1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans  https://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef B3_QUANTIZED_BVH_H
17 #define B3_QUANTIZED_BVH_H
18 
19 class b3Serializer;
20 
21 //#define DEBUG_CHECK_DEQUANTIZATION 1
22 #ifdef DEBUG_CHECK_DEQUANTIZATION
23 #ifdef __SPU__
24 #define printf spu_printf
25 #endif  //__SPU__
26 
27 #include <stdio.h>
28 #include <stdlib.h>
29 #endif  //DEBUG_CHECK_DEQUANTIZATION
30 
31 #include "Bullet3Common/b3Vector3.h"
32 #include "Bullet3Common/b3AlignedAllocator.h"
33 
34 #ifdef B3_USE_DOUBLE_PRECISION
35 #define b3QuantizedBvhData b3QuantizedBvhDoubleData
36 #define b3OptimizedBvhNodeData b3OptimizedBvhNodeDoubleData
37 #define b3QuantizedBvhDataName "b3QuantizedBvhDoubleData"
38 #else
39 #define b3QuantizedBvhData b3QuantizedBvhFloatData
40 #define b3OptimizedBvhNodeData b3OptimizedBvhNodeFloatData
41 #define b3QuantizedBvhDataName "b3QuantizedBvhFloatData"
42 #endif
43 
44 #include "Bullet3Collision/NarrowPhaseCollision/shared/b3QuantizedBvhNodeData.h"
45 #include "Bullet3Collision/NarrowPhaseCollision/shared/b3BvhSubtreeInfoData.h"
46 
47 //http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp
48 
49 //Note: currently we have 16 bytes per quantized node
50 #define MAX_SUBTREE_SIZE_IN_BYTES 2048
51 
52 // 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one
53 // actually) triangles each (since the sign bit is reserved
54 #define MAX_NUM_PARTS_IN_BITS 10
55 
56 ///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.
57 ///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
B3_ATTRIBUTE_ALIGNED16(struct)58 B3_ATTRIBUTE_ALIGNED16(struct)
59 b3QuantizedBvhNode : public b3QuantizedBvhNodeData
60 {
61 	B3_DECLARE_ALIGNED_ALLOCATOR();
62 
63 	bool isLeafNode() const
64 	{
65 		//skipindex is negative (internal node), triangleindex >=0 (leafnode)
66 		return (m_escapeIndexOrTriangleIndex >= 0);
67 	}
68 	int getEscapeIndex() const
69 	{
70 		b3Assert(!isLeafNode());
71 		return -m_escapeIndexOrTriangleIndex;
72 	}
73 	int getTriangleIndex() const
74 	{
75 		b3Assert(isLeafNode());
76 		unsigned int x = 0;
77 		unsigned int y = (~(x & 0)) << (31 - MAX_NUM_PARTS_IN_BITS);
78 		// Get only the lower bits where the triangle index is stored
79 		return (m_escapeIndexOrTriangleIndex & ~(y));
80 	}
81 	int getPartId() const
82 	{
83 		b3Assert(isLeafNode());
84 		// Get only the highest bits where the part index is stored
85 		return (m_escapeIndexOrTriangleIndex >> (31 - MAX_NUM_PARTS_IN_BITS));
86 	}
87 };
88 
89 /// b3OptimizedBvhNode contains both internal and leaf node information.
90 /// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes.
B3_ATTRIBUTE_ALIGNED16(struct)91 B3_ATTRIBUTE_ALIGNED16(struct)
92 b3OptimizedBvhNode
93 {
94 	B3_DECLARE_ALIGNED_ALLOCATOR();
95 
96 	//32 bytes
97 	b3Vector3 m_aabbMinOrg;
98 	b3Vector3 m_aabbMaxOrg;
99 
100 	//4
101 	int m_escapeIndex;
102 
103 	//8
104 	//for child nodes
105 	int m_subPart;
106 	int m_triangleIndex;
107 
108 	//pad the size to 64 bytes
109 	char m_padding[20];
110 };
111 
112 ///b3BvhSubtreeInfo provides info to gather a subtree of limited size
B3_ATTRIBUTE_ALIGNED16(class)113 B3_ATTRIBUTE_ALIGNED16(class)
114 b3BvhSubtreeInfo : public b3BvhSubtreeInfoData
115 {
116 public:
117 	B3_DECLARE_ALIGNED_ALLOCATOR();
118 
119 	b3BvhSubtreeInfo()
120 	{
121 		//memset(&m_padding[0], 0, sizeof(m_padding));
122 	}
123 
124 	void setAabbFromQuantizeNode(const b3QuantizedBvhNode& quantizedNode)
125 	{
126 		m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0];
127 		m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1];
128 		m_quantizedAabbMin[2] = quantizedNode.m_quantizedAabbMin[2];
129 		m_quantizedAabbMax[0] = quantizedNode.m_quantizedAabbMax[0];
130 		m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1];
131 		m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2];
132 	}
133 };
134 
135 class b3NodeOverlapCallback
136 {
137 public:
~b3NodeOverlapCallback()138 	virtual ~b3NodeOverlapCallback(){};
139 
140 	virtual void processNode(int subPart, int triangleIndex) = 0;
141 };
142 
143 #include "Bullet3Common/b3AlignedAllocator.h"
144 #include "Bullet3Common/b3AlignedObjectArray.h"
145 
146 ///for code readability:
147 typedef b3AlignedObjectArray<b3OptimizedBvhNode> NodeArray;
148 typedef b3AlignedObjectArray<b3QuantizedBvhNode> QuantizedNodeArray;
149 typedef b3AlignedObjectArray<b3BvhSubtreeInfo> BvhSubtreeInfoArray;
150 
151 ///The b3QuantizedBvh class stores an AABB tree that can be quickly traversed on CPU and Cell SPU.
152 ///It is used by the b3BvhTriangleMeshShape as midphase
153 ///It is recommended to use quantization for better performance and lower memory requirements.
B3_ATTRIBUTE_ALIGNED16(class)154 B3_ATTRIBUTE_ALIGNED16(class)
155 b3QuantizedBvh
156 {
157 public:
158 	enum b3TraversalMode
159 	{
160 		TRAVERSAL_STACKLESS = 0,
161 		TRAVERSAL_STACKLESS_CACHE_FRIENDLY,
162 		TRAVERSAL_RECURSIVE
163 	};
164 
165 	b3Vector3 m_bvhAabbMin;
166 	b3Vector3 m_bvhAabbMax;
167 	b3Vector3 m_bvhQuantization;
168 
169 protected:
170 	int m_bulletVersion;  //for serialization versioning. It could also be used to detect endianess.
171 
172 	int m_curNodeIndex;
173 	//quantization data
174 	bool m_useQuantization;
175 
176 	NodeArray m_leafNodes;
177 	NodeArray m_contiguousNodes;
178 	QuantizedNodeArray m_quantizedLeafNodes;
179 	QuantizedNodeArray m_quantizedContiguousNodes;
180 
181 	b3TraversalMode m_traversalMode;
182 	BvhSubtreeInfoArray m_SubtreeHeaders;
183 
184 	//This is only used for serialization so we don't have to add serialization directly to b3AlignedObjectArray
185 	mutable int m_subtreeHeaderCount;
186 
187 	///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!)
188 	///this might be refactored into a virtual, it is usually not calculated at run-time
189 	void setInternalNodeAabbMin(int nodeIndex, const b3Vector3& aabbMin)
190 	{
191 		if (m_useQuantization)
192 		{
193 			quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0], aabbMin, 0);
194 		}
195 		else
196 		{
197 			m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin;
198 		}
199 	}
200 	void setInternalNodeAabbMax(int nodeIndex, const b3Vector3& aabbMax)
201 	{
202 		if (m_useQuantization)
203 		{
204 			quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0], aabbMax, 1);
205 		}
206 		else
207 		{
208 			m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax;
209 		}
210 	}
211 
212 	b3Vector3 getAabbMin(int nodeIndex) const
213 	{
214 		if (m_useQuantization)
215 		{
216 			return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMin[0]);
217 		}
218 		//non-quantized
219 		return m_leafNodes[nodeIndex].m_aabbMinOrg;
220 	}
221 	b3Vector3 getAabbMax(int nodeIndex) const
222 	{
223 		if (m_useQuantization)
224 		{
225 			return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]);
226 		}
227 		//non-quantized
228 		return m_leafNodes[nodeIndex].m_aabbMaxOrg;
229 	}
230 
231 	void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
232 	{
233 		if (m_useQuantization)
234 		{
235 			m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex;
236 		}
237 		else
238 		{
239 			m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex;
240 		}
241 	}
242 
243 	void mergeInternalNodeAabb(int nodeIndex, const b3Vector3& newAabbMin, const b3Vector3& newAabbMax)
244 	{
245 		if (m_useQuantization)
246 		{
247 			unsigned short int quantizedAabbMin[3];
248 			unsigned short int quantizedAabbMax[3];
249 			quantize(quantizedAabbMin, newAabbMin, 0);
250 			quantize(quantizedAabbMax, newAabbMax, 1);
251 			for (int i = 0; i < 3; i++)
252 			{
253 				if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i])
254 					m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i];
255 
256 				if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i])
257 					m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i];
258 			}
259 		}
260 		else
261 		{
262 			//non-quantized
263 			m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin);
264 			m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);
265 		}
266 	}
267 
268 	void swapLeafNodes(int firstIndex, int secondIndex);
269 
270 	void assignInternalNodeFromLeafNode(int internalNode, int leafNodeIndex);
271 
272 protected:
273 	void buildTree(int startIndex, int endIndex);
274 
275 	int calcSplittingAxis(int startIndex, int endIndex);
276 
277 	int sortAndCalcSplittingIndex(int startIndex, int endIndex, int splitAxis);
278 
279 	void walkStacklessTree(b3NodeOverlapCallback * nodeCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const;
280 
281 	void walkStacklessQuantizedTreeAgainstRay(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex, int endNodeIndex) const;
282 	void walkStacklessQuantizedTree(b3NodeOverlapCallback * nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax, int startNodeIndex, int endNodeIndex) const;
283 	void walkStacklessTreeAgainstRay(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex, int endNodeIndex) const;
284 
285 	///tree traversal designed for small-memory processors like PS3 SPU
286 	void walkStacklessQuantizedTreeCacheFriendly(b3NodeOverlapCallback * nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const;
287 
288 	///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
289 	void walkRecursiveQuantizedTreeAgainstQueryAabb(const b3QuantizedBvhNode* currentNode, b3NodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const;
290 
291 	///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
292 	void walkRecursiveQuantizedTreeAgainstQuantizedTree(const b3QuantizedBvhNode* treeNodeA, const b3QuantizedBvhNode* treeNodeB, b3NodeOverlapCallback* nodeCallback) const;
293 
294 	void updateSubtreeHeaders(int leftChildNodexIndex, int rightChildNodexIndex);
295 
296 public:
297 	B3_DECLARE_ALIGNED_ALLOCATOR();
298 
299 	b3QuantizedBvh();
300 
301 	virtual ~b3QuantizedBvh();
302 
303 	///***************************************** expert/internal use only *************************
304 	void setQuantizationValues(const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax, b3Scalar quantizationMargin = b3Scalar(1.0));
305 	QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; }
306 	///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized
307 	void buildInternal();
308 	///***************************************** expert/internal use only *************************
309 
310 	void reportAabbOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const;
311 	void reportRayOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget) const;
312 	void reportBoxCastOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const;
313 
314 	B3_FORCE_INLINE void quantize(unsigned short* out, const b3Vector3& point, int isMax) const
315 	{
316 		b3Assert(m_useQuantization);
317 
318 		b3Assert(point.getX() <= m_bvhAabbMax.getX());
319 		b3Assert(point.getY() <= m_bvhAabbMax.getY());
320 		b3Assert(point.getZ() <= m_bvhAabbMax.getZ());
321 
322 		b3Assert(point.getX() >= m_bvhAabbMin.getX());
323 		b3Assert(point.getY() >= m_bvhAabbMin.getY());
324 		b3Assert(point.getZ() >= m_bvhAabbMin.getZ());
325 
326 		b3Vector3 v = (point - m_bvhAabbMin) * m_bvhQuantization;
327 		///Make sure rounding is done in a way that unQuantize(quantizeWithClamp(...)) is conservative
328 		///end-points always set the first bit, so that they are sorted properly (so that neighbouring AABBs overlap properly)
329 		///@todo: double-check this
330 		if (isMax)
331 		{
332 			out[0] = (unsigned short)(((unsigned short)(v.getX() + b3Scalar(1.)) | 1));
333 			out[1] = (unsigned short)(((unsigned short)(v.getY() + b3Scalar(1.)) | 1));
334 			out[2] = (unsigned short)(((unsigned short)(v.getZ() + b3Scalar(1.)) | 1));
335 		}
336 		else
337 		{
338 			out[0] = (unsigned short)(((unsigned short)(v.getX()) & 0xfffe));
339 			out[1] = (unsigned short)(((unsigned short)(v.getY()) & 0xfffe));
340 			out[2] = (unsigned short)(((unsigned short)(v.getZ()) & 0xfffe));
341 		}
342 
343 #ifdef DEBUG_CHECK_DEQUANTIZATION
344 		b3Vector3 newPoint = unQuantize(out);
345 		if (isMax)
346 		{
347 			if (newPoint.getX() < point.getX())
348 			{
349 				printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n", newPoint.getX() - point.getX(), newPoint.getX(), point.getX());
350 			}
351 			if (newPoint.getY() < point.getY())
352 			{
353 				printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n", newPoint.getY() - point.getY(), newPoint.getY(), point.getY());
354 			}
355 			if (newPoint.getZ() < point.getZ())
356 			{
357 				printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n", newPoint.getZ() - point.getZ(), newPoint.getZ(), point.getZ());
358 			}
359 		}
360 		else
361 		{
362 			if (newPoint.getX() > point.getX())
363 			{
364 				printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n", newPoint.getX() - point.getX(), newPoint.getX(), point.getX());
365 			}
366 			if (newPoint.getY() > point.getY())
367 			{
368 				printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n", newPoint.getY() - point.getY(), newPoint.getY(), point.getY());
369 			}
370 			if (newPoint.getZ() > point.getZ())
371 			{
372 				printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n", newPoint.getZ() - point.getZ(), newPoint.getZ(), point.getZ());
373 			}
374 		}
375 #endif  //DEBUG_CHECK_DEQUANTIZATION
376 	}
377 
378 	B3_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const b3Vector3& point2, int isMax) const
379 	{
380 		b3Assert(m_useQuantization);
381 
382 		b3Vector3 clampedPoint(point2);
383 		clampedPoint.setMax(m_bvhAabbMin);
384 		clampedPoint.setMin(m_bvhAabbMax);
385 
386 		quantize(out, clampedPoint, isMax);
387 	}
388 
389 	B3_FORCE_INLINE b3Vector3 unQuantize(const unsigned short* vecIn) const
390 	{
391 		b3Vector3 vecOut;
392 		vecOut.setValue(
393 			(b3Scalar)(vecIn[0]) / (m_bvhQuantization.getX()),
394 			(b3Scalar)(vecIn[1]) / (m_bvhQuantization.getY()),
395 			(b3Scalar)(vecIn[2]) / (m_bvhQuantization.getZ()));
396 		vecOut += m_bvhAabbMin;
397 		return vecOut;
398 	}
399 
400 	///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees.
401 	void setTraversalMode(b3TraversalMode traversalMode)
402 	{
403 		m_traversalMode = traversalMode;
404 	}
405 
406 	B3_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray()
407 	{
408 		return m_quantizedContiguousNodes;
409 	}
410 
411 	B3_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray()
412 	{
413 		return m_SubtreeHeaders;
414 	}
415 
416 	////////////////////////////////////////////////////////////////////
417 
418 	/////Calculate space needed to store BVH for serialization
419 	unsigned calculateSerializeBufferSize() const;
420 
421 	/// Data buffer MUST be 16 byte aligned
422 	virtual bool serialize(void* o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const;
423 
424 	///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
425 	static b3QuantizedBvh* deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
426 
427 	static unsigned int getAlignmentSerializationPadding();
428 	//////////////////////////////////////////////////////////////////////
429 
430 	virtual int calculateSerializeBufferSizeNew() const;
431 
432 	///fills the dataBuffer and returns the struct name (and 0 on failure)
433 	virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const;
434 
435 	virtual void deSerializeFloat(struct b3QuantizedBvhFloatData & quantizedBvhFloatData);
436 
437 	virtual void deSerializeDouble(struct b3QuantizedBvhDoubleData & quantizedBvhDoubleData);
438 
439 	////////////////////////////////////////////////////////////////////
440 
441 	B3_FORCE_INLINE bool isQuantized()
442 	{
443 		return m_useQuantization;
444 	}
445 
446 private:
447 	// Special "copy" constructor that allows for in-place deserialization
448 	// Prevents b3Vector3's default constructor from being called, but doesn't inialize much else
449 	// ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need)
450 	b3QuantizedBvh(b3QuantizedBvh & other, bool ownsMemory);
451 };
452 
453 struct b3OptimizedBvhNodeFloatData
454 {
455 	b3Vector3FloatData m_aabbMinOrg;
456 	b3Vector3FloatData m_aabbMaxOrg;
457 	int m_escapeIndex;
458 	int m_subPart;
459 	int m_triangleIndex;
460 	char m_pad[4];
461 };
462 
463 struct b3OptimizedBvhNodeDoubleData
464 {
465 	b3Vector3DoubleData m_aabbMinOrg;
466 	b3Vector3DoubleData m_aabbMaxOrg;
467 	int m_escapeIndex;
468 	int m_subPart;
469 	int m_triangleIndex;
470 	char m_pad[4];
471 };
472 
473 struct b3QuantizedBvhFloatData
474 {
475 	b3Vector3FloatData m_bvhAabbMin;
476 	b3Vector3FloatData m_bvhAabbMax;
477 	b3Vector3FloatData m_bvhQuantization;
478 	int m_curNodeIndex;
479 	int m_useQuantization;
480 	int m_numContiguousLeafNodes;
481 	int m_numQuantizedContiguousNodes;
482 	b3OptimizedBvhNodeFloatData* m_contiguousNodesPtr;
483 	b3QuantizedBvhNodeData* m_quantizedContiguousNodesPtr;
484 	b3BvhSubtreeInfoData* m_subTreeInfoPtr;
485 	int m_traversalMode;
486 	int m_numSubtreeHeaders;
487 };
488 
489 struct b3QuantizedBvhDoubleData
490 {
491 	b3Vector3DoubleData m_bvhAabbMin;
492 	b3Vector3DoubleData m_bvhAabbMax;
493 	b3Vector3DoubleData m_bvhQuantization;
494 	int m_curNodeIndex;
495 	int m_useQuantization;
496 	int m_numContiguousLeafNodes;
497 	int m_numQuantizedContiguousNodes;
498 	b3OptimizedBvhNodeDoubleData* m_contiguousNodesPtr;
499 	b3QuantizedBvhNodeData* m_quantizedContiguousNodesPtr;
500 
501 	int m_traversalMode;
502 	int m_numSubtreeHeaders;
503 	b3BvhSubtreeInfoData* m_subTreeInfoPtr;
504 };
505 
calculateSerializeBufferSizeNew()506 B3_FORCE_INLINE int b3QuantizedBvh::calculateSerializeBufferSizeNew() const
507 {
508 	return sizeof(b3QuantizedBvhData);
509 }
510 
511 #endif  //B3_QUANTIZED_BVH_H
512