1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_LU_H
11 #define EIGEN_LU_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
17  : traits<_MatrixType>
18 {
19   typedef MatrixXpr XprKind;
20   typedef SolverStorage StorageKind;
21   typedef int StorageIndex;
22   enum { Flags = 0 };
23 };
24 
25 } // end namespace internal
26 
27 /** \ingroup LU_Module
28   *
29   * \class FullPivLU
30   *
31   * \brief LU decomposition of a matrix with complete pivoting, and related features
32   *
33   * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
34   *
35   * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
36   * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
37   * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
38   * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
39   * zeros are at the end.
40   *
41   * This decomposition provides the generic approach to solving systems of linear equations, computing
42   * the rank, invertibility, inverse, kernel, and determinant.
43   *
44   * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
45   * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
46   * working with the SVD allows to select the smallest singular values of the matrix, something that
47   * the LU decomposition doesn't see.
48   *
49   * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
50   * permutationP(), permutationQ().
51   *
52   * As an example, here is how the original matrix can be retrieved:
53   * \include class_FullPivLU.cpp
54   * Output: \verbinclude class_FullPivLU.out
55   *
56   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
57   *
58   * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
59   */
60 template<typename _MatrixType> class FullPivLU
61   : public SolverBase<FullPivLU<_MatrixType> >
62 {
63   public:
64     typedef _MatrixType MatrixType;
65     typedef SolverBase<FullPivLU> Base;
66     friend class SolverBase<FullPivLU>;
67 
68     EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
69     enum {
70       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
71       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
72     };
73     typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
74     typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
75     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
76     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
77     typedef typename MatrixType::PlainObject PlainObject;
78 
79     /**
80       * \brief Default Constructor.
81       *
82       * The default constructor is useful in cases in which the user intends to
83       * perform decompositions via LU::compute(const MatrixType&).
84       */
85     FullPivLU();
86 
87     /** \brief Default Constructor with memory preallocation
88       *
89       * Like the default constructor but with preallocation of the internal data
90       * according to the specified problem \a size.
91       * \sa FullPivLU()
92       */
93     FullPivLU(Index rows, Index cols);
94 
95     /** Constructor.
96       *
97       * \param matrix the matrix of which to compute the LU decomposition.
98       *               It is required to be nonzero.
99       */
100     template<typename InputType>
101     explicit FullPivLU(const EigenBase<InputType>& matrix);
102 
103     /** \brief Constructs a LU factorization from a given matrix
104       *
105       * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
106       *
107       * \sa FullPivLU(const EigenBase&)
108       */
109     template<typename InputType>
110     explicit FullPivLU(EigenBase<InputType>& matrix);
111 
112     /** Computes the LU decomposition of the given matrix.
113       *
114       * \param matrix the matrix of which to compute the LU decomposition.
115       *               It is required to be nonzero.
116       *
117       * \returns a reference to *this
118       */
119     template<typename InputType>
120     FullPivLU& compute(const EigenBase<InputType>& matrix) {
121       m_lu = matrix.derived();
122       computeInPlace();
123       return *this;
124     }
125 
126     /** \returns the LU decomposition matrix: the upper-triangular part is U, the
127       * unit-lower-triangular part is L (at least for square matrices; in the non-square
128       * case, special care is needed, see the documentation of class FullPivLU).
129       *
130       * \sa matrixL(), matrixU()
131       */
132     inline const MatrixType& matrixLU() const
133     {
134       eigen_assert(m_isInitialized && "LU is not initialized.");
135       return m_lu;
136     }
137 
138     /** \returns the number of nonzero pivots in the LU decomposition.
139       * Here nonzero is meant in the exact sense, not in a fuzzy sense.
140       * So that notion isn't really intrinsically interesting, but it is
141       * still useful when implementing algorithms.
142       *
143       * \sa rank()
144       */
145     inline Index nonzeroPivots() const
146     {
147       eigen_assert(m_isInitialized && "LU is not initialized.");
148       return m_nonzero_pivots;
149     }
150 
151     /** \returns the absolute value of the biggest pivot, i.e. the biggest
152       *          diagonal coefficient of U.
153       */
154     RealScalar maxPivot() const { return m_maxpivot; }
155 
156     /** \returns the permutation matrix P
157       *
158       * \sa permutationQ()
159       */
160     EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
161     {
162       eigen_assert(m_isInitialized && "LU is not initialized.");
163       return m_p;
164     }
165 
166     /** \returns the permutation matrix Q
167       *
168       * \sa permutationP()
169       */
170     inline const PermutationQType& permutationQ() const
171     {
172       eigen_assert(m_isInitialized && "LU is not initialized.");
173       return m_q;
174     }
175 
176     /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
177       * will form a basis of the kernel.
178       *
179       * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
180       *
181       * \note This method has to determine which pivots should be considered nonzero.
182       *       For that, it uses the threshold value that you can control by calling
183       *       setThreshold(const RealScalar&).
184       *
185       * Example: \include FullPivLU_kernel.cpp
186       * Output: \verbinclude FullPivLU_kernel.out
187       *
188       * \sa image()
189       */
190     inline const internal::kernel_retval<FullPivLU> kernel() const
191     {
192       eigen_assert(m_isInitialized && "LU is not initialized.");
193       return internal::kernel_retval<FullPivLU>(*this);
194     }
195 
196     /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
197       * will form a basis of the image (column-space).
198       *
199       * \param originalMatrix the original matrix, of which *this is the LU decomposition.
200       *                       The reason why it is needed to pass it here, is that this allows
201       *                       a large optimization, as otherwise this method would need to reconstruct it
202       *                       from the LU decomposition.
203       *
204       * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
205       *
206       * \note This method has to determine which pivots should be considered nonzero.
207       *       For that, it uses the threshold value that you can control by calling
208       *       setThreshold(const RealScalar&).
209       *
210       * Example: \include FullPivLU_image.cpp
211       * Output: \verbinclude FullPivLU_image.out
212       *
213       * \sa kernel()
214       */
215     inline const internal::image_retval<FullPivLU>
216       image(const MatrixType& originalMatrix) const
217     {
218       eigen_assert(m_isInitialized && "LU is not initialized.");
219       return internal::image_retval<FullPivLU>(*this, originalMatrix);
220     }
221 
222     #ifdef EIGEN_PARSED_BY_DOXYGEN
223     /** \return a solution x to the equation Ax=b, where A is the matrix of which
224       * *this is the LU decomposition.
225       *
226       * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
227       *          the only requirement in order for the equation to make sense is that
228       *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
229       *
230       * \returns a solution.
231       *
232       * \note_about_checking_solutions
233       *
234       * \note_about_arbitrary_choice_of_solution
235       * \note_about_using_kernel_to_study_multiple_solutions
236       *
237       * Example: \include FullPivLU_solve.cpp
238       * Output: \verbinclude FullPivLU_solve.out
239       *
240       * \sa TriangularView::solve(), kernel(), inverse()
241       */
242     template<typename Rhs>
243     inline const Solve<FullPivLU, Rhs>
244     solve(const MatrixBase<Rhs>& b) const;
245     #endif
246 
247     /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
248         the LU decomposition.
249       */
250     inline RealScalar rcond() const
251     {
252       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
253       return internal::rcond_estimate_helper(m_l1_norm, *this);
254     }
255 
256     /** \returns the determinant of the matrix of which
257       * *this is the LU decomposition. It has only linear complexity
258       * (that is, O(n) where n is the dimension of the square matrix)
259       * as the LU decomposition has already been computed.
260       *
261       * \note This is only for square matrices.
262       *
263       * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
264       *       optimized paths.
265       *
266       * \warning a determinant can be very big or small, so for matrices
267       * of large enough dimension, there is a risk of overflow/underflow.
268       *
269       * \sa MatrixBase::determinant()
270       */
271     typename internal::traits<MatrixType>::Scalar determinant() const;
272 
273     /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
274       * who need to determine when pivots are to be considered nonzero. This is not used for the
275       * LU decomposition itself.
276       *
277       * When it needs to get the threshold value, Eigen calls threshold(). By default, this
278       * uses a formula to automatically determine a reasonable threshold.
279       * Once you have called the present method setThreshold(const RealScalar&),
280       * your value is used instead.
281       *
282       * \param threshold The new value to use as the threshold.
283       *
284       * A pivot will be considered nonzero if its absolute value is strictly greater than
285       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
286       * where maxpivot is the biggest pivot.
287       *
288       * If you want to come back to the default behavior, call setThreshold(Default_t)
289       */
290     FullPivLU& setThreshold(const RealScalar& threshold)
291     {
292       m_usePrescribedThreshold = true;
293       m_prescribedThreshold = threshold;
294       return *this;
295     }
296 
297     /** Allows to come back to the default behavior, letting Eigen use its default formula for
298       * determining the threshold.
299       *
300       * You should pass the special object Eigen::Default as parameter here.
301       * \code lu.setThreshold(Eigen::Default); \endcode
302       *
303       * See the documentation of setThreshold(const RealScalar&).
304       */
305     FullPivLU& setThreshold(Default_t)
306     {
307       m_usePrescribedThreshold = false;
308       return *this;
309     }
310 
311     /** Returns the threshold that will be used by certain methods such as rank().
312       *
313       * See the documentation of setThreshold(const RealScalar&).
314       */
315     RealScalar threshold() const
316     {
317       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
318       return m_usePrescribedThreshold ? m_prescribedThreshold
319       // this formula comes from experimenting (see "LU precision tuning" thread on the list)
320       // and turns out to be identical to Higham's formula used already in LDLt.
321           : NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize());
322     }
323 
324     /** \returns the rank of the matrix of which *this is the LU decomposition.
325       *
326       * \note This method has to determine which pivots should be considered nonzero.
327       *       For that, it uses the threshold value that you can control by calling
328       *       setThreshold(const RealScalar&).
329       */
330     inline Index rank() const
331     {
332       using std::abs;
333       eigen_assert(m_isInitialized && "LU is not initialized.");
334       RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
335       Index result = 0;
336       for(Index i = 0; i < m_nonzero_pivots; ++i)
337         result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
338       return result;
339     }
340 
341     /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
342       *
343       * \note This method has to determine which pivots should be considered nonzero.
344       *       For that, it uses the threshold value that you can control by calling
345       *       setThreshold(const RealScalar&).
346       */
347     inline Index dimensionOfKernel() const
348     {
349       eigen_assert(m_isInitialized && "LU is not initialized.");
350       return cols() - rank();
351     }
352 
353     /** \returns true if the matrix of which *this is the LU decomposition represents an injective
354       *          linear map, i.e. has trivial kernel; false otherwise.
355       *
356       * \note This method has to determine which pivots should be considered nonzero.
357       *       For that, it uses the threshold value that you can control by calling
358       *       setThreshold(const RealScalar&).
359       */
360     inline bool isInjective() const
361     {
362       eigen_assert(m_isInitialized && "LU is not initialized.");
363       return rank() == cols();
364     }
365 
366     /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
367       *          linear map; false otherwise.
368       *
369       * \note This method has to determine which pivots should be considered nonzero.
370       *       For that, it uses the threshold value that you can control by calling
371       *       setThreshold(const RealScalar&).
372       */
373     inline bool isSurjective() const
374     {
375       eigen_assert(m_isInitialized && "LU is not initialized.");
376       return rank() == rows();
377     }
378 
379     /** \returns true if the matrix of which *this is the LU decomposition is invertible.
380       *
381       * \note This method has to determine which pivots should be considered nonzero.
382       *       For that, it uses the threshold value that you can control by calling
383       *       setThreshold(const RealScalar&).
384       */
385     inline bool isInvertible() const
386     {
387       eigen_assert(m_isInitialized && "LU is not initialized.");
388       return isInjective() && (m_lu.rows() == m_lu.cols());
389     }
390 
391     /** \returns the inverse of the matrix of which *this is the LU decomposition.
392       *
393       * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
394       *       Use isInvertible() to first determine whether this matrix is invertible.
395       *
396       * \sa MatrixBase::inverse()
397       */
398     inline const Inverse<FullPivLU> inverse() const
399     {
400       eigen_assert(m_isInitialized && "LU is not initialized.");
401       eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
402       return Inverse<FullPivLU>(*this);
403     }
404 
405     MatrixType reconstructedMatrix() const;
406 
407     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
408     inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
409     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
410     inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
411 
412     #ifndef EIGEN_PARSED_BY_DOXYGEN
413     template<typename RhsType, typename DstType>
414     void _solve_impl(const RhsType &rhs, DstType &dst) const;
415 
416     template<bool Conjugate, typename RhsType, typename DstType>
417     void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
418     #endif
419 
420   protected:
421 
422     static void check_template_parameters()
423     {
424       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
425     }
426 
427     void computeInPlace();
428 
429     MatrixType m_lu;
430     PermutationPType m_p;
431     PermutationQType m_q;
432     IntColVectorType m_rowsTranspositions;
433     IntRowVectorType m_colsTranspositions;
434     Index m_nonzero_pivots;
435     RealScalar m_l1_norm;
436     RealScalar m_maxpivot, m_prescribedThreshold;
437     signed char m_det_pq;
438     bool m_isInitialized, m_usePrescribedThreshold;
439 };
440 
441 template<typename MatrixType>
442 FullPivLU<MatrixType>::FullPivLU()
443   : m_isInitialized(false), m_usePrescribedThreshold(false)
444 {
445 }
446 
447 template<typename MatrixType>
448 FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
449   : m_lu(rows, cols),
450     m_p(rows),
451     m_q(cols),
452     m_rowsTranspositions(rows),
453     m_colsTranspositions(cols),
454     m_isInitialized(false),
455     m_usePrescribedThreshold(false)
456 {
457 }
458 
459 template<typename MatrixType>
460 template<typename InputType>
461 FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
462   : m_lu(matrix.rows(), matrix.cols()),
463     m_p(matrix.rows()),
464     m_q(matrix.cols()),
465     m_rowsTranspositions(matrix.rows()),
466     m_colsTranspositions(matrix.cols()),
467     m_isInitialized(false),
468     m_usePrescribedThreshold(false)
469 {
470   compute(matrix.derived());
471 }
472 
473 template<typename MatrixType>
474 template<typename InputType>
475 FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
476   : m_lu(matrix.derived()),
477     m_p(matrix.rows()),
478     m_q(matrix.cols()),
479     m_rowsTranspositions(matrix.rows()),
480     m_colsTranspositions(matrix.cols()),
481     m_isInitialized(false),
482     m_usePrescribedThreshold(false)
483 {
484   computeInPlace();
485 }
486 
487 template<typename MatrixType>
488 void FullPivLU<MatrixType>::computeInPlace()
489 {
490   check_template_parameters();
491 
492   // the permutations are stored as int indices, so just to be sure:
493   eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
494 
495   m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
496 
497   const Index size = m_lu.diagonalSize();
498   const Index rows = m_lu.rows();
499   const Index cols = m_lu.cols();
500 
501   // will store the transpositions, before we accumulate them at the end.
502   // can't accumulate on-the-fly because that will be done in reverse order for the rows.
503   m_rowsTranspositions.resize(m_lu.rows());
504   m_colsTranspositions.resize(m_lu.cols());
505   Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
506 
507   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
508   m_maxpivot = RealScalar(0);
509 
510   for(Index k = 0; k < size; ++k)
511   {
512     // First, we need to find the pivot.
513 
514     // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
515     Index row_of_biggest_in_corner, col_of_biggest_in_corner;
516     typedef internal::scalar_score_coeff_op<Scalar> Scoring;
517     typedef typename Scoring::result_type Score;
518     Score biggest_in_corner;
519     biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
520                         .unaryExpr(Scoring())
521                         .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
522     row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
523     col_of_biggest_in_corner += k; // need to add k to them.
524 
525     if(biggest_in_corner==Score(0))
526     {
527       // before exiting, make sure to initialize the still uninitialized transpositions
528       // in a sane state without destroying what we already have.
529       m_nonzero_pivots = k;
530       for(Index i = k; i < size; ++i)
531       {
532         m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
533         m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
534       }
535       break;
536     }
537 
538     RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
539     if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
540 
541     // Now that we've found the pivot, we need to apply the row/col swaps to
542     // bring it to the location (k,k).
543 
544     m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
545     m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
546     if(k != row_of_biggest_in_corner) {
547       m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
548       ++number_of_transpositions;
549     }
550     if(k != col_of_biggest_in_corner) {
551       m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
552       ++number_of_transpositions;
553     }
554 
555     // Now that the pivot is at the right location, we update the remaining
556     // bottom-right corner by Gaussian elimination.
557 
558     if(k<rows-1)
559       m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
560     if(k<size-1)
561       m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
562   }
563 
564   // the main loop is over, we still have to accumulate the transpositions to find the
565   // permutations P and Q
566 
567   m_p.setIdentity(rows);
568   for(Index k = size-1; k >= 0; --k)
569     m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
570 
571   m_q.setIdentity(cols);
572   for(Index k = 0; k < size; ++k)
573     m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
574 
575   m_det_pq = (number_of_transpositions%2) ? -1 : 1;
576 
577   m_isInitialized = true;
578 }
579 
580 template<typename MatrixType>
581 typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
582 {
583   eigen_assert(m_isInitialized && "LU is not initialized.");
584   eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
585   return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
586 }
587 
588 /** \returns the matrix represented by the decomposition,
589  * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
590  * This function is provided for debug purposes. */
591 template<typename MatrixType>
592 MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
593 {
594   eigen_assert(m_isInitialized && "LU is not initialized.");
595   const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
596   // LU
597   MatrixType res(m_lu.rows(),m_lu.cols());
598   // FIXME the .toDenseMatrix() should not be needed...
599   res = m_lu.leftCols(smalldim)
600             .template triangularView<UnitLower>().toDenseMatrix()
601       * m_lu.topRows(smalldim)
602             .template triangularView<Upper>().toDenseMatrix();
603 
604   // P^{-1}(LU)
605   res = m_p.inverse() * res;
606 
607   // (P^{-1}LU)Q^{-1}
608   res = res * m_q.inverse();
609 
610   return res;
611 }
612 
613 /********* Implementation of kernel() **************************************************/
614 
615 namespace internal {
616 template<typename _MatrixType>
617 struct kernel_retval<FullPivLU<_MatrixType> >
618   : kernel_retval_base<FullPivLU<_MatrixType> >
619 {
620   EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
621 
622   enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
623             MatrixType::MaxColsAtCompileTime,
624             MatrixType::MaxRowsAtCompileTime)
625   };
626 
627   template<typename Dest> void evalTo(Dest& dst) const
628   {
629     using std::abs;
630     const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
631     if(dimker == 0)
632     {
633       // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
634       // avoid crashing/asserting as that depends on floating point calculations. Let's
635       // just return a single column vector filled with zeros.
636       dst.setZero();
637       return;
638     }
639 
640     /* Let us use the following lemma:
641       *
642       * Lemma: If the matrix A has the LU decomposition PAQ = LU,
643       * then Ker A = Q(Ker U).
644       *
645       * Proof: trivial: just keep in mind that P, Q, L are invertible.
646       */
647 
648     /* Thus, all we need to do is to compute Ker U, and then apply Q.
649       *
650       * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
651       * Thus, the diagonal of U ends with exactly
652       * dimKer zero's. Let us use that to construct dimKer linearly
653       * independent vectors in Ker U.
654       */
655 
656     Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
657     RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
658     Index p = 0;
659     for(Index i = 0; i < dec().nonzeroPivots(); ++i)
660       if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
661         pivots.coeffRef(p++) = i;
662     eigen_internal_assert(p == rank());
663 
664     // we construct a temporaty trapezoid matrix m, by taking the U matrix and
665     // permuting the rows and cols to bring the nonnegligible pivots to the top of
666     // the main diagonal. We need that to be able to apply our triangular solvers.
667     // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
668     Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
669            MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
670       m(dec().matrixLU().block(0, 0, rank(), cols));
671     for(Index i = 0; i < rank(); ++i)
672     {
673       if(i) m.row(i).head(i).setZero();
674       m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
675     }
676     m.block(0, 0, rank(), rank());
677     m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
678     for(Index i = 0; i < rank(); ++i)
679       m.col(i).swap(m.col(pivots.coeff(i)));
680 
681     // ok, we have our trapezoid matrix, we can apply the triangular solver.
682     // notice that the math behind this suggests that we should apply this to the
683     // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
684     m.topLeftCorner(rank(), rank())
685      .template triangularView<Upper>().solveInPlace(
686         m.topRightCorner(rank(), dimker)
687       );
688 
689     // now we must undo the column permutation that we had applied!
690     for(Index i = rank()-1; i >= 0; --i)
691       m.col(i).swap(m.col(pivots.coeff(i)));
692 
693     // see the negative sign in the next line, that's what we were talking about above.
694     for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
695     for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
696     for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
697   }
698 };
699 
700 /***** Implementation of image() *****************************************************/
701 
702 template<typename _MatrixType>
703 struct image_retval<FullPivLU<_MatrixType> >
704   : image_retval_base<FullPivLU<_MatrixType> >
705 {
706   EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
707 
708   enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
709             MatrixType::MaxColsAtCompileTime,
710             MatrixType::MaxRowsAtCompileTime)
711   };
712 
713   template<typename Dest> void evalTo(Dest& dst) const
714   {
715     using std::abs;
716     if(rank() == 0)
717     {
718       // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
719       // avoid crashing/asserting as that depends on floating point calculations. Let's
720       // just return a single column vector filled with zeros.
721       dst.setZero();
722       return;
723     }
724 
725     Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
726     RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
727     Index p = 0;
728     for(Index i = 0; i < dec().nonzeroPivots(); ++i)
729       if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
730         pivots.coeffRef(p++) = i;
731     eigen_internal_assert(p == rank());
732 
733     for(Index i = 0; i < rank(); ++i)
734       dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
735   }
736 };
737 
738 /***** Implementation of solve() *****************************************************/
739 
740 } // end namespace internal
741 
742 #ifndef EIGEN_PARSED_BY_DOXYGEN
743 template<typename _MatrixType>
744 template<typename RhsType, typename DstType>
745 void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
746 {
747   /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
748   * So we proceed as follows:
749   * Step 1: compute c = P * rhs.
750   * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
751   * Step 3: replace c by the solution x to Ux = c. May or may not exist.
752   * Step 4: result = Q * c;
753   */
754 
755   const Index rows = this->rows(),
756               cols = this->cols(),
757               nonzero_pivots = this->rank();
758   const Index smalldim = (std::min)(rows, cols);
759 
760   if(nonzero_pivots == 0)
761   {
762     dst.setZero();
763     return;
764   }
765 
766   typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
767 
768   // Step 1
769   c = permutationP() * rhs;
770 
771   // Step 2
772   m_lu.topLeftCorner(smalldim,smalldim)
773       .template triangularView<UnitLower>()
774       .solveInPlace(c.topRows(smalldim));
775   if(rows>cols)
776     c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
777 
778   // Step 3
779   m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
780       .template triangularView<Upper>()
781       .solveInPlace(c.topRows(nonzero_pivots));
782 
783   // Step 4
784   for(Index i = 0; i < nonzero_pivots; ++i)
785     dst.row(permutationQ().indices().coeff(i)) = c.row(i);
786   for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
787     dst.row(permutationQ().indices().coeff(i)).setZero();
788 }
789 
790 template<typename _MatrixType>
791 template<bool Conjugate, typename RhsType, typename DstType>
792 void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
793 {
794   /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
795    * and since permutations are real and unitary, we can write this
796    * as   A^T = Q U^T L^T P,
797    * So we proceed as follows:
798    * Step 1: compute c = Q^T rhs.
799    * Step 2: replace c by the solution x to U^T x = c. May or may not exist.
800    * Step 3: replace c by the solution x to L^T x = c.
801    * Step 4: result = P^T c.
802    * If Conjugate is true, replace "^T" by "^*" above.
803    */
804 
805   const Index rows = this->rows(), cols = this->cols(),
806     nonzero_pivots = this->rank();
807   const Index smalldim = (std::min)(rows, cols);
808 
809   if(nonzero_pivots == 0)
810   {
811     dst.setZero();
812     return;
813   }
814 
815   typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
816 
817   // Step 1
818   c = permutationQ().inverse() * rhs;
819 
820   // Step 2
821   m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
822       .template triangularView<Upper>()
823       .transpose()
824       .template conjugateIf<Conjugate>()
825       .solveInPlace(c.topRows(nonzero_pivots));
826 
827   // Step 3
828   m_lu.topLeftCorner(smalldim, smalldim)
829       .template triangularView<UnitLower>()
830       .transpose()
831       .template conjugateIf<Conjugate>()
832       .solveInPlace(c.topRows(smalldim));
833 
834   // Step 4
835   PermutationPType invp = permutationP().inverse().eval();
836   for(Index i = 0; i < smalldim; ++i)
837     dst.row(invp.indices().coeff(i)) = c.row(i);
838   for(Index i = smalldim; i < rows; ++i)
839     dst.row(invp.indices().coeff(i)).setZero();
840 }
841 
842 #endif
843 
844 namespace internal {
845 
846 
847 /***** Implementation of inverse() *****************************************************/
848 template<typename DstXprType, typename MatrixType>
849 struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
850 {
851   typedef FullPivLU<MatrixType> LuType;
852   typedef Inverse<LuType> SrcXprType;
853   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
854   {
855     dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
856   }
857 };
858 } // end namespace internal
859 
860 /******* MatrixBase methods *****************************************************************/
861 
862 /** \lu_module
863   *
864   * \return the full-pivoting LU decomposition of \c *this.
865   *
866   * \sa class FullPivLU
867   */
868 template<typename Derived>
869 inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
870 MatrixBase<Derived>::fullPivLu() const
871 {
872   return FullPivLU<PlainObject>(eval());
873 }
874 
875 } // end namespace Eigen
876 
877 #endif // EIGEN_LU_H
878