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2231     {
2232       /* See if there is an output for this hard reg.  */
2233       int j;
2234 
2235       for (j = 0; j < n_outputs; j++)
2236 	if (STACK_REG_P (recog_data.operand[j])
2237 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2238 	  {
2239 	    regstack->reg[++regstack->top] = i;
2240 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2241 	    break;
2242 	  }
2243     }
2244 
2245   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2246      input that the asm didn't implicitly pop.  If the asm didn't
2247      implicitly pop an input reg, that reg will still be live.
2248 
2249      Note that we can't use find_regno_note here: the register numbers
2250      in the death notes have already been substituted.  */
2251 
2252   for (i = 0; i < n_outputs; i++)
2253     if (STACK_REG_P (recog_data.operand[i]))
2254       {
2255 	int j;
2256 
2257 	for (j = 0; j < n_notes; j++)
2258 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2259 	      && note_kind[j] == REG_UNUSED)
2260 	    {
2261 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2262 				    EMIT_AFTER);
2263 	      break;
2264 	    }
2265       }
2266 
2267   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2268     if (STACK_REG_P (recog_data.operand[i]))
2269       {
2270 	int j;
2271 
2272 	for (j = 0; j < n_notes; j++)
2273 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2274 	      && note_kind[j] == REG_DEAD
2275 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2276 				    REGNO (recog_data.operand[i])))
2277 	    {
2278 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2279 				    EMIT_AFTER);
2280 	      break;
2281 	    }
2282       }
2283 }
2284 
2285 /* Substitute stack hard reg numbers for stack virtual registers in
2286    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2287    current stack content.  Insns may be emitted as needed to arrange the
2288    stack for the 387 based on the contents of the insn.  Return whether
2289    a control flow insn was deleted in the process.  */
2290 
2291 static bool
subst_stack_regs(rtx insn,stack_ptr regstack)2292 subst_stack_regs (rtx insn, stack_ptr regstack)
2293 {
2294   rtx *note_link, note;
2295   bool control_flow_insn_deleted = false;
2296   int i;
2297 
2298   if (CALL_P (insn))
2299     {
2300       int top = regstack->top;
2301 
2302       /* If there are any floating point parameters to be passed in
2303 	 registers for this call, make sure they are in the right
2304 	 order.  */
2305 
2306       if (top >= 0)
2307 	{
2308 	  straighten_stack (insn, regstack);
2309 
2310 	  /* Now mark the arguments as dead after the call.  */
2311 
2312 	  while (regstack->top >= 0)
2313 	    {
2314 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2315 	      regstack->top--;
2316 	    }
2317 	}
2318     }
2319 
2320   /* Do the actual substitution if any stack regs are mentioned.
2321      Since we only record whether entire insn mentions stack regs, and
2322      subst_stack_regs_pat only works for patterns that contain stack regs,
2323      we must check each pattern in a parallel here.  A call_value_pop could
2324      fail otherwise.  */
2325 
2326   if (stack_regs_mentioned (insn))
2327     {
2328       int n_operands = asm_noperands (PATTERN (insn));
2329       if (n_operands >= 0)
2330 	{
2331 	  /* This insn is an `asm' with operands.  Decode the operands,
2332 	     decide how many are inputs, and do register substitution.
2333 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2334 
2335 	  subst_asm_stack_regs (insn, regstack);
2336 	  return control_flow_insn_deleted;
2337 	}
2338 
2339       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2340 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2341 	  {
2342 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2343 	      {
2344 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2345 	           XVECEXP (PATTERN (insn), 0, i)
2346 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2347 		control_flow_insn_deleted
2348 		  |= subst_stack_regs_pat (insn, regstack,
2349 					   XVECEXP (PATTERN (insn), 0, i));
2350 	      }
2351 	  }
2352       else
2353 	control_flow_insn_deleted
2354 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2355     }
2356 
2357   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2358      REG_UNUSED will already have been dealt with, so just return.  */
2359 
2360   if (NOTE_P (insn) || INSN_DELETED_P (insn))
2361     return control_flow_insn_deleted;
2362 
2363   /* If this a noreturn call, we can't insert pop insns after it.
2364      Instead, reset the stack state to empty.  */
2365   if (CALL_P (insn)
2366       && find_reg_note (insn, REG_NORETURN, NULL))
2367     {
2368       regstack->top = -1;
2369       CLEAR_HARD_REG_SET (regstack->reg_set);
2370       return control_flow_insn_deleted;
2371     }
2372 
2373   /* If there is a REG_UNUSED note on a stack register on this insn,
2374      the indicated reg must be popped.  The REG_UNUSED note is removed,
2375      since the form of the newly emitted pop insn references the reg,
2376      making it no longer `unset'.  */
2377 
2378   note_link = &REG_NOTES (insn);
2379   for (note = *note_link; note; note = XEXP (note, 1))
2380     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2381       {
2382 	*note_link = XEXP (note, 1);
2383 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2384       }
2385     else
2386       note_link = &XEXP (note, 1);
2387 
2388   return control_flow_insn_deleted;
2389 }
2390 
2391 /* Change the organization of the stack so that it fits a new basic
2392    block.  Some registers might have to be popped, but there can never be
2393    a register live in the new block that is not now live.
2394 
2395    Insert any needed insns before or after INSN, as indicated by
2396    WHERE.  OLD is the original stack layout, and NEW is the desired
2397    form.  OLD is updated to reflect the code emitted, i.e., it will be
2398    the same as NEW upon return.
2399 
2400    This function will not preserve block_end[].  But that information
2401    is no longer needed once this has executed.  */
2402 
2403 static void
change_stack(rtx insn,stack_ptr old,stack_ptr new_stack,enum emit_where where)2404 change_stack (rtx insn, stack_ptr old, stack_ptr new_stack, enum emit_where where)
2405 {
2406   int reg;
2407   int update_end = 0;
2408   int i;
2409 
2410   /* Stack adjustments for the first insn in a block update the
2411      current_block's stack_in instead of inserting insns directly.
2412      compensate_edges will add the necessary code later.  */
2413   if (current_block
2414       && starting_stack_p
2415       && where == EMIT_BEFORE)
2416     {
2417       BLOCK_INFO (current_block)->stack_in = *new_stack;
2418       starting_stack_p = false;
2419       *old = *new_stack;
2420       return;
2421     }
2422 
2423   /* We will be inserting new insns "backwards".  If we are to insert
2424      after INSN, find the next insn, and insert before it.  */
2425 
2426   if (where == EMIT_AFTER)
2427     {
2428       if (current_block && BB_END (current_block) == insn)
2429 	update_end = 1;
2430       insn = NEXT_INSN (insn);
2431     }
2432 
2433   /* Initialize partially dead variables.  */
2434   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2435     if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2436 	&& !TEST_HARD_REG_BIT (old->reg_set, i))
2437       {
2438 	old->reg[++old->top] = i;
2439         SET_HARD_REG_BIT (old->reg_set, i);
2440 	emit_insn_before (gen_rtx_SET (VOIDmode,
2441 				       FP_MODE_REG (i, SFmode), not_a_num), insn);
2442       }
2443 
2444   /* Pop any registers that are not needed in the new block.  */
2445 
2446   /* If the destination block's stack already has a specified layout
2447      and contains two or more registers, use a more intelligent algorithm
2448      to pop registers that minimizes the number number of fxchs below.  */
2449   if (new_stack->top > 0)
2450     {
2451       bool slots[REG_STACK_SIZE];
2452       int pops[REG_STACK_SIZE];
2453       int next, dest, topsrc;
2454 
2455       /* First pass to determine the free slots.  */
2456       for (reg = 0; reg <= new_stack->top; reg++)
2457 	slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2458 
2459       /* Second pass to allocate preferred slots.  */
2460       topsrc = -1;
2461       for (reg = old->top; reg > new_stack->top; reg--)
2462 	if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2463 	  {
2464 	    dest = -1;
2465 	    for (next = 0; next <= new_stack->top; next++)
2466 	      if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2467 		{
2468 		  /* If this is a preference for the new top of stack, record
2469 		     the fact by remembering it's old->reg in topsrc.  */
2470                   if (next == new_stack->top)
2471 		    topsrc = reg;
2472 		  slots[next] = true;
2473 		  dest = next;
2474 		  break;
2475 		}
2476 	    pops[reg] = dest;
2477 	  }
2478 	else
2479 	  pops[reg] = reg;
2480 
2481       /* Intentionally, avoid placing the top of stack in it's correct
2482 	 location, if we still need to permute the stack below and we
2483 	 can usefully place it somewhere else.  This is the case if any
2484 	 slot is still unallocated, in which case we should place the
2485 	 top of stack there.  */
2486       if (topsrc != -1)
2487 	for (reg = 0; reg < new_stack->top; reg++)
2488 	  if (!slots[reg])
2489 	    {
2490 	      pops[topsrc] = reg;
2491 	      slots[new_stack->top] = false;
2492 	      slots[reg] = true;
2493 	      break;
2494 	    }
2495 
2496       /* Third pass allocates remaining slots and emits pop insns.  */
2497       next = new_stack->top;
2498       for (reg = old->top; reg > new_stack->top; reg--)
2499 	{
2500 	  dest = pops[reg];
2501 	  if (dest == -1)
2502 	    {
2503 	      /* Find next free slot.  */
2504 	      while (slots[next])
2505 		next--;
2506 	      dest = next--;
2507 	    }
2508 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2509 			 EMIT_BEFORE);
2510 	}
2511     }
2512   else
2513     {
2514       /* The following loop attempts to maximize the number of times we
2515 	 pop the top of the stack, as this permits the use of the faster
2516 	 ffreep instruction on platforms that support it.  */
2517       int live, next;
2518 
2519       live = 0;
2520       for (reg = 0; reg <= old->top; reg++)
2521         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2522           live++;
2523 
2524       next = live;
2525       while (old->top >= live)
2526         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2527 	  {
2528 	    while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2529 	      next--;
2530 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2531 			   EMIT_BEFORE);
2532 	  }
2533 	else
2534 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2535 			 EMIT_BEFORE);
2536     }
2537 
2538   if (new_stack->top == -2)
2539     {
2540       /* If the new block has never been processed, then it can inherit
2541 	 the old stack order.  */
2542 
2543       new_stack->top = old->top;
2544       memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2545     }
2546   else
2547     {
2548       /* This block has been entered before, and we must match the
2549 	 previously selected stack order.  */
2550 
2551       /* By now, the only difference should be the order of the stack,
2552 	 not their depth or liveliness.  */
2553 
2554       gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2555       gcc_assert (old->top == new_stack->top);
2556 
2557       /* If the stack is not empty (new_stack->top != -1), loop here emitting
2558 	 swaps until the stack is correct.
2559 
2560 	 The worst case number of swaps emitted is N + 2, where N is the
2561 	 depth of the stack.  In some cases, the reg at the top of
2562 	 stack may be correct, but swapped anyway in order to fix
2563 	 other regs.  But since we never swap any other reg away from
2564 	 its correct slot, this algorithm will converge.  */
2565 
2566       if (new_stack->top != -1)
2567 	do
2568 	  {
2569 	    /* Swap the reg at top of stack into the position it is
2570 	       supposed to be in, until the correct top of stack appears.  */
2571 
2572 	    while (old->reg[old->top] != new_stack->reg[new_stack->top])
2573 	      {
2574 		for (reg = new_stack->top; reg >= 0; reg--)
2575 		  if (new_stack->reg[reg] == old->reg[old->top])
2576 		    break;
2577 
2578 		gcc_assert (reg != -1);
2579 
2580 		emit_swap_insn (insn, old,
2581 				FP_MODE_REG (old->reg[reg], DFmode));
2582 	      }
2583 
2584 	    /* See if any regs remain incorrect.  If so, bring an
2585 	     incorrect reg to the top of stack, and let the while loop
2586 	     above fix it.  */
2587 
2588 	    for (reg = new_stack->top; reg >= 0; reg--)
2589 	      if (new_stack->reg[reg] != old->reg[reg])
2590 		{
2591 		  emit_swap_insn (insn, old,
2592 				  FP_MODE_REG (old->reg[reg], DFmode));
2593 		  break;
2594 		}
2595 	  } while (reg >= 0);
2596 
2597       /* At this point there must be no differences.  */
2598 
2599       for (reg = old->top; reg >= 0; reg--)
2600 	gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2601     }
2602 
2603   if (update_end)
2604     BB_END (current_block) = PREV_INSN (insn);
2605 }
2606 
2607 /* Print stack configuration.  */
2608 
2609 static void
print_stack(FILE * file,stack_ptr s)2610 print_stack (FILE *file, stack_ptr s)
2611 {
2612   if (! file)
2613     return;
2614 
2615   if (s->top == -2)
2616     fprintf (file, "uninitialized\n");
2617   else if (s->top == -1)
2618     fprintf (file, "empty\n");
2619   else
2620     {
2621       int i;
2622       fputs ("[ ", file);
2623       for (i = 0; i <= s->top; ++i)
2624 	fprintf (file, "%d ", s->reg[i]);
2625       fputs ("]\n", file);
2626     }
2627 }
2628 
2629 /* This function was doing life analysis.  We now let the regular live
2630    code do it's job, so we only need to check some extra invariants
2631    that reg-stack expects.  Primary among these being that all registers
2632    are initialized before use.
2633 
2634    The function returns true when code was emitted to CFG edges and
2635    commit_edge_insertions needs to be called.  */
2636 
2637 static int
convert_regs_entry(void)2638 convert_regs_entry (void)
2639 {
2640   int inserted = 0;
2641   edge e;
2642   edge_iterator ei;
2643 
2644   /* Load something into each stack register live at function entry.
2645      Such live registers can be caused by uninitialized variables or
2646      functions not returning values on all paths.  In order to keep
2647      the push/pop code happy, and to not scrog the register stack, we
2648      must put something in these registers.  Use a QNaN.
2649 
2650      Note that we are inserting converted code here.  This code is
2651      never seen by the convert_regs pass.  */
2652 
2653   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2654     {
2655       basic_block block = e->dest;
2656       block_info bi = BLOCK_INFO (block);
2657       int reg, top = -1;
2658 
2659       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2660 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2661 	  {
2662 	    rtx init;
2663 
2664 	    bi->stack_in.reg[++top] = reg;
2665 
2666 	    init = gen_rtx_SET (VOIDmode,
2667 				FP_MODE_REG (FIRST_STACK_REG, SFmode),
2668 				not_a_num);
2669 	    insert_insn_on_edge (init, e);
2670 	    inserted = 1;
2671 	  }
2672 
2673       bi->stack_in.top = top;
2674     }
2675 
2676   return inserted;
2677 }
2678 
2679 /* Construct the desired stack for function exit.  This will either
2680    be `empty', or the function return value at top-of-stack.  */
2681 
2682 static void
convert_regs_exit(void)2683 convert_regs_exit (void)
2684 {
2685   int value_reg_low, value_reg_high;
2686   stack_ptr output_stack;
2687   rtx retvalue;
2688 
2689   retvalue = stack_result (current_function_decl);
2690   value_reg_low = value_reg_high = -1;
2691   if (retvalue)
2692     {
2693       value_reg_low = REGNO (retvalue);
2694       value_reg_high = END_HARD_REGNO (retvalue) - 1;
2695     }
2696 
2697   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2698   if (value_reg_low == -1)
2699     output_stack->top = -1;
2700   else
2701     {
2702       int reg;
2703 
2704       output_stack->top = value_reg_high - value_reg_low;
2705       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2706 	{
2707 	  output_stack->reg[value_reg_high - reg] = reg;
2708 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2709 	}
2710     }
2711 }
2712 
2713 /* Copy the stack info from the end of edge E's source block to the
2714    start of E's destination block.  */
2715 
2716 static void
propagate_stack(edge e)2717 propagate_stack (edge e)
2718 {
2719   stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2720   stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2721   int reg;
2722 
2723   /* Preserve the order of the original stack, but check whether
2724      any pops are needed.  */
2725   dest_stack->top = -1;
2726   for (reg = 0; reg <= src_stack->top; ++reg)
2727     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2728       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2729 
2730   /* Push in any partially dead values.  */
2731   for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2732     if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2733         && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2734       dest_stack->reg[++dest_stack->top] = reg;
2735 }
2736 
2737 
2738 /* Adjust the stack of edge E's source block on exit to match the stack
2739    of it's target block upon input.  The stack layouts of both blocks
2740    should have been defined by now.  */
2741 
2742 static bool
compensate_edge(edge e)2743 compensate_edge (edge e)
2744 {
2745   basic_block source = e->src, target = e->dest;
2746   stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2747   stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2748   struct stack_def regstack;
2749   int reg;
2750 
2751   if (dump_file)
2752     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2753 
2754   gcc_assert (target_stack->top != -2);
2755 
2756   /* Check whether stacks are identical.  */
2757   if (target_stack->top == source_stack->top)
2758     {
2759       for (reg = target_stack->top; reg >= 0; --reg)
2760 	if (target_stack->reg[reg] != source_stack->reg[reg])
2761 	  break;
2762 
2763       if (reg == -1)
2764 	{
2765 	  if (dump_file)
2766 	    fprintf (dump_file, "no changes needed\n");
2767 	  return false;
2768 	}
2769     }
2770 
2771   if (dump_file)
2772     {
2773       fprintf (dump_file, "correcting stack to ");
2774       print_stack (dump_file, target_stack);
2775     }
2776 
2777   /* Abnormal calls may appear to have values live in st(0), but the
2778      abnormal return path will not have actually loaded the values.  */
2779   if (e->flags & EDGE_ABNORMAL_CALL)
2780     {
2781       /* Assert that the lifetimes are as we expect -- one value
2782          live at st(0) on the end of the source block, and no
2783          values live at the beginning of the destination block.
2784 	 For complex return values, we may have st(1) live as well.  */
2785       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2786       gcc_assert (target_stack->top == -1);
2787       return false;
2788     }
2789 
2790   /* Handle non-call EH edges specially.  The normal return path have
2791      values in registers.  These will be popped en masse by the unwind
2792      library.  */
2793   if (e->flags & EDGE_EH)
2794     {
2795       gcc_assert (target_stack->top == -1);
2796       return false;
2797     }
2798 
2799   /* We don't support abnormal edges.  Global takes care to
2800      avoid any live register across them, so we should never
2801      have to insert instructions on such edges.  */
2802   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2803 
2804   /* Make a copy of source_stack as change_stack is destructive.  */
2805   regstack = *source_stack;
2806 
2807   /* It is better to output directly to the end of the block
2808      instead of to the edge, because emit_swap can do minimal
2809      insn scheduling.  We can do this when there is only one
2810      edge out, and it is not abnormal.  */
2811   if (EDGE_COUNT (source->succs) == 1)
2812     {
2813       current_block = source;
2814       change_stack (BB_END (source), &regstack, target_stack,
2815 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2816     }
2817   else
2818     {
2819       rtx seq, after;
2820 
2821       current_block = NULL;
2822       start_sequence ();
2823 
2824       /* ??? change_stack needs some point to emit insns after.  */
2825       after = emit_note (NOTE_INSN_DELETED);
2826 
2827       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2828 
2829       seq = get_insns ();
2830       end_sequence ();
2831 
2832       insert_insn_on_edge (seq, e);
2833       return true;
2834     }
2835   return false;
2836 }
2837 
2838 /* Traverse all non-entry edges in the CFG, and emit the necessary
2839    edge compensation code to change the stack from stack_out of the
2840    source block to the stack_in of the destination block.  */
2841 
2842 static bool
compensate_edges(void)2843 compensate_edges (void)
2844 {
2845   bool inserted = false;
2846   basic_block bb;
2847 
2848   starting_stack_p = false;
2849 
2850   FOR_EACH_BB (bb)
2851     if (bb != ENTRY_BLOCK_PTR)
2852       {
2853         edge e;
2854         edge_iterator ei;
2855 
2856         FOR_EACH_EDGE (e, ei, bb->succs)
2857 	  inserted |= compensate_edge (e);
2858       }
2859   return inserted;
2860 }
2861 
2862 /* Select the better of two edges E1 and E2 to use to determine the
2863    stack layout for their shared destination basic block.  This is
2864    typically the more frequently executed.  The edge E1 may be NULL
2865    (in which case E2 is returned), but E2 is always non-NULL.  */
2866 
2867 static edge
better_edge(edge e1,edge e2)2868 better_edge (edge e1, edge e2)
2869 {
2870   if (!e1)
2871     return e2;
2872 
2873   if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2874     return e1;
2875   if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2876     return e2;
2877 
2878   if (e1->count > e2->count)
2879     return e1;
2880   if (e1->count < e2->count)
2881     return e2;
2882 
2883   /* Prefer critical edges to minimize inserting compensation code on
2884      critical edges.  */
2885 
2886   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2887     return EDGE_CRITICAL_P (e1) ? e1 : e2;
2888 
2889   /* Avoid non-deterministic behavior.  */
2890   return (e1->src->index < e2->src->index) ? e1 : e2;
2891 }
2892 
2893 /* Convert stack register references in one block.  Return true if the CFG
2894    has been modified in the process.  */
2895 
2896 static bool
convert_regs_1(basic_block block)2897 convert_regs_1 (basic_block block)
2898 {
2899   struct stack_def regstack;
2900   block_info bi = BLOCK_INFO (block);
2901   int reg;
2902   rtx insn, next;
2903   bool control_flow_insn_deleted = false;
2904   bool cfg_altered = false;
2905   int debug_insns_with_starting_stack = 0;
2906 
2907   any_malformed_asm = false;
2908 
2909   /* Choose an initial stack layout, if one hasn't already been chosen.  */
2910   if (bi->stack_in.top == -2)
2911     {
2912       edge e, beste = NULL;
2913       edge_iterator ei;
2914 
2915       /* Select the best incoming edge (typically the most frequent) to
2916 	 use as a template for this basic block.  */
2917       FOR_EACH_EDGE (e, ei, block->preds)
2918 	if (BLOCK_INFO (e->src)->done)
2919 	  beste = better_edge (beste, e);
2920 
2921       if (beste)
2922 	propagate_stack (beste);
2923       else
2924 	{
2925 	  /* No predecessors.  Create an arbitrary input stack.  */
2926 	  bi->stack_in.top = -1;
2927 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2928 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2929 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
2930 	}
2931     }
2932 
2933   if (dump_file)
2934     {
2935       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2936       print_stack (dump_file, &bi->stack_in);
2937     }
2938 
2939   /* Process all insns in this block.  Keep track of NEXT so that we
2940      don't process insns emitted while substituting in INSN.  */
2941   current_block = block;
2942   next = BB_HEAD (block);
2943   regstack = bi->stack_in;
2944   starting_stack_p = true;
2945 
2946   do
2947     {
2948       insn = next;
2949       next = NEXT_INSN (insn);
2950 
2951       /* Ensure we have not missed a block boundary.  */
2952       gcc_assert (next);
2953       if (insn == BB_END (block))
2954 	next = NULL;
2955 
2956       /* Don't bother processing unless there is a stack reg
2957 	 mentioned or if it's a CALL_INSN.  */
2958       if (DEBUG_INSN_P (insn))
2959 	{
2960 	  if (starting_stack_p)
2961 	    debug_insns_with_starting_stack++;
2962 	  else
2963 	    {
2964 	      subst_all_stack_regs_in_debug_insn (insn, &regstack);
2965 
2966 	      /* Nothing must ever die at a debug insn.  If something
2967 		 is referenced in it that becomes dead, it should have
2968 		 died before and the reference in the debug insn
2969 		 should have been removed so as to avoid changing code
2970 		 generation.  */
2971 	      gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2972 	    }
2973 	}
2974       else if (stack_regs_mentioned (insn)
2975 	       || CALL_P (insn))
2976 	{
2977 	  if (dump_file)
2978 	    {
2979 	      fprintf (dump_file, "  insn %d input stack: ",
2980 		       INSN_UID (insn));
2981 	      print_stack (dump_file, &regstack);
2982 	    }
2983 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2984 	  starting_stack_p = false;
2985 	}
2986     }
2987   while (next);
2988 
2989   if (debug_insns_with_starting_stack)
2990     {
2991       /* Since it's the first non-debug instruction that determines
2992 	 the stack requirements of the current basic block, we refrain
2993 	 from updating debug insns before it in the loop above, and
2994 	 fix them up here.  */
2995       for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2996 	   insn = NEXT_INSN (insn))
2997 	{
2998 	  if (!DEBUG_INSN_P (insn))
2999 	    continue;
3000 
3001 	  debug_insns_with_starting_stack--;
3002 	  subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3003 	}
3004     }
3005 
3006   if (dump_file)
3007     {
3008       fprintf (dump_file, "Expected live registers [");
3009       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3010 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3011 	  fprintf (dump_file, " %d", reg);
3012       fprintf (dump_file, " ]\nOutput stack: ");
3013       print_stack (dump_file, &regstack);
3014     }
3015 
3016   insn = BB_END (block);
3017   if (JUMP_P (insn))
3018     insn = PREV_INSN (insn);
3019 
3020   /* If the function is declared to return a value, but it returns one
3021      in only some cases, some registers might come live here.  Emit
3022      necessary moves for them.  */
3023 
3024   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3025     {
3026       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3027 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3028 	{
3029 	  rtx set;
3030 
3031 	  if (dump_file)
3032 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3033 
3034 	  set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3035 	  insn = emit_insn_after (set, insn);
3036 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3037 	}
3038     }
3039 
3040   /* Amongst the insns possibly deleted during the substitution process above,
3041      might have been the only trapping insn in the block.  We purge the now
3042      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3043      called at the end of convert_regs.  The order in which we process the
3044      blocks ensures that we never delete an already processed edge.
3045 
3046      Note that, at this point, the CFG may have been damaged by the emission
3047      of instructions after an abnormal call, which moves the basic block end
3048      (and is the reason why we call fixup_abnormal_edges later).  So we must
3049      be sure that the trapping insn has been deleted before trying to purge
3050      dead edges, otherwise we risk purging valid edges.
3051 
3052      ??? We are normally supposed not to delete trapping insns, so we pretend
3053      that the insns deleted above don't actually trap.  It would have been
3054      better to detect this earlier and avoid creating the EH edge in the first
3055      place, still, but we don't have enough information at that time.  */
3056 
3057   if (control_flow_insn_deleted)
3058     cfg_altered |= purge_dead_edges (block);
3059 
3060   /* Something failed if the stack lives don't match.  If we had malformed
3061      asms, we zapped the instruction itself, but that didn't produce the
3062      same pattern of register kills as before.  */
3063 
3064   gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3065 	      || any_malformed_asm);
3066   bi->stack_out = regstack;
3067   bi->done = true;
3068 
3069   return cfg_altered;
3070 }
3071 
3072 /* Convert registers in all blocks reachable from BLOCK.  Return true if the
3073    CFG has been modified in the process.  */
3074 
3075 static bool
convert_regs_2(basic_block block)3076 convert_regs_2 (basic_block block)
3077 {
3078   basic_block *stack, *sp;
3079   bool cfg_altered = false;
3080 
3081   /* We process the blocks in a top-down manner, in a way such that one block
3082      is only processed after all its predecessors.  The number of predecessors
3083      of every block has already been computed.  */
3084 
3085   stack = XNEWVEC (basic_block, n_basic_blocks);
3086   sp = stack;
3087 
3088   *sp++ = block;
3089 
3090   do
3091     {
3092       edge e;
3093       edge_iterator ei;
3094 
3095       block = *--sp;
3096 
3097       /* Processing BLOCK is achieved by convert_regs_1, which may purge
3098 	 some dead EH outgoing edge after the deletion of the trapping
3099 	 insn inside the block.  Since the number of predecessors of
3100 	 BLOCK's successors was computed based on the initial edge set,
3101 	 we check the necessity to process some of these successors
3102 	 before such an edge deletion may happen.  However, there is
3103 	 a pitfall: if BLOCK is the only predecessor of a successor and
3104 	 the edge between them happens to be deleted, the successor
3105 	 becomes unreachable and should not be processed.  The problem
3106 	 is that there is no way to preventively detect this case so we
3107 	 stack the successor in all cases and hand over the task of
3108 	 fixing up the discrepancy to convert_regs_1.  */
3109 
3110       FOR_EACH_EDGE (e, ei, block->succs)
3111 	if (! (e->flags & EDGE_DFS_BACK))
3112 	  {
3113 	    BLOCK_INFO (e->dest)->predecessors--;
3114 	    if (!BLOCK_INFO (e->dest)->predecessors)
3115 	      *sp++ = e->dest;
3116 	  }
3117 
3118       cfg_altered |= convert_regs_1 (block);
3119     }
3120   while (sp != stack);
3121 
3122   free (stack);
3123 
3124   return cfg_altered;
3125 }
3126 
3127 /* Traverse all basic blocks in a function, converting the register
3128    references in each insn from the "flat" register file that gcc uses,
3129    to the stack-like registers the 387 uses.  */
3130 
3131 static void
convert_regs(void)3132 convert_regs (void)
3133 {
3134   bool cfg_altered = false;
3135   int inserted;
3136   basic_block b;
3137   edge e;
3138   edge_iterator ei;
3139 
3140   /* Initialize uninitialized registers on function entry.  */
3141   inserted = convert_regs_entry ();
3142 
3143   /* Construct the desired stack for function exit.  */
3144   convert_regs_exit ();
3145   BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3146 
3147   /* ??? Future: process inner loops first, and give them arbitrary
3148      initial stacks which emit_swap_insn can modify.  This ought to
3149      prevent double fxch that often appears at the head of a loop.  */
3150 
3151   /* Process all blocks reachable from all entry points.  */
3152   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3153     cfg_altered |= convert_regs_2 (e->dest);
3154 
3155   /* ??? Process all unreachable blocks.  Though there's no excuse
3156      for keeping these even when not optimizing.  */
3157   FOR_EACH_BB (b)
3158     {
3159       block_info bi = BLOCK_INFO (b);
3160 
3161       if (! bi->done)
3162 	cfg_altered |= convert_regs_2 (b);
3163     }
3164 
3165   /* We must fix up abnormal edges before inserting compensation code
3166      because both mechanisms insert insns on edges.  */
3167   inserted |= fixup_abnormal_edges ();
3168 
3169   inserted |= compensate_edges ();
3170 
3171   clear_aux_for_blocks ();
3172 
3173   if (inserted)
3174     commit_edge_insertions ();
3175 
3176   if (cfg_altered)
3177     cleanup_cfg (0);
3178 
3179   if (dump_file)
3180     fputc ('\n', dump_file);
3181 }
3182 
3183 /* Convert register usage from "flat" register file usage to a "stack
3184    register file.  FILE is the dump file, if used.
3185 
3186    Construct a CFG and run life analysis.  Then convert each insn one
3187    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3188    code duplication created when the converter inserts pop insns on
3189    the edges.  */
3190 
3191 static bool
reg_to_stack(void)3192 reg_to_stack (void)
3193 {
3194   basic_block bb;
3195   int i;
3196   int max_uid;
3197 
3198   /* Clean up previous run.  */
3199   stack_regs_mentioned_data.release ();
3200 
3201   /* See if there is something to do.  Flow analysis is quite
3202      expensive so we might save some compilation time.  */
3203   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3204     if (df_regs_ever_live_p (i))
3205       break;
3206   if (i > LAST_STACK_REG)
3207     return false;
3208 
3209   df_note_add_problem ();
3210   df_analyze ();
3211 
3212   mark_dfs_back_edges ();
3213 
3214   /* Set up block info for each basic block.  */
3215   alloc_aux_for_blocks (sizeof (struct block_info_def));
3216   FOR_EACH_BB (bb)
3217     {
3218       block_info bi = BLOCK_INFO (bb);
3219       edge_iterator ei;
3220       edge e;
3221       int reg;
3222 
3223       FOR_EACH_EDGE (e, ei, bb->preds)
3224 	if (!(e->flags & EDGE_DFS_BACK)
3225 	    && e->src != ENTRY_BLOCK_PTR)
3226 	  bi->predecessors++;
3227 
3228       /* Set current register status at last instruction `uninitialized'.  */
3229       bi->stack_in.top = -2;
3230 
3231       /* Copy live_at_end and live_at_start into temporaries.  */
3232       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3233 	{
3234 	  if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3235 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3236 	  if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3237 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3238 	}
3239     }
3240 
3241   /* Create the replacement registers up front.  */
3242   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3243     {
3244       enum machine_mode mode;
3245       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3246 	   mode != VOIDmode;
3247 	   mode = GET_MODE_WIDER_MODE (mode))
3248 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3249       for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3250 	   mode != VOIDmode;
3251 	   mode = GET_MODE_WIDER_MODE (mode))
3252 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3253     }
3254 
3255   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3256 
3257   /* A QNaN for initializing uninitialized variables.
3258 
3259      ??? We can't load from constant memory in PIC mode, because
3260      we're inserting these instructions before the prologue and
3261      the PIC register hasn't been set up.  In that case, fall back
3262      on zero, which we can get from `fldz'.  */
3263 
3264   if ((flag_pic && !TARGET_64BIT)
3265       || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3266     not_a_num = CONST0_RTX (SFmode);
3267   else
3268     {
3269       REAL_VALUE_TYPE r;
3270 
3271       real_nan (&r, "", 1, SFmode);
3272       not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3273       not_a_num = force_const_mem (SFmode, not_a_num);
3274     }
3275 
3276   /* Allocate a cache for stack_regs_mentioned.  */
3277   max_uid = get_max_uid ();
3278   stack_regs_mentioned_data.create (max_uid + 1);
3279   memset (stack_regs_mentioned_data.address (),
3280 	  0, sizeof (char) * (max_uid + 1));
3281 
3282   convert_regs ();
3283 
3284   free_aux_for_blocks ();
3285   return true;
3286 }
3287 #endif /* STACK_REGS */
3288 
3289 static bool
gate_handle_stack_regs(void)3290 gate_handle_stack_regs (void)
3291 {
3292 #ifdef STACK_REGS
3293   return 1;
3294 #else
3295   return 0;
3296 #endif
3297 }
3298 
3299 struct rtl_opt_pass pass_stack_regs =
3300 {
3301  {
3302   RTL_PASS,
3303   "*stack_regs",                        /* name */
3304   OPTGROUP_NONE,                        /* optinfo_flags */
3305   gate_handle_stack_regs,               /* gate */
3306   NULL,					/* execute */
3307   NULL,                                 /* sub */
3308   NULL,                                 /* next */
3309   0,                                    /* static_pass_number */
3310   TV_REG_STACK,                         /* tv_id */
3311   0,                                    /* properties_required */
3312   0,                                    /* properties_provided */
3313   0,                                    /* properties_destroyed */
3314   0,                                    /* todo_flags_start */
3315   0                                     /* todo_flags_finish */
3316  }
3317 };
3318 
3319 /* Convert register usage from flat register file usage to a stack
3320    register file.  */
3321 static unsigned int
rest_of_handle_stack_regs(void)3322 rest_of_handle_stack_regs (void)
3323 {
3324 #ifdef STACK_REGS
3325   reg_to_stack ();
3326   regstack_completed = 1;
3327 #endif
3328   return 0;
3329 }
3330 
3331 struct rtl_opt_pass pass_stack_regs_run =
3332 {
3333  {
3334   RTL_PASS,
3335   "stack",                              /* name */
3336   OPTGROUP_NONE,                        /* optinfo_flags */
3337   NULL,                                 /* gate */
3338   rest_of_handle_stack_regs,            /* execute */
3339   NULL,                                 /* sub */
3340   NULL,                                 /* next */
3341   0,                                    /* static_pass_number */
3342   TV_REG_STACK,                         /* tv_id */
3343   0,                                    /* properties_required */
3344   0,                                    /* properties_provided */
3345   0,                                    /* properties_destroyed */
3346   0,                                    /* todo_flags_start */
3347   TODO_df_finish | TODO_verify_rtl_sharing |
3348   TODO_ggc_collect                      /* todo_flags_finish */
3349  }
3350 };
3351